
1

NVIDIA FLARE Introduction & Roadmap

Chester Chen

Senior Product & Engineering Manager

NVIDIA Federated Learning

NVIDIA FLARE DAY

September 18, 2024

22

NVIDIA FLARE

• Apache License 2.0 to catalyze FL research & development

• Designed for production, not just for research

• Enables cross-country, distributed, multi-party collaborative Learning

• Production scalability with HA and concurrent multi-task execution

• Easy to convert existing ML/DL workflows to a Federated paradigm with few lines of
code changes

• LLM streaming, LLM fine tuning

• Framework, model, domain and task agnostic

• Flower Integration

• Confidential FL: end-to-end Federated Learning with Confidential Computing

• Layered, pluggable, customizable federated compute architecture

• Secure Provisioning, Orchestration & Monitoring

GitHub: https://github.com/nvidia/nvFlare

Web: https://nvidia.github.io/NVFlare/

Open-Source, Enterprise Federated Learning & Compute
Framework

GPUCPU MULTI-GPU

NVIDIA FLARE

Federated Specification

Training
Flows

Evaluation
Flows

Learning
Algorithms

Privacy Preserving Algorithms

Management Tools

Learner Confiiguration

Authenticate
Train

Evaluate
Model Updates

NVIDIA FLARE Runtime

Provisioning Orchestration Monitoring

LLM

Llama 2 Image
segmentation

Graph Neural
Network

▪Framework agnostic | Model agnostic | Domain agnostic | Task agnostic

https://github.com/nvidia/nvFlare
https://nvidia.github.io/NVFlare/

33

NVIDIA FLARE Architecture

• Layered, Pluggable Open Architecture

• Each layer’s component are customizable and pluggable

• Network: Communication & Messaging layer

• Drivers ➔ gRPC, http + websocket, TCP, any plugin driver

• CellNet: logical end point-to-point (cell to cell) network

• Message: reliable streaming message

• Federated Computing Layer

• Resource-based job scheduling, job monitoring, concurrent job lifecycle management, High-availability
management

• Plugin component management

• Configuration management

• Local event and federated event handling

• Federated Workflow

• SAG, Cyclic, Cross-site Evaluation, Swarm Learning, Federated Analytics

• Federated Learning Algorithms

• FedAvg, FedOpt, FedProx, Scalffold, Ditto, XGBoost, GNN, PSI, LLM (p-tuning, SFT, PEFT), KM, Scikit-Learn

• Pythonic Programming APIs

• Client API, Controller API, Job Construction API, Job Monitoring API

• Productivity & Deployment Tools:

• Simulator, provision, POC, Cloud deployment, preflight check, more

Federated Computing Engine

4

NVFLARE 2.5.0 Released

• End-to-End Pythonic APIs

• Flower Integration

• Secure XGBoost

• open sourced libcuda-paillier

• Developer Tutorial Page

• https://nvidia.github.io/NVFlare/

• New Examples

• Secure Federated Kaplan-Meier Analysis

• BioNemo example for Drug Discovery

• Federated Logistic Regression with NR optimization

• Hierarchical Federated Statistics.

• FedAvg Early Stopping Example

• Tensorflow Algorithms & Examples

• FedOpt, FedProx, Scaffold implementation for Tensorflow.

• FedBN: Federated Learning on Non-IID Features via Local Batch
Normalization

• End-to-end Federated XGBoost example including federated ETL
for feature engineering

• Hello-Flower: example of running flower in NVFLARE

https://nvidia.github.io/NVFlare/

5

FL Made Easy with NVIDIA FLARE
Converting DL code to FL in minutes

• Client: Client API ➔

• Lightning Example: 4 lines code changes from DL to FL

• Job API ➔

• No more editing configuration file

• End-to-end Python Job construction

• Server: Controller API ➔

• Simplify FL Algorithm customization

import torch
import torchvision
import torchvision.transforms as transforms
from lit_net import LitNet
from pytorch_lightning import LightningDataModule, Trainer, seed_everything
from torch.utils.data import DataLoader, random_split

(1) import nvflare lightning client API
import nvflare.client.lightning as flare

seed_everything(7)

DATASET_PATH = "/tmp/nvflare/data"
BATCH_SIZE = 4

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

def main():
 model = LitNet()
 cifar10_dm = CIFAR10DataModule()
 if torch.cuda.is_available():
 trainer = Trainer(max_epochs=1, accelerator="gpu", devices=1 if torch.cuda.is_available() else None)
 else:
 trainer = Trainer(max_epochs=1, devices=None)

 # (2) patch the lightning trainer
 flare.patch(trainer)

 while flare.is_running():
 # (3) receives FLModel from NVFlare
 # Note that we don't need to pass this input_model to trainer
 # because after flare.patch the trainer.fit/validate will get the
 # global model internally
 input_model = flare.receive()
 print(f"\n[Current Round={input_model.current_round}, Site = {flare.get_site_name()}]\n")

 # (4) evaluate the current global model to allow server-side model selection
 print("--- validate global model ---")
 trainer.validate(model, datamodule=cifar10_dm)

 # perform local training starting with the received global model
 print("--- train new model ---")
 trainer.fit(model, datamodule=cifar10_dm)

 # test local model
 print("--- test new model ---")
 trainer.test(ckpt_path="best", datamodule=cifar10_dm)

 # get predictions
 print("--- prediction with new best model ---")
 trainer.predict(ckpt_path="best", datamodule=cifar10_dm)

Client API

6

FL Made Easy with NVIDIA FLARE
Construct FL Job via python code

• Client: Client API ➔

• Lightning Example: 4 lines code changes from DL to FL

• Job API ➔

• No more editing configuration file

• End-to-end python Job construction

• Server: Controller API ➔

• Simplify FL Algorithm customization

from src.net import Net

from nvflare.app_common.widgets.intime_model_selector import IntimeModelSelector
from nvflare.app_common.workflows.fedavg import FedAvg
from nvflare.app_opt.pt.job_config.model import PTModel

from nvflare.job_config.api import FedJob
from nvflare.job_config.script_runner import ScriptRunner

if __name__ == "__main__":

 n_clients = 2
 num_rounds = 2
 train_script = "src/cifar10_fl.py"

 job = FedJob(name="cifar10_fedavg")

 controller = FedAvg(num_clients=n_clients, num_rounds=num_rounds)

 job.to(controller, "server")

 # Define the initial global model and add to server
 job.to(PTModel(Net()), "server")

 job.to(IntimeModelSelector(key_metric="accuracy"), "server")

 # Add clients
 for i in range(n_clients):
 executor = ScriptRunner(
 script=train_script, script_args="" # f"--batch_size 32 --data_path /tmp/data/site-{i}"
)
 job.to(executor, target=f"site-{i}")

 job.export_job("/tmp/nvflare/jobs/job_config")
 job.simulator_run("/tmp/nvflare/jobs/workdir", gpu="0")

Job API

7

FL Made Easy with NVIDIA FLARE
Customizing server-side FL logics is just a for loop logics

• Client: Client API ➔

• Lightning Example,

• 4 lines code changes from DL to FL

• Job API ➔

• No more editing configuration file

• End-to-end Python Job construction

• Server: Controller API ➔

• Simplify FL Algorithm customization for researchers who like
experiment with new FL Algorithms

class ModelController(BaseModelController, ABC):

 @abstractmethod
 def run(self)

 def send_model_and_wait(…) -> List[FLModel]

 def send_model(..., callback: Callable[[FLModel], None] = None) -> None

 def load_model(…) -> FLModel

 def save_model(…, model: FLModel) -> None:

 def sample_clients(…, num_clients: int = None) -> List[str]:

class FLModel:
 def __init__(
 self,
 params_type: Union[None, str, ParamsType] = None,
 params: Any = None,
 optimizer_params: Any = None,
 metrics: Optional[Dict] = None,
 start_round: Optional[int] = 0,
 current_round: Optional[int] = None,
 total_rounds: Optional[int] = None,
 meta: Optional[Dict] = None,
):

Controller API

8

NVIDIA FLARE: Summary

• Federated Computing -- a federated computing framework at core

• Built for productivity -- designed for maximum productivity, providing a range of tools to enhance user experience

• Built for security & privacy -- prioritizes robust security and privacy preservation

• Built for concurrency & scalability -- designed for concurrency, supporting resource-based multi-job execution

• Built for customization -- structured in layers, with each layer composed of customizable components

• Built for integration -- multiple integration options with third-party system

• Built for production -- robust, production-scale deployment in real-world federated learning and computing scenarios

• Rich examples repository -- wealth of built-in implementations, tutorials and examples

• Growing application categories -- medical imaging, medical devices, edge device application, financial services, HPC and autonomous driving vehicles

GitHub : https://github.com/NVIDIA/NVFlare

Web: https://nvidia.github.io/NVFlare/

A domain-agnostic, open-source, extensible FL framework

https://github.com/NVIDIA/NVFlare
https://nvidia.github.io/NVFlare/

9

NVIDIA FLARE Product 2024-2025 Road Map
Release plan

Release 2.5.0 (Released 9/9)
Major User Experience upgrade

Secure XGBoost

2024 – Sept.

FLARE 2.5.1
Python 3.11+ support

2024 – Oct.

Release 2.6.0
Confidential FL Release

Additional LLM support

2025 –Q1

10

Thank You !

Chester Chen, chesterc@nvidia.com

11

NVIDIA FLARE Getting Started

Holger Roth

Principal Federated Learning Scientist

NVIDIA Federated Learning

NVIDIA FLARE DAY

September 18, 2024

12

AI Model

CONVERSATION

FINANCIAL

HEALTHCARE

INSTRUMENT

MONITORING

Federated Workflows Runtime EnvironmentPrivacy Preserving
Algorithms

NVIDIA FLARE

GLOBAL
MODEL

FL

FL

FL
Global Sites

AUTONOMOUS DRIVING

NVIDIA Federated Learning
Applications across industries

13

Basic Concepts

FL Client

Executor

FL Server

Controller

Assign Task

Submit Task Result

Filter Task Data Filter Task Data

Filter Task Result Filter Task Result

Job

Execute Task

Note: Filters can be enforced by the data owners!

Research With NVFlare
Auto-FedRL

Quantifying data leakage FedCE: Contribution Estimation

A. Hatamizadeh et al. TMI 2022

P. Guo et al. ECCV 2022

M. Jiang et al. CVPR 2023

FedSM: Personalized FL

A. Xu et al. CVPR 2022

Baseline Implementations
• FedAvg
• FedProx
• FedOpt
• SCAFFOLD
• Ditto
• Cyclic Weight Transfer
• Swarm Learning

https://github.com/NVIDIA/NVFlare/tree/dev/research

https://arxiv.org/abs/2202.06924
https://arxiv.org/abs/2203.06338
https://arxiv.org/abs/2303.16520
https://arxiv.org/abs/2203.10144

15

Server Code: Controller

16

Client Code:
Convert PyTorch to NVFlare

1. import client API

2. Initialize

3. Receive global model

5. Send back the updated model

4. Load global model

PyTorch CIFAR-10 Tutorial:

https://github.com/pytorch/tutorials/blob/main/beginner_source/blitz/cifar10_tutorial.py

17

Create a FedJob and Run Simulation

Exported jobs can be used in real deployment!

18

Client Code:
Lightning client API

Transform your script to FL with a few lines
of code changes:

1. Import NVFlare lightning API
2. Patch your lightning trainer
3. (Optionally) validate the current global model
4. Train as usually

19

https://nvidia.github.io/NVFlare

https://nvidia.github.io/NVFlare

20

LLM Support – PEFT, SFT,
RAG

21

Only 1 line configuration change

NeMo YAML configuration

Transformer and PEFT methods: Different PEFT methods on the
XSum summarization task:

Source: https://arxiv.org/abs/2110.04366

Compare PEFT Methods With NeMo

https://github.com/NVIDIA/NeMo/blob/fb6fb2fc494afc6cbb13ab77e3829b69b6db6bb2/examples/nlp/language_modeling/tuning/conf/megatron_gpt_peft_tuning_config.yaml
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/2110.04366

22

NVFlare for P-Tuning With NeMo

NeMo

LLMP
ro

m
p
t

E
n

c
o
d

e
r

NVFlare Client 1

NeMo

LLMP
ro

m
p
t

E
n

c
o
d

e
r

NVFlare Client 2

NeMo

LLMP
ro

m
p
t

E
n

c
o
d

e
r

NVFlare Client n

P
ro

m
p
t

E
n

c
o
d

e
r

NVFlare Server

Global

LLM parameters stay fixed; Prompt encoder parameters are trained/updated

23

Example: Sentiment Analysis

Downstream task example:

● Financial PhraseBank dataset (Malo et al.) for sentiment analysis.

● The Financial PhraseBank dataset contains the sentiments for financial news headlines from a retail investor's perspective.

Example prompts and predictions:

The products have a low salt and fat content . sentiment: neutral

The agreement is valid for four years . sentiment: neutral

Diluted EPS rose to EUR3 .68 from EUR0 .50 . sentiment: positive

The company is well positioned in Brazil and Uruguay . sentiment: positive

Profit before taxes decreased by 9 % to EUR 187.8 mn in the first nine months of 2008 , compared to EUR 207.1 mn a year earlier .

sentiment: negative

https://huggingface.co/datasets/financial_phrasebank
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.23062

24

Tensor parallel with 2 GPUs per client

345M Param NeMo GPT Megatron model

PEFT Method Execution time

P-tuning 4h 59m

Adapter 11h 25m

LoRA 7h 27m

Example notebook

P-tuning vs. Adapter vs. LoRa

Compare PEFT Methods With NeMo

https://github.com/holgerroth/NVFlare/blob/nemo_peft_example/integration/nemo/examples/peft/peft.ipynb

25

P-tuning vs. Adapter vs. LoRa

Example: https://github.com/NVIDIA/NVFlare/tree/main/integration/nemo/examples

345m 20B

Compare PEFT Methods With NeMo

https://github.com/NVIDIA/NVFlare/tree/main/integration/nemo/examples

26

Supervised Fine-tuning (SFT)

Unlike PEFT, SFT finetunes the entire network

Learning a “instruction-following” LLM

NeMo

LLM
NVFlare

Client 1

NeMo

LLM
NVFlare

Client 2

NVFlare

Server

Global

NeMo

LLM
NVFlare

Client n

NeMo

LLM

The first step of “Chat-GPT training scheme”.

27

NVFlare Streaming

• Model size of mainstream LLM can be huge: 7B -> 26 GB (beyond the 2 GB GRPC limit)

• In order to transmit LLMs in SFT, NVFlare supports large object streaming

Support Large Model Transmission

https://nvflare.readthedocs.io/en/2.5.0/real_world_fl/notes_on_large_models.html#notes-on-large-models

https://nvflare.readthedocs.io/en/2.5.0/real_world_fl/notes_on_large_models.html

28

SFT for Instruction Tuning

We use three datasets:

● Alpaca

● databricks-dolly-15k

● OpenAssistant

with instruction tuning data:

• Full conversations

• Instructions (w/ and w/o context) & responses

3 open datasets

https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/OpenAssistant/oasst1

29

SFT Model Evaluation

Evaluation under zero-shot setting. BaseModel - before SFT.

LLM Benchmark Performance

Blog: https://developer.nvidia.com/blog/scalable-federated-learning-with-nvidia-flare-for-enhanced-llm-performance

https://developer.nvidia.com/blog/scalable-federated-learning-with-nvidia-flare-for-enhanced-llm-performance/

30

Retrieval Augmented Generation (RAG)
Basics

• Three models:

• Embedding model: “vectorizes” a database into information “chunks” that can be searched

• Ranking model: refine chunks relevant to input prompt

• Generation model: Gives answer using the retrieved ”information context” and user prompt

• Three stages:

• Training / finetuning of the three models

• Vectorization of database

• Retrieval, Augmentation, Generation

Prompt

Documents

Vectorized
Chunks

Relevant Documents

Embedding
Retrieval

Refined Documents
Refinement

LLM

Augmented
Input

Answer

Generation

31

Federated Embedding Model Training
Embedding models can benefit from more diverse data

• Federated training of embedding model using Sentence Transformers

• Local training (NLI, Squad, Quora)

• Centralized (All)

• Federated

• Federated learning can generate results close to centralized training

32

NVIDIA FLARE Workflow
From rapid research prototyping to streamlined real world deployment

33

Thank You !

Holger Roth, hroth@nvidia.com

34

Secure Federated XGBoost with
Homomorphic Encryption

Ziyue Xu

Senior Scientist

NVIDIA Federated Learning

NVIDIA FLARE DAY

September 18, 2024

35

XGBoost
Basics and Federated

• Basics

• Tree-based method, mapping a vector of feature values to its label prediction

• Even in the age of LLM, still widely used and even SOTA for many tabular data use cases

• Important in application domains like financial industry

• Fully explainable, efficient, GPU accelerated with advance features from official DMLC implementation

• Distributed schemes available, sharing and syncing intermediate results, expect almost identical accuracy

• Federated under two data split settings – following the distributed schemes

• Horizontal – clients have access to the same features of different data samples / population

• Vertical – clients have access to different features of the same data samples / population

Tree 1 Tree 2 Tree N

𝑓1(𝑥)

𝑑 = 4

𝑥

ො𝑦 = σ𝑛=1
𝑁 𝑓𝑛(𝑥) v.s. 𝑦

𝑓2(𝑥) 𝑓𝑁(𝑥) Horizontal Vertical

https://xgboost.readthedocs.io/en/stable/

36

XGBoost
Federated – Security Concerns and Existing Solutions

• Horizontal – same set of features, different population

• Each client will compute partial gradient statistics for full features over its own data

• Server performs aggregation to compute global statistics

• Security concern: gradient statistics contains local data distribution information, exposed to server and others

• Vertical - same population, different features, one holds label information (“active party”), other do not (“passive parties”)

• Passive party A, active party B (label owner – “y”), only active party is able to compute base gradients g&h

• Each client will be able to compute full gradient statistics for partial features upon receiving g&h from active party

• Security concern: the label y can be inferred from g&h, exposed to others

• Existing solutions

• Third party:

▪ Secure pipeline, addressing the potential information leakages

▪ Limitation: without DMLC XGBoost support

• Official XGBoost + NVFlare (previous version for both):

▪ Full functionalities from XGBoost (GPU acceleration, etc.)

▪ No support for secure features, and therefore the above concerns are not addressed

• Key contribution in this release:

• Secure federated XGBoost by enabling homomorphic encryption (HE) in both XGBoost and NVFlare implementations

• Data privacy secured with access to all advanced features from DMLC XGBoost

https://github.com/dmlc/xgboost

37

Secure Federated XGBoost
Secure Pattern and Risk Mitigation

• Horizontal

To prevent client’s histogram information leaking to server and others:

• clients encrypt local G&H histograms (partial stats for full feature) with HE, and send to server

• server adds the partial histograms to a global histogram within HE and send back to clients

• clients decrypt and perform best split finding

38

Secure Federated XGBoost
Secure Pattern and Risk Mitigation

• Vertical

To prevent active party’s label information leaking to passive parties:

• active party computes g&h and encrypts with HE (either XGBoost-side or FL-side)

• passive parties compute local G&H histograms (full stats for partial feature) within HE and send back to active party

• active party decrypts, assemble the histograms to form a global one, and perform best split finding

39

NVFlare Now Features
Secure Federated XGBoost

• Information security

• Potential key information leakage prevented by HE with strong security assurance

• Important for application domains with high requirements over data governance

• Federated schemes for secure XGBoost:

• Both horizontal and vertical

• Both CPU and GPU

• GPU acceleration on XGBoost computation enabled by new DMLC support

• GPU acceleration on gradient encryption enabled by new plugin for performing HE

• With the secure federated XGBoost pipeline, we designed a plugin mechanism achieving flexible encryption depending on hardware
environment

• Two plugins for g&h encryption: one with IPCL library using CPU; the other with the CUDA Paillier using GPU.

• On an experimental setting with 3 clients, each of 200k training data, GPU plugin is ~5x faster.

• Full examples covering all combinations for secure federated XGBoost

• https://github.com/NVIDIA/NVFlare/tree/main/examples/advanced/xgboost_secure

https://github.com/NVIDIA/NVFlare/tree/main/examples/advanced/xgboost_secure

40

Thank You !

Ziyue Xu, ziyuex@nvidia.com

41

NVIDIA FLARE and Confidential Computing

Isaac Yang

Senior Software Engineer

NVIDIA Federated Learning

NVIDIA FLARE DAY

September 18, 2024

42

GPU Confidential Computing
Protecting Data and Code from Hypervisor and Physical Attacks

Legend TEE
Access

From Host

Capabilities:

• Trusted Execution Environment Isolated
environment providing confidentiality & integrity

• Virtualization-based Applications
can run unchanged and do not have to be partitioned

• Secure Transfers High
performance HW acceleration for encrypted CPU/GPU transfers

• Hardware Root of Trust Authenticated
firmware; measurement & attestation for the GPU

Node with CC On

GPU

CPU

TEE

Confidential VM

CC On GPU
Pass Through

NVIDIA Driver

Host OS

Encrypted
Transfers

Hypervisor

No access
to TEE

43

Confidential Computing: Use Cases
Common CC use cases across industries

Government

Security Risk

cross-agency, or cross-
country multi-party

collaboration

Healthcare

Patient Data
Privacy

cross hospitals and corss-
institutional research.

Federated AI and multi-
party collaboration is

needed

Financial Services

Fraud Detection,
AML

Multi-Party
PSI, Collaborate data
sharing, Federated AI
training and Inference

Manufacturing

Supply Chain
Analysis

Enforce Quality Control
Procedures requires

federated AI and multi-
party collaboration

Enterprise

Multinational HR
Analysis

Protect sensitive data
while perform analytics.

Require federated AI

Any Industry

Data Clean Room

securely share data for
data cleaning, training

and analytics

44

Federated learning Use Cases

Concerns when using federated learning

• Trust of participants

• Code tempering

• Model tampering

• Model Theft

• Model inversion attach

• Data Leak

What CC in FL can do

• Build Explicit Trust among participants

• Prevent code, model, data tampering

• Secure Aggregation at Server Node

• Secure aggregation node

• Aggregation code protection

• Secure Training at Client Node

• Training node protection with TEE

• Model IP protection with TEE

• Prevent data leak

• Federated Inference Protection

• Input data protection

• Model protection

45

How NVIDIA FLARE Integrates with Confidential Computing

• NVIDIA FLARE enables lift-and-shift CC features

• Existing application don’t need to be modified to shift from non-TEE to TEE
env with new hardware-based protection

• Build Explicit Trust

• Attestation Service Integration

• Different CPU/GPU attestations SDKs

• Well-defined interfaces enabling developers to implement their own integration
in the future

• Design to verify the trust worthiness with CC attestation service

• Self-Test at start

• Cross-verification at client registration

• Repeat attestation tests periodically

• Secure Running Environment

• Confidential VM

• Bare Metal CVM, CSP CVM

• Confidential Containers (CoCo) on K8s

• SSH lockdown

• Require additional Trustee services features

1

3

5

Federated Server

Global Model

TEE

2

3

3

2

1 attestation during bootup

attestation during FL sys startup

cross-attestation @ client registration

output filter4

3 periodical attestation
5

Local Model Private Data

Trains on Private Data

Hospital 1

result filter

Data filter

1
2

4

Local Model Private Data

Trains on Private Data

Hospital 2

TEE

result filter

Data filter

1
2

4

Trains on Private Data

Hospital 3

Local Model Private Data

TEE

result filter

Data filter

1

24

46

NVIDIA FLARE with Confidential Computing in Action

provision/build → distribution → start→ submit job

Simple command (same as existing non-CC deployment)
▪ ./startup/start.sh
▪ Cover on-prem or in Cloud deployment

Provision Stage

Job Submission Stage

• CLI: nvflare provision, Web UI: FLARE Dashboard
• Same command
• output: -- startup kit with confidential computing assets (URLs for CVM,

Container etc.)

Deployment Stage

submit_job <job folder>

48

Confidential Computing Tech Stack

NVIDIA Hopper, BlackwellCPU Confidential Computing Technology

Attestation SDK

Virtualization

Hardware

Operating System

Key Broker Service

K8s

Confidential VM
Confidential Container (CoCo)

Ubuntu 22.04

CoCo TrusteeVendor Key Broker Services

AI/ML Runtime NVFLARE

Orchestration Storage Mgmt. Monitoring ServiceCluster Mgmt.

Platform Security Mgmt Project MgmtPipeline Mgmt User Mgmt Data Mgmt

Confidential Container

Cloud CSP or Vendor Attestation ServicesGPU Attestation ServicesCPU Attestation SDKs

… more ...

Other Approaches

49

Thank You !

Isaac Yang, isaacy@nvidia.com

50

Closing Remarks

Yan Cheng

Director of Engineering

Monai and Federated Learning Engineering

NVIDIA FLARE DAY

September 18, 2024

51

NVIDIA FLARE PRODUCT 2024-2025 Road Map
Release plan

Release 2.5.0 (Released 9/9)
Major User Experience upgrade

Secure XGBoost

2024 – Sept.

FLARE 2.5.1
Python 3.11+ support

2024 – Oct.

Release 2.6.0
Confidential FL Release

Additional LLM support

2025 –Q1

	Slide 1: NVIDIA FLARE Introduction & Roadmap
	Slide 2: NVIDIA FLARE
	Slide 3: NVIDIA FLARE Architecture
	Slide 4: NVFLARE 2.5.0 Released
	Slide 5: FL Made Easy with NVIDIA FLARE
	Slide 6: FL Made Easy with NVIDIA FLARE
	Slide 7: FL Made Easy with NVIDIA FLARE
	Slide 8: NVIDIA FLARE: Summary
	Slide 9: NVIDIA FLARE Product 2024-2025 Road Map
	Slide 10
	Slide 11: NVIDIA FLARE Getting Started
	Slide 12: NVIDIA Federated Learning
	Slide 13: Basic Concepts
	Slide 14: Research With NVFlare
	Slide 15: Server Code: Controller
	Slide 16: Client Code: Convert PyTorch to NVFlare
	Slide 17: Create a FedJob and Run Simulation
	Slide 18: Client Code: Lightning client API
	Slide 19: https://nvidia.github.io/NVFlare
	Slide 20: LLM Support – PEFT, SFT, RAG
	Slide 21
	Slide 22: NVFlare for P-Tuning With NeMo
	Slide 23: Example: Sentiment Analysis
	Slide 24
	Slide 25
	Slide 26: Supervised Fine-tuning (SFT)
	Slide 27: NVFlare Streaming
	Slide 28: SFT for Instruction Tuning
	Slide 29: SFT Model Evaluation
	Slide 30: Retrieval Augmented Generation (RAG)
	Slide 31: Federated Embedding Model Training
	Slide 32: NVIDIA FLARE Workflow
	Slide 33
	Slide 34: Secure Federated XGBoost with Homomorphic Encryption
	Slide 35: XGBoost
	Slide 36: XGBoost
	Slide 37: Secure Federated XGBoost
	Slide 38: Secure Federated XGBoost
	Slide 39: NVFlare Now Features
	Slide 40
	Slide 41: NVIDIA FLARE and Confidential Computing
	Slide 42: GPU Confidential Computing
	Slide 43: Confidential Computing: Use Cases
	Slide 44: Federated learning Use Cases
	Slide 45: How NVIDIA FLARE Integrates with Confidential Computing
	Slide 46: NVIDIA FLARE with Confidential Computing in Action provision/build  distribution  start submit job
	Slide 48: Confidential Computing Tech Stack
	Slide 49
	Slide 50: Closing Remarks
	Slide 51: NVIDIA FLARE PRODUCT 2024-2025 Road Map

