

Battery woes? Some devices can consume more power in heavy load than the 0.5
amp USB port can restore.

That’s not an issue for SHIELD.

And with the USB hub, you can even keep the gamepad charging.

This is a session about some of the cool tools NVIDIA has developed for android
developers – specifically as it relates to our most recent title, Need for Speed: No
Limits

Some background:

 - I’m a technical director at EA firemonkeys, in the central technology group

 - Firemonkeys is an EA studio formed from two Australian independent mobile
games developers

 - We specialize in triple A mobile games, some of which you may have heard of, such
as Need for Speed, Real Racing and the Sims Freeplay

We’re going to start his talk with a little bit of background on how we develop games
at Firemonkeys

- I joined mobile games in 2009, just after the release of the iphone 3GS

- The studio had just migrated from building simple java/brew titles to first generation
smartphone games

- The new generation of devices allowed us to create richer and more compelling
titles

- As a result, we needed to change the way we built our games

Our titles have been doubling in complexity year on year – both in terms of code and
assets

NFS Undercover (the title made before I joined) shipped at 90mb, NFS Shift at 250,
and a year later, Hot pursuit was nearly 500mb. We now are close to 2GB for RR3.

The process of dealing with these more complex projects made the difficulties of
mobile development, such as inconsistent debugging issues and incomprehensible
deployment errors, stand out

Our solution to these issues was to do the majority of the development on PC

We embraced the visual studio ecosystem

The necessitated some changes; we removed any platform specific code in the game,
making it all device-agnostic C++

By having your game code clean of these dependencies, you can open up future
porting options – which came in handy when we moved to android.

Any OS/graphics code was moved into platform abstraction layers in the engine

Building a working “simulator” for mobile titles is quite straightforward; ours is just a
regular window

- We have pre-programmed it with common device resolutions, but support
dynamic resizing for uncommon devices

- Extra inputs may need to be coded in to support multi-touch and features like the
accelerometer

- It’s also worth being able to simulate app deactivation and reactivation to test
those code paths

You might be wondering what we do to emulate OpenGLES on Windows –

I’ll let you into a secret - OpenGL is basically the same as its embedded counterpart

We have built a shim DLL that we link to which provides OpenGLES functions

For shader compatibility, we have added three #defines that allow our mobile
shaders to function un-modified

In addition, we have embedded decompression routines for mobile texture formats
that let us use assets we would ship with

Driver OpenGL compatibility became a big issue, so we switched to being a solely NV
shop – we never aimed to ship on PCs

For a long time, Android was not dealt with within the studio – we relied on external
EA porting teams

At various times, we considered supporting it locally, but lacked the bandwidth to add
support

This meant that our games would be branched near release and sent to another team
for finalizing

Unfortunately this led to titles that gave players a sub-par experience on Android
devices

With the development of our new engine – unfortunately named Isis – we decided to
try adding first party android support

This first party support would allow external teams to only deal with device specific
issues, closing the quality gap for our titles

It was a new codebase built on new technology, targeting a platform we had never
dealt with

What could possibly go wrong?

So it turns out that Android is pretty keen on the whole Java thing

Java isn’t really suited for the development of our titles, especially given our reliance
on C++ and multiplatform engines

I have heard that the Java side of Android development is pretty decent (although I’ll
believe that when I see it), but given that we can’t use the typical SDK, we are reliant
on the NDK

The NDK, unfortunately, has all the trappings of being developed in a short timeframe
by several interns colluding

It is extremely difficult to use it for a production workflow, lacking a project system
other than make,

no debugging integration with IDEs (although it is ~~~possible~~~ to use the GDB
transport layer with Eclipse),

no integrated profiling tools,

and it is reliant on interoperating with the Java-based OS

(as well as) having a device that is in a good mood.

So, let’s talk about Need for Speed: No Limits

When we started this project, the shifting market demographics meant that we could
have no more compromises with our Android release

NFS would be the first title where we didn’t have a dedicated android team – we had
only one set of developers for both platforms

Shortly after we made that decision, I was reading the latest news from the NVIDIA
developer portal, where a new program with an extremely long name was offering to
make the android development “experience” more straightforward

I remember thinking that what they offered was too good to be true

The verbosely named Nsight Tegra Visual Studio Edition and the Tegra Android
Development Pack slotted directly into our existing windows and visual studio
workflow

- We could build and deploy within Visual Studio without requiring specialized
hardware and while sharing the same project/solution files as our windows
simulator

- It also supported native debugging over ADB and integrated with Visual Studio

- And – much to our surprise – even came with debugging support for Java code

- The streamlined setup process from the custom installer managed to remove most
of the arcane knowledge required to build and deploy to android devices

We were already using visual studio and windows for the majority of our feature
development

The way that this toolchain integrated not only allowed us to do meaningful work on
android within the studio, but we could make every member of the team an “android
developer”

For a long time, we had felt like the NDK had been overlooked by its creators – and
our suggestions for improving it fell on deaf ears

But now we had NVIDIA really investing in the developer experience, and building it
into a viable gaming platform

Turn into a viable gaming platform

Precompiled headers which reduced our full build time from nearly an hour to a
fraction of that

Incredibuild support so now none of my programmers can complain

They’ve added new SDK releases and dealt with our crazy requests to use the latest
possible compilers

As well as a host of other features that make the experience better

The initial releases lacked a few features we wanted, but we engaged in an email
campaign to get our way, and NVIDIA responded by showing their commitment in the
platform.

In the last 18 months during our development cycle, several major features were
added – hopefully as a direct result of our requests.

We have received precompiled header support, which cut our build times by 80%

Incredibuild has recently been integrated, to improve them even further

They update the pack rapidly for each NDK release, something we are keen on as we
always use the latest compiler available

And have improved debugger performance and reliability

Unfortunately, there are still some problems with the Android ecosystem

John Carmack recently said:

<read quote>

Which I think sums up some of the sentiment surrounding the platform

There are some core issues with building titles for Android, and sadly NVIDIA cannot
fix them all.

We consistently have issues with certain device/firmware combinations

- Such as ones which have misconfigured security settings that disallow debugging

- The difficulties in debugging these devices means you often rely on printfs (not
that printfs will actually appear in the output, you need a different method for
that!)

- Often these devices have incomplete or suspect USB file handling, making reliable
deployment difficult

Interacting with the Java system libraries via JNI can also expose you to pitfalls in the
JNI system

But the vast majority of issues come from driver or vendor problems with the
graphics API – as long as your game has no graphics, you are likely to be okay.

We mitigate these issues by using NVIDIA android devices as reference hardware.

These devices, such as the shield tablet, function correctly when debugging, have
profiling tools, and have trustworthy graphics drivers without unexpected pitfalls

Because we are already using NVIDIA hardware on our development machines, we
can typically see visual effects immediately running on device

Working on a known good device allows us to concentrate on features and deal with
device-specific corner cases later

The fact of the matter is, building an application that works well on all devices is quite
hard.

Notwithstanding driver or vendor issues, you need to be aware of different
architectural configurations

The first thing to note is that the tile-based deferred renderers are not at all similar to
the forward rendering chips in terms of their performance characteristics. While we
can mitigate issues by sorting geometry differently, there are major discrepancies in
fill rate and throughput.

In addition, these differing GPU architectures require that typical android titles ship
with four texture compression options;

DXT, which we can reuse for our windows simulator so it takes less baking time to
move to NVIDIA Shield and Tegra hardware

ATC, ETC and PVRTC

Watch out for the lack of alpha support in ETC1 devices

There is now also ASTC and ETC2 but those are not popular yet and those devices
already support one of the other formats.

The graphics performance of a particular device can be surprisingly hard to predict.

Unlike consoles, we must consider issues of power management and thermal
characteristics.

The screen resolutions offered by android vendors vary wildly – and can often be
many times larger than we would see on traditional HD platforms

Another concern is the deep lack of documentation for mobile GPUs, which can lead
to

Highly variable shading costs for what may appear to be similarly performing
hardware

Not all GPU vendors have as good a driver team as the one at NVIDIA, and many GPU
drivers for Android devices are lacking

- It is a common mistake to assume that all OpenGLES features will function as the
specification suggests

- Even when your API call of choice functions on one device, there is no guarantee
that it will perform similar or repeatable on other devices

- When considering this, remember that vendors do replace the drivers in chipsets
and not all instances of identical hardware will be running the same code

Typically, we find that avoiding anything that could be construed as “exotic” helps
significantly

- Need for speed had severe issues with occlusion query performance on one brand
of hardware

- Rendering to a texture can also behave unpredictably, especially if you have a lot of
off-screen buffers. In that particular instance, we fixed the issue by adding a
readpixels function to force the hardware to function

- Binding cube map faces as render targets appears to be highly unusual for many
common android vendors and has been associated with immediate device resets
for completely valid code

- It is also worth ensuring you understand the various depth formats and restrictions
for each type of device

Finally, there is a mechanism for restoring lost GPU resources when resuming an
android activity – we have found that if you are supporting older devices in particular,
you cannot rely on this to function; even when the device informs you that it is
capable.

In addition to differing GPU architectures, there are many proprietary SoCs, and
several distinct CPU architectures

- ARM supports an additional instruction set called “thumb” which is optimized for
small binaries: it is not designed to be fast. We sometimes see libraries compiled
for Thumb; please stop making them

- Most hardware we care about uses the ARMV7 instruction set with a SIMD system
called Neon, with one notable exception where the vendor apparently decided
that nobody needed the neon unit. That vendor has learnt its lesson and promises
to be good from now on

- It’s also worth remembering that there are x86 devices out there running Android,
and two of them are in the top 50. x86 devices run arm code through some kind of
emulation layer, but that has serious performance ramifications

- And finally, ARM64 is looming – now that iOS has switched over we’ll see how fast
Android apps start to convert

All in all, CPU issues seem to be blessedly rare - or maybe we just haven’t noticed
them

Some of you may have seen this before – it’s a visualization of the relative popularity
of Android devices that logged on to the UK-based OpenSignal network. There were
4,000 different models that connected – we typically target the top 50 and hope
that’s a big enough range to hit most of the rest.

This has been repeated many times, but fragmentation is no joke for Android

This adds together to make a difficult problem: tiering graphics heavy titles, which is
unfortunately not a solved issue.

Before we decided to take android in-house, we used a heuristic to guess what the
device was capable of, with varying degrees of success

Now, we’ve transitioned to using an online database of tiering information – when
the game starts it will download the settings for that particular device and firmware

It’s worked reasonably well, but feels like a scary failure point and still requires a huge
amount of effort to populate the database.

It does let us push out new info for new devices, as well as solve issues that only
appear in the wild or escape testing

I always warn developers who are starting on Android not to get complacent about
the toolchain and the language.

We often find ourselves on the bleeding edge of the NDK as we have adopted Clang
for our Android titles (due to the better precompiled header system)

Unfortunately, we have also encountered 100% issues with code generation that have
appeared in one NDK release and disappeared in the next

Another thing to bear in mind is that Clang on iOS and within the NDK are not the
same – beware of codegen differences

Another concern with android is that many libraries have been poorly configured for
the Android platform

- We used the Tegra System Profiler to identify an unusually large amount of time in
the boost library

Everything in the red box is the boost problem.

There are even more calls that are filtered out.

That is around 6+ % combined!

Removing bottlenecks can make the overall speed sometimes go even higher but in
this case it was more like a straight recoup and a far reduced % overall.

- It turned out that the android configuration was not using atomic operations and
fell back to a slow path for multithreaded primitives

Remember how I said that we typically don’t use Java? Well unfortunately we can
often find ourselves with no choice.

Java APIs are the primary way that some core features are made available, such as
the google play services, many third party engagement or ad libraries, and new OS
features

But it’s not all bad, we can use JNI, the java-native interface to communicate between
native code and java code.

There are a few pitfalls to avoid; hopefully some of these are already well known

- JNI needs to be initialized per native thread created

- And the classloader from the initial thread is the one you should be using, so you
need to share it between your native threads

- It’s also important to remember that if an exception is raised in Java and you don’t
pick it up, it’ll cause a crash the next time you invoke a JNI method

- Finally, the Android process model can get a bit confused with mixed Java and
native applications – it is possible to end up with your Java application terminated
while your native code continues to run. This is especially confusing as the native
threads get can be re-attached to a new application instance, which is highly
unlikely to be what you wanted

So where does all this lead us? Well, Android was – I would be the first to admit this –
not a great platform for game developers.

It also has challenges of its own that are unique to having such an open ecosystem.

I think in a lot of cases, the difficulties we, the development community, had with
Android was reflected in the quality of the porting efforts.

There really is a light at the end of the tunnel, however. NVIDIA is investing in making
Android better for every Android owner and game developer out there, and they’re
really trying to make it a fully viable gaming platform.

I’d like to end with a single suggestion: if you’re a game developer, and you’re not
using Nsight Tegra VSE yet, you really should be.

This is a session about some of the cool tools NVIDIA has developed for android
developers – specifically as it relates to our most recent title, Need for Speed: No
Limits

Introduce yourself

Who am I? **Say a bit about myself – keeping it brief.**

Mention Jonathan Seymour – Senior Producer – attending GameConnection this
week

We work on our own projects and we consult and develop games with partners in the
industry

• Started developing games when in teens

• Dev tool chains improved over time and now dev teams are spoilt

• Asked to port game from iOS to Android in late 2009 – not using Visual Studio
was like losing old friend (sad face)

• Could have tried to make it work – could have been so beautiful!! – could have
had great relationship with Eclipse and Android NDK, but…

• We missed Visual Studio too much! Hacked together workable toolchain – not
perfect and cracks started to show

• Treasured the rare moments when we could single step debug

• By chance we were introduced to our now good friends at NVIDIA

• Discovered TADP

• Debugging and developing using TADP has been a match made in heaven –
we’ve never looked back

• If you are developing for Android you need TADP

• BZB – PS3 game by Double6 developed in 2009

• Compiled without TADP, game used Sony Phyre Engine we’d ported to Android.
Game was running, could hear sound, but only saw black screen

• Plan to get parity with PS3 version, then worry about framerate

• PerfHUD tools meant we could analyse GL call stack – took us from black screen
to almost perfect visual parity in only a few weeks

• Time consuming process – 100’s of shaders embedded in assets needed to be
converted from CG and hand optimised to GLSL

• PerfHUD made process much faster and less complex to visualise

** So, we had a great looking game running at ….

• * slightly under 1fps!

• CPU bound, quick sweep timing main loop = Death by 1000 cuts

• Tegra System Profiler

• Phyre engine was sorting geometry for depth order but taking 80ms to do so

• Solution = pre-sorting; rinse and repeat. Remove string compares for hash comparisons, rinse and repeat

• Moving skinning from CPU to GPU was not in scope of project

• Using profiler load on CPU was reduced by almost 35 times the original code with minimal loss of precision

• Rapidly became GPU bound and CPU issues gone

• Cool trick with PerfHUD – how to resolve loss of GL context – lots of problems in BZB with this

• Phyre Engine had no need to handle loss of graphics context. Needed to add this in – quickly worked out saving state of a
frame to a text file (feature in PerfHUD) then doing same after a restore context and comparing text files allowed us to
see what we had not properly restored.

• Did NVIDIA have this in mind when they created the tools – who cares! It saved us loads of time, and we’ve been using
this technique ever since. Neat!

• Z: The Game – released in 1996, competing with Command & Conquer – huge
success, but Bit Bros wanted sequel to be first 3D RTS – Z Steel Soldiers released
in 2001 – See screenshots

• We had the honour of porting the classic Z the Game. At the time, it was
competing with Command and Conquer and while it was a huge success, the
developers had huge ambitions and wanted the sequel to be the first 3D
RTS. Remember we’ve gone back now to the year 2001 – it was no small thing to
get this up and running. Of course, now the screenshots are vintage quality, but
this was development that was taking place in the late 90’s.

• Z: The Game – released in 1996, competing with Command & Conquer – huge
success, but Bit Bros wanted sequel to be first 3D RTS – Z Steel Soldiers released
in 2001 – See screenshots

• We had the honour of porting the classic Z the Game. At the time, it was
competing with Command and Conquer and while it was a huge success, the
developers had huge ambitions and wanted the sequel to be the first 3D
RTS. Remember we’ve gone back now to the year 2001 – it was no small thing to
get this up and running. Of course, now the screenshots are vintage quality, but
this was development that was taking place in the late 90’s.

• Like with BZB we wanted visual parity – we knew that with TADP we had the
tools to go the extra mile on framerate

• Programmable pipeline – we could consider normal maps, shadow mapping &
post process effects

• Code that was 20 years old stood test of time as piece of software engineering

• TSP instrumental again in reducing the CPU load – could fix bottlenecks in code
within hours rather than days.

• Experience with BZB/Sniper rifle accuracy at finding problems PLUS TSP saved us
weeks of work

• Tegra Graphics Debugger – lead to irresistible urge to add further enhancements
– TGD made this so easy.

• Boosted shadow quality repeatedly

• Show image of old shadows, then image of new shadows
“z2_screenshot_old_shadows.png”, “z2_screenshot_old_shadows.png”

• improved lighting

• z2_gfx_lighting.PNG

• editing a shader to visualize lighting with normal mapping

• added more particle effects and specular maps – Difficult to stop

• REALLY EXCITING TIME – I attribute this to TGD

• (z2_gfx_most_expensive_draw_call.PNG,
z2_gfx_second_most_expensive_draw_call.PNG)

• (z2_gfx_no_mipmaps.PNG)

Talk about what we did to use the tools to give us better lighting effects.

Next slide shows how we used the tools to optimised our shaders for shadows and
lighting

This slide shows how we used the tools to use AB testing to visualise what was
happening under the hood

z2_gfx_most_expensive_draw_call.PNG

ordering draw calls to find the most expensive (terrain)

z2_gfx_second_most_expensive_draw_call.PNG

second most expensive draw call (command centre)

z2_sys_old_shadows.PNG

System profile of old shadow system enabled.

z2_sys_new_shadows.PNG

System profile of new shadows being rendered

z2_gfx_no_mipmaps.PNG

Showing that we noticed a texture with no mipmaps using the tool

fsp_gfx_slowest_draw_call.PNG

Showing slowest draw call is the cityscape beneath the playfield (Don’t forget this is
after change)

fsp_gfx_surprisingly_slow_call.PNG

A draw call drawing over the roads shows up as being quite slowest

fsp_sys_old_uniforms1.PNG

Flat view showing gl calls with no uniform optimized

fsp_sys_new_uniforms1.PNG

Flat view showing gl calls with new uniform optimization on

fsp_sys_old_uniforms2.PNG

flat view ordered by cpu time showing constant setting time before optimizations

fsp_sys_new_uniforms2.PNG

flat view ordered by cpu time showing how new uniform optimization improved
constant setting time

The picture is from Serious Sam 3, showing their internal tracing profiler redirected to
Tegra System Profiler via NVTX so that it can be visualized and correlated back to CPU
activity.

I would like to thank Croteam.

