
Precision & Performance:
Floating Point and IEEE 754 Compliance for NVIDIA GPUs

Nathan Whitehead Alex Fit-Florea

ABSTRACT
A number of issues related to floating point accuracy
and compliance are a frequent source of confusion on
both CPUs and GPUs. The purpose of this white pa-
per is to discuss the most common issues related to
NVIDIA GPUs and to supplement the documentation
in the CUDA C Programming Guide [7].

1. INTRODUCTION
Since the widespread adoption in 1985 of the IEEE

Standard for Binary Floating-Point Arithmetic (IEEE
754-1985 [1]) virtually all mainstream computing sys-
tems have implemented the standard, including NVIDIA
with the CUDA architecture. IEEE 754 standardizes
how arithmetic results should be approximated in float-
ing point. Whenever working with inexact results, pro-
gramming decisions can affect accuracy. It is important
to consider many aspects of floating point behavior in
order to achieve the highest performance with the preci-
sion required for any specific application. This is espe-
cially true in a heterogeneous computing environment
where operations will be performed on different types
of hardware.

Understanding some of the intricacies of floating point
and the specifics of how NVIDIA hardware handles float-
ing point is obviously important to CUDA programmers
striving to implement correct numerical algorithms. In
addition, users of libraries such as CUBLAS and CUFFT
will also find it informative to learn how NVIDIA han-
dles floating point under the hood.

We review some of the basic properties of floating
point calculations in Section 2. We also discuss the
fused multiply-add operator, which was added to the
IEEE 754 standard in 2008 [2] and is built into the
hardware of NVIDIA GPUs. In Section 3 we work
through an example of computing the dot product of
two short vectors to illustrate how different choices of
implementation affect the accuracy of the final result.
In Section 4 we describe NVIDIA hardware versions and
NVCC compiler options that affect floating point calcu-
lations. In Section 5 we consider some issues regarding
the comparison of CPU and GPU results. Finally, in
Section 6 we conclude with concrete recommendations
to programmers that deal with numeric issues relating
to floating point on the GPU.

Permission to make digital or hard copies of all or part of this work
for any use is granted without fee provided that copies bear this
notice and the full citation on the first page.
Copyright 2011 NVIDIA.

2. FLOATING POINT

2.1 Formats
Floating point encodings and functionality are defined

in the IEEE 754 Standard [2] last revised in 2008. Gold-
berg [5] gives a good introduction to floating point and
many of the issues that arise.

The standard mandates binary floating point data be
encoded on three fields: a one bit sign field, followed
by exponent bits encoding the exponent offset by a nu-
meric bias specific to each format, and bits encoding
the significand (or fraction).

sign exponent fraction

In order to ensure consistent computations across plat-
forms and to exchange floating point data, IEEE 754
defines basic and interchange formats. The 32 and 64
bit basic binary floating point formats correspond to the
C data types float and double. Their corresponding
representations have the following bit lengths:

float 1 8 23

double 1 11 52

For numerical data representing finite values, the sign
is either negative or positive, the exponent field encodes
the exponent in base 2, and the fraction field encodes
the significand without the most significant non-zero
bit. For example the value −192 equals (−1)1×27×1.5,
and can be represented as having a negative sign, an
exponent of 7, and a fractional part .5. The exponents
are biased by 127 and 1023, respectively, to allow ex-
ponents to extend from negative to positive. Hence the
exponent 7 is represented by bit strings with values 134
for float and 1030 for double. The integral part of 1.
is implicit in the fraction.

float
1 10000110 .100000000000000000000000

double
1 10000000110 .10000000000000000. . . 0000000

Also, encodings to represent infinity and not-a-number
(NaN) data are reserved. The IEEE 754 Standard [2]
describes floating point encodings in full.

Given that the fraction field uses a limited number of
bits, not all real numbers can be represented exactly.

For example the mathematical value of the fraction 2/3
represented in binary is 0.10101010... which has an in-
finite number of bits after the binary point. The value
2/3 must be rounded first in order to be represented
as a floating point number with limited precision. The
rules for rounding and the rounding modes are spec-
ified in IEEE 754. The most frequently used is the
round-to-nearest-or-even mode (abbreviated as round-
to-nearest). The value 2/3 rounded in this mode is rep-
resented in binary as:

float
0 01111110 .01010101010101010101011

double
0 01111111110 .01010101010101010. . . 1010101

The sign is positive and the stored exponent value
represents an exponent of −1.

2.2 Operations and Accuracy
The IEEE 754 standard requires support for a hand-

ful of operations. These include the arithmetic opera-
tions add, subtract, multiply, divide, square root, fused-
multiply-add, remainder, conversion operations, scal-
ing, sign operations, and comparisons. The results of
these operations are guaranteed to be the same for all
implementations of the standard, for a given format and
rounding mode.

The rules and properties of mathematical arithmetic
do not hold directly for floating point arithmetic be-
cause of floating point’s limited precision. For example,
the table below shows single precision values A, B, and
C, and the mathematical exact value of their sum com-
puted using different associativity.

A = 21 × 1.00000000000000000000001
B = 20 × 1.00000000000000000000001
C = 23 × 1.00000000000000000000001

(A+B) + C = 23 × 1.01100000000000000000001011
A+ (B + C) = 23 × 1.01100000000000000000001011

Mathematically, (A+B)+C does equal A+(B+C).
Let rn(x) denote one rounding step on x. Perform-

ing these same computations in single precision floating
point arithmetic in round-to-nearest mode according to
IEEE 754, we obtain:

A+B = 21 × 1.1000000000000000000000110000 . . .
rn(A+B) = 21 × 1.10000000000000000000010

B + C = 23 × 1.0010000000000000000000100100 . . .
rn(B + C) = 23 × 1.00100000000000000000001
A+B + C = 23 × 1.0110000000000000000000101100 . . .

rn(rn(A+B) + C) = 23 × 1.01100000000000000000010
rn(A+ rn(B + C)) = 23 × 1.01100000000000000000001

For reference, the exact, mathematical results are com-
puted as well in the table above. Not only are the re-
sults computed according to IEEE 754 different from
the exact mathematical results, but also the results cor-
responding to the sum rn(rn(A + B) + C) and the sum
rn(A + rn(B + C)) are different from each other. In this
case, rn(A + rn(B + C)) is closer to the correct mathe-
matical result than rn(rn(A + B) + C).

This example highlights that seemingly identical com-
putations can produce different results even if all basic
operations are computed in compliance with IEEE 754.

Here, the order in which operations are executed affects
the accuracy of the result. The results are independent
of the host system. These same results would be ob-
tained using any microprocessor, CPU or GPU, which
supports single precision floating point.

2.3 The Fused Multiply-Add (FMA)
In 2008 the IEEE 754 standard was revised to include

the fused multiply-add operation (FMA). The FMA op-
eration computes rn(X × Y + Z) with only one round-
ing step. Without the FMA operation the result would
have to be computed as rn(rn(X × Y) + Z) with two
rounding steps, one for multiply and one for add. Be-
cause the FMA uses only a single rounding step the
result is computed more accurately.

Let’s consider an example to illustrate how the FMA
operation works using decimal arithmetic first for clar-
ity. Let’s compute x2 − 1 in finite-precision with four
digits of precision after the decimal point, or a total of
five digits of precision including the leading digit before
the decimal point.

For x = 1.0008, the correct mathematical result is
x2−1 = 1.60064×10−4. The closest number using only
four digits after the decimal point is 1.6006× 10−4. In
this case rn(x2 − 1) = 1.6006× 10−4 which corresponds
to the fused multiply-add operation rn(x× x + (−1)).
The alternative is to compute separate multiply and add
steps. For the multiply, x2 = 1.00160064, so rn(x2) =
1.0016. The final result is rn(rn(x2)− 1) = 1.6000 ×
10−4.

Rounding the multiply and add separately yields a re-
sult that is wrong by 0.00064. The corresponding FMA
computation is wrong by only 0.00004, and its result is
closest to the correct mathematical answer. The results
are summarized below:

x = 1.0008
x2 = 1.00160064

x2 − 1 = 1.60064× 10−4 true value
rn(x2 − 1) = 1.6006× 10−4 fused multiply-add

rn(x2) = 1.0016× 10−4

rn(rn(x2)− 1) = 1.6000× 10−4 multiply, then add

Below is another example, using binary single preci-
sion values:

A = 20 × 1.00000000000000000000001
B = −20 × 1.00000000000000000000010

rn(A×A+B) = 2−46 × 1.00000000000000000000000
rn(rn(A×A) +B) = 0

In this particular case, computing rn(rn(A×A) + B)
as an IEEE 754 multiply followed by an IEEE 754 add
loses all bits of precision, and the computed result is 0.
The alternative of computing the FMA rn(A×A + B)
provides a result equal to the mathematical value. In
general, the fused-multiply-add operation generates more
accurate results than computing one multiply followed
by one add. The choice of whether or not to use the
fused operation depends on whether the platform pro-
vides the operation and also on how the code is com-
piled.

Figure 1 shows CUDA C code and output correspond-
ing to inputs A and B and operations from the example
above. The code is executed on two different hardware
platforms: an x86-class CPU using SSE in single pre-
cision, and an NVIDIA GPU with compute capability

union {
float f;
unsigned int i;

} a, b;
float r;

a.i = 0x3F800001;
b.i = 0xBF800002;
r = a.f * a.f + b.f;

printf("a %.8g\n", a.f);
printf("b %.8g\n", b.f);
printf("r %.8g\n", r);

x86-64 output:

a: 1.0000001
b: -1.0000002
r: 0

NVIDIA Fermi output:

a: 1.0000001
b: -1.0000002
r: 1.4210855e-14

Figure 1: Multiply and add code fragment and
output for x86 and NVIDIA Fermi GPU

2.0. At the time this paper is written (Spring 2011)
there are no commercially available x86 CPUs which
offer hardware FMA. Because of this, the computed re-
sult in single precision in SSE would be 0. NVIDIA
GPUs with compute capability 2.0 do offer hardware
FMAs, so the result of executing this code will be the
more accurate one by default. However, both results are
correct according to the IEEE 754 standard. The code
fragment was compiled without any special intrinsics or
compiler options for either platform.

The fused multiply-add helps avoid loss of precision
during subtractive cancellation. Subtractive cancella-
tion occurs during the addition of quantities of similar
magnitude with opposite signs. In this case many of the
leading bits cancel, leaving fewer meaningful bits of pre-
cision in the result. The fused multiply-add computes a
double-width product during the multiplication. Thus
even if subtractive cancellation occurs during the addi-
tion there are still enough valid bits remaining in the
product to get a precise result with no loss of precision.

3. DOT PRODUCT: AN ACCURACY EX-
AMPLE

Consider the problem of finding the dot product of

two short vectors ~a and ~b both with four elements.

~a =

a1a2a3
a4

 ~b =

b1b2b3
b4

 ~a ·~b = a1b1 +a2b2 +a3b3 +a4b4

This operation is easy to write mathematically, but
its implementation in software involves several choices.
All of the strategies we will discuss use purely IEEE 754
compliant operations.

3.1 Example Algorithms
We present three algorithms which differ in how the

multiplications, additions, and possibly fused multiply-
adds are organized. These algorithms are presented in
Figures 2, 3, and 4. Each of the three algorithms is rep-
resented graphically. Individual operation are shown as
a circle with arrows pointing from arguments to opera-
tions.

The simplest way to compute the dot product is using
a short loop as shown in Figure 2. The multiplications

t = 0
for i from 1 to 4

p = rn(ai × bi)
t = rn(t + p)

return t

Figure 2: The serial method uses a simple loop
with separate multiplies and adds to compute
the dot product of the vectors. The final result
can be represented as ((((a1×b1)+(a2×b2))+(a3×
b3)) + (a4 × b4)).

t = 0
for i from 1 to 4

t = rn(ai × bi + t)
return t

Figure 3: The FMA method uses a simple loop
with fused multiply-adds to compute the dot
product of the vectors. The final result can be
represented as a4 × b4 + (a3 × b3 + (a2 × b2 + (a1 ×
b1 + 0))).

and additions are done separately.
A simple improvement to the algorithm is to use the

fused multiply-add to do the multiply and addition in
one step to improve accuracy. Figure 3 shows this ver-
sion.

Yet another way to compute the dot product is to use
a divide-and-conquer strategy in which we first find the
dot products of the first half and the second half of the
vectors, then combine these results using addition. This
is a recursive strategy; the base case is the dot product
of vectors of length 1 which is a single multiply. Fig-
ure 4 graphically illustrates this approach. We call this
algorithm the parallel algorithm because the two sub-
problems can be computed in parallel as they have no
dependencies. The algorithm does not require a paral-
lel implementation, however; it can still be implemented
with a single thread.

3.2 Comparison
All three algorithms for computing a dot product use

IEEE 754 arithmetic and can be implemented on any
system that supports the IEEE standard. In fact, an
implementation of the serial algorithm on multiple sys-
tems will give exactly the same result. So will imple-
mentations of the FMA or parallel algorithms. How-

p1 = rn(a1 × b1)
p2 = rn(a2 × b2)
p3 = rn(a3 × b3)
p4 = rn(a4 × b4)
sleft = rn(p1 + p2)
sright = rn(p3 + p4)
t = rn(sleft + sright)
return t

Figure 4: The parallel method uses a tree to re-
duce all the products of individual elements into
a final sum. The final result can be represented
as ((a1 × b1) + (a2 × b2)) + ((a3 × b3) + (a4 × b4)).

method result float value
exact .0559587528435... 0x3D65350158...
serial .0559588074 0x3D653510
FMA .0559587515 0x3D653501

parallel .0559587478 0x3D653500

Figure 5: All three algorithms yield results
slightly different from the correct mathematical
dot product.

ever, results computed by an implementation of the se-
rial algorithm may differ from those computed by an
implementation of the other two algorithms.

For example, consider the vectors

~a = [1.907607,−.7862027, 1.147311, .9604002]

~b = [−.9355000,−.6915108, 1.724470,−.7097529]

whose elements are randomly chosen values between −1
and 2. The accuracy of each algorithm corresponding
to these inputs is shown in Figure 5.

The main points to notice from the table are that
each algorithm yields a different result, and they are
all slightly different from the correct mathematical dot
product. In this example the FMA version is the most
accurate, and the parallel algorithm is more accurate
than the serial algorithm. In our experience these re-
sults are typical; fused multiply-add significantly in-
creases the accuracy of results, and parallel tree reduc-
tions for summation are usually much more accurate
than serial summation.

4. CUDA AND FLOATING POINT
NVIDIA has extended the capabilities of GPUs with

each successive hardware generation. Current genera-
tions of the NVIDIA architecture such as Tesla C2xxx,
GTX 4xx, and GTX 5xx, support both single and dou-
ble precision with IEEE 754 precision and include hard-
ware support for fused multiply-add in both single and

double precision. Older NVIDIA architectures support
some of these features but not others. In CUDA, the
features supported by the GPU are encoded in the com-
pute capability number. The runtime library supports
a function call to determine the compute capability of
a GPU at runtime; the CUDA C Programming Guide
also includes a table of compute capabilities for many
different devices [7].

4.1 Compute capability 1.2 and below
Devices with compute capability 1.2 and below sup-

port single precision only. In addition, not all opera-
tions in single precision on these GPUs are IEEE 754
accurate. Denormal numbers (small numbers close to
zero) are flushed to zero. Operations such as square
root and division may not always result in the floating
point value closest to the correct mathematical value.

4.2 Compute capability 1.3
Devices with compute capability 1.3 support both

single and double precision floating point computation.
Double precision operations are always IEEE 754 accu-
rate. Single precision in devices of compute capability
1.3 is unchanged from previous compute capabilities.

In addition, the double precision hardware offers fused
multiply-add. As described in Section 2.3, the fused
multiply-add operation is faster and more accurate than
separate multiplies and additions. There is no single
precision fused multiply-add operation in compute ca-
pability 1.3.

4.3 Compute capability 2.0 and above
Devices with compute capability 2.0 and above sup-

port both single and double precision IEEE 754 includ-
ing fused multiply-add in both single and double preci-
sion. Operations such as square root and division will
result in the floating point value closest to the correct
mathematical result in both single and double precision,
by default.

4.4 Rounding modes
The IEEE 754 standard defines four rounding modes:

round-to-nearest, round towards positive, round towards
negative, and round towards zero. CUDA supports
all four modes. By default, operations use round-to-
nearest. Compiler intrinsics like the ones listed in the
tables below can be used to select other rounding modes
for individual operations.

mode interpretation
rn round to nearest, ties to even
rz round towards zero
ru round towards +∞
rd round towards -∞

x + y addition
__fadd_[rn|rz|ru|rd](x, y)

x * y multiplication
__fmul_[rn|rz|ru|rd](x, y)

fmaf(x, y, z) FMA
__fmaf_[rn|rz|ru|rd](x, y, z)

1.0f / x reciprocal
__frcp_[rn|rz|ru|rd](x)

x / y division
__fdiv_[rn|rz|ru|rd](x, y)

sqrtf(x) square root
__fsqrt_[rn|rz|ru|rd](x)

x + y addition
__dadd_[rn|rz|ru|rd](x, y)

x * y multiplication
__dmul_[rn|rz|ru|rd](x, y)

fma(x, y, z) FMA
__fma_[rn|rz|ru|rd](x, y, z)

1.0 / x reciprocal
__drcp_[rn|rz|ru|rd](x)

x / y division
__ddiv_[rn|rz|ru|rd](x, y)

sqrt(x) square root
__dsqrt_[rn|rz|ru|rd](x)

4.5 Controlling fused multiply-add
In general, the fused multiply-add operation is faster

and more accurate than performing separate multiply
and add operations. However, on occasion you may
wish to disable the merging of multiplies and adds into
fused multiply-add instructions. To inhibit this op-
timization one can write the multiplies and additions
using intrinsics with explicit rounding mode as shown
in the previous tables. Operations written directly as
intrinsics are guaranteed to remain independent and
will not be merged into fused multiply-add instructions.
With CUDA Fortran it is possible to disable FMA merg-
ing via a compiler flag.

4.6 Compiler flags
Compiler flags relevant to IEEE 754 operations are

-ftz={true|false}, -prec-div={true|false}, and
-prec-sqrt={true|false}. These flags control single
precision operations on devices of compute capability of
2.0 or later.

mode flags
IEEE 754 mode
(default)

-ftz=false
-prec-div=true
-prec-sqrt=true

fast mode -ftz=true
-prec-div=false
-prec-sqrt=false

The default “IEEE 754 mode” means that single pre-
cision operations are correctly rounded and support de-
normals, as per the IEEE 754 standard. In the “fast
mode” denormal numbers are flushed to zero, and the
operations division and square root are not computed to
the nearest floating point value. The flags have no effect
on double precision or on devices of compute capability
below 2.0.

4.7 Differences from x86
NVIDIA GPUs differ from the x86 architecture in

that rounding modes are encoded within each floating
point instruction instead of dynamically using a floating
point control word. Trap handlers for floating point ex-
ceptions are not supported. On the GPU there is no sta-
tus flag to indicate when calculations have overflowed,
underflowed, or have involved inexact arithmetic. Like
SSE, the precision of each GPU operation is encoded
in the instruction (for x87 the precision is controlled
dynamically by the floating point control word).

5. CONSIDERATIONS FOR A HETERO-
GENEOUS WORLD

5.1 Mathematical function accuracy
So far we have only considered simple math oper-

ations such as addition, multiplication, division, and
square root. These operations are simple enough that
computing the best floating point result (e.g. the clos-
est in round-to-nearest) is reasonable. For other math-
ematical operations computing the best floating point
result is harder.

The problem is called the table maker’s dilemma. To
guarantee the correctly rounded result, it is not gen-
erally enough to compute the function to a fixed high
accuracy. There might still be rare cases where the er-
ror in the high accuracy result affects the rounding step
at the lower accuracy.

It is possible to solve the dilemma for particular func-
tions by doing mathematical analysis and formal proofs [4],
but most math libraries choose instead to give up the
guarantee of correct rounding. Instead they provide im-
plementations of math functions and document bounds
on the relative error of the functions over the input
range. For example, the double precision sin function
in CUDA is guaranteed to be accurate to within 2 units
in the last place (ulp) of the correctly rounded result. In
other words, the difference between the computed result
and the mathematical result is at most ±2 with respect
to the least significant bit position of the fraction part
of the floating point result.

For most inputs the sin function produces the cor-
rectly rounded result. For some inputs the result is off
by 1 ulp. For a small percentage of inputs the result is
off by 2 ulp.

Producing different results, even on the same system,
is not uncommon when using a mix of precisions, li-
braries and hardware. Take for example the C code
sequence shown in Figure 6. We compiled the code se-
quence on a 64-bit x86 platform using gcc version 4.4.3
(Ubuntu 4.3.3-4ubuntu5).

This shows that the result of computing cos(5992555.0)
using a common library differs depending on whether
the code is compiled in 32-bit mode or 64-bit mode.

The consequence is that different math libraries can-
not be expected to compute exactly the same result for a
given input. This applies to GPU programming as well.
Functions compiled for the GPU will use the NVIDIA
CUDA math library implementation while functions com-
piled for the CPU will use the host compiler math li-
brary implementation (e.g. glibc on Linux). Because
these implementations are independent and neither is

volatile float x = 5992555.0;
printf("cos(%f): %.10g\n", x, cos(x));

gcc test.c -lm -m64

cos(5992555.000000): 3.320904615e-07

gcc test.c -lm -m32

cos(5992555.000000): 3.320904692e-07

Figure 6: The computation of cosine using the
glibc math library yields different results when
compiled with -m32 and -m64.

guaranteed to be correctly rounded, the results will of-
ten differ slightly.

5.2 x87 and SSE
One of the unfortunate realities of C compilers is that

they are often poor at preserving IEEE 754 semantics
of floating point operations [6]. This can be particularly
confusing on platforms that support x87 and SSE oper-
ations. Just like CUDA operations, SSE operations are
performed on single or double precision values, while
x87 operations often use an additional internal 80-bit
precision format. Sometimes the results of a computa-
tion using x87 can depend on whether an intermediate
result was allocated to a register or stored to memory.
Values stored to memory are rounded to the declared
precision (e.g. single precision for float and double
precision for double). Values kept in registers can re-
main in extended precision. Also, x87 instructions will
often be used by default for 32-bit compiles but SSE
instructions will be used by default for 64-bit compiles.

Because of these issues, guaranteeing a specific preci-
sion level on the CPU can sometimes be tricky. When
comparing CPU results to results computed on the GPU,
it is generally best to compare using SSE instructions.
SSE instructions follow IEEE 754 for single and double
precision.

On 32-bit x86 targets without SSE it can be help-
ful to declare variables using volatile and force float-
ing point values to be stored to memory (/Op in Visual
Studio and -ffloat-store in gcc). This moves results
from extended precision registers into memory, where
the precision is precisely single or double precision. Al-
ternately, the x87 control word can be updated to set
the precision to 24 or 53 bits using the assembly in-
struction fldcw or a compiler option such as -mpc32 or
-mpc64 in gcc.

5.3 Core Counts
As we have shown in Section 3, the final values com-

puted using IEEE 754 arithmetic can depend on imple-
mentation choices such as whether to use fused multiply-
add or whether additions are organized in series or par-
allel. These differences affect computation on the CPU
and on the GPU.

One example of the differences can arise from dif-
ferences between the number of concurrent threads in-
volved in a computation. On the GPU, a common de-
sign pattern is to have all threads in a block coordinate
to do a parallel reduction on data within the block,
followed by a serial reduction of the results from each

block. Changing the number of threads per block reor-
ganizes the reduction; if the reduction is addition, then
the change rearranges parentheses in the long string of
additions.

Even if the same general strategy such as parallel
reduction is used on the CPU and GPU, it is com-
mon to have widely different numbers of threads on the
GPU compared to the CPU. For example, the GPU
implementation might launch blocks with 128 threads
per block, while the CPU implementation might use 4
threads in total.

5.4 Verifying GPU Results
The same inputs will give the same results for indi-

vidual IEEE 754 operations to a given precision on the
CPU and GPU. As we have explained, there are many
reasons why the same sequence of operations may not be
performed on the CPU and GPU. The GPU has fused
multiply-add while the CPU does not. Parallelizing al-
gorithms may rearrange operations, yielding different
numeric results. The CPU may be computing results in
a precision higher than expected. Finally, many com-
mon mathematical functions are not required by the
IEEE 754 standard to be correctly rounded so should
not be expected to yield identical results between im-
plementations.

When porting numeric code from the CPU to the
GPU of course it makes sense to use the x86 CPU re-
sults as a reference. But differences between the CPU
result and GPU result must be interpreted carefully.
Differences are not automatically evidence that the re-
sult computed by the GPU is wrong or that there is a
problem on the GPU.

Computing results in a high precision and then com-
paring to results computed in a lower precision can be
helpful to see if the lower precision is adequate for a par-
ticular application. However, rounding high precision
results to a lower precision is not equivalent to perform-
ing the entire computation in lower precision. This can
sometimes be a problem when using x87 and comparing
results against the GPU. The results of the CPU may
be computed to an unexpectedly high extended preci-
sion for some or all of the operations. The GPU result
will be computed using single or double precision only.

6. CONCRETE RECOMMENDATIONS
The key points we have covered are the following.

Use the fused multiply-add operator.
The fused multiply-add operator on the GPU has

high performance and increases the accuracy of com-
putations. No special flags or function calls are needed
to gain this benefit in CUDA programs. Understand
that a hardware fused multiply-add operation is not yet
available on the CPU, which can cause differences in nu-
merical results.

Compare results carefully.
Even in the strict world of IEEE 754 operations, mi-

nor details such as organization of parentheses or thread
counts can affect the final result. Take this into account
when doing comparisons between implementations.

Know the capabilities of your GPU.
The numerical capabilities are encoded in the com-

pute capability number of your GPU. Devices of com-
pute capability 2.0 and later are capable of single and
double precision arithmetic following the IEEE 754 stan-
dard, and have hardware units for performing fused
multiply-add in both single and double precision.

Take advantage of the CUDA math library func-
tions.

These functions are documented in Appendix C of the
CUDA C Programming Guide [7]. The math library
includes all the math functions listed in the C99 stan-
dard [3] plus some additional useful functions. These
functions have been tuned for a reasonable compromise
between performance and accuracy.

We constantly strive to improve the quality of our
math library functionality. Please let us know about
any functions that you require that we do not provide,
or if the accuracy or performance of any of our func-
tions does not meet your needs. Leave comments in the
NVIDIA CUDA forum1 or join the Registered Devel-
oper Program2 and file a bug with your feedback.

7. ACKNOWLEDGEMENTS
Thanks to Ujval Kapasi, Kurt Wall, Paul Sidenblad,

Massimiliano Fatica, Everett Phillips, Norbert Juffa,
and Will Ramey for their helpful comments and sug-
gestions.

1http://forums.nvidia.com/index.php?showforum=62
2http://developer.nvidia.com/
join-nvidia-registered-developer-program

8. REFERENCES
[1] ANSI/IEEE 754-1985. American National

Standard — IEEE Standard for Binary
Floating-Point Arithmetic. American National
Standards Institute, Inc., New York, 1985.

[2] IEEE 754-2008. IEEE 754–2008 Standard for
Floating-Point Arithmetic. August 2008.

[3] ISO/IEC 9899:1999(E). Programming
languages—C. American National Standards
Institute, Inc., New York, 1999.

[4] Catherine Daramy-Loirat, David Defour, Florent
de Dinechin, Matthieu Gallet, Nicolas Gast, and
Jean-Michel Muller. CR-LIBM: A library of
correctly rounded elementary functions in
double-precision, February 2005.

[5] David Goldberg. What every computer scientist
should know about floating-point arithmetic. ACM
Computing Surveys, March 1991. Edited reprint
available at: http://download.oracle.com/docs/
cd/E19957-01/806-3568/ncg_goldberg.html.

[6] David Monniaux. The pitfalls of verifying
floating-point computations. ACM Transactions on
Programming Languages and Systems, May 2008.

[7] NVIDIA. CUDA C Programming Guide Version
4.0, 2011.

http://forums.nvidia.com/index.php?showforum=62
http://developer.nvidia.com/join-nvidia-registered-developer-program
http://developer.nvidia.com/join-nvidia-registered-developer-program
http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html
http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

	1 Introduction
	2 Floating Point
	2.1 Formats
	2.2 Operations and Accuracy
	2.3 The Fused Multiply-Add (FMA)

	3 Dot Product: An Accuracy Example
	3.1 Example Algorithms
	3.2 Comparison

	4 CUDA and Floating Point
	4.1 Compute capability 1.2 and below
	4.2 Compute capability 1.3
	4.3 Compute capability 2.0 and above
	4.4 Rounding modes
	4.5 Controlling fused multiply-add
	4.6 Compiler flags
	4.7 Differences from x86

	5 Considerations for a Heterogeneous World
	5.1 Mathematical function accuracy
	5.2 x87 and SSE
	5.3 Core Counts
	5.4 Verifying GPU Results

	6 Concrete Recommendations
	7 Acknowledgements
	8 References

