
Good morning; My name is Lars Bishop, and I’m a developer technologies engineer 
on the Tegra team at NVIDIA.  I’ve been at NVIDIA just about ten years, and I’ve spent 
my entire time there supporting mobile developers on a number of platforms.  For 
the past few years, my focus has been Android, from drivers to OS core, to the app 
level.  Joining me on-stage today is Krispy Uccello; he’s a Developer Advocate at 
Google who focuses on Gaming.  And today, we’d like to spend this session covering a 
mixture of specific engineering recommendations for Android and Android TV game 
development, based on our experiences supporting commercial game developers. 



 A great game has every chance to be a great gaming experience on Android, getting 
positive reviews and big sales.  Android is a really powerful, diverse gaming platform. 
This is the potential for any game on Android. But our experience has also shown us 
some heartbreakers – great games that *could* have been 5-star experiences on 
Android, but got hammered with 1-star reviews for things that could have been 
avoided.  They’re the not-so-little things that snatch defeat from the jaws of victory. 

2 



This isn’t about major changes to the way you develop your games.  This is about things you 
can add to your already-working development pipeline that are specific to SHIELD, to Android 
TV, and Android.  So, the official name of the session is ‘building 5-star games for SHIELD and 
Android TV’.  To be honest, this wasn’t the name that we the engineers wanted.  We wanted 
to call it ‘Techniques for Avoiding Negative Reviews on NVIDIA SHIELD and Android TV’.  But 
marketing said we couldn’t have a negative-sounding title.  Now, we have some pretty 
important reasons for wanting to call it ‘Avoiding negative reviews’ – we’ve worked with 
enough game developers to know that we can’t make a game be a 5-star game.  That’s up to 
the developers, the designers and the market.  It would be foolish and frankly arrogant to 
think we could do otherwise.  5-star games come from developers like those represented 
here at the conference. 

  



So what are some of these biggest, top-level items that we see that causing issues?  
Well, games not even appearing in the market for a user’s device; getting filtered out 
is a sort of “silent killer” for sales. 

Games crashing on a users’ devices is the “NOT so silent killer”.  Poor handling of 
suspend and resume and app switching is a common complaint.  Unsatisfying, “old” 
visuals on new Android systems can lead to vocal user disappointment.  Lack of 
Android feature integration is a sign of a “generic” or “turn the crank” port and it 
definitely turns gamers off.  Finally, clunky or partial controller UI is a major issue for 
Android TV and console-style gaming on all devices.  We’ll discuss these and a few 
more.  

 

4 



So why does NVIDIA engage game developers on overall Android gaming and TV 
experiences?  Well, the answer is, of course, SHIELD.  From the original SHIELD 
portable, a purpose-built Android gaming handheld, to the gaming-focused SHIELD 
tablet and its bundled SHIELD controller, all the way to the just-announced SHIELD, 
the Android TV-based living room gaming experience, NVIDIA has been focusing on 
Android gaming for several years. 

 

Looking at these platforms, I think you can see why we care about android 
compatibility and features support.  We’ve created a handheld, a tablet, and an 
Android TV entertainment system, all powered by NVIDIA’s Tegra processors.  And all 
of them focused on a great gaming experience. 

 

However, because of the wide range of form factors here, our recommendations in 
this talk will apply to games on a wide range of Android and Android TV devices, 
SHIELD or not. 

5 



Throughout the talk, we’ll use some examples from an Android title that we think 
really did things the right way.  Oddworld: Stranger’s Wrath.  The game likely needs 
no introduction; it’s a great episode of a very popular franchise.  The studio that did 
the Android version is Square One Games in West Vancouver, run by Stephane Jacoby 
and Roger Freddi.  In full disclosure, I’ve supported Square One and Stephane on 
several titles, and I’m a big fan; they’re a joy to support.  They do their titles well.  
Oddworld had game controller support, Google Play integration and Android TV 
support all at launch.  And, as you may have guessed, the well-reviewed game on 
slide two was *Oddworld*.  They really hit all of the items we’ll discuss today. 

 



We’re going to break down the issues not just by category, but by stage of the 
common game development pipeline.  Often, we end up engaging game developers 
who already in alpha testing.  And that late in the process, we find that some of our 
recommendations are much harder to integrate than they would have been early in 
the development cycle. 



Here are the four biggest items that we see getting pushed late in the production 
pipeline that can really benefit from earlier planning on Android. Android devices in 
the market have a wide range of graphical horsepower; graphics scalability should be 
planned out from the start; it can be a big pain to have to tune the game at the end 
without enough knobs at hand.  Android features like in-app payment can be added 
much more easily if you architect to include them.  Android TV and HDMI out affect 
not only gameplay but UI assets.  And controller support needs to be considered 
early, especially if the game is entirely new or the original game did not support 
consoles.  So, now the details. 



Be sure you set the graphics “bar” high enough at the high end.  Gamers buy SHIELD 
platforms for gaming, and they know what their systems are capable of doing.  So 
triple-A mobile content needs to take advantage of that.  As an example, see the 
screenshot here – this is U E 4 running on NVIDIA’s SHIELD tablet, using Google’s 
OpenGL ES 3.1 Android Extension Pack. 

 

 



Google’s G L E S Android Extension Pack, or A E P adds a whole group of desktop or 
console-level 3D features, including:  Tessellation and Geometry shaders for tunable 
geometry amplification.  ASTC adds a cross-platform texture compression format with 
alpha support and variable bitrates. Atomic variables are supported in shaders for 
advanced compute shaders.  Per-sample shading and shader variables are available 
for complex AA.  And independent blending modes per render target are supported 
for effects like deferred rendering. 

 

 



The great thing about A E P is that it’s a single extension with all of these features.  So 
it defines a sort of “Open GL feature level” that a developer can target, rather than 
having to plan for some combinatorial explosion of missing or supported extensions.  
And to make it even easier to use on Android, you can filter on it in the Google Play 
Store by adding a feature tag to your app’s manifest.  Add this, and you know that any 
platform where you’ll be installed will have all of these features! 

 

For a ton more details on the possibilities unlocked by A E P, there is a session by 
NVIDIA’s own Mathias Schott at 3 P M today, in this room.  



And a quick demo of a few A E P features running on the new NVIDIA SHIELD. 



So much for the high bar… As early as you can, figure out your best optional and 
tunable features and expose these in user settings.  As we know, gamers like the 
option to adjust these things.  However, to ensure the best chance of having the 
game “just work” out of the box, if possible your app should either do some form of 
micro-benchmark on the first launch or else use some form of device detection and 
pre-set the options for optimal frame rate.  Oddworld does this, and it works pretty 
well out of the box.  Some good scalable items are particles, shadows, and image-
based post-processing passes.  If you’re using a commercial engine, this is likely 
available AND scriptable.  See the options for U E 4 and Unity listed here. 

 



In terms of resolution, all of your rendering should be scalable.  This is important not 
only because you’ll need to handle a large range of screen resolutions, but also 
because it may be necessary to render below the device’s native resolution to hit 
your desired frame rate.  Most high-end games already do a post-process “resolve”  
pass for their post-processing filters.  In this common architecture, the 3D scene is 
rendered to an offscreen buffer, and then a final 2D rendering pass is done for effects 
like motion blur and depth-of-field. This already decouples the main rendering 
resolution (the offscreen buffer) from the screen resolution, that makes it easy to let 
the user adjust the pre-resolve resolution.  Smart default options are particularly 
important for this.  The major rendering engines make this easy, too – see the 
references.  The engines can also scale the 3D rendering while doing the UI at full res 
for quality. 

 

Also, screen variance is a *design* concern!  Android gaming device screens go from 
less than five inches diagonal to more than sixty inches for Android TV.  So pay 
attention to physical screen size information and consider a different UI or at least UI 
assets for different systems. 

 



One question I often get from folks starting out in Android game development is 
“how do I avoid writing any Java?”.  Depending on the developer, this may be out of 
performance concerns, a desire to avoid complicating their development, or in rare 
cases, just fear, uncertainty and doubt.  I tend to try to redirect this question – what I 
think we *should* be thinking of is “how do we create the best Android gaming 
experience while keeping the app as simple, small and stable as possible”.  The fact is 
that numerous, important Android integration features like externa;l displays, In App 
Payment and advertisements are Java-only.  So some Java is going to be required; the 
key is to make the *integration* of Java and C++ as clean and tight as possible.  Used 
well, explicit Java code  plus a LITTLE J N I (or Java Native Integration) C code can help 
make a great Android game. 

 



The most common way that Android apps stay native is to use NativeActivity.  
Actually, what most apps use is a combo of NativeActivity and 
AndroidNativeAppGlue.  Together, these interfaces allow an Android application to 
run their main loop in C++, in their own thread and receive input and system 
information via an event loop.  One important thing that many developers do not 
realize is that unlike NativeActivity, which is implemented in the OS itself, 
NativeAppGlue is not platform code.  It’s fully open, app-level support code.  It’s 
*designed* to be branched into the app and extended.  So, you *should* make your 
own copy of it; learn it, and extend it for what you need.  We’ve done this with our 
samples for things like rendering at the refresh rate. 

 

In addition, while NativeActivity itself is a part of the OS, a developer should 
*subclass* the NativeActivity object in Java for their game.  Initially, this subclass can 
be completely empty.  This is the best of both worlds; you can add only the Java you 
need, when you need it. 

 



By basing your app off of a NativeActivity subclass and your own copy of the C 
AndroidNativeAppGlue code, you’re ready for anything. 

 

Down the road, you can add things like J N I messaging for in-app purchases, or 
passing just the data you need from native to Java for cloud saves.  You can even 
directly leverage Android UI dialog boxes and pre-built Google UI for things like 
Google Play sign-in.  All with isolated Java code, very little J N I code and extremely 
few changes to your native code. 

 

Oddworld used this subclassing method with great success.  And as we mentioned, 
NVIDIA’s own GameWorks OpenGL Samples include examples of a minimal 
subclassing of NativeActivity 



If your game started as a touch-only mobile or PC game, you’ll likely need to add 
some schedule time for creating a controller UI.  *Don’t* try to get away with 
controller-driven mouse pointer – you should code for the best platform experience. 

 

Also, plan extra time to test the *full* game experience on controller only.  We still 
see pre-release games with partial controller support, especially deep in the settings 
menus.  ANY required touch interaction is a showstopper on Android TV.  If possible, 
test on the common controllers; SHIELD controller, Android TV gamepad and Android 
TV remote if you can support it 

 

 



Another key in the planning phase is to plan the build, debugging, and profiling of 
your application.  To make this easier, NVIDIA ships the Tegra Android Development 
Pack.  It’s designed to be a one-stop installer for Android build tools, NVIDIA’s 
advanced CPU / GPU debugging and profiling tools, and Android-related sample code.  
Key among these tools is N-sight Tegra Visual Studio Edition.  It’s a free Microsoft 
Visual Studio plugin that adds full Android development and debugging within 
Microsoft’s I D E.  You can even include Windows and Android builds in the same 
project. 

 

In addition, we have a session TODAY at five thirty, in this room.  Daniel Horowitz 
from our developer tools team will present a session with E A Firemonkeys and Tick 
Tock games on using NVIDIA tools for Android development. 

 



There are a lot of resources available to you: NVIDIA has created GameWorks, with 
tools, samples, documentation, and whitepapers for Android game development.  
The GameWorks OpenGL Samples specifically show a wide range of OpenGL and G L 
E S features, including A E P.  The samples run from a single-source base on Android, 
Linux and Windows.  And they support SHIELD and Android TV TODAY 

 

While many developers use the Google Android Developer Site for reference docs, 
the guides to development and publishing on the site are great, too.  As are the 
Google Android developer blogs with articles from Krispy and others covering 
common development questions in detail. 

 



Finally, plan on working with partners for success… We at NVIDIA can help amplify 
your team.  Square One Games have worked with NVIDIA on several titles.  NVIDIA 
DevTech have provided testing and profiling feedback well in advance of release.  For 
example, NVIDIA QA tested their games on SHIELD before SHIELD was even 
announced.  And in return, working with Sqaure One on pre-release devices helped 
us understand where there were issues in our own drivers.  So it has helped improve 
the SHIELD as well. 

 



Next, let’s cover some items that don’t tend to be an issue until development itself. 

 



Android Lollipop added great new features to Android, and most importantly, it 
added support for Android TV.  However, it’s also been the first Android update in 
years that required fixes to a lot of existing applications.  For reasons of security and 
performance, Android L is stricter than previous versions.  We worked with lots of 
developers to help them with this transition, and we learned a bunch doing it.  We 
found that almost all of these issues fell into one of a few cases.  They’re summarized 
in the linked blog, but we’ll detail a few of them here. 

 



ART is the new Java runtime in Android, and over half of the crashes in existing 
applications were related to ART being tighter to spec.  Specifically, JNI checks are 
tighter in ART than they were in Dalvik.  So apps that got away with “JNI warnings” 
before would throw an exception on Android L.  Also, ART shares its thread stacks 
between native and Java.  So apps that used to create native threads with explicit 
stack sizes suddenly found these stacks were no longer deep enough on L. 

 

One of our recommendations to assist with these JNI exceptions are to *avoid* doing 
complex operations in JNI itself.  Instead, write the code in Java (in your NativeActivity 
subclass) and make a single JNI call up to that code.  In general, prefer making one JNI 
call up to Java over dozens of JNI calls to do the same work without explicit Java.  
Basically, JNI code is fragile and JNI calls can be slow.  We find that what you could do 
in five Lines of Java can take 50 lines of C++-based JNI.  So while you often COULD 
avoid most explicit Java code by writing a TON of J-N-I C++ code, this is not the best 
option. 



Here’s a quick example of launching a web browser to a given URL from native code.  
On the left it is done purely in native code calling JNI.  34 lines of C++ code.  On the 
right, we write most of it in 6 lines of explicit Java, and then call that Java with 9 lines 
of native JNI code.  And this is, obviously, a simple example.  The difference between 
all native JNI and just using a little native JNI to call explicit Java code can be 
arbitrarily large.  We prefer the simpler version on the right. 



Another security change in Android L affected more advanced application that used 
services for things like content download or License-checking.  In L, services in your 
app that launch another system via an intent must specify the package that will 
handle the Intent.  Previously, many apps left out the package and relied on the 
system’s package manager to implicitly resolve it to an app for them.  You have to 
name the receiving app explicitly now for security.  For audio, NuPlayer is the new 
Android audio playback system.  It tends to be stricter and throws errors in more 
cases than AwesomePlayer did.  To test if NuPlayer is related to an issue in your app, 
you can revert to AwesomePlayer via the developer options control panel as shown 
here.  Calls to clock() may now return non-linear results, as apps were relying on 
non-spec behavior.  So just use the replacement shown here for timing instead.  And 
for *all* of these Android L recommendations, don’t forget to consider issues with L 
in your 3rd-party code.  This is especially pivotal to consider early in the process if the 
library is closed-source and you cannot control your own destiny.  



Application Lifecycle.  Looking back on my old GDC slides, I used to have to present 20 
minutes of my hour-long Android sessions on it.  But thankfully, developers are doing 
a much better job handling suspend, resume, and app switching.  But there are still 
two common, major issues in a lot of Android games 

 

The first is playing Audio or Music on the user’s lock screen.  So the user is playing a 
game, and then suspends their device for a meeting.  During the meeting, they 
resume their device to look at the time on the lockscreen, and “boom” out comes 
loud game music.  It’s important to kill your app’s audio, especially music when you 
are not the focused window.  The Android Audio Focus Change system is handy here.  
And Krispy has an detailed blog posting on this at the location below. 

 

The second remaining issue is background CPU load.  When you are paused and even 
when you are not focused, be sure to drop your CPU utilization to as near to zero as 
possible.  Look at for background threads in your app, and be sure to block them from 
spinning when the device is suspended or you aren’t focused. 

 



Button handling can be a little confusing; we still see apps that have problems here.  
With all input callbacks or events, you want to return “true” (or handled) for buttons 
you recognize and process.  Failing to do so can result in your app getting *another* 
callback for the same button press - a so-called “fallback”.  As a specific example, on 
many systems with a game controller, an unhandled B button event will fall back to a 
back button event.  Say the user presses the B button.  Maybe your app steps back 
one menu level on B.  Then, say your app returns “false” from the B event. Well, then 
the system assumes you did not know about the B button and “falls back”; it sends a 
separate BACK BUTTON callback.  And your app likely steps back a second menu level, 
leaving the user confused.  If you had returned “true” when you handled the B button 
event, you’d have never gotten the second BACK event, and all would be fine. 

 

Also, you should always explicitly handle the BACK button to avoid confusion.  If you 
don’t explicitly handle the back button, then ANY press of the back button will exit 
your app instantly. 

 



Now, while returning “false” for every event is a problem, returning “true” for every 
event can be an even bigger problem.  We find that some apps decide to “fix” the 
“doubled events” issue with a blanket “true”, implicitly saying they handle all events. 
The problem here is that in some cases you may be eating events that you *should* 
have let fall back to the system.  Only return “true” for buttons you actually handle.  
With very few exceptions, input events go to the app FIRST.  You handle them and the 
system does not get them.  As an example, one common problem stemming from 
returning “true” on all buttons is that you can break the behavior of the volume 
rocker while your app is active, because the system never gets a chance to see those 
volume events.  Also, you may be eating buttons you’ve never even heard of, or didn’t 
even exist when you shipped your app.  That makes your app fragile over time.  Eat 
only the events you handle. 

 

 



Game touch controls can be problematic and can interact with Android UI elements. 
If possible, use immersive fullscreen mode in Android to hide the Navigation Bar.  For 
example, the common “dual touch” first person shooter controls at the bottom 
corners of the screen can be a problem.  We recommend avoiding touch-points right 
at the bottom of the screen.  This is especially true if the touch points in question 
involve swiping; swiping up from bottom could deploy the navigation bar and mess 
up the game!   

 

Also, accelerometer-based controls are controversial.  Some people hate them, and 
they can feel uneven on some devices.  Always make orientation-based controls a 
user option even if gyro hardware is available.  Oddworld has an aim-with-gyro mode 
on touch devices; and it can be turned off in the settings by those who don’t like the 
experience. 

 

 



Keep in mind the set of axes and buttons that are likely to be available, and design 
your controller support accordingly.  Not every game can support the Android TV 
remote, but if your gameplay allows it, why not?  If your game can be played 
enjoyably with the remote, you open up your market to non-core gamers. 

 

You may want to consider supporting controller hot-plugging, even if you’re not a 
multiplayer game.  Users may have more than one controller, or at least more than 
one input device.  They may have launched your game from the Android TV remote, 
and then picked up their game controller.  The game controller could come up post-
launch as a new device, and you could miss it if you aren’t watching for hot-plug.  
Also, you may want to handle hot-unplug of a controller, say in case of battery dying, 
at least by pausing the game…  

 



Here are some specific examples of controllers.  On the left, the SHIELD controller, 
with its full set of analog and DPAD controls, cross buttons, shoulder buttons, 
triggers, and “menu” button.  It even has a headset plug for two-way audio.  The 
standard Android TV gamepad is similar, but without a couple of the buttons, and the 
two-way audio.  Finally, an Android TV remote like the SHIELD remote has a DPAD 
navigation, media controls and voice search. 

 



So this covers the items through the development phase.  So all that is left is to 
package and ship.  Krispy, what are the important items for developers to consider 
when packaging and finalizing their game for Android, especially Android TV? 

 



When targeting both Android TV and handheld devices, it isn’t always clear that the 
same monetization SKU works for both. Free to play might work very well for 
handheld platforms, but Android TV is more of a premium experience.  So consider a 
full, premium, paid version of the game for Android TV.  This requires a different SKU 
for the two platforms, but can be well worth it in terms of maximizing experience for 
the user and value to you the developer. 

 

 



The Android Manifest file is the Google Play Store’s main interface to your game.  It 
exports a ton of information about your game to Google Play.  Get it wrong, and 
you’ll: Not even show up on a compatible device’s Play Store and lose potential sales.  
Or, you’ll show up as available on an incompatible device and end up with angry users 
when the app crashes on their device 

 

The key components of the manifest include the minimum supported OS via the SDK 
version, the required and requested features (and what those imply), the requested 
permissions and the Android TV-required resources. 

 

One note for users of middleware game engines: Using an engine does *not* let you 
ignore this manifest.  You should know what your engine’s generated manifest looks 
like!  And you should know how to override that generated manifest.  For example, 
we’ve found that some engines declare all apps as Android TV ready without regard 
to the app. 

 



In order to be visible on the Android TV Play store, there are a few things you need to 
do above and beyond general Play Store items.  Your app needs to target android SDK 
level 21 or newer.  Note that this does NOT mean Android L is the min spec for your 
app in general – it can be much lower.  You need to prepare for the “Leanback 
Launcher” so you appear on the Android TV home screen.  You do this by designating 
the Activity that should be launched for Android TV.  And you need a Banner image to 
represent your app in the Launcher.  Furthermore, you need to ensure all Activities 
can run in landscape orientation.  Touchscreen support must be declared as optional, 
not required.  If you need a full gamepad, declare a gamepad as required.  And don’t 
require camera, GPS or other non-Android TV hardware features.  And once again, 
don’t forget any UI generated by third-party code you depend upon, like ad-ware 
middleware. 

 

 



In terms of maximizing the number of devices you can support, don’t request any 
feature with required equals true unless you absolutely need it to run!  And for 
each permission you request, know if any hardware features are implied by that 
permission.  The link below lists these. 

 

To better understand what your manifest implies, you can test for your required 
features (both explicit and implicit) with the A A P T tool in the Android SDK. 

 

Note that the Google Play Store’s publishing dashboard automatically advises you on 
Android TV compatibility 

 



Users do *not* like seeing long lists of permission requests when installing apps.   



Speaking of earning your users’ trust, there’s important work to do after your game is 
shipped.  Lars? 

 

Finally, let’s discuss a little about what can help your game succeed after you release 
it upon a grateful world… 



Let’s face it – people look at games in the Play Store not that differently from how 
they look at buying anything online.  They may see the average rating, but they really 
read the 1-star reviews.  They want to know if these are real problems, or just people 
looking to complain about *something*.  So, those 1-star reviews are the ones that 
you’ll end up spending time with.  The Play Store allows developers to respond to 
reviews, and replying with real, substantive answers shows you want to make your 
game experience better.  “Substantive” is the key here.  Try to track down and fix the 
issue if it’s a real bug, and be sure to comment in the reviews that you believe you’ve 
fixed the issue in a given version.  Look at these Oddworld reviews.  These previously-
low reviews got responses and were then edited by the reviewers based on great 
support.  On the left, note what happened.  A user on a specific handset reported an 
issue and gave a poor review.  Rather than waiting for a groundswell, Square One 
tends to hit these issues very early.  Reproducing and root-causing can take time, so 
triaging quickly is important.  In this case, Square One found the issue and 
immediately noted publicly that there was an issue and that they were working on it.  
Then, when they fixed the issue and shipped the fix, they posted again and noted the 
exact version with the fix.  And boom; the user edits the review.  Not only is the 
review 5 stars now, the user notes it is because the developer is responsive. 

 

Even if the issue can’t be fixed exactly the way the user wants, Square one tends to 
respond with the background behind the issue.  This gives potential buyers more  



confidence. 



If you are available on a ton of devices, many, even most of your users will be on 
devices you do not have and have never seen.  So it is important to make it easier to 
get useful debugging info from your customers remotely.  This way, you can avoid 
relying on *their* vague description of the problem and get real data. 

 

 



Due to security upgrades, Android L no longer logs detailed native stacks for app 
crashes on USER OS images unless the app calls process control APIs from native or 
Java code, or the manifest declares the app as  debuggable.  Of these, the 
lattermost is a BAD idea in a shipping app; it opens other potential holes.  So the 
process control calls are the best option.  Developers may want to consider adding a 
hidden option or password-protected key to unlock setting these debug flags.  That 
way, the feature can be enabled remotely for users seeing problems. 

 

 

 



Speaking of a debugging mode, you can also use this mode to unlock detailed 
logging.  In practice, many common problems on unknown devices fall into one of a 
few cases:  Graphics Config or Context setups you’ve never seen before, app data file 
path defaults you’ve never seen before, and lifecycle events related to suspend, 
resume and unlock happening in a different order than on your test devices.  So 
consider adding a hidden debug mode that logs EGL setup (like all of the available 
configs), lifecycle events, file load and write paths, etcetera, so you can remotely 
debug what you weren’t expecting to see. 

 



Finally, a plug for NVIDIA Developer Technologies.  NVIDIA Devtech engineers have 
years or decades of experience working with developers to help make their games 
better.  Many of us came from “first careers” in studios or with game middleware 
vendors; I came from a decade in the latter.  We see hundreds of games every year, 
and we’ve seen a lot of what can go right and wrong on Android.  We also have 
extensive QA groups at NVIDIA that can help amplify your own QA organization.  So 
please contact us via your NVIDIA Developer Relations rep or via our developer 
website. 

 

 

 



In the end, these recommendations, strategies, resources and tools are all designed 
to help you ensure that your game has the best chance of being a 5-star experience 
on SHIELD, Android TV and Android.  So please stop by NVIDIA’s booth in the expo 
hall – try out Android TV gaming on SHIELD, and talk to our Devtech and Devtools 
engineers about bringing your own titles to SHIELD.  Thanks for joining us today! 




