leveraging NVIDIA

FLARE and BioNeMo
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First, a few words about Apheris.
We safely connect models and data
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We use NVFlare (and soon Flower-on-Flare) for a strong foundation on the

federation side
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Comment

https://doi.org/10.1038/s42256-024-00813-x

Federated learningis not a cure-all for
dataethics

But federation alone cannot solve the
issue of trust in collaborative setups
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such asdifferential privacy (for example, adding noise locally) remain
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Transparency and explainability

Truly privacy-preser| les can lead to
Itisimportantto realize| d fix algorith-

The fact that sensitive tataare TTOTTraTTSTETTEUTo a CEMTraT pOTITTTIT—TITC DTJS TITTITOUETS tranTeu o puorenuata, Terseverrmore difficult

Privacy is a complex
beast for deep
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How to protect and separate
both model and data IP?

FL mitigates certain privacy concerns regarding data transfer and
allows organizations to avoid administratively burdensome data
transfer agreements, but it does not relieve the data holders from their
data protection responsibilities'. Ethical and legal justifications for
data collection and sharing are still needed (that is, patient consent
or research exemptions), and data holders remain responsible for
implementing governance and technical measures to securely pro-
tect the data locally on the nodes (for example, appropriate access
control and encryption). Indeed, because this responsibility is spread
out over multiple partners instead of being allocated to a central

when learning is distributed and each ‘node’ sees only its own data®.
Bias is often caused by the under-representation of (minority) popu-
lations in the source data, or by limited access to specific variables
for these groups. Although this, too, is not a problem unique to FL,
it can in some cases be exacerbated by FL. For example, the FL train-
ing process can contribute to bias when the different local models
are combined (‘fused’) using a weighted average: if larger datasets
are weighed more highly during the fusion, bias in those datasets is
amplified. Anotherissue arises when certain types of data are not used
inthe global model because only specific centers have th&m. Ifonly the

naturemachineintelligence

Volume 6 | April 2024 | 370-372 | 370
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We solve for trust between collaborating parties

Model Registry

(«_O:) Registry of pre-ported and security assessed federated workloads
AN + capability to bring your own custom models
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Computational governance 5@’ &

Trace and control all data interactions at the computational
level, enforce privacy enhancing measures




Job approval

[¢] U D 5 localhost:88 ebooks/demo_esm2.Ipynb w ¥ 0 o U=

https://build.nvidia.com/explore/healthcare

_:‘ Jupyter demo_esm2 Last Checkpoint: 14 seconds ago A
File Edit View Run Kernel Settings Help Trusted
B+ XD O » = C » Code v JupyterLab [7 @ Python 3 (ipykernel) O =
[ ] |} | ]
We benefit from the BioNeMo suite
[ ):|import json BArVvasFH

- = = - import warnings
a n I s I n a I n WI a His et
l l l I l l from typing import Literal
from pydantic import BaseModel, Field
import wandb
import apheris

from aphcli.api import compute, job, datasets, models
from aphcli import job as job_cli

AlphaFold 2 .

L ] . . . .
. , Deelend Predicts the 3D structure of a protein from its amino spneris. ogin)
datasets. list_datasets(slug_contains="esa")

acid sequence.

models. list_nodels(name_contains="apheris")

We create a ComputeSpec that defines
« the model,
MolMM = e dansaiand
. . . . . « hardware specs of server and clients
Controlled generation, finding molecules with the right
. compute. set_ignore_limits(True)
S B,
=1 “apheris-model-bionemo",
n": "0.0.5"

NVIDIA.

dataset_ids=
“esm2-downstrean-scl-1_gateway-1_org-1",

MegaMolBart
Molecular generator Aielpany

client_menory=32000,
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Job execution

DiffDock c O D 2 localhost:5888/notebooks/der 2ipynt
Predicts the 3D structure of how a molecule interacts = JUpYter  demo_esm? Lastcheckpont: 24 mintes a0 e

. h . File Edit View Run Kernel Settings Help Trusted
with a protein S Ol T
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» Code v JupyterLab (7 & Python 3 (ipykemel) O =
)
You provided the job ID f38104b4-984f-4206-a5a6-8a3c67bebTcd.

E M2 *ruaning’

Job.wait_until_job_finished(

Generates embeddings of proteins from their amino e
. timeout=3600
acid sequences )

You provided the job ID f38104b4-984-4206-a526-0a3c67bebTcd.

job_cli. list()

ESMFol I somtenso
. . . Now that training has finished, we can download the results and explore them,
Derlvatlve Of ESM 2' pred lCtS the Srd StrUCtu re Of a download_path=Path.home() / “esm_finetune_result"
protein from it's amino acid sequence bignmton e
job_id=job_id,
compute_spec_id=compute_spec_id,

download_path=download_path
)

P r QI e | n M P N N We deactivate the compute spec to shut down all machines and stop costs for running cloud infrastructure.
Predicts amino acid sequences for protein backbones EospUte: v Iedtalcompite e Wcteouta pins Ad)

INSTITUTE FOR import subprocess
. . from wandb.cli.cli import sync
Protein Design o
B_O_S_QHA.FJlLd. for f in wandb_path. rglob("+.wandb"):
subprocess.call(["wandb","sync", str(f), “"-—project", "apheris-bionemo-scl"])
UNIVERSITY of WASHINGTON Generates protein backbones for protein binder design R e
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Powering the AISB
Consortium to
Revolutionize Al
Drug Discovery

Apheris provides the tech layer for the Artificial Intelligence Structural Biology (AISB)
Consortium, an unprecedented collaboration among AbbVie, Boehringer Ingelheim
and Johnson & Johnson aimed at transforming Al drug discovery. State-of-the-art Al
models will be trained and evaluated on unigue data from multiple biopharma
companies without exposing proprietary information.

B APH=RIS obbvie (Im\ Boehringer

Ingelheim
VISIT THE PAGE




The AISB Consortium aims to leverage secure, federated
learning to ensure both data privacy and Al model
performance — with the ultimate goal of accelerating the
application of Al in molecule design by achieving
precision akin to X-ray crystallography through Al and
machine learning in predicting protein complex
structures. Our vision thrives on collaboration, combining
our collective expertise to redefine drug discovery.

Data available for training while preserving
confidentiality/IP

Infrastructure (Federated Learning, high
performance compute)

Leading edge Al algorithms §

Partnership between
pharma and tech

=

Protein folding
prediction

Accelerate the step-change
transformation in drug discovery
powered by an E2E AI/ML

Efficacy and tox
prediction

Binding affinity and off-
target binding prediction

Protein complex structure
prediction (Protein-Small
Molecule, Protein-Protein)



A combination of data, models, federated computing and governance can
join the data-modeller network up
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Legal

Any information contained in this document is confidential information of Apheris Al GmbH and must be strictly
kept private. This document is provided solely for the recipient and the group of people directly responsible for

the evaluation of its contents. It may not be copied, forwarded or distributed in any other form to any third party
without the prior written consent of Apheris Al GmbH. This document is provided for the mutual evaluation of
the concerned business opportunity only and neither constitutes a formal offer nor any kind of contractual or

other legal relationship between Apheris Al GmbH and the recipient. Any services described or pricing schemes

laid out in this document are non-binding and subject to potential future contractual commitments of Apheris Al

GmbH and the recipient.

apheris.com
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