<A NVIDIA. SHIELD

Android Dev-Diaries

NVIDIA.

Welcome!

2 amazing game companies
Each with efficient workflows for Android
Very different stories

Workflows evolved

Tales from the trenches

How they use NVIDIA tools and hardware to
Develop faster
Raise the performance bar
Increase visual fidelity

NVIDIA.

Speakers

Your host
Daniel Horowitz
Engineering Manager, Mobile Developer Tools

Lewis Strudwick
Technical Director
Electronic Arts, Firemonkeys

Arden Aspinall
Founder & CTO
TickTock Games

NVIDIA.

SHIELD as a Dev Platform

Tegra X1 SOC
CPU: 8 core (4x 64bit ARM Cortex A57 & 4x A53)
GPU: 256 Maxwell cores
RAM: 3GB

But there’s more to the story...

Today’s phone and tablet

Small screen ...HDMI maybe?
No Ethernet while debugging
Battery woes

SHIELD: There’s a port for that!!!
Micro-USB for debugging plus...
Wall power!

Ethernet port!
2-port USB hub
Full sized HDMI

Battery woes? Some devices can consume more power in heavy load than the 0.5
amp USB port can restore.

That’s not an issue for SHIELD.
And with the USB hub, you can even keep the gamepad charging.

NVIDIA.

<A NVIDIA. SHIELD

Android Dev-Diaries:

Need for Speed: No Limits

This is a session about some of the cool tools NVIDIA has developed for android
developers — specifically as it relates to our most recent title, Need for Speed: No
Limits

NVIDIA.

NVIDIA.

Who are the Firemonkeys?

« Formed by a merger of IronMonkey and Firemint
* A division of EA

 Largest studio in Melbourne, Australia

» A world leader in mobile games

Some background:
- I’'m a technical director at EA firemonkeys, in the central technology group

- Firemonkeys is an EA studio formed from two Australian independent mobile
games developers

- We specialize in triple A mobile games, some of which you may have heard of, such
as Need for Speed, Real Racing and the Sims Freeplay

NVIDIA.

In the beginning...

| joined mobile at the cusp of the revolution
we’ve seen around us.

The studio had just migrated from a
predominantly Java + Brew background.

We needed to take advantage of the new
possibilities the technology gave us.

But this required the studio to adapt our " 4
workflow.

We’re going to start his talk with a little bit of background on how we develop games
at Firemonkeys

- | joined mobile games in 2009, just after the release of the iphone 3GS

- The studio had just migrated from building simple java/brew titles to first generation
smartphone games

- The new generation of devices allowed us to create richer and more compelling
titles

- As a result, we needed to change the way we built our games

NVIDIA.

Developing for Mobile:
Actually quite hard.

As the games got more complex, we began to run up against some serious issues.
* Game size e doubling year on year
* Code complexity was doing the same thing

"
5 04:25.72
s1%155

Need for Speed: Need for Speed: Hot Need for Speed: Most
Shift (i0S, 2009) Pursuit (i0S, 2010) Wanted (iOS, 2012)

» Debugging and iteration were real limiting factors

Our titles have been doubling in complexity year on year — both in terms of code and
assets

NFS Undercover (the title made before | joined) shipped at 90mb, NFS Shift at 250,
and a year later, Hot pursuit was nearly 500mb. We now are close to 2GB for RR3.

The process of dealing with these more complex projects made the difficulties of
mobile development, such as inconsistent debugging issues and incomprehensible
deployment errors, stand out

NVIDIA.

The Solution: Develop on PC

pq Visual Studio

We embraced the Visual Studio ecosystem.

Our solution to these issues was to do the majority of the development on PC

We embraced the visual studio ecosystem

NVIDIA.

The Solution: Develop on PC

No excuses for hacking in platform-specific code!
All game code in device agnostic C++

Came in handy later when we looked at Android

Only use Objective-C (or Windows API calls) for OS interoperability, and hide it in
the engine

The necessitated some changes; we removed any platform specific code in the game,
making it all device-agnostic C++

By having your game code clean of these dependencies, you can open up future
porting options — which came in handy when we moved to android.

Any OS/graphics code was moved into platform abstraction layers in the engine

NVIDIA.

The Solution: Develop on PC

Our “simulator” is just a normal window

We support common device resolutions in it
You may need to add multi-touch code / accelerometer etc
Don’t forget dealing with application activate/deactivate flow

Building a working “simulator” for mobile titles is quite straightforward; ours is just a
regular window

- We have pre-programmed it with common device resolutions, but support
dynamic resizing for uncommon devices

- Extra inputs may need to be coded in to support multi-touch and features like the
accelerometer

- It’s also worth being able to simulate app deactivation and reactivation to test
those code paths

NVIDIA.

What about the graphics?

OpenGLES ~= OpenGL

We have a shim DLL that emulates EGL and OpenGLES specific APIs

» It also #defines out lowp, mediump, and highp and adds #version 120 to the top of shader
source.
* We insert decompression routines for mobile specific texture formats like PVRTC

Interestingly, this first led us down the path of developing a relationship with NV.

You might be wondering what we do to emulate OpenGLES on Windows —
I'll let you into a secret - OpenGL is basically the same as its embedded counterpart
We have built a shim DLL that we link to which provides OpenGLES functions

For shader compatibility, we have added three #defines that allow our mobile
shaders to function un-modified

In addition, we have embedded decompression routines for mobile texture formats
that let us use assets we would ship with

Driver OpenGL compatibility became a big issue, so we switched to being a solely NV
shop — we never aimed to ship on PCs

NVIDIA.

(Why) | hadn’t (yet) mentioned Android

Android was originally dealt with by other teams in EA
We tentatively looked at it and decided it was too hard

Our games would be branched at (or near) release and sent to
another EA team for porting.

== sub-par Android experience

For a long time, Android was not dealt with within the studio — we relied on external
EA porting teams

At various times, we considered supporting it locally, but lacked the bandwidth to add
support

This meant that our games would be branched near release and sent to another team
for finalizing

Unfortunately this led to titles that gave players a sub-par experience on Android
devices

NVIDIA.

My First Date with Android ®

We decided to make a clean break with NFS Most Wanted in 2010,
which would be the first title on our new engine.

We were going to try to close the gap with Android

New technology, new platform
What could possibly go wrong??

We sure were in for a shock!

With the development of our new engine — unfortunately named Isis — we decided to
try adding first party android support

This first party support would allow external teams to only deal with device specific
issues, closing the quality gap for our titles

It was a new codebase built on new technology, targeting a platform we had never
dealt with

What could possibly go wrong?

NVIDIA.

The forgotten child: the NDK

It turns out Android is pretty keen on the YODAWG;1 HEAHD‘F"YUU LIKE

whole Java thing "

Java is not the ideal language for our mobile
games
Especially ones written in C++
...with an existing C++ engine —" \
...that need to be highly efficient v i
SO1PUTAMAININ YOUR MAIN SO
YOU CAN E_i_!ﬂll“ WIIIlE?YIllI

C 1 2 \ | }
Solution(?) The NDK! EXECUTE

So it turns out that Android is pretty keen on the whole Java thing

Java isn’t really suited for the development of our titles, especially given our reliance
on C++ and multiplatform engines

| have heard that the Java side of Android development is pretty decent (although Ill
believe that when | see it), but given that we can’t use the typical SDK, we are reliant
on the NDK

NVIDIA.

The forgotten child: the NDK

YO DAWG I HEARD YOU LIKE C++

Android via the provided NDK is painful.

No project system

Difficult to set up debugging/deployment
No reliable profiling tools

Interop with Java not trivial

The device has to behave itself

The NDK, unfortunately, has all the trappings of being developed in a short timeframe
by several interns colluding

It is extremely difficult to use it for a production workflow, lacking a project system
other than make,

no debugging integration with IDEs (although it is ~~~possible~~~ to use the GDB
transport layer with Eclipse),

no integrated profiling tools,
and it is reliant on interoperating with the Java-based OS

(as well as) having a device that is in a good mood.

NVIDIA.

Need for Speed:ﬁNgi,.Lir/rlits

‘ {

So, let’s talk about Need for Speed: No Limits

<A NVIDIA.

Somethmg had to give

o

d be no more compromises with

title made with no external

When we started this project, the shifting market demographics meant that we could
have no more compromises with our Android release

NFS would be the first title where we didn’t have a dedicated android team — we had
only one set of developers for both platforms

NVIDIA.

Somethmg had t giye

per site

| remember thinking that it was too good to be true.

Shortly after we made that decision, | was reading the latest news from the NVIDIA
developer portal, where a new program with an extremely long name was offering to
make the android development “experience” more straightforward

| remember thinking that what they offered was too good to be true

NVIDIA.

Android - the Road to Recovery

Nsight Tegra VSE slotted directly into our workflow:

» We could build and deploy within Visual Studio with a solution platform
« |t supported debugging native code

« And it even came with an integrated Java debugger within the IDE!

* Also, the TADP set up system may have saved a few lives on the team

The verbosely named Nsight Tegra Visual Studio Edition and the Tegra Android
Development Pack slotted directly into our existing windows and visual studio
workflow

- We could build and deploy within Visual Studio without requiring specialized
hardware and while sharing the same project/solution files as our windows
simulator

- It also supported native debugging over ADB and integrated with Visual Studio
- And —much to our surprise — even came with debugging support for Java code

- The streamlined setup process from the custom installer managed to remove most
of the arcane knowledge required to build and deploy to android devices

NVIDIA.

Android - the Road to Recovery

We were already using a Windows + VS development environment for the vast majority
of the project.

Suddenly, we could make every developer on the team an “Android Developer”

We were already using visual studio and windows for the majority of our feature
development

The way that this toolchain integrated not only allowed us to do meaningful work on
android within the studio, but we could make every member of the team an “android
developer”

NVIDIA.

Finally, someone cared!

We had felt that the NDK had been overlooked ®

But NVIDIA is working on turning it into a viable gaming platform! ©

For a long time, we had felt like the NDK had been overlooked by its creators —and
our suggestions for improving it fell on deaf ears

But now we had NVIDIA really investing in the developer experience, and building it
into a viable gaming platform

Turn into a viable gaming platform

Precompiled headers which reduced our full build time from nearly an hour to a
fraction of that

Incredibuild support so now none of my programmers can complain

They’ve added new SDK releases and dealt with our crazy requests to use the latest
possible compilers

As well as a host of other features that make the experience better

NVIDIA.

Finally, someone cared!

Support has been great

We have got, in the last 18 months:
Precompiled headers
Incredibuild support
New NDK releases
Increased debugger performance

The initial releases lacked a few features we wanted, but we engaged in an email
campaign to get our way, and NVIDIA responded by showing their commitment in the
platform.

In the last 18 months during our development cycle, several major features were
added — hopefully as a direct result of our requests.

We have received precompiled header support, which cut our build times by 80%
Incredibuild has recently been integrated, to improve them even further

They update the pack rapidly for each NDK release, something we are keen on as we
always use the latest compiler available

And have improved debugger performance and reliability

NVIDIA.

Rough Edges - An Android Editorial

There are still problems with the Android ecosystem.

Okay, there’s the normal hell of moving to a new platform -- and | gotta say,
Android was more hell to move to than most consoles I’ve adopted.

-John Carmack

Unfortunately, there are still some problems with the Android ecosystem
John Carmack recently said:

<read quote>
Which | think sums up some of the sentiment surrounding the platform

NVIDIA.

Rough Edges - An Android Editorial

Misbehaving devices
Some are even impossible to debug native code on
| hope you enjoy printfs
Transferring files/assets can be surprisingly hard

JNI interop full of danger and horrors

~90% issues come from graphics driver/vendor oddities
Don’t make a game with graphics and you’ll probably be okay

There are some core issues with building titles for Android, and sadly NVIDIA cannot
fix them all.

We consistently have issues with certain device/firmware combinations
- Such as ones which have misconfigured security settings that disallow debugging

- The difficulties in debugging these devices means you often rely on printfs (not

that printfs will actually appear in the output, you need a different method for
that!)

- Often these devices have incomplete or suspect USB file handling, making reliable
deployment difficult

Interacting with the Java system libraries via JNI can also expose you to pitfalls in the
JNI system

But the vast majority of issues come from driver or vendor problems with the
graphics APl — as long as your game has no graphics, you are likely to be okay.

NVIDIA.

Tales from the trenches

Pro Strategy: Use NVIDIA devices for reference!

Debugging works
Profiling tools
Trustworthy graphics drivers
GPU architecture is familiar
We typically see that whatever works on our PCs works on the new NV devices
(Provided we don’t try to do too much)

This lets us focus on the Android version of the game without distractions.
And that benefits the whole ecosystem!

We mitigate these issues by using NVIDIA android devices as reference hardware.

These devices, such as the shield tablet, function correctly when debugging, have
profiling tools, and have trustworthy graphics drivers without unexpected pitfalls

Because we are already using NVIDIA hardware on our development machines, we
can typically see visual effects immediately running on device

Working on a known good device allows us to concentrate on features and deal with
device-specific corner cases later

NVIDIA.

Tales from the trenches

Sadly, building an application that works (well) on all
devices is hard!

You need to be aware of different hardware architectures.

The fact of the matter is, building an application that works well on all devices is quite
hard.

Notwithstanding driver or vendor issues, you need to be aware of different
architectural configurations

NVIDIA.

Tales from the trenches

Tile based deferred GPUs are not like forward rendering GPUs
Several vendors have performance somewhere in the middle
See me later if you want me to talk your ear off

Unless your game is tiny, you will need 4 texture SKUs
DXT (we reuse this one for Windows)
ATC
ETC (watch out for alpha!)
PVRTC
ASTC/ETC2

The first thing to note is that the tile-based deferred renderers are not at all similar to
the forward rendering chips in terms of their performance characteristics. While we
can mitigate issues by sorting geometry differently, there are major discrepancies in
fill rate and throughput.

In addition, these differing GPU architectures require that typical android titles ship
with four texture compression options;

DXT, which we can reuse for our windows simulator so it takes less baking time to
move to NVIDIA Shield and Tegra hardware

ATC, ETC and PVRTC
Watch out for the lack of alpha supportin ETC1 devices

There is now also ASTC and ETC2 but those are not popular yet and those devices
already support one of the other formats.

NVIDIA.

Tales from the trenches

Graphics performance surprisingly hard to predict
Power/thermals a big issue
Fill rate vs insane resolutions
Very little documentation on mobile GPUs
Unpredictable shader costs

The graphics performance of a particular device can be surprisingly hard to predict.

Unlike consoles, we must consider issues of power management and thermal
characteristics.

The screen resolutions offered by android vendors vary wildly — and can often be
many times larger than we would see on traditional HD platforms

Another concern is the deep lack of documentation for mobile GPUs, which can lead
to

Highly variable shading costs for what may appear to be similarly performing
hardware

NVIDIA.

Drivers, drivers everywhere

Driver quality on some devices charitably called “sub-optimal”

Just because the OpenGLES spec says it’s there doesn’t mean it will work.

Just because it worked that time (on that device) doesn’t mean it’ll perform at
scale.

Same chipset != same driver

Not all GPU vendors have as good a driver team as the one at NVIDIA, and many GPU
drivers for Android devices are lacking

- It is a common mistake to assume that all OpenGLES features will function as the
specification suggests

- Even when your API call of choice functions on one device, there is no guarantee
that it will perform similar or repeatable on other devices

- When considering this, remember that vendors do replace the drivers in chipsets
and not all instances of identical hardware will be running the same code

NVIDIA.

Drivers, drivers everywhere

Be wary of anything “exotic” or unusual
Occlusion queries
Render targets
Cube map faces as render targets
Hardware depth formats are fraught with pitfalls

OpenGL context restore is not completely trustworthy on all devices
Less of a problem now

Typically, we find that avoiding anything that could be construed as “exotic” helps
significantly

- Need for speed had severe issues with occlusion query performance on one brand
of hardware

- Rendering to a texture can also behave unpredictably, especially if you have a lot of
off-screen buffers. In that particular instance, we fixed the issue by adding a
readpixels function to force the hardware to function

- Binding cube map faces as render targets appears to be highly unusual for many
common android vendors and has been associated with immediate device resets
for completely valid code

- Itis also worth ensuring you understand the various depth formats and restrictions
for each type of device

Finally, there is a mechanism for restoring lost GPU resources when resuming an
android activity — we have found that if you are supporting older devices in particular,
you cannot rely on this to function; even when the device informs you that it is
capable.

NVIDIA.

Tales from the trenches

CPU architectures also vary
ARM Thumb is comedy mode, don’t use it
Most modern hardware armv7 + Neon vector/SIMD unit
Some (one) notable exception(s)
Two x86 devices in the top 50
ARMé64 looming

CPU issues surprisingly rare, assuming you have the build chain set up

In addition to differing GPU architectures, there are many proprietary SoCs, and
several distinct CPU architectures

- ARM supports an additional instruction set called “thumb” which is optimized for
small binaries: it is not designed to be fast. We sometimes see libraries compiled
for Thumb; please stop making them

- Most hardware we care about uses the ARMV7 instruction set with a SIMD system
called Neon, with one notable exception where the vendor apparently decided
that nobody needed the neon unit. That vendor has learnt its lesson and promises
to be good from now on

- It’s also worth remembering that there are x86 devices out there running Android,
and two of them are in the top 50. x86 devices run arm code through some kind of
emulation layer, but that has serious performance ramifications

- And finally, ARM64 is looming — now that iOS has switched over we’ll see how fast
Android apps start to convert

All in all, CPU issues seem to be blessedly rare - or maybe we just haven’t noticed
them

NVIDIA.

Tales from the trenches

Fragmentation is NO JOKE

Some of you may have seen this before —it’s a visualization of the relative popularity
of Android devices that logged on to the UK-based OpenSignal network. There were
4,000 different models that connected — we typically target the top 50 and hope
that’s a big enough range to hit most of the rest.

This has been repeated many times, but fragmentation is no joke for Android

NVIDIA.

Tales from the trenches

There are thousands of devices

Lots of devices are called the same thing but are not related
at all.
On manufacturer has 20 devices with the same name
Some with entirely different chipset architectures

NVIDIA.

Tales from the trenches

Tiering a graphics heavy game: not a solved issue.

Heuristics?

Online tiering?
We chose this solution
Feels a bit like putting the tracks down in front of the locomotive
Can push new tiering info for new or troublesome devices

This adds together to make a difficult problem: tiering graphics heavy titles, which is
unfortunately not a solved issue.

Before we decided to take android in-house, we used a heuristic to guess what the
device was capable of, with varying degrees of success

Now, we’ve transitioned to using an online database of tiering information — when
the game starts it will download the settings for that particular device and firmware

It’s worked reasonably well, but feels like a scary failure point and still requires a huge
amount of effort to populate the database.

It does let us push out new info for new devices, as well as solve issues that only
appear in the wild or escape testing

NVIDIA.

Watch your assumptions!

The compiler and NDK are always evolving

» We use Clang because it is much faster to build our project with.
* We have encountered code gen errors with some releases.
» Clang on i0S != Clang in the NDK

| always warn developers who are starting on Android not to get complacent about
the toolchain and the language.

We often find ourselves on the bleeding edge of the NDK as we have adopted Clang
for our Android titles (due to the better precompiled header system)

Unfortunately, we have also encountered 100% issues with code generation that have
appeared in one NDK release and disappeared in the next

Another thing to bear in mind is that Clang on iOS and within the NDK are not the
same — beware of codegen differences

NVIDIA.

Watch your assumptions!

The “Android” code path may not have been correctly configured or
tested in third party libraries.

 For our title, the NVIDIA System Profiler identified a bottleneck in Boost’s
implementation of shared_pointers

Another concern with android is that many libraries have been poorly configured for
the Android platform

- We used the Tegra System Profiler to identify an unusually large amount of time in
the boost library

NVIDIA.

MNeed For Speed No Limits. Report 1 03
FuxctonTableView v | | F Fiter... | 42.99% of data is shown due to apphed fiters.

Flat View

AR 1 L e S A | B MM . NIk M MG, . i e BLER MDD ML ot o LA

225074
225090
S el e, @SR EUNESIY P ST e R0 T BTN () T [T S A 0T LA behing g et b B
225100
25101
#25103
25109
25120
25162

' 1 ' ' '
' 1

' '
— [FE TS EETE R RN P
25164

' I (I | ' 1] troa ' t t [} toa 1 '

"o a ' '
(I Y I I) PR S Y YRR Y FY PUUR BU PY DWUY [IR NURE N U IS PR FEE FRS PN PPN WS FY) FURN PY FY PRUE ¥ PY FRES 0% P PURRT A RvS AR I 1
R R R N N N RN RN R RS R R R RN RN R RN N R R N R RS AR FEEEERN RN ERE NN NN EENERERE SRRSE RRE]
#25363 IR RN R RN R R IR N N N N N N NN
225488

225650

Symbol Name . uR LR Module Name
18792127 6002132 /data/apy #514._row-1/lib/ ppso
consta) 3022385 2384572 /data/app/ 514 _row-1 pps0
7593480 3882601 /app/ ea.game.nfsld_row-1/lib/ pp.SO
_weak_ptr<imco. 1 X 7040375 680452 P! nfs1d_row-1/lib/; ppso
const&, floa. . 5320301 547,160 /data/app/ fs14_row-1, pp.so
*, float, float, bool) 44759342 18,118,195 /data/app/com.es.game.nfsld_row-1/lib/arm/libapp.so
Trackl constd) ! 98 3918067 2248179 /data/spp/com.es.game.nfsld_row-1/lib/am/libapp.so
im:zapprsounds:CarSounds= OnUpdate(im: Timestep const&) 4038381 2243202 / #514_row-1/ pps0
Timestep const&) 5360229 3317210 /i jar s14_row-1,
Timestep const8) ! 3654328 3165500 / Z 514 _row-1/1ib! ppso
, int, im: const8) Y 4 32776817 17,007,435 /¢ /com.ea.game.nfs1d_row-1/1ib/ pp.so
2 g o . B 031,034,535 186,781,326 fs14_row-1/lib/ pp.so
im::components:component_weak_pt LightC 2 const 4419205 2892913 / nfs1d_row-1/lib/am/libapp.so
_weak_p! P 3268208 1851679 /data/app/i f514_row-1, ppso
_weak_p p 2556121 2,207.872 /e jame.nfs1d_row-1 pp.so
 wesk_p i) const ¥ ¥ 6731015 4,297,929 app/ nfs1d_row-1 pp.s0
_weak p op: const i : 7076049 4,254,866 /data/app/com.es.game.nfs1d_row-1/lib/sm/libapp.so
 weak_pf TransformComp P X 4580513 4,284,287 /data/app/ fs14_row-1/ pp.so
s L e — L . . 5219981 4269317 /data/app, fs14_row-1/
Timestep const8, int, im:Timestep const&) » 50,779,795 35432724 /app/ ea.game.nfsld_row-1, Pp.SO.

Everything in the red box is the boost problem.
There are even more calls that are filtered out.
That is around 6+ % combined!

Removing bottlenecks can make the overall speed sometimes go even higher but in
this case it was more like a straight recoup and a far reduced % overall.

<A NVIDIA.

Watch your assumptions!

The “Android” code path may not have been correctly configured or
tested in third party libraries.

» For our title, the NVIDIA System Profiler identified a bottleneck in Boost’s
implementation of shared_pointers

» It turned out that it was incorrectly using a slow path for multithreaded reference
counts

- It turned out that the android configuration was not using atomic operations and
fell back to a slow path for multithreaded primitives

NVIDIA.

Java and Native Apps

Game developers usually stay away from Java because of performance
reasons.

Unfortunately, many features are only available in Java, e.g.,
Google Play Services
Third party engagement/advertising libraries
OS/UX systems

Remember how | said that we typically don’t use Java? Well unfortunately we can
often find ourselves with no choice.

NVIDIA.

Java and Native Apps

JNI may not be your friend, but it isn’t out to harm you
e.g., useful for Google Play Services

Y 1
, GOOD GOOD

Interop with native does have pitfalls: e

Each native thread needs to initialize JNI /

The classloader from the main thread should be reused ;
everwhere

Watch out for exceptions! LET THE JAVA FLOW
Be aware of the process model THROUGHYOU, ...
Native threads may survive termination of the Java activity

g

Java APIs are the primary way that some core features are made available, such as
the google play services, many third party engagement or ad libraries, and new OS
features

But it’s not all bad, we can use JNI, the java-native interface to communicate between
native code and java code.

There are a few pitfalls to avoid; hopefully some of these are already well known
- JNI needs to be initialized per native thread created

- And the classloader from the initial thread is the one you should be using, so you
need to share it between your native threads

- It’s also important to remember that if an exception is raised in Java and you don’t
pick it up, it’ll cause a crash the next time you invoke a JNI method

- Finally, the Android process model can get a bit confused with mixed Java and
native applications — it is possible to end up with your Java application terminated
while your native code continues to run. This is especially confusing as the native
threads get can be re-attached to a new application instance, which is highly
unlikely to be what you wanted

NVIDIA.

A light at the end of the tunnel

« Android came from a difficult place for game developers.

* Shipping on thousands of different devices is not particularly
easy.

So where does all this lead us? Well, Android was — | would be the first to admit this —
not a great platform for game developers.

It also has challenges of its own that are unique to having such an open ecosystem.

| think in a lot of cases, the difficulties we, the development community, had with
Android was reflected in the quality of the porting efforts.

NVIDIA.

A light at the end of the tunnel

NVIDIA has been diligently improving the process, and this
makes games better for every Android owner out there.

If you’re not using Nsight Tegra VSE yet, you should be.

There really is a light at the end of the tunnel, however. NVIDIA is investing in making
Android better for every Android owner and game developer out there, and they're
really trying to make it a fully viable gaming platform.

I'd like to end with a single suggestion: if you’re a game developer, and you’re not
using Nsight Tegra VSE yet, you really should be.

NVIDIA.

<A NVIDIA. SHIELD

Android Dev-Diaries:

Tick Tock Games

This is a session about some of the cool tools NVIDIA has developed for android
developers — specifically as it relates to our most recent title, Need for Speed: No
Limits

NVIDIA.

Arden Aspinall - Lead Developer and CTO

Introduce yourself
Who am I? **Say a bit about myself — keeping it brief.**

Mention Jonathan Seymour — Senior Producer — attending GameConnection this
week

NVIDIA.

We are an independent development team based in the North of England, UK

Mobile games include BurnZombieBurn, Z the Game, Z Steel Soldiers, Cricket Captain,
Superfrog, Worms2 Armageddon, Lego, and Frozen Synapse Prime

Ta ~—— B T e T %
2Lt . W e, P CRICKET

@
SR)

F.Iq i \\‘@”M Ry /

minifiguresiy
“ONVINE

.

We work on our own projects and we consult and develop games with partners in the
industry

NVIDIA.

My First Date with Android

They say that you always remember your first

It was fun, but my first experience with Android was a real shock to the system

They say that necessity is the mother of invention...

Enter NVIDIA with TADP

» Started developing games when in teens
* Dev tool chains improved over time and now dev teams are spoilt

* Asked to port game from iOS to Android in late 2009 — not using Visual Studio
was like losing old friend (sad face)

* Could have tried to make it work — could have been so beautiful!! — could have
had great relationship with Eclipse and Android NDK, but...

* We missed Visual Studio too much! Hacked together workable toolchain — not
perfect and cracks started to show

* Treasured the rare moments when we could single step debug

* By chance we were introduced to our now good friends at NVIDIA
* Discovered TADP

* Debugging and developing using TADP has been a match made in heaven -
we’ve never looked back

* If you are developing for Android you need TADP

NVIDIA.

Nsight Tegra

Awesome! That's what we use.

But Lewis covered it.

So on to other tools...

NVIDIA.

Burn Zombie Burn

The Challenge - Port the game from PS3 to Android!

* BZB - PS3 game by Double6 developed in 2009

* Compiled without TADP, game used Sony Phyre Engine we’d ported to Android.
Game was running, could hear sound, but only saw black screen

NVIDIA.

Burn Zombie Burn

NVIDIA.

Burn Zombie Burn

The Challenge - Port the game from PS3 to Android!
PhyreEngine Running on Android, Hooray!
Next? Get Visual Parity

PerfHUD ES - Tools that turned a black screen into liquid gold.

* Plan to get parity with PS3 version, then worry about framerate

* PerfHUD tools meant we could analyse GL call stack — took us from black screen
to almost perfect visual parity in only a few weeks

* Time consuming process — 100’s of shaders embedded in assets needed to be
converted from CG and hand optimised to GLSL

* PerfHUD made process much faster and less complex to visualise

NVIDIA.

Burn Zombie Burn

A great looking game with a framerate of ...

... slightly less than 1FPS!

TSP/PerfHUD ES was key to getting the framerate over the final yard
No more lifecycle issues with PerfHUD ES

Saving the state of a frame to a text file turned out to be a real gem in the package

** S0, we had a great looking game running at
e *slightly under 1fps!

* CPU bound, quick sweep timing main loop = Death by 1000 cuts

* Tegra System Profiler
* Phyre engine was sorting geometry for depth order © but taking 80ms to do so ®

* Solution = pre-sorting; rinse and repeat. Remove string compares for hash comparisons, rinse and repeat

* Moving skinning from CPU to GPU was not in scope of project
* Using profiler load on CPU was reduced by almost 35 times the original code with minimal loss of precision

* Rapidly became GPU bound and CPU issues gone ©

* Cool trick with PerfHUD — how to resolve loss of GL context — lots of problems in BZB with this

¢ Phyre Engine had no need to handle loss of graphics context. Needed to add this in — quickly worked out saving state of a
frame to a text file (feature in PerfHUD) then doing same after a restore context and comparing text files allowed us to
see what we had not properly restored.

* Did NVIDIA have this in mind when they created the tools — who cares! It saved us loads of time, and we’ve been using
this technique ever since. Neat!

NVIDIA.

Burn Zombie Burn

-

==

$0b) i bidi />

NVIDIA.

Z: Steel Soldiers

STEEL
SOZDIER'S

]

* Z: The Game —released in 1996, competing with Command & Conquer — huge
success, but Bit Bros wanted sequel to be first 3D RTS — Z Steel Soldiers released
in 2001 - See screenshots

* We had the honour of porting the classic Z the Game. At the time, it was
competing with Command and Conquer and while it was a huge success, the
developers had huge ambitions and wanted the sequel to be the first 3D
RTS. Remember we’ve gone back now to the year 2001 — it was no small thing to
get this up and running. Of course, now the screenshots are vintage quality, but
this was development that was taking place in the late 90’s.

<A NVIDIA.

Z: Steel Soldiers

{ooasas =
L), Q NN ;5
i"nlia‘gg b’"

. and Tegra System

Profiler

Just one more tweak...

* Z: The Game —released in 1996, competing with Command & Conquer — huge
success, but Bit Bros wanted sequel to be first 3D RTS — Z Steel Soldiers released
in 2001 - See screenshots

* We had the honour of porting the classic Z the Game. At the time, it was
competing with Command and Conquer and while it was a huge success, the
developers had huge ambitions and wanted the sequel to be the first 3D
RTS. Remember we’ve gone back now to the year 2001 — it was no small thing to
get this up and running. Of course, now the screenshots are vintage quality, but
this was development that was taking place in the late 90’s.

NVIDIA.

aYERD
SOBIER S

Like with BZB we wanted visual parity — we knew that with TADP we had the
tools to go the extra mile on framerate

Programmable pipeline — we could consider normal maps, shadow mapping &
post process effects

Code that was 20 years old stood test of time as piece of software engineering

TSP instrumental again in reducing the CPU load - could fix bottlenecks in code
within hours rather than days.

Experience with BZB/Sniper rifle accuracy at finding problems PLUS TSP saved us
weeks of work

Tegra Graphics Debugger — lead to irresistible urge to add further enhancements
— TGD made this so easy.

Boosted shadow quality repeatedly

Show image of old shadows, then image of new shadows

” 4«

“z2_screenshot_old_shadows.png”, “z2_screenshot_old_shadows.png”

NVIDIA.

NVIDIA Tegra Graphics Debugger

Took Help
x
= $
) 100 200 300 400 500 600 700 800 900 1000 1200
L i 1 L 1 i L 1 1 1 1 L
T T TR T N T R T T TR RN O] 4
N

Unk Status: &AL
Valdate Status: G. FALSE

Comple Status InfoLog
GL_TRUE WA
NA

* improved lighting
* 22 _gfx_lighting.PNG

* editing a shader to visualize lighting with normal mapping

* added more particle effects and specular maps — Difficult to stop
REALLY EXCITING TIME - | attribute this to TGD

* (z2_gfx_most_expensive_draw_call.PNG,
z2_gfx_second_most_expensive_draw_call.PNG)

* (z2_gfx_no_mipmaps.PNG)

Talk about what we did to use the tools to give us better lighting effects.

Next slide shows how we used the tools to optimised our shaders for shadows and
lighting

<A NVIDIA.

NVIDIA Tegra Graphics Debugger

Resme | X [T
1000 1200
ot ? 1 3 2 "
minmn T T R T T P R T RO
>

This slide shows how we used the tools to use AB testing to visualise what was
happening under the hood

<A NVIDIA.

NVIDIA Tegra Graphics Debugger

Curvent Target View

700 00 %0 1000 1100

T T TR T TR T T T T R R RN R TR RTIT

TRIANGLE_FAN, -
Drawrrays(GLenum mode = GLTRIANGLES, GLint frst = 0, Gsize count = 366
90rawherays(Glenum mode = GL_TRIANGLE FAN, GLintfirst = , Glsiaei count = &)
DrawArrays(GLenum mode = G THIANGLES, GLint firt = , Guize count = 384

TRIANGLE FAN, -
G0rawhrrays(GLenom mode = GL_THANGLES, GLint firs = , Gize count = 354

a_m.mmqn-a,mmmm

GLTRIANGLES, Glalzei UNSIGNED_
m«a-mm:sm—m-mmm:kmwrsm
UNSIGNED_SHORT, Glvo.

a8 Description

¢ goranEenerts(Renm 220 count = 3339, Qe type = G

ity

TRIANGLES, mo_ml‘.w-

“TRIANGLES,

‘giDrawElements(GLenum mode = GL TRIANGLES, Glizei count = 10745, Glenum type = GL UNSIGNED.

Mmm-mmmaum = 1074, GLenum type = mww:v,snm a-
UNSIGED SHORT, Glxoid”

Glvoid

) Vertex Array Object

GL_ELEMINT_ARRAY_BUFFER_BINDING:

GL_ELEMENT_ARRAY_UNIFIED_WV:
Vertex Attributes

TRANGLES, Gt count G
M_l&mm“ !le”lla.m_w'.“

el i e 2 » Binding Butter
wmm:&wshm-mmm-&mmm o " 0 GLTRL 0 3 o 0 Client

Chent

uopesyioads Xe3oA @ (|

TRIANGLES, UNSIGNED_SHORT, ﬂn
girawElements(GLenum mode = GL_TRIANGLES, Glizel count = msﬂmq—: GLUNSIGNED SHORT, au
mu«.@mtsmmummw- GLUNSIGNED_SHORT, Glvo.
9iDraveArrays(Glenum mode = GL_TRIANGLE FAN, Glint hxth':

IISIGNED, SHORT, Givosd. s GLARRAY_BUFFER_BIHOWG:
mm-&mmm-mm—w-&mm G " ! GLDRAW_NIOIRICT_BUFFER_SIROING: 0
SHORT, Gl . i GL_PRINITIVE_RISTART:
mm;&msm”uw;mw=mmium G 1 GL_PRIMITIVE RESTART_INOEX:
s 5 " 3 Generic Attributes

z2_gfx_most_expensive_draw_call.PNG

ordering draw calls to find the most expensive (terrain)

<A NVIDIA.

NVIDIA Tegra Graphics Debugger

Yiew Jook Help
Current Target Vew

50 600 700 %0 10%0 1100
IR TR I AR T I R R R R TR T

v mwArrays/GLenun mode.
0rawATays/GLenum mode
TRIANGLE FAN,
iDrawArraysiGLenum mode = GL_TRISNGLE FAN, ﬂhh-hwa—:ﬂ.ﬂn

6L
TRANGLES, GLintfirst a0,

TRIANGLE FAN, i
iDrawArrays(GLenum mode = GLTRIANGLES, Glint fist = 0, Glsize count = 384)
TRIANGLES, Glsize:

INSGNED_SHORT, Glvo
SHORT,

TRIANGLES,
I0vawArraysiGlenum mode = GL_TRIANGLES, GLint fist = 0, Glsae count = 267)
giDrawHlements{GLenum mode = GLTRIANGLES, GLsizei count = 1914, Glenum type = GL UNSIGNED_SHORT, Glvo
giDrawlements{GLenum mode = GL TRIANGLES, Glsizel count = 2592 GLenum type = GL UNSIGNED_SHORT, Glvo

TRIANGLES, GLsizei

Call Description

0 G antlements(GLerm mode = G._TR!

= Vertex Amay Object

Name:

GL_ELEMENT_ARRAY_BUFFER_BINOING:
GLVERTEX_ATTRIB_ARRAY_UNIFIED_WY: G.
GL_ELEMINT_ARRAY_UNIFIED_WV: armse

Vertex Bindings.

Buffer Pointer Stride

UORED1ads X030A i

2 GLTRU
3 GLTRUE

giDrawBements{GLenum mode = GLTRIANGLES, GLsizes count = 1914, GLenum type = GL UNSIGNED_SHORT, Glvo
TRIANGLE FAN, Glint fir

T e 4 = Vertex Array Data
TRIANGLES, 4,
iDrawbements(GLenum mode = GL_TRIANGLES, GLsize count = 30, GLenum type = GL UNSIGNED_SHORT, Glioid” 4 s n ppislpstistammen
ofDrawElements(GLerum mode = = = A » ' _ORAW_ _BUFFER.

il TEME S i S L o 0 | GL_PRIMITIVE_RESTART:

DrawElements{GLanum mode = GLTRIANGLES, Glsize count = 10614, Glenom type = GLUNSIGNED,SHORT, Glw 31753326 s " GLPRINITIVE_RESTART_INDDX:

z2_gfx_second_most_expensive_draw_call.PNG

second most expensive draw call (command centre)

<A NVIDIA.

NVIDIA Tegra System Profiler 22

mbol Name

+ [Broken backtrac

4 dvmResoheblatveMethod(unsigned int const”, Nshue®, Method const”, Thres.
4 dvmCallNiMethod(unsigned int const”, Value”, Methed conet”, Theead

4+ demPlatforminvoke

4 Java_org Wosdi_app SOUACtivty_nativelnit dota/app-i

450L_mein ata/sppei

4 winit:mainioop(void () 3 T

sta/app-f

data/app-l

ene:renderiziCRenderConten " data/app-i

> atal app-i

sta/app-

ata/spp-it

sta/app-§

ata/app-f

o/ app-l

ata/app-i

pp-i

Pl

Platform_App_Rende o ata/app-fibluk.co

635 Unknown!

#CNode:updmteChidre suse 8 st/ app-ib/uk <ok

operator newlunsigned
TTintControt:Rendes
ptheesd creste

arCMaperender_subtree,recursivelng, int,int, uncigned short, untigned short, u. - 0485 8219 /data/app-lib/uk.colka

z2_sys_old_shadows.PNG

System profile of old shadow system enabled.

NVIDIA.

NVIDIA Tegra System Profiler 22

FSP_old_uniforms.
FSP_new_uniforms
22_0ld bounding
22_new_bounding
22_0ld map

NS SUTTTE WSPUA | TR SN B | L
. [T

crasm . ML i A

UR

b,

ata/app i/ ok co kv
ata/app -l uk o kave
ata/app-fibuk.co
ta/pp-fib/uk.co
ta/app-lib/uk.ce
ta/app-lib/ vk cc
ta/app-lib/uk ok
opp-ib/uk.co
pib/uk.co.
ta/app-libluk

ata/app-fib/uk.o

z2_sys_new_shadows.PNG

System profile of new shadows being rendered

NVIDIA.

(2

'NVIDIA Tegra Graphics Debugger
Comection View Tools Help
. & Daconnect. ~ ¥ Resume nm
Scang: | Unt Scale - s (8
Erents) 0 %0 s0 w0 100 1200 140
action [T T T T T T =R T N 7
<

7% inpecor

4 L]]
~ "
g Vvixspe
g Transtorm
8w

z2_gfx_no_mipmaps.PNG

Showing that we noticed a texture with no mipmaps using the tool

<A NVIDIA.

Z: Steel Soldiers

NVIDIA.

Frozen Synapse Prime

Frozen Synapse Prime was a different beast - a real head on test of the TADP tools
TGD/TSP - a match made in heaven
A/B Shader Testing Vital again!

PerfHUD ES compared to TGD

Understanding the rendering pipeline and where are immediate issue were

NVIDIA.

Frozen Synapse Prime

<A NVIDIA.

¢

NVIDIA Tegra Graphics Debugger
Fle Connection Yiew Jools Help

« Deconect g

00 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
I TI 1]

Contert

Call Description

i granSiements{Glenum mode = GL_TRIANGLES, Glsae! count = 25400, Gueuum type = Gl UNSIGIED_SHORT, Gyokd® nkces =)

) Vertex Array Object

Hame: 0

GLELEMENT_ARRAY_BUFFER_BINDING: 1214 #
GL_VERTEX_ATTRIS_ARRAY_UNIFIED_WV: G FALSE
GL_ELEMENT_ARRAY_UNIFIED_NV:

apusE

Vertex Bandings

Binding

Index Buffer Poiter Stride
0 Buse 0
Jusr

, Glsaei count = 1431, Glenum type = GL_UNSIGNED,
ount= 1491, GLenum type = GLUNSIGNED_SHORT.

fsp_gfx_slowest _draw_call. PNG

Showing slowest draw call is the cityscape beneath the playfield (Don’t forget this is
after change)

<A NVIDIA.

&

NVIDIA Tegra Graphics Debugger
Bile Connection Yiew Jook Help

Sarutier e arent Target Vw

50 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

1 o

widare ~ | []march case

CPUps Ghuws &

. TRIANGLES, <o 5
“ﬂ:&'ﬂﬂﬂﬂu-ﬂ“lﬂu
Lenum mode = Gt_TRANGLES, GLsize count = 5294, GLenum type
-.---uumamﬂhn-uw-nu
Lenus TRIANGLE A

sizel co
siei count = 224, Glenum|
Wm ”

m—-.”n;

, GLenum type =
Gl o = G pe <

¢ B

Call Description
00 g anEenents(Gerum mode = G TRIANGLES, Glsael count = 168, GLenum fype = Gi_UINSIGAED_SHORT, GRyoc™ ndces = Ox)

=) Vertex Array Object

Name: 0
GL_ELEMENT_ARRAY_BUFFER_BINOING: 512367
GL_VERTEX_ATTRIB_ARRAY_UMIFIED_NV: G FALSE
‘GL_ELEMENT_ARRAY_UNIFIED_WV: s
Vertex Attributes

uoRed1ads XA

o 7 4 GNED_INT, Glvoid R Enabled Binding
gDrawtlements(Glenum mode = GL_TRANK e ISGNED_SHORT, G N 0 GLTRUE
M—r um] 1

GLTRUE

2 GLTRue
X 7 3 GL TRUE
Orawtiements(GLenum mode = umqu. mmw-&mm ¢ '
L_UNSIGNED_SHORT,

) Vertex Aray Data

fsp_gfx_surprisingly _slow_call. PNG

A draw call drawing over the roads shows up as being quite slowest

<A NVIDIA.

NVIDIA Tegra System Profiler 22

L, ARG AN At M S L 4 ol . b D Bk 0 A0 L S e I, it
[e L oM [St 4% ™ [™ Al b et b NlkAe LML) A L
i

i

fsp_sys_old_uniforms1.PNG

Flat view showing gl calls with no uniform optimized

NVIDIA.

B . Uk S RS ANRSR, 4 ol oA S 00 A SN ANeesn. ol & . DL S N e £ 20
[T TR T M F VI YT T P Y [-k FYTREPRE T TR T

=y B i Emes s mmEmEL e A oF EmEEEEm

fsp_sys_new_uniforms1.PNG

Flat view showing gl calls with new uniform optimization on

NVIDIA.

NVIDIA Tegra System Profiler 22

T T YT Mm“wmm—-—_
& suibla. el .k i P T T T T T I
ak

fsp_sys_old_uniforms2.PNG

flat view ordered by cpu time showing constant setting time before optimizations

NVIDIA.

NVIDIA Tegra System Profiler 2.

DR 6 k) SR SR ; SRR, i a8 Mk e L. -_Mh—uﬂ.‘-mm
LW T ST W PN T Y TR TS IR LT

-

FTTREPAE TR TR T

fsp_sys_new_uniforms2.PNG

flat view ordered by cpu time showing how new uniform optimization improved
constant setting time

NVIDIA.

TSP Favourite Things

Quick to find if the bottleneck is in our code or in the system
A great way of measuring whether our experiments have had an impact

Precise visualisation of thread utilisation.

NVIDIA.

= LiEElIEENnE
T 1 e M O
fEE mEEE om
HeoE "N B B
7| | Y I
5 RBRE E-®

1
-
|
w

NVIDIA.

TGD Favourite Things

The Ul gave me an excuse to move from two screens to three. Makes you feel like a
NASA Commander. Epic!

Great tools for A/B Shader testing, with a fast turn around on ideas, bug fixing and
optimisation.

Gives you a really quick way to find most the expensive draw calls.

The more you use it, the more features you discover. Simple to work with but with
enough depth to tackle more complex problems.

Quick Tests... Quick Decisions

NVIDIA.

TGD Getting up to speed

Check out Daniel’s and Jeff’s YouTube video from GDC 2014 for getting up to speed
fast on these tools.
http://goo.gl/PgFICP

NVIDIA.

<A NVIDIA. SHIELD

What’s Next?

NVIDIA.

TADP 4r1

PR 1408 Componem Manager

Tegra X1 and SHIELD support

Component based installer
Upgrade individual parts
Concurrent downloads
Update notification

Nsight Tegra
Multi-platform APKs
Compile x86/x64 and debug on virtual devices

Tegra System Profiler
Improved backtracing

Tegra Graphics Debugger
Significant performance enhancements

NVIDIA.

TADP 4r2

Tegra Graphic Debugger

Frame captures can generate source code and Nsight Tegra projects
OpenGL 4.5

Tegra System Profiler
Tracing via NVTX APIs
CPU Frequency
Thread States

Nsight Tegra
Performance

524501

bol Name:
4 SeriousEngine::CProjectinstance: RenderFrame (SeriousEngine: :CDrawPort*)
#0x78f32500

47.18 [Uninown]
47,18 jdata/appjcom. crotesm. Sam3.
47.08 47.15 jdata/appjcom. crotean. Sam
47,08 [Unknowr]

47,08 data/appjcom. coteam.

P :CPlayerC (ngine::Clnputsi 0.00 0.00
4 SenousEngne: CPlsyerACtorBranEnity: Renderview()
£ 0x7896566¢

4 SeriousEngine: :CPlayer ActorPuppetEntity::Render 30{ong) 0.02
SeriousEngine:srenFinishRender (SeriousEngine: CGfDevice ™) 0.02 36 42.33 [data/app/com. roteam. Sam3
0.00 0.01 4.6 fdata/app
. 149 fdatafapp]

The picture is from Serious Sam 3, showing their internal tracing profiler redirected to

Tegra System Profiler via NVTX so that it can be visualized and correlated back to CPU
activity.

| would like to thank Croteam.

NVIDIA.

Questions?

NVIDIA Developer Tools

https://developer.nvidia.com/gameworks-tools-overview
Come see our tools! North hall, business center, back right

Lewis Strudwick
http://www.firemonkeys.com.au
Arden Aspinall

http://www.ticktockgames.com

NVIDIA.

GameWorks

Get the latest information for developers from NVIDIA and continue the discussion

NVIDIA.

