

NVIDIA FLARE Introduction & Roadmap

Chester Chen

Senior Product & Engineering Manager NVIDIA Federated Learning

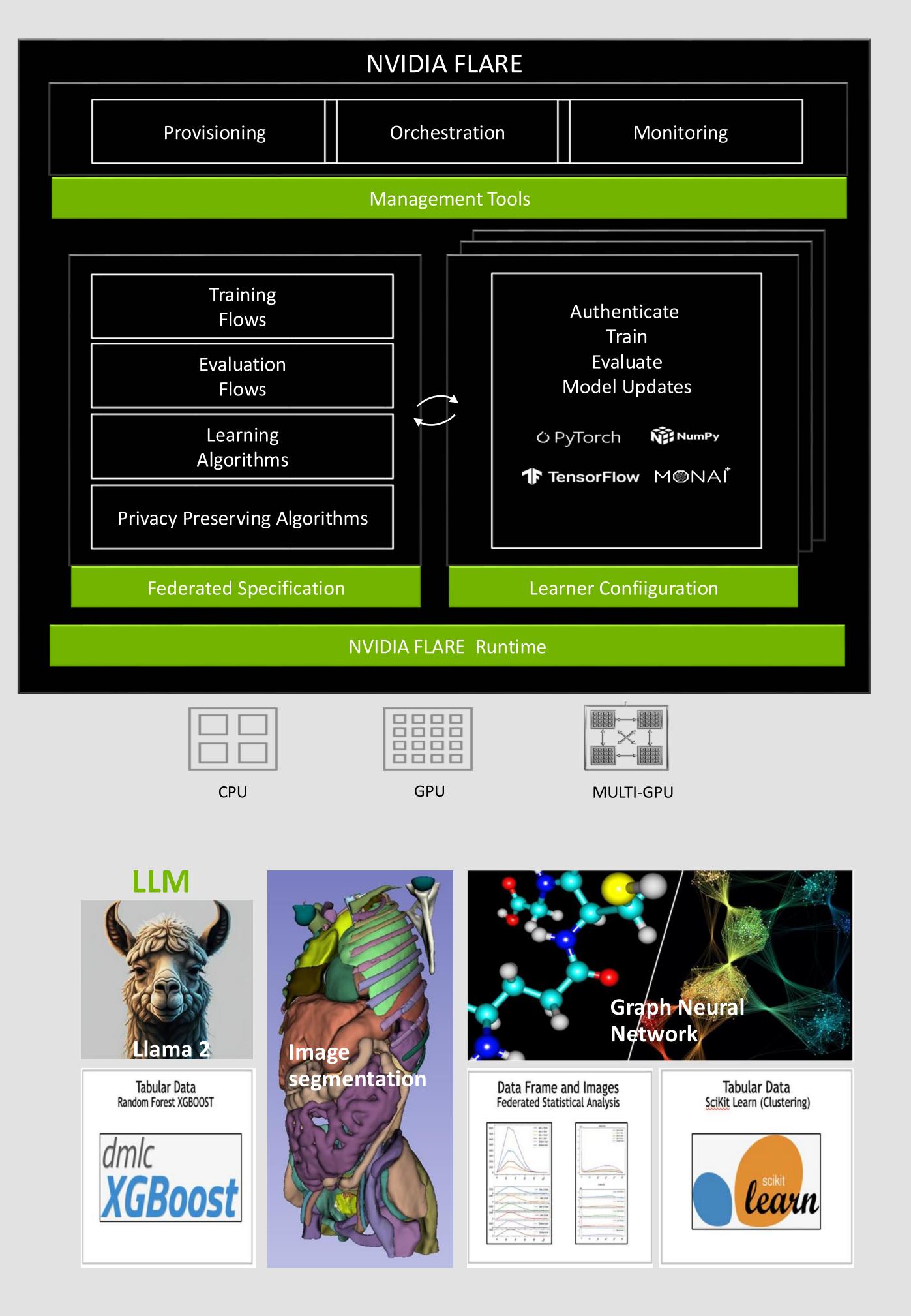
NVIDIA FLARE DAY September 18, 2024

NVIDIA FLARE

Open-Source, Enterprise Federated Learning & Compute Framework

- Apache License 2.0 to catalyze FL research & development
- **Designed for production**, not just for research
- **Enables cross-country**, distributed, multi-party collaborative Learning
- Production scalability with HA and concurrent multi-task execution
- **Easy to convert** existing ML/DL workflows to a Federated paradigm with few lines of code changes
- LLM streaming, LLM fine tuning
- Framework, model, domain and task agnostic
- **Flower Integration**
- **Confidential FL**: end-to-end Federated Learning with Confidential Computing
- Layered, pluggable, customizable federated compute architecture
- Secure Provisioning, Orchestration & Monitoring

GitHub: <u>https://github.com/nvidia/nvFlare</u> Web: https://nvidia.github.io/NVFlare/



Framework agnostic | Model agnostic | Domain agnostic | Task agnostic

NVIDIA FLARE Architecture

Federated Computing Engine

Layered, Pluggable Open Architecture

Each layer's component are customizable and pluggable

Network: Communication & Messaging layer

- Drivers → gRPC, http + websocket, TCP, any plugin driver
- CellNet: logical end point-to-point (cell to cell) network
- Message: reliable streaming message

Federated Computing Layer

- Resource-based job scheduling, job monitoring, concurrent job lifecycle management, High-availability management
- Plugin component management
- Configuration management
- Local event and federated event handling

Federated Workflow

• SAG, Cyclic, Cross-site Evaluation, Swarm Learning, Federated Analytics

Federated Learning Algorithms

• FedAvg, FedOpt, FedProx, Scalffold, Ditto, XGBoost, GNN, PSI, LLM (p-tuning, SFT, PEFT), KM, Scikit-Learn

Pythonic Programming APIs

• Client API, Controller API, Job Construction API, Job Monitoring API

Productivity & Deployment Tools:

• Simulator, provision, POC, Cloud deployment, preflight check, more

Tools: dev **Job Simulator** POC CLI Job CLI

Federated Learning Algorithms

FedAvg, FedOpt, FedProx, Scaffold, Ditto, XGboost, LLM, ML, GNN, Statistics, PSI

Programming APIs

ML/DL to FL transition Job mgmt APIs

Federated Workflows

scatter & gather, cyclic, fed eval, cross-site evaluation, swarm learning, fed analytics

Privacy & Security

data filtering, security plugin, federated author. differential privacy, Homomorphic encryption

Federated Computing

Job lifecycle mgmt, multi-job support, HA, resource mgmt, local event & federated event, component plugin mgmt, configuration mgmt

Communication & Messaging

Protcol drivers (grpc, tcp, https, ...), CellNet, Object Streaming API

- End-to-End Pythonic APIs
- Flower Integration
- Secure XGBoost
 - open sourced libcuda-paillier
- Developer Tutorial Page
 - https://nvidia.github.io/NVFlare/

NVFLARE 2.5.0 Released

New Examples

- BioNemo example for Drug Discovery
- Federated Logistic Regression with NR optimization
- Hierarchical Federated Statistics.
- FedAvg Early Stopping Example
- Tensorflow Algorithms & Examples
- FedOpt, FedProx, Scaffold implementation for Tensorflow.
- FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
- End-to-end Federated XGBoost example including federated ETL for feature engineering
- Hello-Flower: example of running flower in NVFLARE

Secure Federated Kaplan-Meier Analysis

Client: Client API →

- Lightning Example: 4 lines code changes from DL to FL
- Job API ->
 - No more editing configuration file
 - End-to-end Python Job construction
- Server: Controller API ->
 - Simplify FL Algorithm customization

FL Made Easy with NVIDIA FLARE

Converting DL code to FL in minutes

import torch import torchvision import torchvision.transforms as transforms from lit_net import LitNet from pytorch_lightning import LightningDataModule, Trainer, seed_everything from torch.utils.data import DataLoader, random_split

(1) import nvflare lightning client API import nvflare.client.lightning as flare

seed_everything(/)

DATASET_PATH = "/tmp/nvflare/data" $BATCH_SIZE = 4$

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

def main():

model = LitNet() cifar10_dm = CIFAR10DataModule() if torch.cuda.is_available(): trainer = Trainer(max_epochs=1, accelerator="gpu", devices=1 if torch.cuda.is_available() else None)

else: trainer = Trainer(max epochs=1, devices=None)

(2) patch the lightning trainer flare.patch(trainer)

while flare.is_running():

(3) receives FLModel from NVFlare # Note that we don't need to pass this input_model to trainer *# because after flare.patch the trainer.fit/validate will get the* # global model internally input_model = flare.receive() print(f"\n[Current Round={input_model.current_round}, Site = {flare.get_site_name()}]\n")

(4) evaluate the current global model to allow server-side model selection print("--- validate global model ---") trainer.validate(model, datamodule=cifar10_dm)

perform local training starting with the received global model print("--- train new model ---") trainer.fit(model, datamodule=cifar10_dm)

test local model print("--- test new model ---") trainer.test(ckpt_path="best", datamodule=cifar10_dm)

get predictions print("--- prediction with new best model ---") trainer.predict(ckpt_path="best", datamodule=cifar10_dm)

Client API

Client: Client API

• Lightning Example: 4 lines code changes from DL to FL

Job API ->

- No more editing configuration file
- End-to-end python Job construction
- Server: Controller API
 - Simplify FL Algorithm customization

FL Made Easy with NVIDIA FLARE

Construct FL Job via python code

from src.net import Net

from nvflare.app_common.widgets.intime_model_selector import IntimeModelSelector from nvflare.app_common.workflows.fedavg import FedAvg from nvflare.app_opt.pt.job_config.model import PTModel

from nvflare.job_config.api import FedJob from nvflare.job_config.script_runner import ScriptRunner

if ___name___ == "___main___":

n clients = 2num_rounds = 2 train_script = "src/cifar10_fl.py"

job = FedJob(name="cifar10_fedavg")

job.to(controller, "server")

Define the initial global model and add to server job.to(PTModel(Net()), "server")

Add clients for i in range(n_clients): executor = ScriptRunner(job.to(executor, target=f"site-{i}")

job.export_job("/tmp/nvflare/jobs/job_config")

Job API

```
controller = FedAvg(num_clients=n_clients, num_rounds=num_rounds)
```

```
job.to(IntimeModelSelector(key_metric="accuracy"), "server")
```

script=train_script, script_args="" # f"--batch_size 32 --data_path /tmp/data/site-{i}"

```
job.simulator_run("/tmp/nvflare/jobs/workdir", gpu="0")
```


- Client: Client API →
 - Lightning Example,
 - 4 lines code changes from DL to FL
- Job API 🔶
 - No more editing configuration file
 - End-to-end Python Job construction
- Server: Controller API +
 - Simplify FL Algorithm customization for researchers who like experiment with new FL Algorithms

FL Made Easy with NVIDIA FLARE Customizing server-side FL logics is just a for loop logics

class **ModelController**(BaseModelController, ABC):

@abstractmethod def run(self)

def **send_model**(..., callback: Callable[[FLModel], None] = None) -> None

def **load_model**(...) -> FLModel

class FLModel:

def ___init___(self,

> params: Any = None, optimizer_params: Any = None, **metrics**: Optional[Dict] = None, start_round: Optional[int] = 0, current_round: Optional[int] = None, **total_rounds**: Optional[int] = None, **meta**: Optional[Dict] = None,

Controller API

```
def send_model_and_wait( ...) -> List[FLModel]
```

```
def save_model(..., model: FLModel) -> None:
```

```
def sample_clients(..., num_clients: int = None) -> List[str]:
```

```
params_type: Union[None, str, ParamsType] = None,
```


- Federated Computing -- a federated computing framework at core
- **Built for productivity** -- designed for maximum productivity, providing a range of tools to enhance user experience
- Built for security & privacy -- prioritizes robust security and privacy preservation
- Built for concurrency & scalability -- designed for concurrency, supporting resource-based multi-job execution
- Built for customization -- structured in layers, with each layer composed of customizable components
- **Built for integration** -- multiple integration options with third-party system
- **Built for production** -- robust, production-scale deployment in real-world federated learning and computing scenarios
- **Rich examples repository** -- wealth of built-in implementations, tutorials and examples
- Growing application categories -- medical imaging, medical devices, edge device application, financial services, HPC and autonomous driving vehicles

GitHub : <u>https://github.com/NVIDIA/NVFlare</u> Web: <u>https://nvidia.github.io/NVFlare/</u>

NVIDIA FLARE: Summary

A domain-agnostic, open-source, extensible FL framework

NVIDIA FLARE Product 2024-2025 Road Map Release plan

2024 – Sept.

Release 2.5.0 (Released 9/9) Major User Experience upgrade Secure XGBoost

2024 – Oct.

FLARE 2.5.1 Python 3.11+ support

2025 –Q1

Release 2.6.0 **Confidential FL Release** Additional LLM support

Thank You !

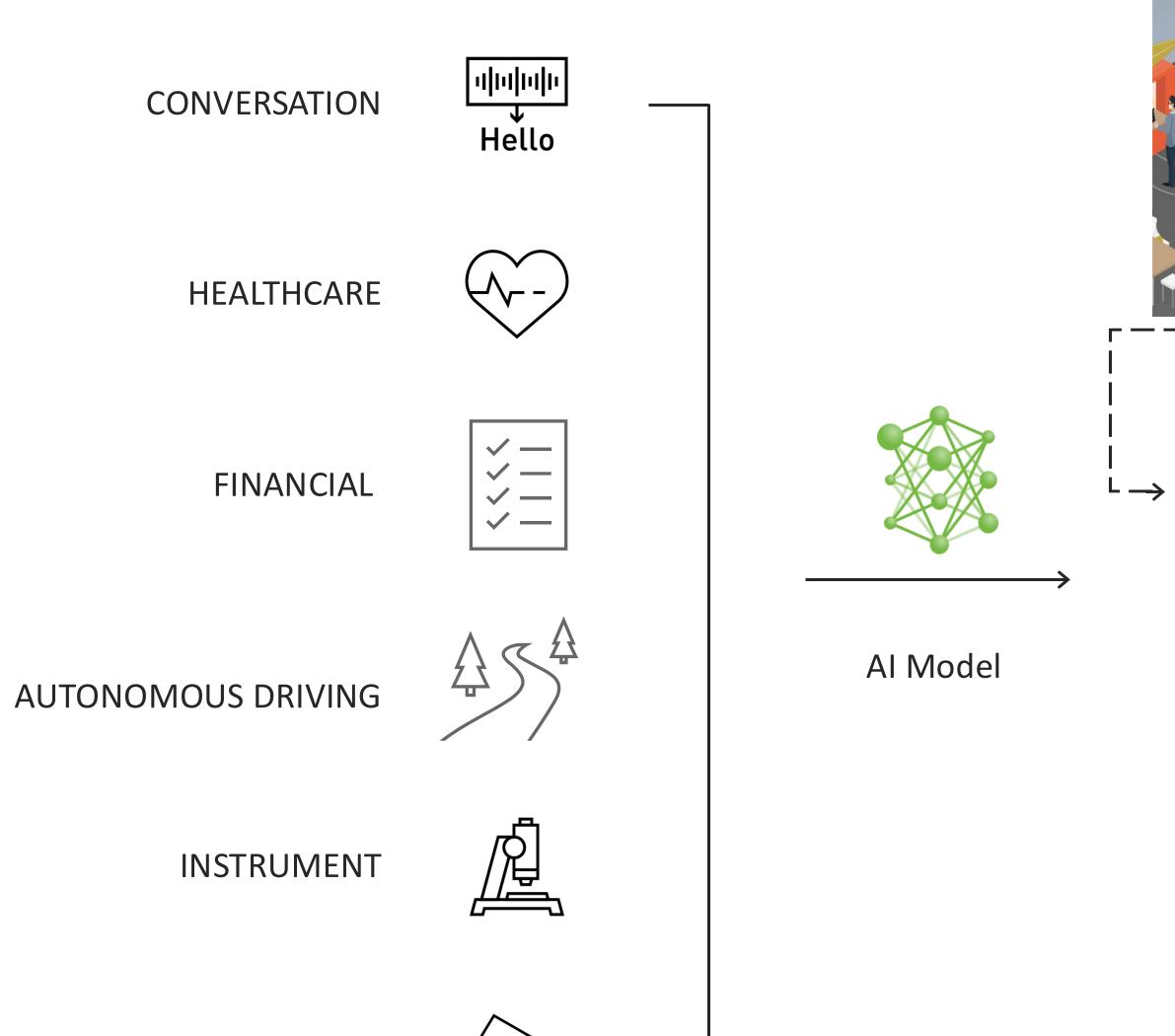
Chester Chen, chesterc@nvidia.com

NVIDIA FLARE Getting Started

Holger Roth

Principal Federated Learning Scientist NVIDIA Federated Learning

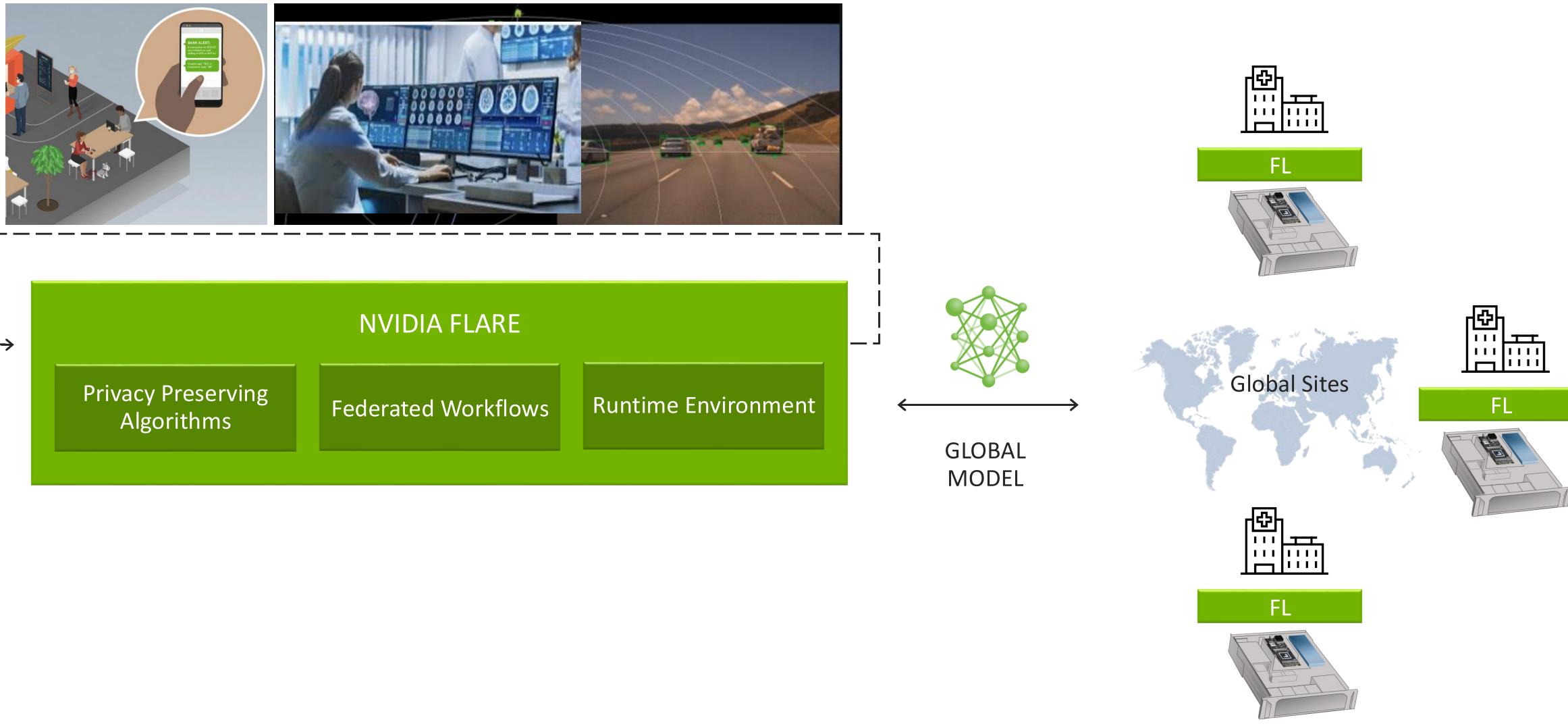
NVIDIA FLARE DAY September 18, 2024



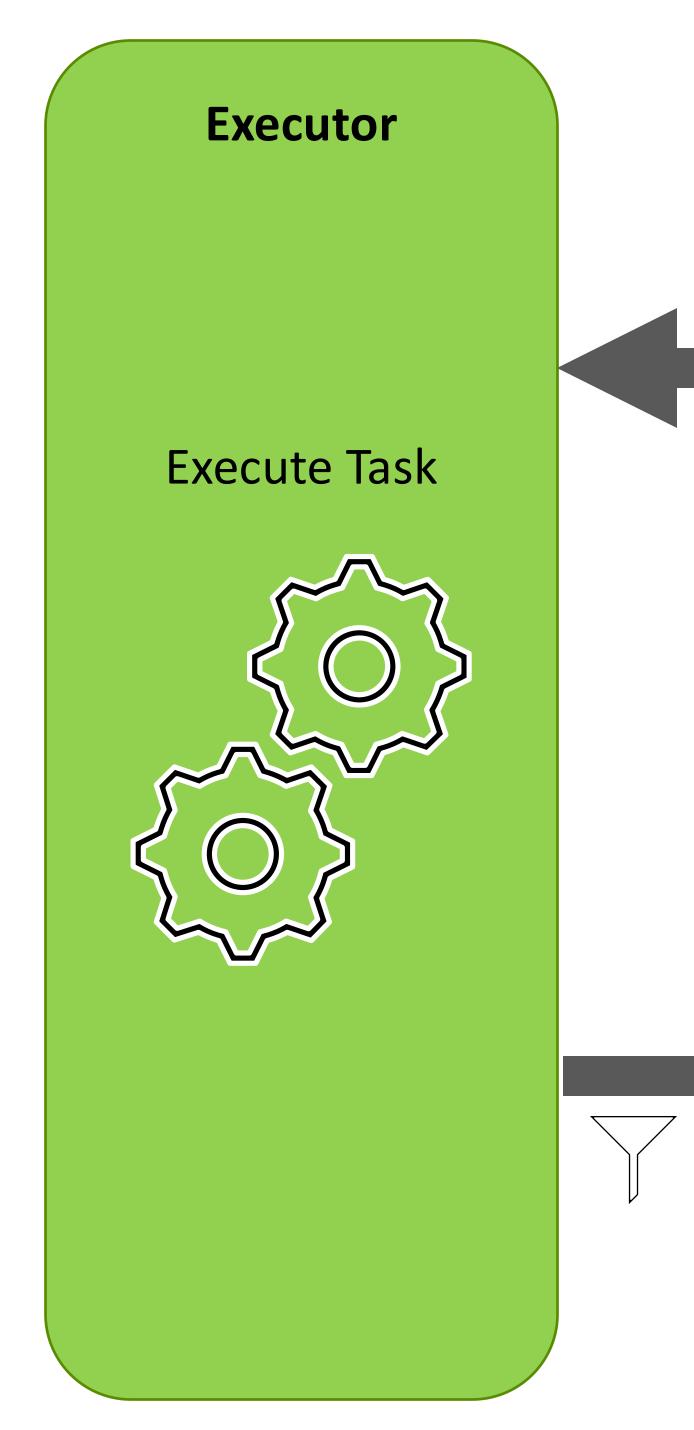
MONITORING

NVIDIA Federated Learning

Applications across industries



FL Client



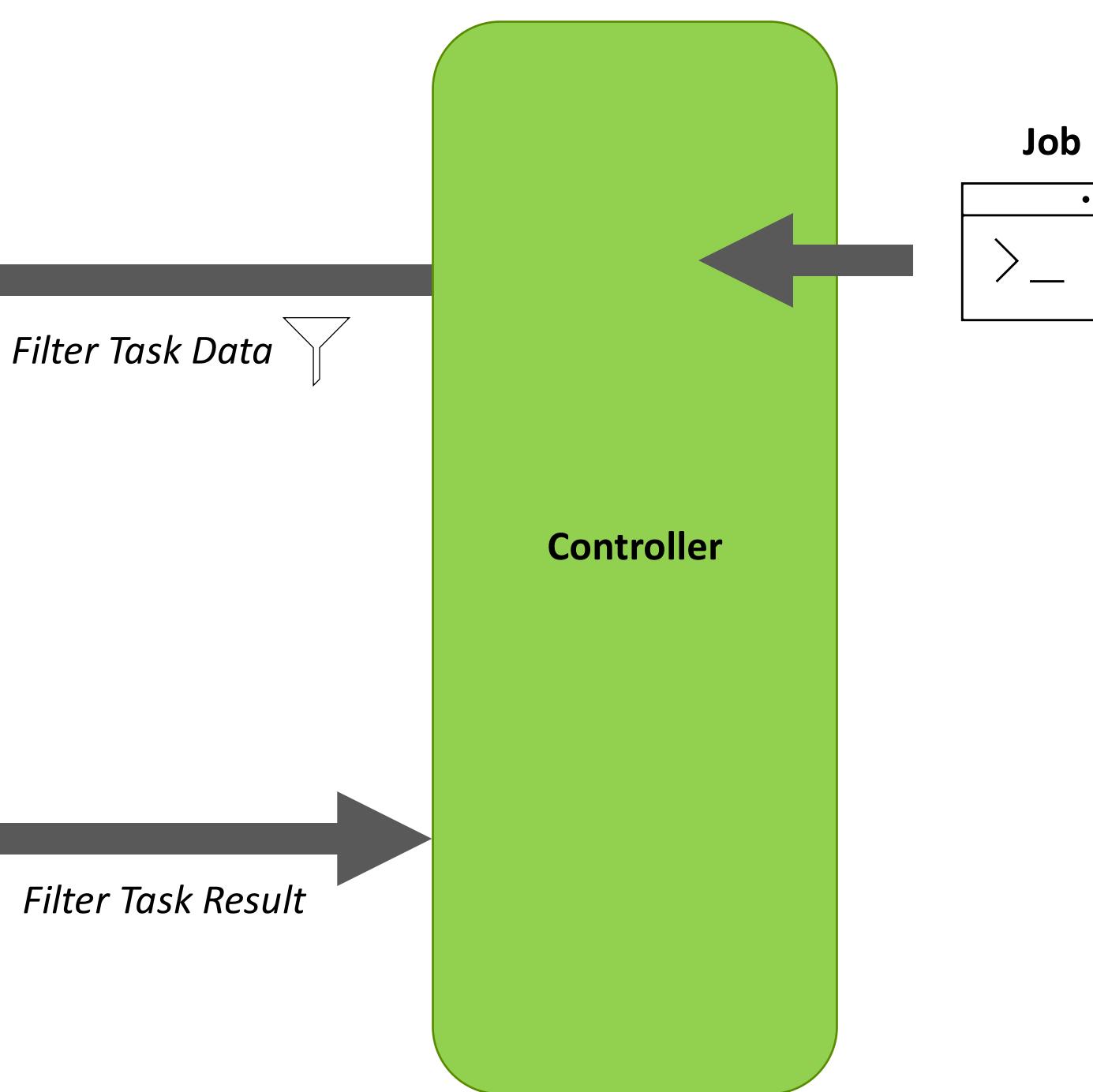
Note: Filters can be enforced by the data owners!

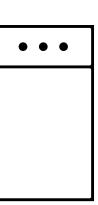
Filter Task Data

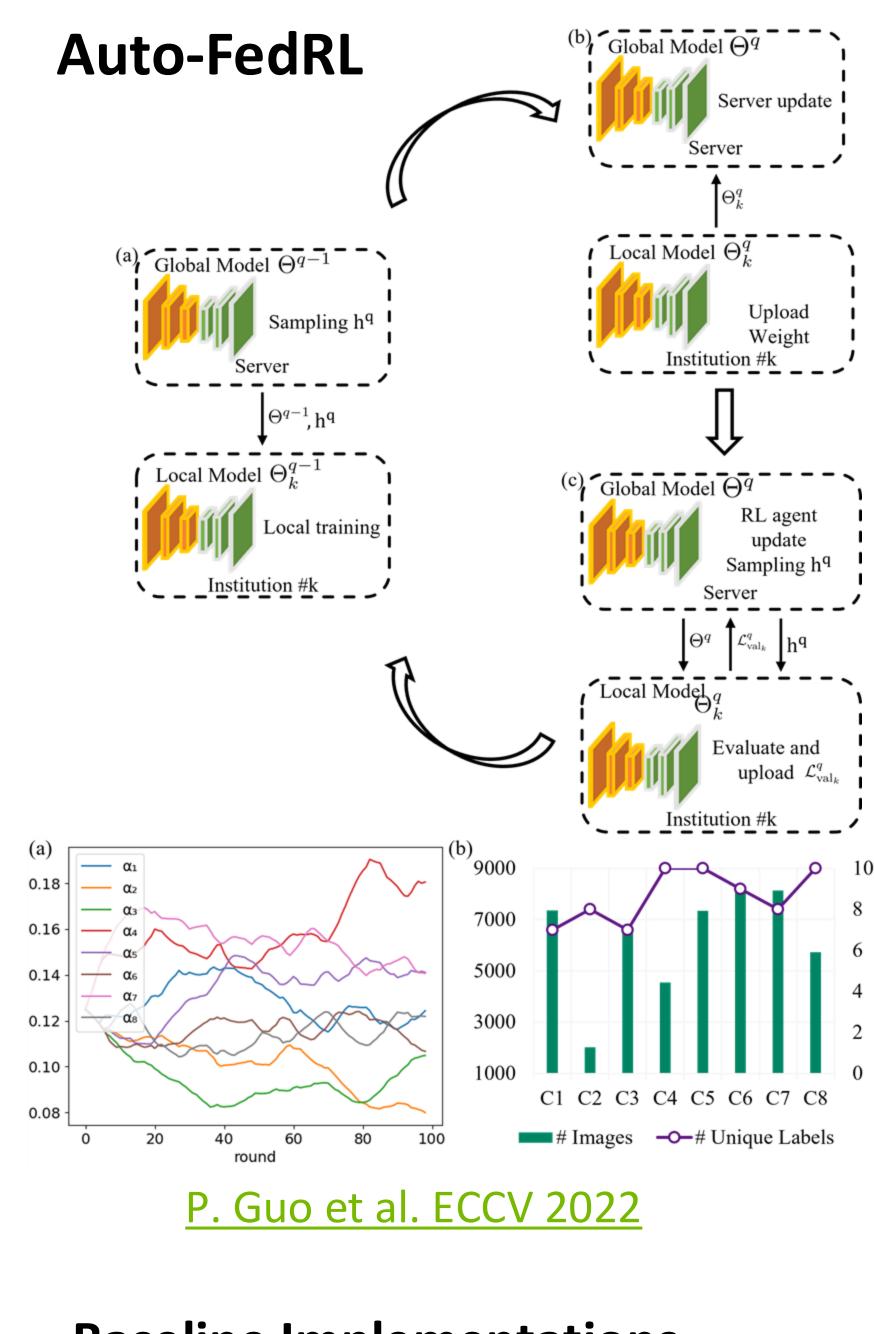
Submit Task Result

Filter Task Result

FL Server

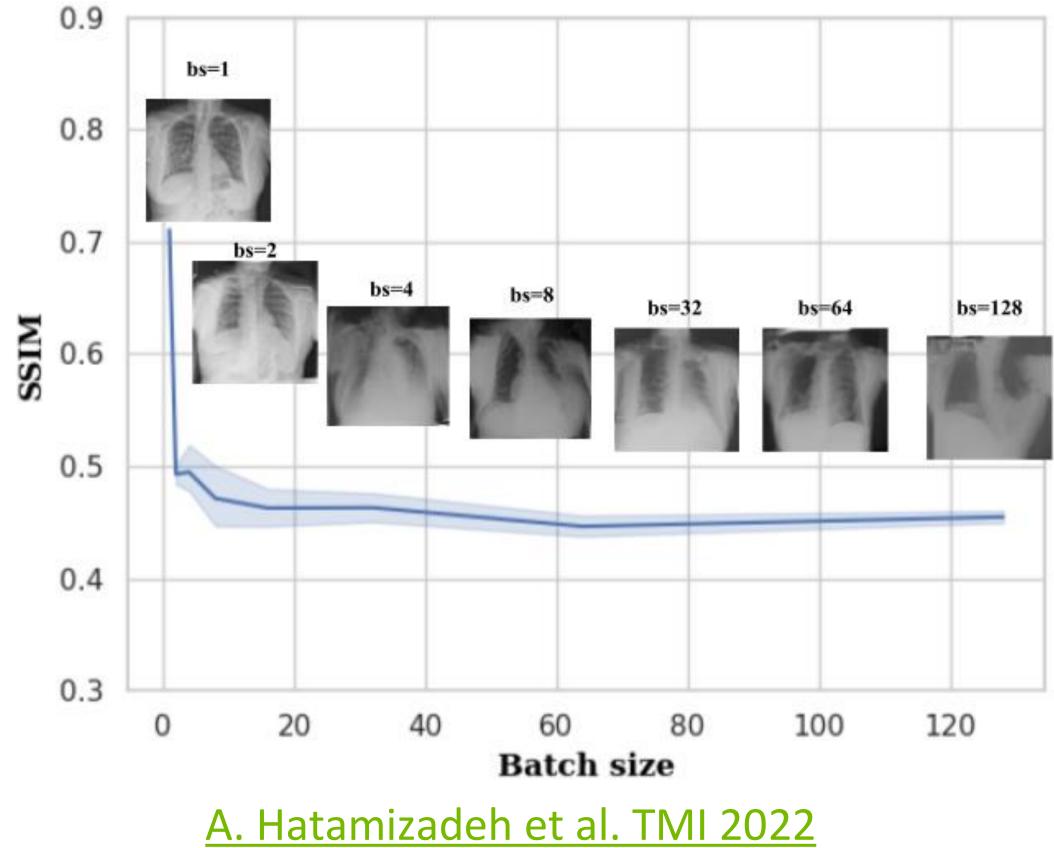






Baseline Implementations

- FedAvg \bullet
- FedProx
- FedOpt \bullet
- SCAFFOLD
- Ditto
- Cyclic Weight Transfer
- Swarm Learning

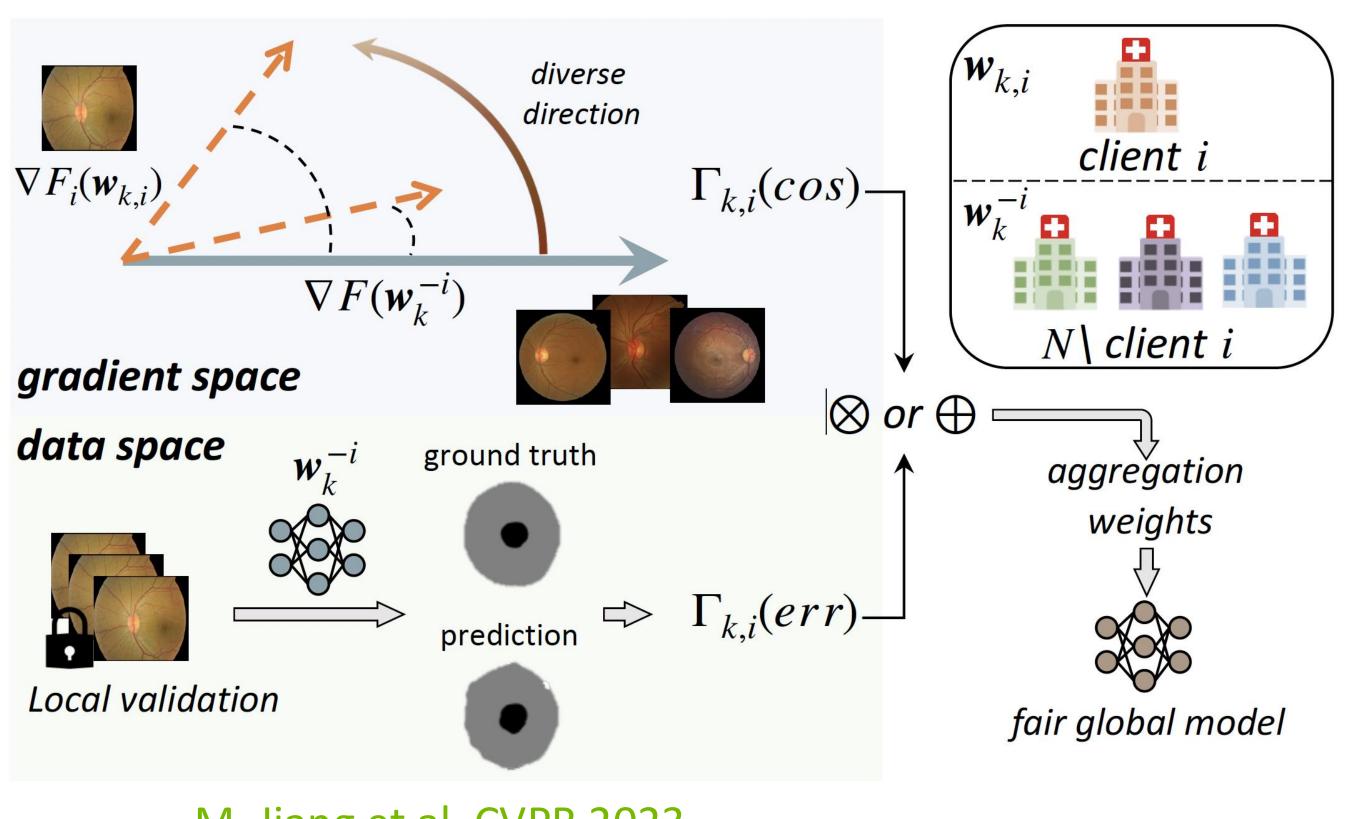


Research With NVFlare

https://github.com/NVIDIA/NVFlare/tree/dev/research

Quantifying data leakage

FedCE: Contribution Estimation



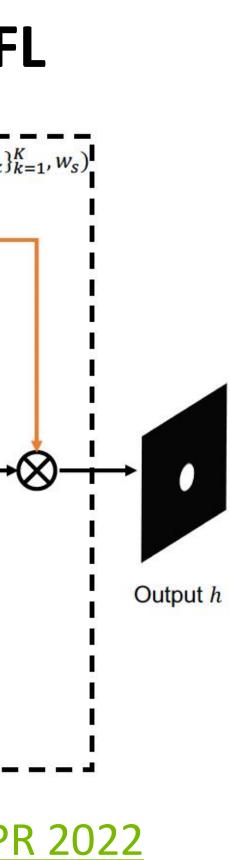
FedSM: Personalized FL Super Model $(w_g, \{w_{p,k}\}_{k=1}^K, w_s)$ Score \hat{y}_s

Personalized Model K

Input x

A. Xu et al. CVPR 2022

<u>M. Jiang et al. CVPR 2023</u>



18 class	FedAvg(BaseFedAvg):
19	
20 det	<pre>F run(self) -> None:</pre>
21	self.info("Start FedA
22	
23	model = self.load mod
24	model.start round = s
25	model.total rounds =
26	
27	for self.current rour
28	self.info(f"Round
29	model.current_rou
30	
31	clients = self.sa
32	
33	results = self.se
34	
35	aggregate_results
36	results, aggr
37) # if no `aggre
38	
39	model = self.upda
40	
41	<pre>self.save_model(r</pre>
42	
43	self.info("Finished F

Server Code: Controller

Avg.")

del() self.start_round self.num rounds

nd in range(self.start_round, self.start_round + self.num_rounds): d {self.current round} started.") und = self.current_round

ample_clients(self.min_clients)

end_model_and_wait(targets=clients, data=model)

s = self.aggregate(regate fn=None egate_fn` provided, default `WeightedAggregationHelper` is used

ate_model(model, aggregate_results)

model)

FedAvg.")

Client Code: Convert PyTorch to NVFlare

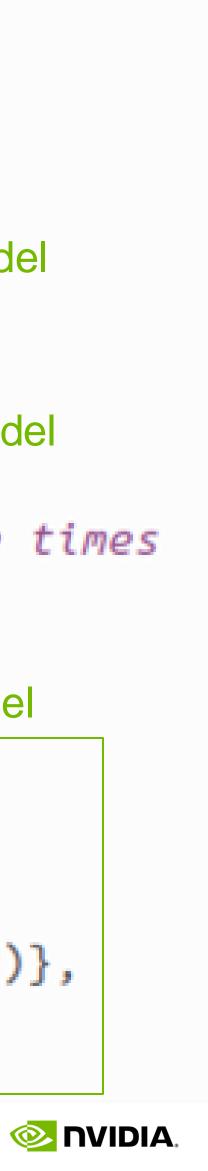
PyTorch CIFAR-10 Tutorial

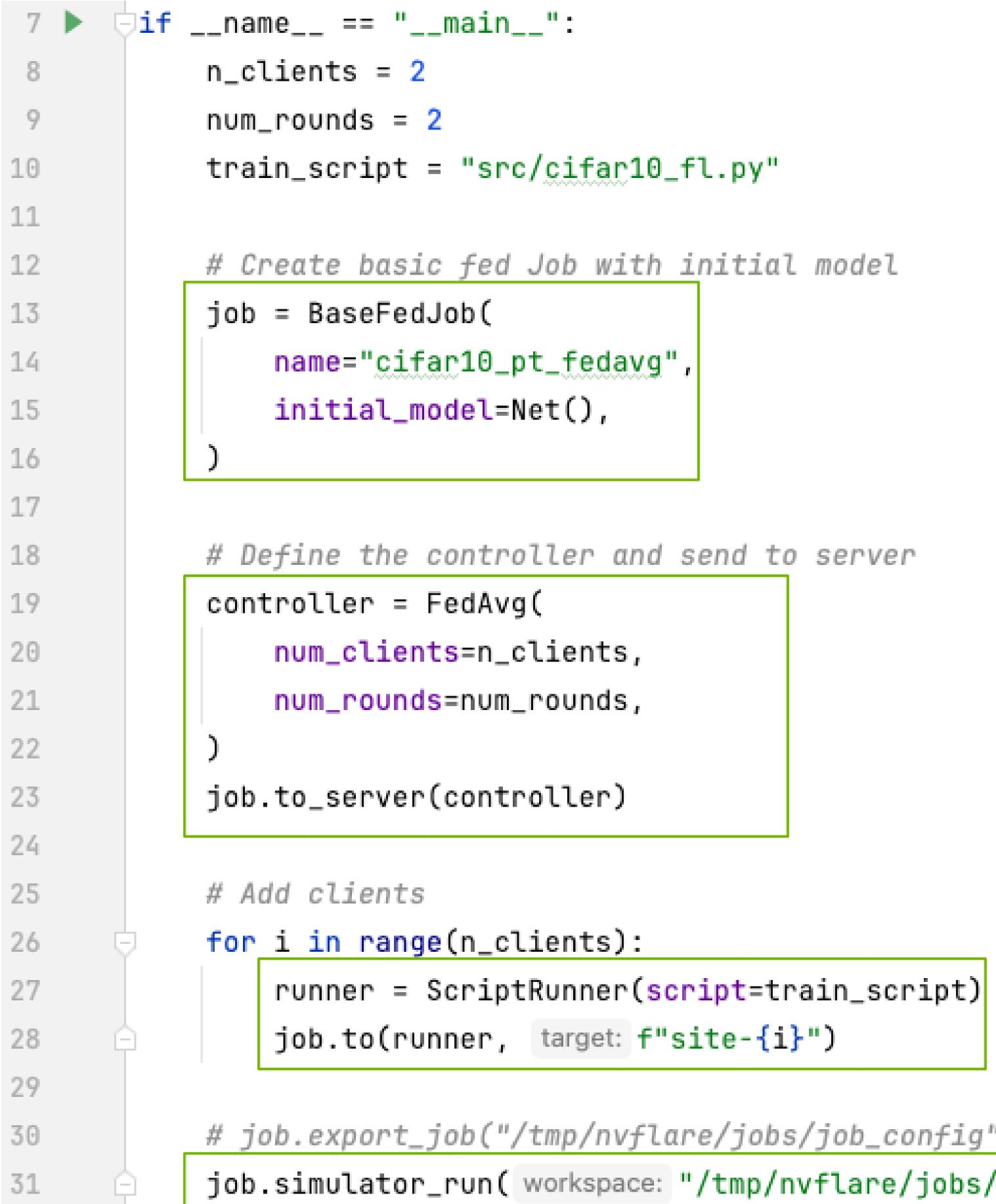
```
6 from net import Net
 8
 9 def main():
      transform = transforms.Compose([...])
10
11
      trainset = torchvision.datasets.CIFAR10(...)
12
      trainloader = torch.utils.data.DataLoader(...)
13
14
      testset = torchvision.datasets.CIFAR10(...)
15
      testloader = torch.utils.data.DataLoader(...)
16
17
18
      net = Net()
19
20
      criterion = nn.CrossEntropyLoss()
21
      optimizer = optim.SGD(...)
22
23
      # Train loop
24
      for epoch in range(epochs):
25
           . . .
26
27
      print("Finished Training")
```

6 from **net** import Net 8 import nvflare.client as flare 1011 def main(): transform = transform 12 13 trainset = torchvisio 14 trainloader = torch. 15 16 17 testset = torchvisior testloader = torch.ut 18 19 20 net = Net()21 criterion = nn.CrossE 22 23 optimizer = optim.SGD 24 25 flare.init() 26 while flare.is_runnin 27 input_model = fla 28 print(f"current_ 29 30 net.load_state_di 31 32 for epoch in rang 33 34 . . . 35 36 print("Finished 37 output model = f 38 39 params=net.cp 40 metrics={"acc meta={"NUM_S1 41 42 43 flare.send(output

1. import client API

<pre>ms.Compose([])</pre>		
on.datasets.CIFAR10() utils.data.DataLoader(
n.datasets.CIFAR10() tils.data.DataLoader(.)	
EntropyLoss() D()	1	
	2. Initia	alize
ng(): are.receive() round={input_model.curre		3. Receive global mod Ind}")
<pre>ict(input_model.params)</pre>		4. Load global mod
<pre>ge(epochs): # loop over</pre>	r the d	ataset multiple
Training")	5. Send b	back the updated mode
<pre>lare.FLModel(pu().state_dict(), curacy": accuracy}, TEPS_CURRENT_ROUND": epo</pre>	ochs *	<pre>len(trainloader)</pre>
t_model)		
		16





Create a FedJob and Run Simulation

script_args=f"--batch_size 32 --data_path /data/site-{i}"

job.export_job("/tmp/nvflare/jobs/job_config") # Exported jobs can be used in real deployment! job.simulator_run(workspace: "/tmp/nvflare/jobs/workdir", gpu="0")

Client Code: Lightning client API

Transform your script to FL with a few lines of code changes:

- Import NVFlare lightning API 1.
- Patch your lightning trainer 2.
- (Optionally) validate the current global model 3.
- Train as usually 4.

from nemo.core.config import hydra_runner from nemo.utils import AppState, logging from nemo.utils.exp_manager import exp_manager from nemo.utils.model_utils import inject_model_parallel_rank

(0): import nvflare lightning api import nvflare.client.lightning as flare

mp.set_start_method("spawn", force=True)

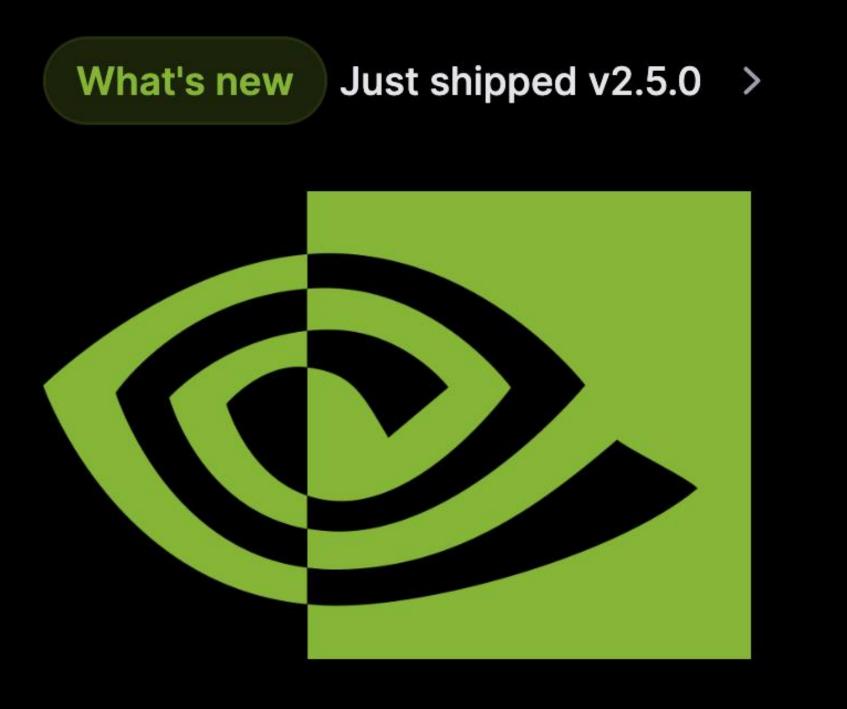
. . .

(1): flare patch flare.patch(trainer)

while flare.is_running():

(2) evaluate the current global model to allow server-side model selection print("--- validate global model ---") trainer.validate(model)

(3) Perform local training starting with the received global model print("--- train new model ---") trainer.fit(model)



NVIDIA FLARE

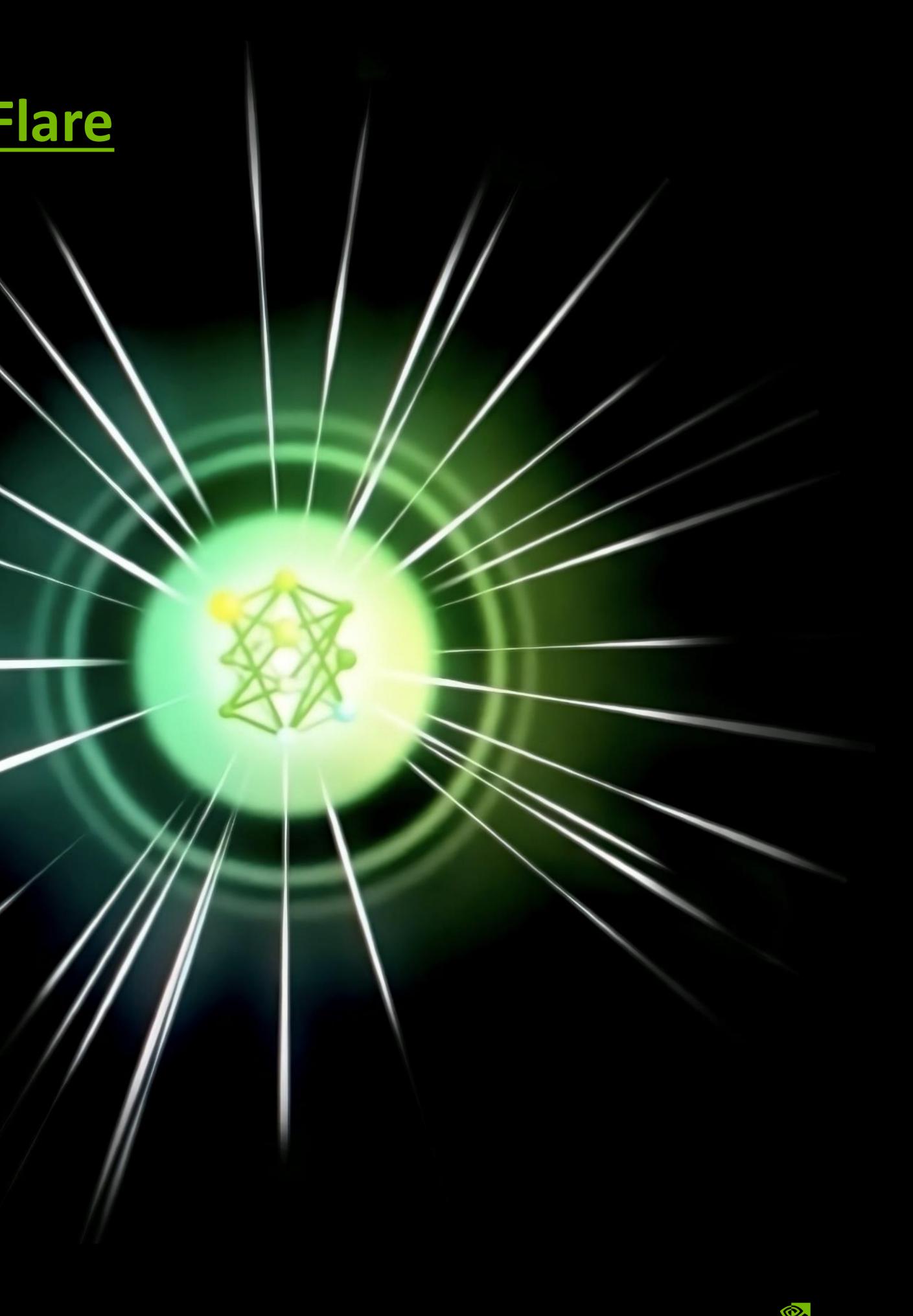
NVIDIA FLARE[™] (NVIDIA Federated Learning Application Runtime Environment) is a domain-agnostic, open-source, and extensible SDK for Federated Learning. It allows researchers and data scientists to adapt existing ML/DL workflow to a federated paradigm and enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration.

Documentation

Tutorial Catalog

GitHub→

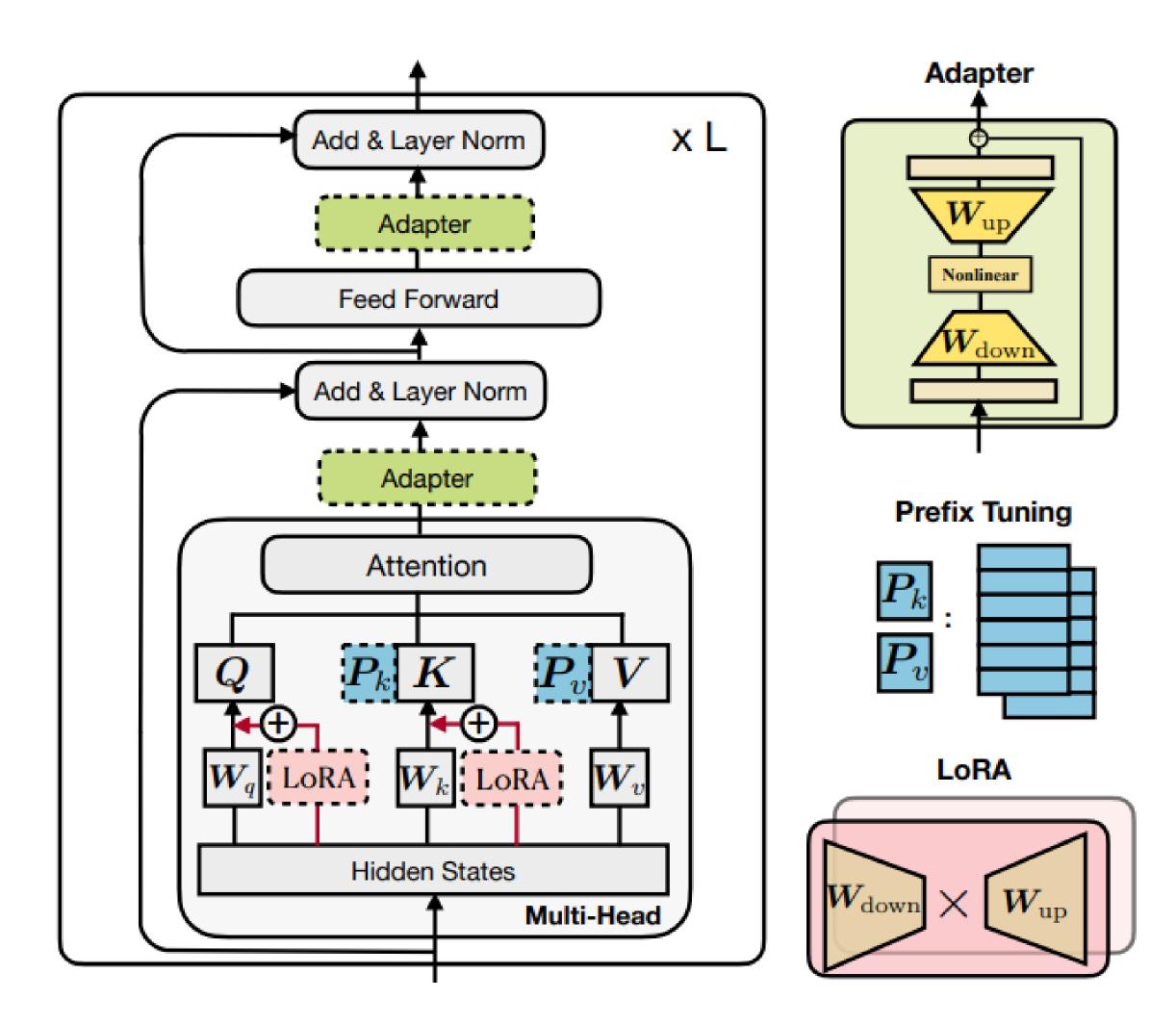
https://nvidia.github.io/NVFlare



LLM Support – PEFT, SFT, RAG

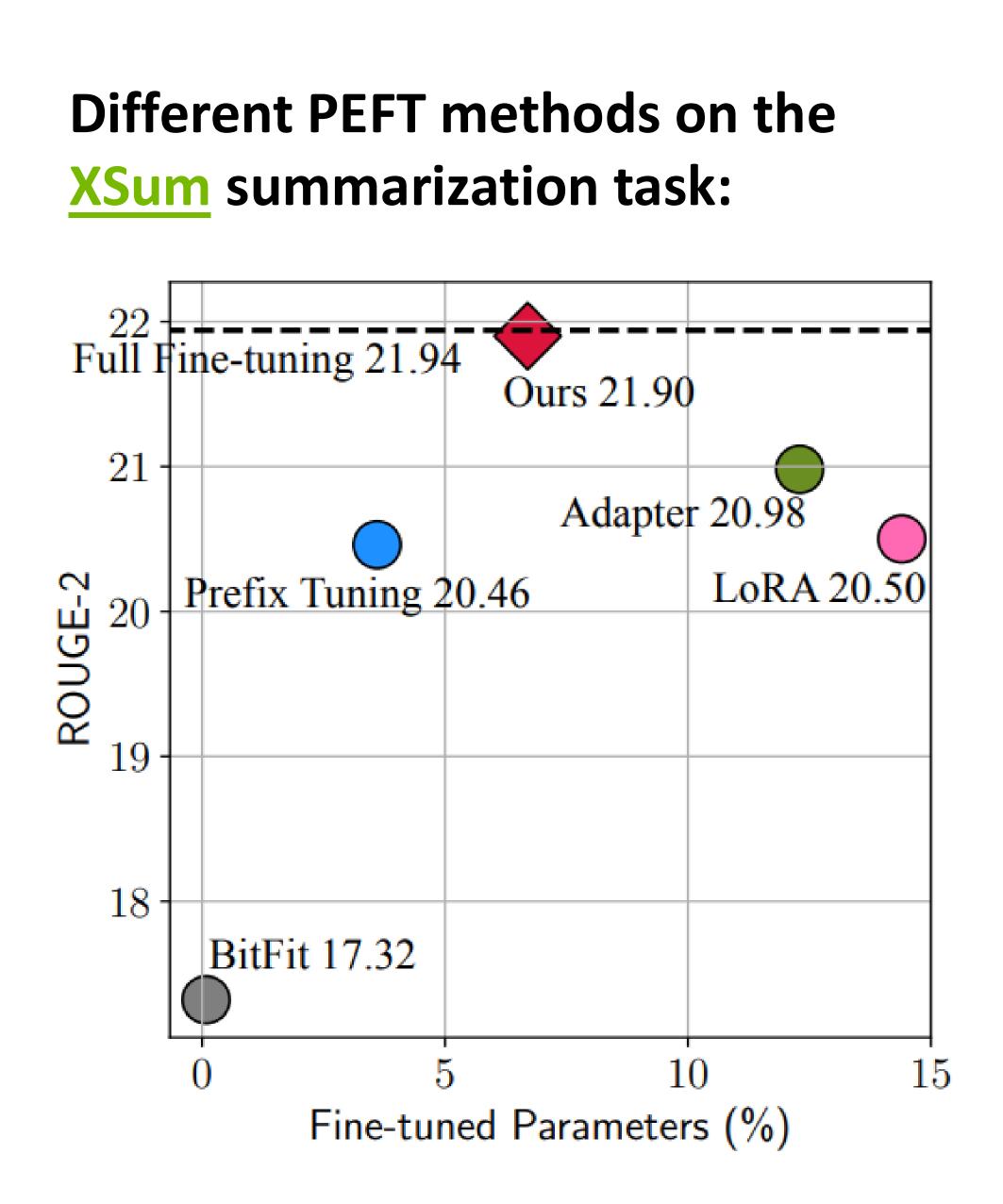
Only 1 line configuration change

Transformer and PEFT methods:



https://arxiv.org/abs/2110.04366

Compare PEFT Methods With NeMo



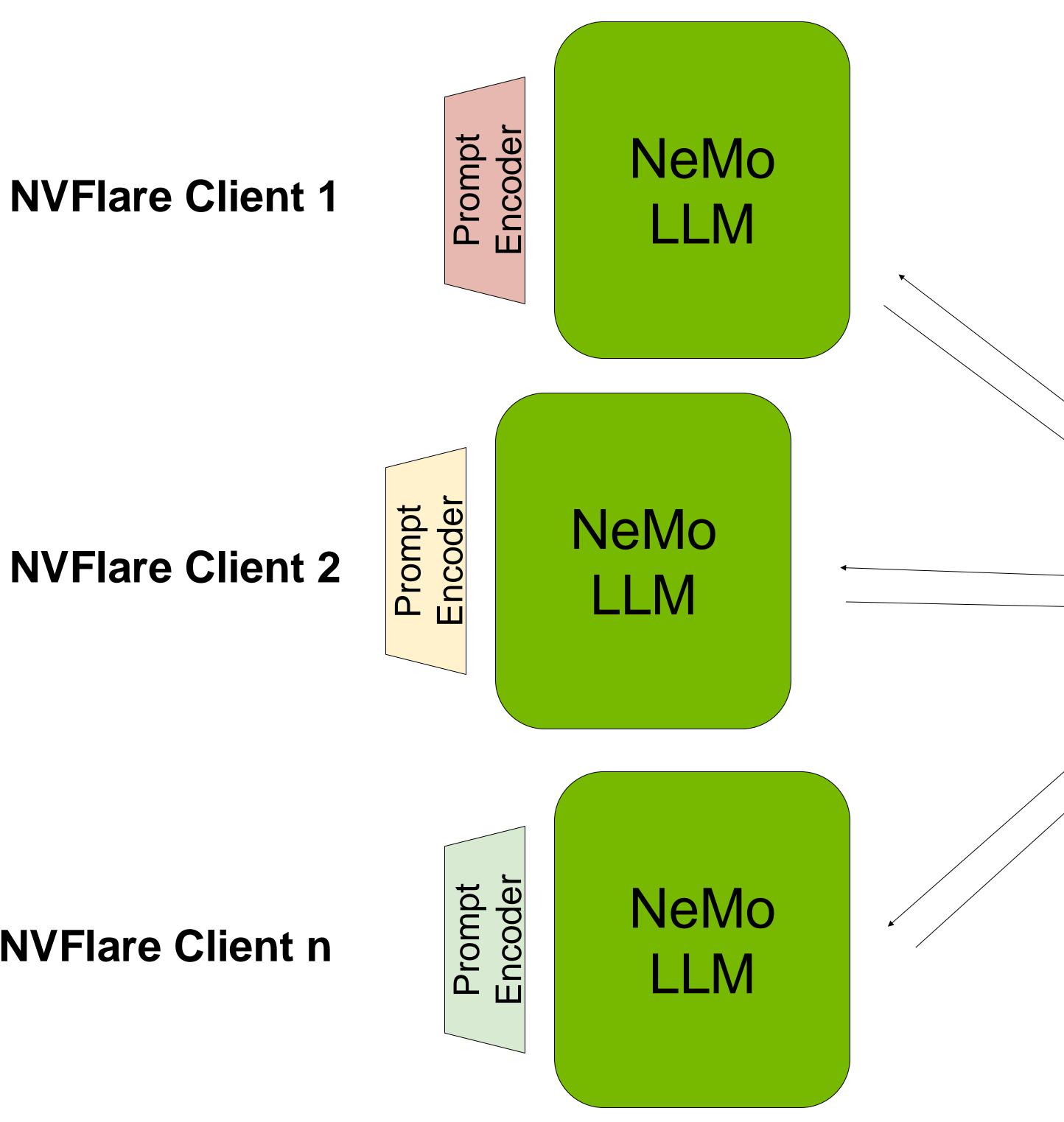
peft:
<pre>peft_scheme: "adapter" # can be either adapter,ia3, or ptuning</pre>
restore_from_path: null
Used for adapter peft training
adapter_tuning:
type: 'parallel_adapter' # this should be either 'parallel_adap [.]
adapter_dim: 32
adapter_dropout: 0.0
<pre>norm_position: 'pre' # This can be set to 'pre', 'post' or null</pre>
<pre>column_init_method: 'xavier' # IGNORED if linear_adapter is used</pre>
<pre>row_init_method: 'zero' # IGNORED if linear_adapter is used, op</pre>
<pre>norm_type: 'mixedfusedlayernorm' # IGNORED if layer_adapter is</pre>
layer_selection: null # selects in which layers to add adapter:
weight_tying: False
<pre>position_embedding_strategy: null # used only when weight_tying</pre>
lora_tuning:
adapter_dim: 32
adapter_dropout: 0.0
column_init_method: 'xavier' # IGNORED if linear_adapter is use
<pre>row_init_method: 'zero' # IGNORED if linear_adapter is used, op</pre>
layer_selection: null # selects in which layers to add lora a
weight_tying: False
<pre>position_embedding_strategy: null # used only when weight_tying</pre>
Used for p-tuning peft training
p_tuning:
<pre>virtual_tokens: 10 # The number of virtual tokens the prompt end</pre>
<pre>bottleneck_dim: 1024 # the size of the prompt encoder mlp bott</pre>
<pre>embedding_dim: 1024 # the size of the prompt encoder embedding;</pre>
init_std: 0.023
ia3_tuning:

layer_selection: null # selects in which layers to add ia3 ad

NeMo YAML configuration

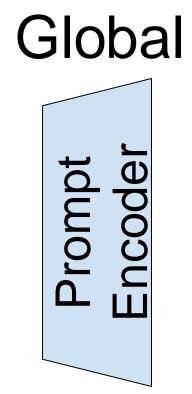
NVFlare Client n

NVFlare for P-Tuning With NeMo



LLM parameters stay fixed; Prompt encoder parameters are trained/updated

NVFlare Server



Downstream task example:

Example prompts and predictions:

The products have a low salt and fat content . sentiment: neutral

•

•

The agreement is valid for four years . sentiment: neutral

Diluted EPS rose to EUR3 .68 from EUR0 .50 . *sentiment: positive*

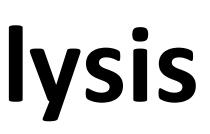
The company is well positioned in Brazil and Uruguay . sentiment: positive

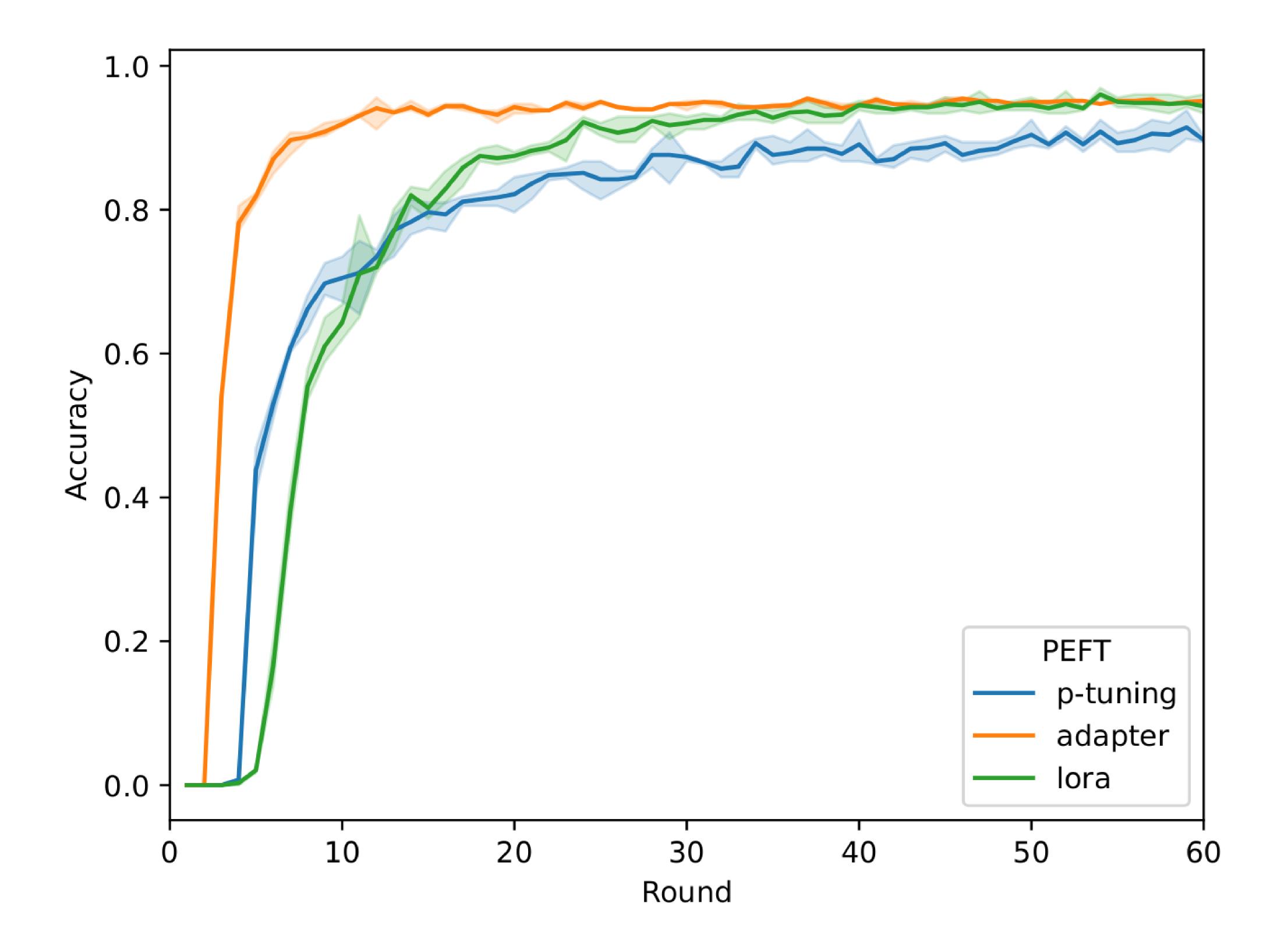
sentiment: negative

Example: Sentiment Analysis

- Financial PhraseBank dataset (Malo et al.) for sentiment analysis.
- The Financial PhraseBank dataset contains the sentiments for financial news headlines from a retail investor's perspective.

- Profit before taxes decreased by 9 % to EUR 187.8 mn in the first nine months of 2008, compared to EUR 207.1 mn a year earlier.





Compare PEFT Methods With NeMo

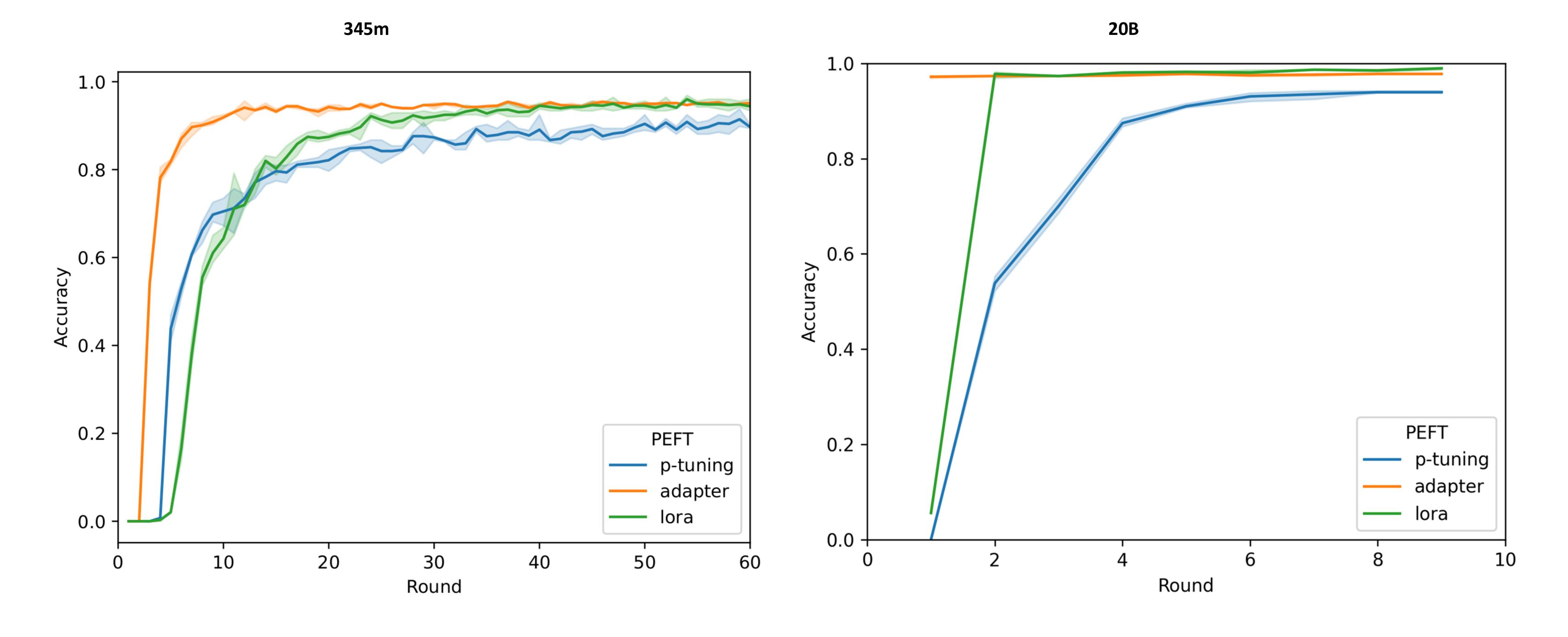
P-tuning vs. Adapter vs. LoRa

Tensor parallel with 2 GPUs per client

345M Param NeMo GPT Megatron model

PEFT Method	Execution time
P-tuning	4h 59m
Adapter	11h 25m
LoRA	7h 27m

notebook



https://github.com/NVIDIA/NVFlare/tree/main/integration/nemo/examples

Compare PEFT Methods With NeMo

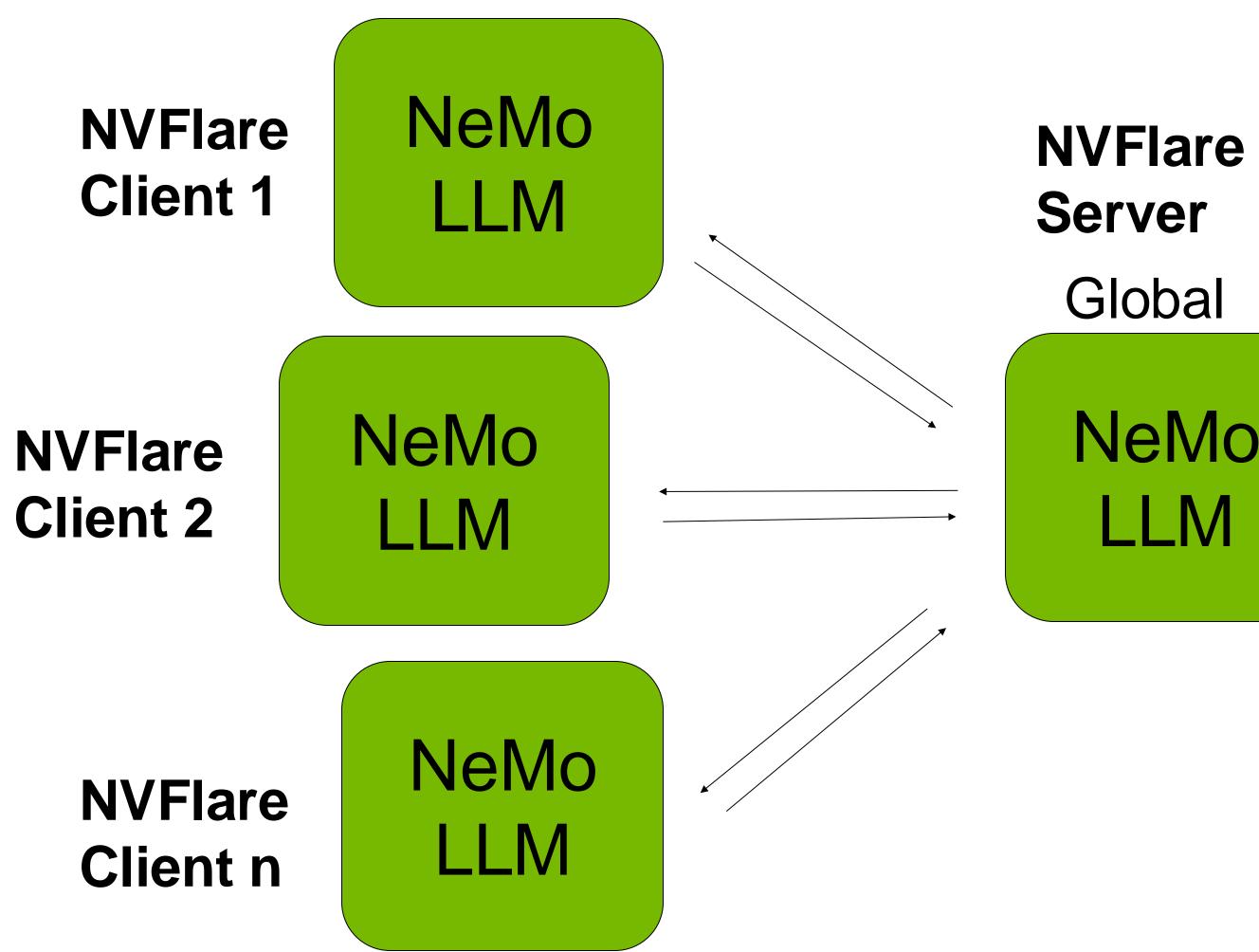
P-tuning vs. Adapter vs. LoRa

The first step of "Chat-GPT training scheme".

Supervised Fine-tuning (SFT)

Learning a "instruction-following" LLM

Unlike PEFT, SFT finetunes the entire network



NeMo LLM

Model size of mainstream LLM can be huge: 7B -> 26 GB (beyond the 2 GB GRPC limit) In order to transmit LLMs in SFT, NVFlare supports **large object** streaming



https://nvflare.readthedocs.io/en/2.5.0/real_world_fl/notes_on_large_models.html#notes-on-large-models

NVFlare Streaming

Support Large Model Transmission

We use three datasets:

- Alpaca
- databricks-dolly-15k
- OpenAssistant

with instruction tuning data:

- Full conversations
- Instructions (w/ and w/o context) & responses

SFT for Instruction Tuning

3 open datasets

Evaluation under zero-shot setting. BaseModel - before SFT.

	H_acc	H_acc _norm	P_acc	P_acc _norm	W_acc	Mean
BaseModel	0.357	0.439	0.683	0.689	0.537	0.541
Alpaca	0.372	0.451	0.675	0.687	0.550	0.547
Dolly	0.376	0.474	0.671	0.667	0.529	0.543
Oasst1	0.370	0.452	0.657	0.655	0.506	0.528
Combined	0.370	0.453	0.685	0.690	0.548	0.549
FedAvg	0.377	0.469	0.688	0.687	0.560	0.556

Blog: <u>https://developer.nvidia.com/blog/scalable-federated-learning-with-nvidia-flare-for-enhanced-llm-performance</u>

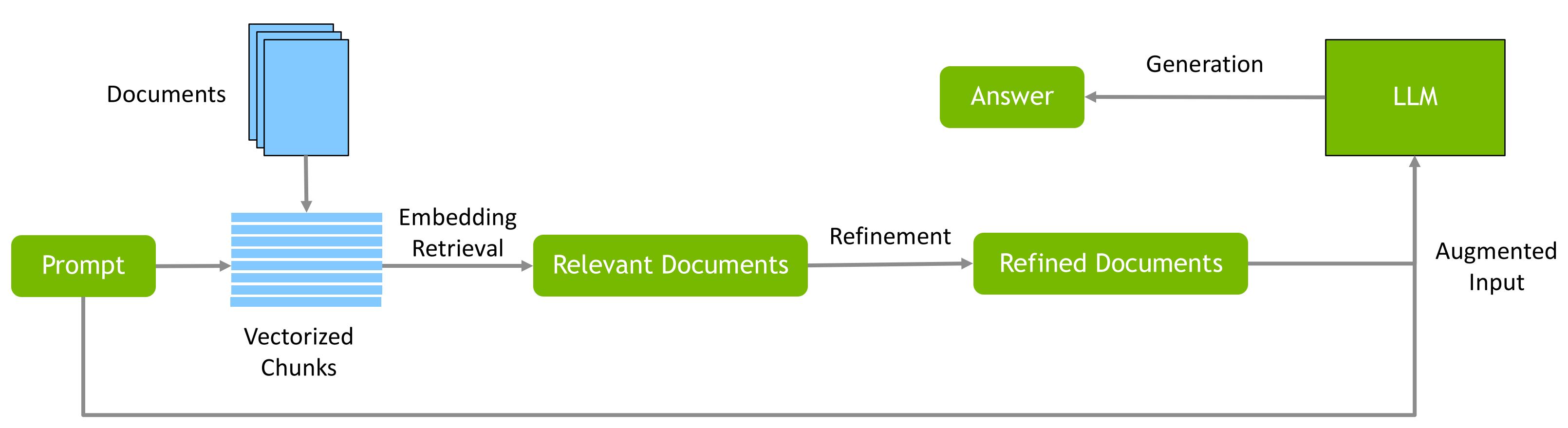
SFT Model Evaluation

LLM Benchmark Performance

Table 1. Model performance on three benchmark tasks: HellaSwag (H), PIQA (P), and WinoGrande (W)

- Three models:

 - **Ranking model:** refine chunks relevant to input prompt
- Three stages:
 - Training / finetuning of the three models
 - Vectorization of database
 - Retrieval, Augmentation, Generation



Retrieval Augmented Generation (RAG)

Basics

• Embedding model: "vectorizes" a database into information "chunks" that can be searched

• Generation model: Gives answer using the retrieved "information context" and user prompt

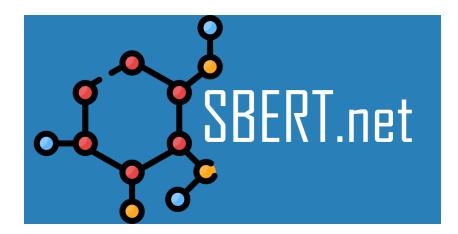
- - Centralized (All)
 - Federated

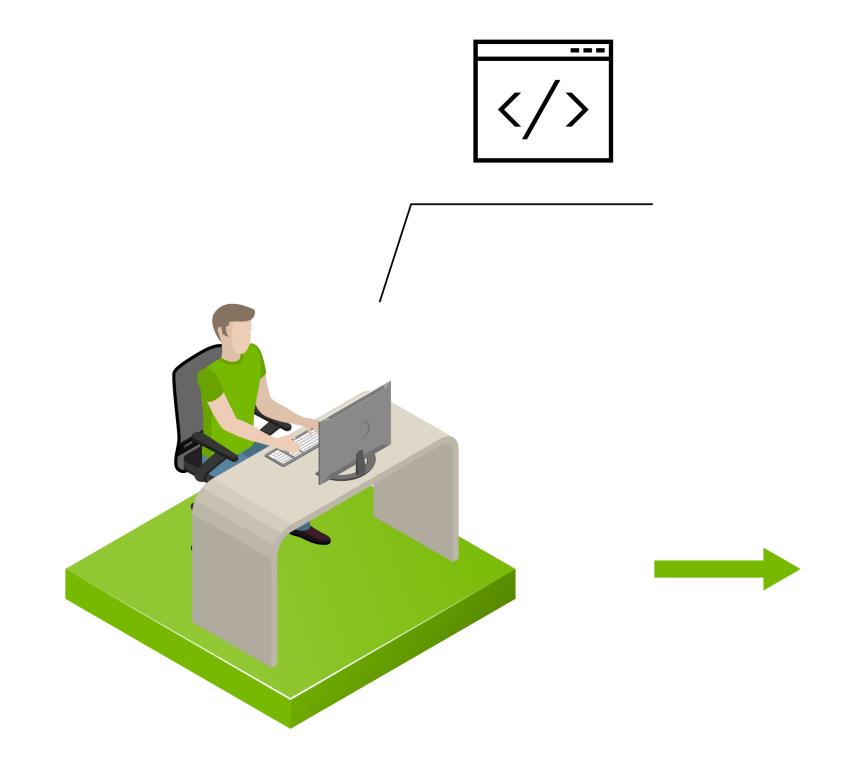
TrainData	STSB_pearson_cos	STSB_spearman_euc	NLI_cos_acc	NLI_euc_acc
NLI	0.7586	0.7895	0.8033	0.8045
Squad	0.8206	0.8154	0.8051	0.8042
Quora	0.8161	0.8121	0.7891	0.7854
All	0.8497	0.8523	0.8426	0.8384
Federated	0.8444	0.8368	0.8269	0.8246

Federated Embedding Model Training Embedding models can benefit from more diverse data

 Federated training of embedding model using Sentence Transformers Local training (NLI, Squad, Quora)

• Federated learning can generate results close to centralized training





Rapid Development

NVIDIA FLARE Workflow

From rapid research prototyping to streamlined real world deployment

Streamlined Deployment

Simplified Operations

Real-World Site Security

32

Thank You !

Holger Roth, hroth@nvidia.com

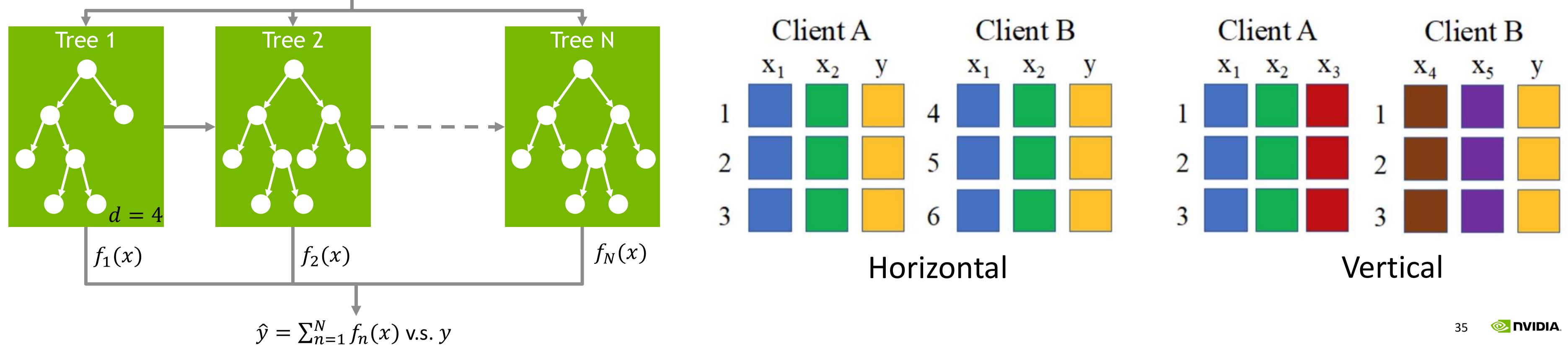
Secure Federated XGBoost with Homomorphic Encryption

Ziyue Xu Senior Scientist NVIDIA Federated Learning

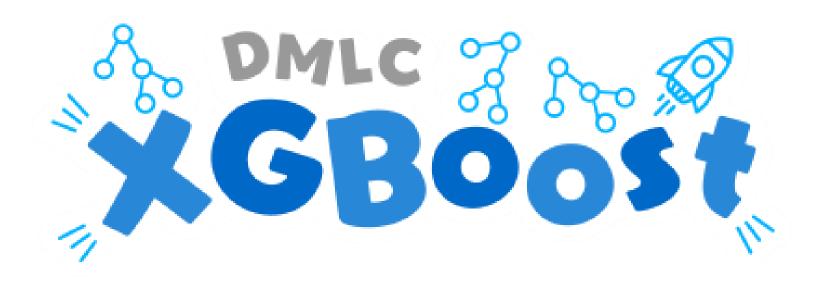
NVIDIA FLARE DAY September 18, 2024

Basics

- Tree-based method, mapping a vector of feature values to its label prediction
- Even in the age of LLM, still widely used and even SOTA for many tabular data use cases
- Important in application domains like financial industry
- Fully explainable, efficient, GPU accelerated with advance features from official DMLC implementation • Distributed schemes available, sharing and syncing intermediate results, expect almost identical accuracy
- Federated under two data split settings following the distributed schemes • Horizontal – clients have access to the same features of different data samples / population Vertical – clients have access to different features of the same data samples / population



XGBoost **Basics and Federated**



- Horizontal same set of features, different population

 - Server performs aggregation to compute global statistics
- - **Security concern**: the label y can be inferred from g&h, exposed to others
- Existing solutions
 - Third party:
 - Secure pipeline, addressing the potential information leakages
 - Limitation: without <u>DMLC XGBoost</u> support
 - Official XGBoost + NVFlare (previous version for both):
 - Full functionalities from XGBoost (GPU acceleration, etc.)
- Key contribution in this release:

XGBoost

Federated – Security Concerns and Existing Solutions

• Each client will compute **partial gradient statistics for full features** over its own data

Security concern: gradient statistics contains local data distribution information, exposed to server and others

 Vertical - same population, different features, one holds label information ("active party"), other do not ("passive parties") • Passive party A, active party B (label owner – "y"), only active party is able to compute base gradients g&h • Each client will be able to compute full gradient statistics for partial features upon receiving g&h from active party

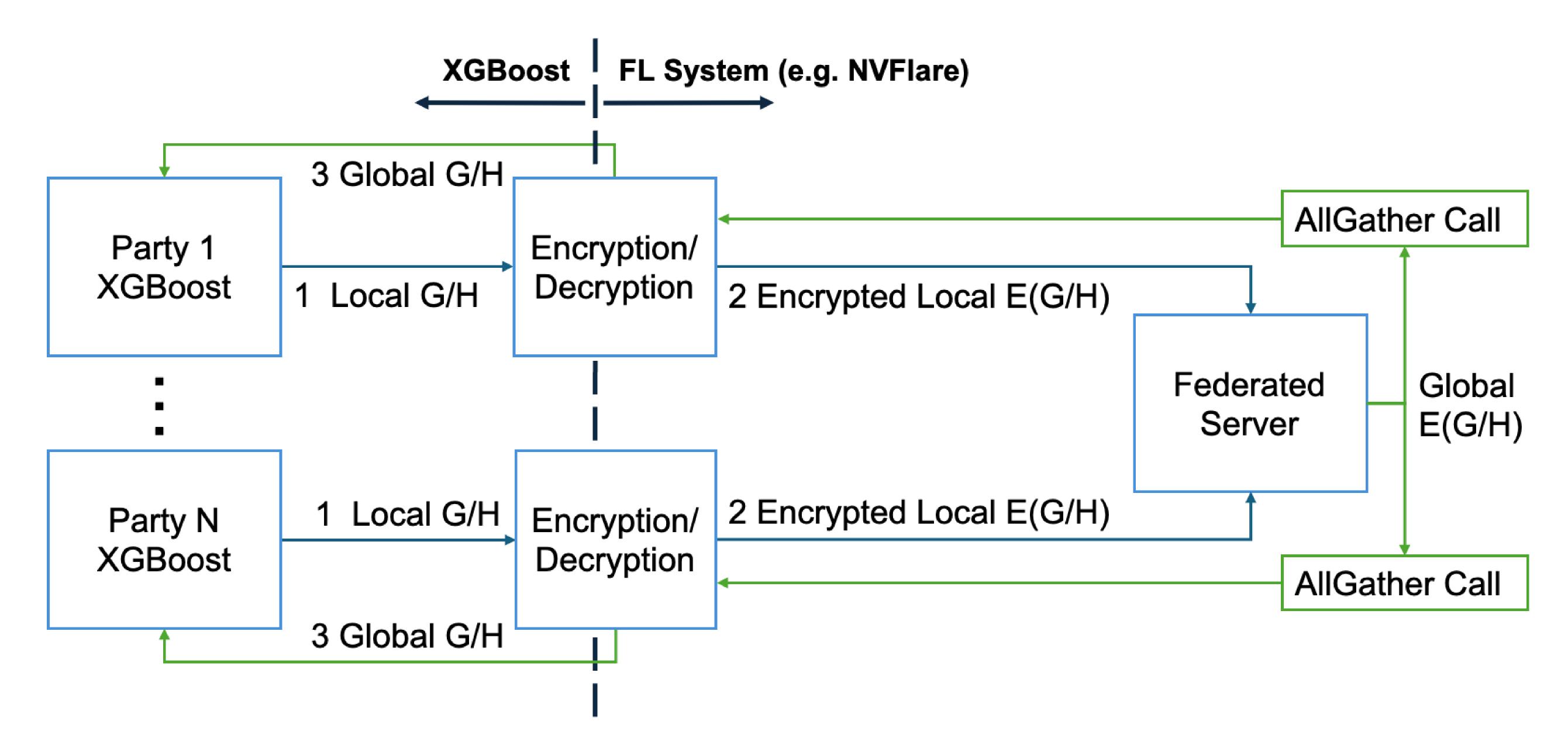
No support for secure features, and therefore the above concerns are not addressed

• Secure federated XGBoost by enabling homomorphic encryption (HE) in both XGBoost and NVFlare implementations • Data **privacy secured** with access to all advanced features from **DMLC** XGBoost

Horizontal

To prevent client's histogram information leaking to server and others:

- clients decrypt and perform best split finding



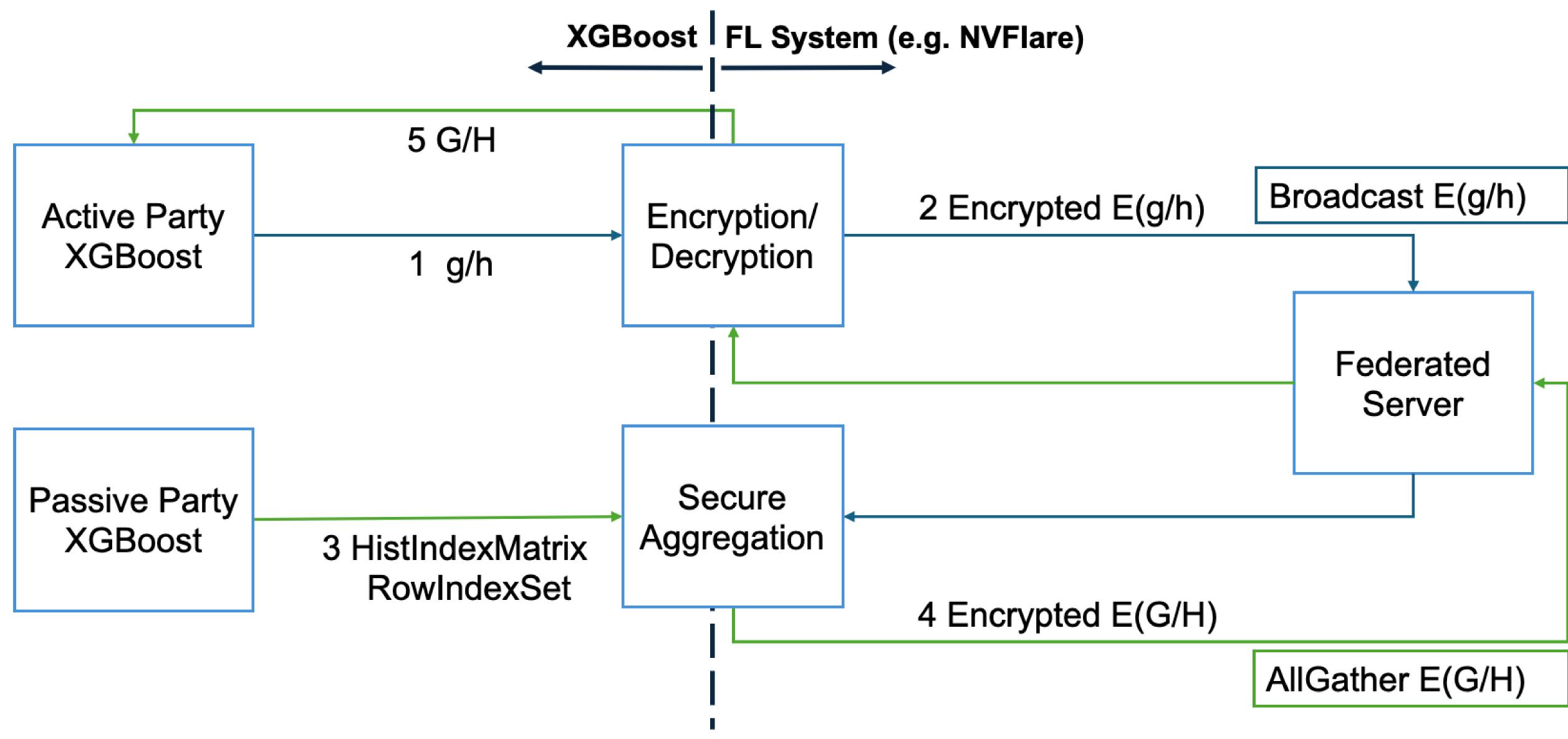
Secure Federated XGBoost

Secure Pattern and Risk Mitigation

• clients encrypt local G&H histograms (partial stats for full feature) with HE, and send to server • server adds the partial histograms to a global histogram within HE and send back to clients

Vertical

To prevent active party's label information leaking to passive parties:



Secure Federated XGBoost

Secure Pattern and Risk Mitigation

active party computes g&h and encrypts with HE (either XGBoost-side or FL-side)

• passive parties compute local G&H histograms (full stats for partial feature) within HE and send back to active party • active party decrypts, assemble the histograms to form a global one, and perform best split finding

Information security

- Federated schemes for secure XGBoost:
 - Both horizontal and vertical
 - Both CPU and GPU
- environment
- Full examples covering all combinations for secure federated XGBoost

NVFlare Now Features

Secure Federated XGBoost

 Potential key information leakage prevented by HE with strong security assurance • Important for application domains with high requirements over data governance

• GPU acceleration on XGBoost computation enabled by new DMLC support

• GPU acceleration on gradient encryption enabled by new plugin for performing HE

• With the secure federated XGBoost pipeline, we designed a plugin mechanism achieving flexible encryption depending on hardware

• Two plugins for g&h encryption: one with IPCL library using CPU; the other with the CUDA Paillier using GPU. • On an experimental setting with 3 clients, each of 200k training data, GPU plugin is ~5x faster.

• https://github.com/NVIDIA/NVFlare/tree/main/examples/advanced/xgboost_secure

Thank You !

Ziyue Xu, ziyuex@nvidia.com

NVIDIA FLARE and Confidential Computing

Isaac Yang Senior Software Engineer NVIDIA Federated Learning

NVIDIA FLARE DAY September 18, 2024

Capabilities:

- Trusted Execution Environment environment providing confidentiality & integrity
- Virtualization-based can run unchanged and do not have to be partitioned
- Secure Transfers performance HW acceleration for encrypted CPU/GPU transfers
- Hardware Root of Trust firmware; measurement & attestation for the GPU

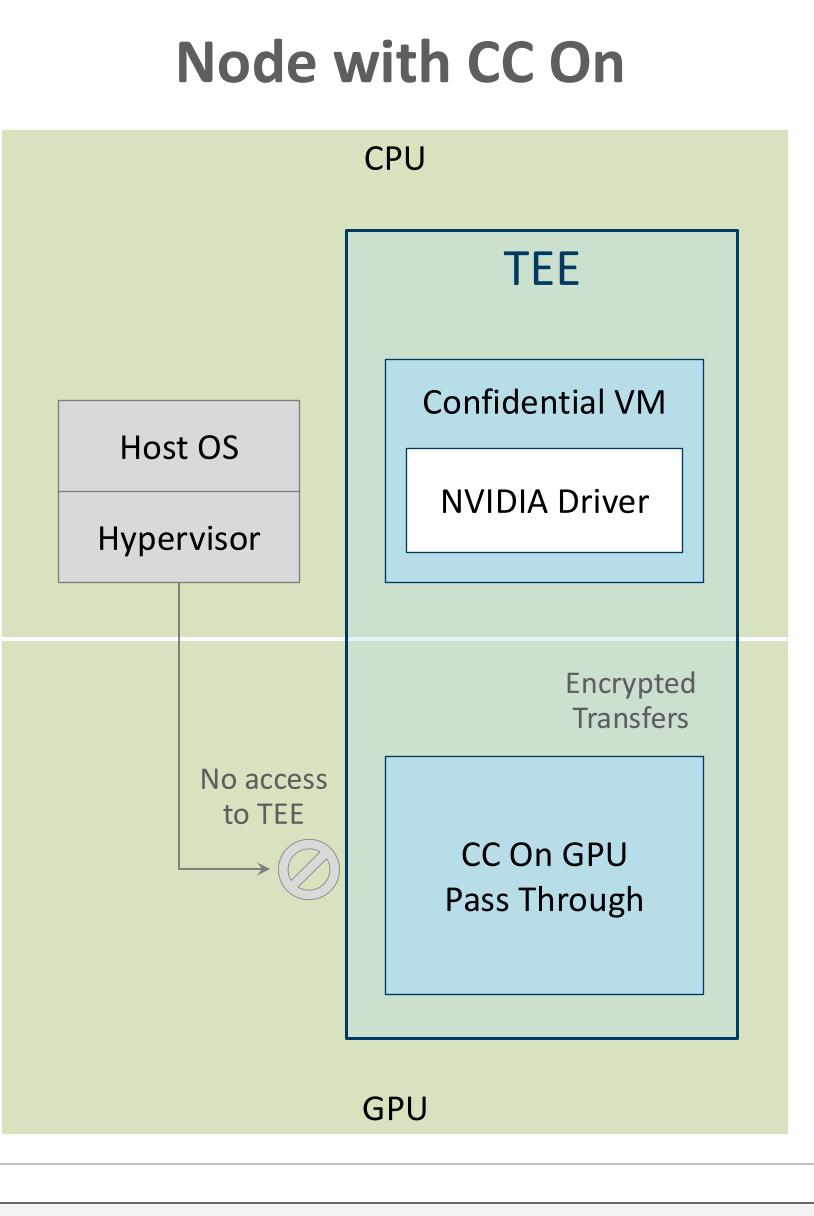
GPU Confidential Computing Protecting Data and Code from Hypervisor and Physical Attacks

Isolated

Applications

High

Authenticated



Legend	TEE	Access From Host

Government

Security Risk

cross-agency, or crosscountry multi-party collaboration

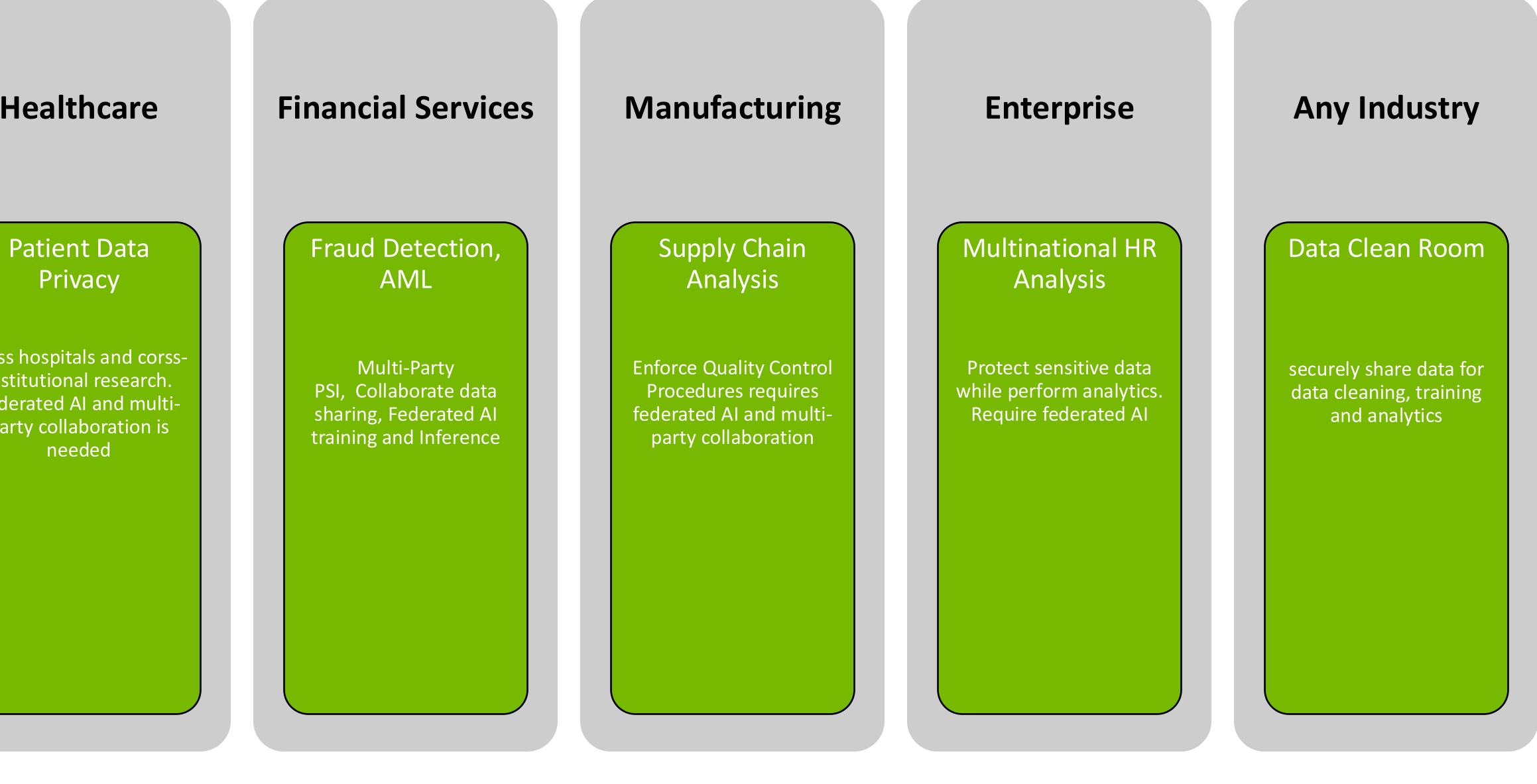
Healthcare

Privacy

cross hospitals and corssinstitutional research. Federated AI and multiparty collaboration is needed

Confidential Computing: Use Cases

Common CC use cases across industries



Concerns when using federated learning

- Trust of participants
- Code tempering
- Model tampering
- Model Theft
- Model inversion attach
- Data Leak

Federated learning Use Cases

What CC in FL can do

- Build **Explicit Trust** among participants
- **Prevent** code, model, data **tampering**
- Secure Aggregation at Server Node
 - Secure aggregation node
 - Aggregation code protection
- Secure Training at Client Node
 - Training node protection with TEE
 - Model IP protection with TEE
 - Prevent data leak
- Federated Inference Protection
 - Input data protection
 - Model protection

How NVIDIA FLARE Integrates with Confidential Computing

• NVIDIA FLARE enables lift-and-shift CC features

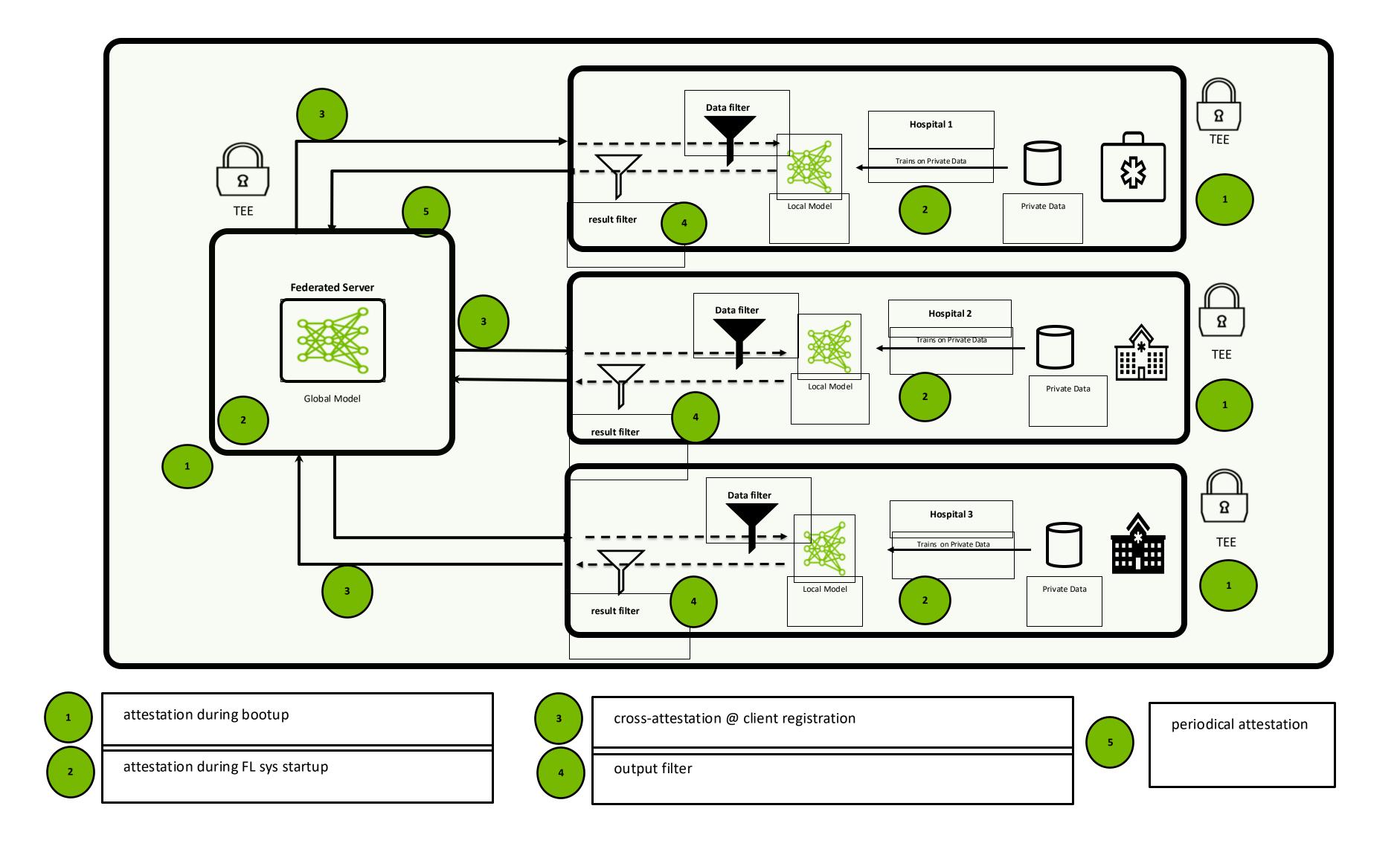
• Existing application don't need to be modified to shift from non-TEE to TEE env with new hardware-based protection

Build Explicit Trust

- Attestation Service Integration
 - Different CPU/GPU attestations SDKs
 - Well-defined interfaces enabling developers to implement their own integration in the future
- Design to verify the trust worthiness with CC attestation service
 - Self-Test at start
 - Cross-verification at client registration
 - Repeat attestation tests periodically

Secure Running Environment

- Confidential VM
 - Bare Metal CVM, CSP CVM
- Confidential Containers (CoCo) on K8s
 - SSH lockdown
 - Require additional Trustee services features



NVIDIA FLARE with Confidential Computing in Action

Provision Stage

Deployment Stage

Job Submission Stage

provision/build \rightarrow distribution \rightarrow start \rightarrow submit job

CLI: nvflare provision, Web UI: FLARE Dashboard \bullet

- Same command
- Container etc.)

- ./startup/start.sh

submit_job <job folder>

• output: -- startup kit with confidential computing assets (URLs for CVM,

Simple command (same as existing non-CC deployment)

Cover on-prem or in Cloud deployment

Platform

Orchestration

AI/ML Runtime

Key Broker Service

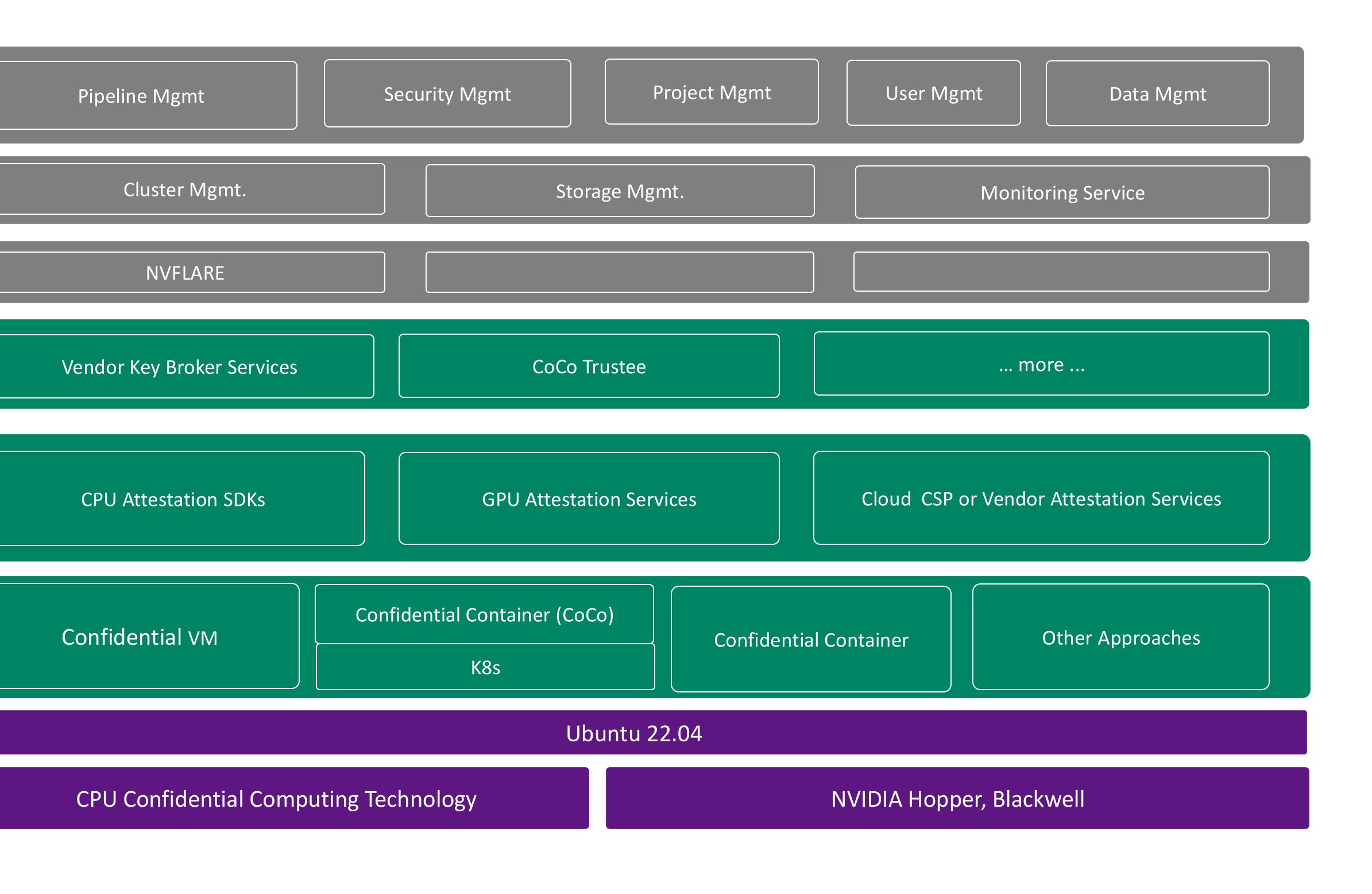
Attestation SDK

Virtualization

Operating System

Hardware

Confidential Computing Tech Stack



Thank You !

Isaac Yang, isaacy@nvidia.com

Closing Remarks

Yan Cheng

Director of Engineering

Monai and Federated Learning Engineering

NVIDIA FLARE DAY September 18, 2024

NVIDIA FLARE PRODUCT 2024-2025 Road Map Release plan

2024 – Sept.

Release 2.5.0 (Released 9/9) Major User Experience upgrade Secure XGBoost

2024 – Oct.

FLARE 2.5.1 Python 3.11+ support

2025 –Q1

Release 2.6.0 Confidential FL Release Additional LLM support