
Holoscan SDK User Guide
Release 0.6.0

NVIDIA Corporation

Jul 28, 2023

INTRODUCTION

1 Overview 1

2 Relevant Technologies 3

3 Getting Started with Holoscan 5

4 SDK Installation 7

5 Additional Setup 11

6 Third Party Hardware Setup 19

7 Holoscan Core Concepts 29

8 Holoscan by Example 31

9 Creating an Application 71

10 Creating a Distributed Application 89

11 Packaging Holoscan Applications 99

12 Creating Operators 105

13 Logging 139

14 Built-in Operators and Extensions 143

15 Visualization 147

16 Inference 157

17 Schedulers 167

18 Conditions 169

19 Resources 173

20 Holoscan Application Package Specification (HAP) 177

21 Holoscan CLI 193

22 Application Runner Configuration 203

i

23 GXF Core concepts 205

24 Holoscan and GXF 207

25 GXF by Example 209

26 Using Holoscan Operators in GXF Applications 225

27 GXF User Guide 227

28 Data Flow Tracking 301

29 Video Pipeline Latency Tool 305

ii

CHAPTER

ONE

OVERVIEW

NVIDIA Holoscan is the AI sensor processing platform that combines hardware systems for low-latency sensor and
network connectivity, optimized libraries for data processing and AI, and core microservices to run streaming, imaging,
and other applications, from embedded to edge to cloud. It can be used to build streaming AI pipelines for a variety of
domains, including Medical Devices, High Performance Computing at the Edge, Industrial Inspection and more.

Note: In previous releases, the prefix Clara was used to define Holoscan as a platform designed initially for medical
devices. As Holoscan has grown, its potential to serve other areas has become apparent. With version 0.4.0, we’re proud
to announce that the Holoscan SDK is now officially built to be domain-agnostic and can be used to build sensor AI
applications in multiple domains. Note that some of the content of the SDK (sample applications) or the documentation
might still appear to be healthcare-specific pending additional updates. Going forward, domain specific content will
be hosted on the HoloHub repository.

The Holoscan SDK assists developers by providing:

1. Various installation strategies

From containers, to python wheels, to source, from development to deployment environments, the Holoscan SDK
comes in many packaging flavors to adapt to different needs. Find more information in the sdk installation section.

2. C++ and Python APIs

These APIs are now the recommended interface for the creation of application pipelines in the Holoscan SDK. See
the Using the SDK section to learn how to leverage those APIs, or the Doxygen pages (C++/Python) for specific API
documentation.

3. Built-in Operators

The units of work of Holoscan applications are implemented within Operators, as described in the core concepts of
the SDK. The operators included in the SDK provide domain-agnostic functionalities such as IO, machine learning
inference, processing, and visualization, optimized for AI streaming pipelines, relying on a set of Core Technologies.
This guide provides more information on the operators provided within the SDK here.

4. Minimal Examples

The Holoscan SDK provides a list of examples to illustrate specific capabilities of the SDK. Their source code can
be found in the GitHub repository. The Holoscan by Example section provides step-by-step analysis of some of these
examples to illustrate the innerworkings of the Holoscan SDK.

5. Repository of Operators and Applications

HoloHub is a central repository for users and developers to share reusable operators and sample applications with the
Holoscan community. Being open-source, these operators and applications can also be used as reference implementa-
tions to complete the built-in operators and examples available in the SDK.

6. Tooling to Package and Deploy Applications

1

https://developer.nvidia.com/holoscan-sdk
https://developer.nvidia.com/industries/healthcare
https://www.nvidia.com/en-us/clara/developer-kits/
https://www.nvidia.com/en-us/clara/developer-kits/
https://nvidia-holoscan.github.io/holohub
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples#readme
https://nvidia-holoscan.github.io/holohub

Holoscan SDK User Guide, Release 0.6.0

Packaging and deploying applications is a complex problem that can require large amount of efforts. The Holoscan CLI
is a command-line interface included in the Holoscan SDK that provides commands to package and run applications
in OCI-compliant containers that could be used for production.

7. Performance tools

As highlighted in the relevant technologies section, the soul of the Holoscan project is to achieve peak performance
by leveraging hardware and software developed at NVIDIA or provided by third-parties. To validate this, Holoscan
provides performance tools to help users and developers track their application performance. They currently include:

• a Video Pipeline Latency Measurement Tool to measure and estimate the total end-to-end latency of a video
streaming application including the video capture, processing, and output using various hardware and software
components that are supported by the Holoscan Developer Kits.

• the Data Flow Tracking feature to profile your application and analyze the data flow between operators in its
graph.

8. Container to leverage both iGPU and dGPU on Holoscan devkits

The Holoscan developer kits can - at this time - only be flashed to leverage the integrated GPU (Tegra SoC) or the
added discrete GPU. The L4T Compute Assist container on NGC is a mechanism to leverage both concurrently.

9. Documentation

The Holoscan SDK documentation is composed of:

• This user guide, in a webpage or PDF format

• Build and run instructions specific to each installation strategy

• Release notes on Github

2 Chapter 1. Overview

https://docs.nvidia.com/holoscan/sdk-user-guide/
https://developer.nvidia.com/downloads/holoscan-sdk-user-guide
https://github.com/nvidia-holoscan/holoscan-sdk/releases

CHAPTER

TWO

RELEVANT TECHNOLOGIES

Holoscan accelerates streaming AI applications by leveraging both hardware and software. The Holoscan SDK relies
on multiple core technologies to achieve low latency and high throughput:

• Rivermax and GPUDirect RDMA

• Graph Execution Framework

• TensorRT Optimized Inference

• Interoperability between CUDA and rendering frameworks

• Accelerated Image Transformations

• Unified Communications X

2.1 Rivermax and GPUDirect RDMA

The Holoscan Developer Kits can be used along with the NVIDIA Rivermax SDK to provide an extremely efficient
network connection using the onboard ConnectX network adapter that is further optimized for GPU workloads by
using GPUDirect for RDMA. This technology avoids unnecessary memory copies and CPU overhead by copying data
directly to or from pinned GPU memory, and supports both the integrated GPU or the discrete GPU.

Note: NVIDIA is also committed to supporting hardware vendors enable RDMA within their own drivers, an example
of which is provided by the AJA Video Systems as part of a partnership with NVIDIA for the Holoscan SDK. The
AJASource operator is an example of how the SDK can leverage RDMA.

For more information about GPUDirect RDMA, see the following:

• GPUDirect RDMA Documentation

• Minimal GPUDirect RDMA Demonstration source code, which provides a real hardware example of using
RDMA and includes both kernel drivers and userspace applications for the RHS Research PicoEVB and HiTech
Global HTG-K800 FPGA boards.

3

https://developer.nvidia.com/networking/rivermax
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/NVIDIA/jetson-rdma-picoevb

Holoscan SDK User Guide, Release 0.6.0

2.2 Graph Execution Framework

The Graph Execution Framework (GXF) is a core component of the Holoscan SDK that provides features to execute
pipelines of various independent tasks with high performance by minimizing or removing the need to copy data across
each block of work, and providing ways to optimize memory allocation.

GXF will be mentioned in many places across this user guide, including a dedicated section which provides more
details.

2.3 TensorRT Optimized Inference

NVIDIA TensorRT is a deep learning inference framework based on CUDA that provided the highest optimizations to
run on NVIDIA GPUs, including the Holoscan Developer Kits.

The inference module leverages TensorRT among other backends, and provides the ability to execute multiple inferences
in parallel.

2.4 Interoperability between CUDA and rendering frameworks

OpenGL and Vulkan are commonly used for realtime visualization and, like CUDA, are executed on the GPU. This
provides an opportunity for efficient sharing of resources between CUDA and those rendering frameworks.

• The OpenGL and Segmentation Visualizer extensions use the OpenGL interoperability functions provided by
the CUDA runtime API.

• The Holoviz module uses the external resource interoperability functions of the low-level CUDA driver applica-
tion programming interface, the Vulkan external memory and external semaphore extensions.

Warning: The OpenGL extension will be deprecated in favor of Vulkan/Holoviz in a future release.

2.5 Accelerated Image Transformations

Streaming image processing often requires common 2D operations like resizing, converting bit widths, and changing
color formats. NVIDIA has built the CUDA accelerated NVIDIA Performance Primitive Library (NPP) that can help
with many of these common transformations. NPP is extensively showcased in the Format Converter operator of the
Holoscan SDK.

2.6 Unified Communications X

The Unified Communications X (UCX) framework is an open-source communication framework developed as a collab-
oration between industry and academia. It provides high performance point-to-point communication for data-centric
applications. Holoscan SDK uses UCX to send data between fragments in distributed applications. UCX’s high level
protocols attempt to automatically select an optimal transport layer depending on the hardware available. For example
technologies such as TCP, CUDA memory copy, CUDA IPC and GPUDirect RDMA are supported.

4 Chapter 2. Relevant Technologies

https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/cuda/archive/11.6.1/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXTRES__INTEROP.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_memory_fd.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_semaphore.html
https://docs.nvidia.com/cuda/npp/index.html
https://openucx.org/
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

CHAPTER

THREE

GETTING STARTED WITH HOLOSCAN

As described in the Overview, the SDK provides many components and capabilities. The goal of this section is to
provide a recommended path to getting started with the SDK.

3.1 1. Choose your platform

The Holoscan SDK is optimized and compatible with multiple hardware platforms, including NVIDIA Developer Kits
(aarch64) and x86_64 workstations. Learn more on the developer page to help you decide what hardware you should
target.

3.2 2. Setup the SDK and your platform

Start with installing the SDK . If you have a need for it, you can go through additional recommended setups to achieve
peak performance, or setup additional sensors from NVIDIA’s partners.

3.3 3. Learn the framework

1. Start with the Core Concepts to understand the technical terms used in this guide, and the overall behavior of the
framework.

2. Learn how to use the SDK in one of two ways (or both) based on your preference:

1. Going through the Holoscan by Example tutorial which will build your knowledge step-by-step by going
over concrete minimal examples in the SDK. You can refer to each example source code and run instructions
to inspect them and run them as you go.

2. Going through the condensed documentations that should cover all capabilities of the SDK using minimal
mock code snippets, including creating an application, creating a distributed application, and creating
operators.

5

https://developer.nvidia.com/holoscan-sdk

Holoscan SDK User Guide, Release 0.6.0

3.4 4. Understand the reusable capabilities of the SDK

The Holoscan SDK does not only provide a framework to build and run applications, but also a set of reusable operators
to facilitate implementing applications for streaming, AI, and other general domains.

The list of existing operators is available here, which points to the C++ or Python API documentation for more details.
Specific documentation is available for the visualization (codename: HoloViz) and inference (codename: HoloInfer)
operators.

Additionally, HoloHub is a central repository for users and developers to share reusable operators and sample applica-
tions with the Holoscan community, extending the capabilities of the SDK:

• Just like the SDK operators, the HoloHub operators can be used in your own Holoscan applications.

• The HoloHub sample applications can be used as reference implementations to complete the examples available
in the SDK.

Take a glance at HoloHub to find components you might want to leverage in your application, improve upon existing
work, or contribute your own additions to the Holoscan platform.

3.5 5. Write and Run your own application

The steps above cover what is required to write your own application and run it. For facilitating packaging and distribut-
ing, the Holoscan SDK includes utilities to package and run your Holoscan application in a OCI-compliant container
image.

3.6 6. Master the details

• Expand your understanding of the framework with details on the logging utility or the data flow tracking bench-
marking tool.

• Learn more details on the configurable components that control the execution of your application, like [Sched-
ulers], [Conditions], and [Resources]. (Advanced) These components are part on the GXF execution backend,
hence the Graph Execution Framework section at the bottom of this guide if deep understanding of the appli-
cation execution is needed.

6 Chapter 3. Getting Started with Holoscan

https://nvidia-holoscan.github.io/holohub

CHAPTER

FOUR

SDK INSTALLATION

The section below refers to the installation of the Holoscan SDK referred to as the development stack, designed for
NVIDIA Developer Kits based on HoloPack or JetPack, and for x86_64 Linux compute platforms, ideal for development
and testing of the SDK.

Note: For Holoscan Developer Kits such as the IGX Orin Developer Kit, an alternative option is the deployment
stack, based on OpenEmbedded (Yocto build system) instead of Ubuntu. This is recommended to limit your stack
to the software components strictly required to run your Holoscan application. The runtime Board Support Package
(BSP) can be optimized with respect to memory usage, speed, security and power requirements.

4.1 Prerequisites

Holoscan Developer Kits (aarch64)

Set up your developer kit:

Developer Kit User Guide L4T GPU Mode
NVIDIA IGX Orin Guide HoloPack 2.0 iGPU or* dGPU
NVIDIA Clara AGX Guide HoloPack 1.2 dGPU*
NVIDIA Jetson AGX Orin Guide JetPack 5.1.1 iGPU

* iGPU and dGPU can be used concurrently on a single developer kit in dGPU mode with the L4T Compute Assist
container

Note: For ConnectX support on the IGX Orin and Clara AGX developer kits, install the MOFED drivers (>=5.8).
They can also be installed by selecting the Rivermax option in SDK Manager, available if you are part of the Rivermax
SDK program.

If the developer kit is in dGPU mode, reconfigure its GPUDirect driver after installing MOFED to enable RDMA (link).

7

https://www.nvidia.com/en-us/edge-computing/products/igx/
https://www.openembedded.org/wiki/Main_Page
https://www.yoctoproject.org/
https://www.nvidia.com/en-us/edge-computing/products/igx/
https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://www.nvidia.com/en-gb/clara/intelligent-medical-instruments/
https://developer.nvidia.com/clara-agx-developer-kit-user-guide
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-guide/index.html
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://developer.nvidia.com/sdk-manager
https://developer.nvidia.com/nvidia-rivermax-sdk
https://developer.nvidia.com/nvidia-rivermax-sdk

Holoscan SDK User Guide, Release 0.6.0

x86_64

You’ll need the following to use the Holoscan SDK on x86_64:

• OS: Ubuntu 20.04

• NVIDIA discrete GPU (dGPU)

– Ampere or above recommended for best performance

– Quadro/NVIDIA RTX necessary for GPUDirect RDMA support

– Tested with NVIDIA RTX 6000 and NVIDIA RTX A6000

• NVIDIA dGPU drivers: 510.73.08 or above

• For ConnectX support (optional):

– NVIDIA ConnectX SmartNIC

– OFED Network Drivers: 5.8

Additional software dependencies might be needed based on how you choose to install the SDK (see section below).

Refer to the Additional Setup and Third-Party Hardware Setup sections for additional prerequisites.

4.2 Install the SDK

We provide multiple ways to install and run the Holoscan SDK:

NGC Container Debian Package Python Wheels

Runtime libraries Included Included Included
Python module 3.8 3.8 3.8 to 3.11
C++ headers andC-
Make config

Included Included N/A

Examples (+ source) Included Included retrieve fromGitHub
Sample datasets Included retrieve fromNGC retrieve fromNGC
CUDA 11 runtime1 Included automati-

cally2installed
require manualinstal-
lation

NPP support3 Included automati-
callyPage 9, 2installed

require manualinstal-
lation

TensorRT support4 Included automati-
callyPage 9, 2installed

require manualinstal-
lation

Vulkan support5 Included automati-
callyPage 9, 2installed

require manualinstal-
lation

V4L2 support6 Included automati-
callyPage 9, 2installed

require manualinstal-
lation

Torch support7 Included require man-
ual8installation

require man-
ualPage 9, 8installation

Rivermax support9 add on top10of the image require man-
ual11installation

require man-
ualPage 9, 11installation

CLI support needs docker dindwith buildx pluginon
top of the image

needs docker
w/buildx plugin

needs docker
w/buildx plugin

8 Chapter 4. SDK Installation

https://www.nvidia.com/en-gb/design-visualization/desktop-graphics/
https://developer.nvidia.com/gpudirect
https://www.nvidia.com/en-us/design-visualization/rtx-6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_dev_deb
https://pypi.org/project/holoscan
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#readme
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://developer.nvidia.com/npp
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/vulkan
https://en.wikipedia.org/wiki/Video4Linux
https://pytorch.org/
https://developer.nvidia.com/networking/rivermax

Holoscan SDK User Guide, Release 0.6.0

Refer to the documentation in each of these for specific install and run instructions.

4.2.1 Not sure what to choose?

• The Holoscan container image on NGC it the safest way to ensure all the dependencies are present with the
expected versions (including torch?). It is the simplest way to run the embedded examples, while still allowing
you to create your own C++ and Python Holoscan application on top of it. These benefits come with the standard
inconvenience that exist when using Docker, such as more complex run instructions for proper configuration.
Also, supporting Rivermax or the CLI require more work than the other solutions at this time.

• If you are confident in your ability to manage dependencies on your own in your host environment, the Holoscan
Debian package should provide all the capabilities needed to use the Holoscan SDK.

• If you are not interested in the C++ API but just need to work in Python, or want to use a newer version than
Python 3.8 (up to 3.11), you can use the Holoscan python wheels on PyPI (just pip install holoscan).
While they are the easiest solution to get started, you might need additional work to setup your environment with
adequate dependencies depending on your needs.

4.2.2 Need more control over the SDK?

The Holoscan SDK source repository is open-source and provides reference implementations as well as infrastructure
for building the SDK yourself.

Attention: We only recommend building the SDK from source if you need to build it with debug symbols or other
options not used as part of the published packages. If you want to write your own operator or application, you can
use the SDK as a dependency (and contribute to HoloHub). If you need to make other modifications to the SDK,
file a feature or bug request.

1 CUDA 11.4+ (< 12.0) is required. Already installed on NVIDIA developer kits with HoloPack and JetPack.
2 Debian installation on x86_64 requires the latest cuda-keyring package to automatically install all dependencies
3 NPP 11.4+ needed for the FormatConverter operator. Already installed on NVIDIA developer kits with HoloPack and JetPack.
4 TensorRT 8.2.3+ and cuDNN needed for the Inference operator. Already installed on NVIDIA developer kits with HoloPack and JetPack.
5 Vulkan 1.2.131+ loader needed for the HoloViz operator (+ libegl1 for headless rendering). Already installed on NVIDIA developer kits with

HoloPack and JetPack.
6 V4L2 1.18+ needed for the V4L2 operator. Already installed on NVIDIA developer kits with HoloPack and JetPack.
7 Torch support requires LibTorch 1.12+, TorchVision 0.14.1+, OpenBLAS 0.3.8+ (all systems) and OpenMPI (aarch64 only)
8 To get LibTorch and TorchVision on aarch64 (NVIDIA devkits), build them from source, download our pre-built installation, or copy them

from the holoscan arm64 container (in /opt).
9 Tested with Rivermax SDK 1.20

10 Supporting the Rivermax SDK in a container also requires adding the Mellanox OFED user space in that container
11 Rivermax SDK and OFED drivers are installed on NVIDIA developer kits with [SDKM][sdkm] though the [Rivermax SDK program][rivermax-

program]

4.2. Install the SDK 9

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_dev_deb
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_dev_deb
https://pypi.org/project/holoscan/
https://github.com/nvidia-holoscan/holoscan-sdk
https://github.com/nvidia-holoscan/holohub
https://forums.developer.nvidia.com/c/healthcare/holoscan-sdk/320/all
https://docs.nvidia.com/cuda/archive/11.8.0/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#network-repo-installation-for-ubuntu
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/

Holoscan SDK User Guide, Release 0.6.0

10 Chapter 4. SDK Installation

CHAPTER

FIVE

ADDITIONAL SETUP

In addition to the required steps to install the Holoscan SDK , the steps below will help you achieve peak performance:

5.1 Setting-up GPUDirect RDMA

Note: Learn more about RDMA in the technology overview section.

Note: This is not required for AJA cards support as they use their own driver (NTV2) which implements GPUDirect
RDMA. However, this is required for Emergent cameras support, as their SDK (eSDK) uses the NVIDIA GPUDirect
drivers.

HoloPack 2.0

The GPUDirect drivers (nvidia peermem) are installed with HoloPack 2.0 in dGPU mode. However - at this time - they
must be reconfigured after installing MOFED drivers (either as part of the Rivermax SDK option in SDK Manager, or
manually), then loaded manually to enable the use of GPUDirect RDMA with NVIDIA’s Quadro/workstation GPUs.

Ensure you've installed MOFED drivers first through SDKM (Rivermax SDK) or manually
sudo dpkg-reconfigure nvidia-dkms-520 && modprobe nvidia-peermem

HoloPack 1.2

The GPUDirect drivers (nvidia peermem) are installed after switching to dGPU mode on HoloPack 1.2. However
- at this time - they must be reconfigured after installing MOFED drivers (either as part of the Rivermax SDK op-
tion in SDK Manager, or manually), then loaded manually to enable the use of GPUDirect RDMA with NVIDIA’s
Quadro/workstation GPUs.

Ensure you've installed MOFED drivers first through SDKM (Rivermax SDK) or manually
sudo dpkg-reconfigure nvidia-dkms-510 && modprobe nvidia-peermem

11

Holoscan SDK User Guide, Release 0.6.0

HoloPack 1.1

The GPUDirect drivers (nvidia peermem) must be manually installed to enable the use of GPUDirect RDMA with
NVIDIA’s Quadro/workstation GPUs. They are not installed as part of Holopack 1.1 when selecting Rivermax SDK
in the SDK Manager at this time.

1. Download the GPUDirect Drivers for OFED: nvidia-peer-memory_1.1.tar.gz

• If the above link does not work, navigate to the Downloads section on the GPUDirect page

2. Install GPUDirect:

mv nvidia-peer-memory_1.1.tar.gz nvidia-peer-memory_1.1.orig.tar.gz
tar -xvf nvidia-peer-memory_1.1.orig.tar.gz
cd nvidia-peer-memory-1.1
dpkg-buildpackage -us -uc
sudo dpkg -i ../nvidia-peer-memory_1.1-0_all.deb
sudo dpkg -i ../nvidia-peer-memory-dkms_1.1-0_all.deb
sudo service nv_peer_mem start

3. Verify the nv_peer_mem service is running:

sudo service nv_peer_mem status

4. Enable the nv_peer_mem service at boot time:

sudo systemctl enable nv_peer_mem
sudo /lib/systemd/systemd-sysv-install enable nv_peer_mem

5.1.1 Testing with Rivermax

The instructions below describe the steps to test GPUDirect using the Rivermax SDK. The test applications used by
these instructions, generic_sender and generic_receiver, can then be used as samples in order to develop custom
applications that use the Rivermax SDK to optimize data transfers.

Note: The Rivermax SDK can be installed onto the Developer Kit via SDK Manager by selecting it as an additional
SDK during the HoloPack installation. Access to the Rivermax SDK Developer Program as well as a valid Rivermax
software license is required to use the Rivermax SDK.

Running the Rivermax sample applications requires two systems, a sender and a receiver, connected via ConnectX
network adapters. If two Developer Kits are used then the onboard ConnectX can be used on each system, but if
only one Developer Kit is available then it is expected that another system with an add-in ConnectX network adapter
will need to be used. Rivermax supports a wide array of platforms, including both Linux and Windows, but these
instructions assume that another Linux based platform will be used as the sender device while the Developer Kit is
used as the receiver.

Note: The $rivermax_sdk variable referenced below corresponds to the path where the Rivermax SDK package was
installed. If the Rivermax SDK was installed via SDK Manager, this path will be:

rivermax_sdk=$HOME/Documents/Rivermax/1.8.21

Install path might differ in future versions of Rivermax.

12 Chapter 5. Additional Setup

https://www.mellanox.com/products/GPUDirect-RDMA
https://www.mellanox.com/downloads/ofed/nvidia-peer-memory_1.1.tar.gz
https://www.mellanox.com/products/GPUDirect-RDMA
https://developer.nvidia.com/networking/rivermax

Holoscan SDK User Guide, Release 0.6.0

1. Determine the logical name for the ConnectX devices that are used by each system. This can be done by using
the lshw -class network command, finding the product: entry for the ConnectX device, and making note
of the logical name: that corresponds to that device. For example, this output on a Developer Kit shows
the onboard ConnectX device using the enp9s0f01 logical name (lshw output shortened for demonstration
purposes).

$ sudo lshw -class network
*-network:0

description: Ethernet interface
product: MT28908 Family [ConnectX-6]
vendor: Mellanox Technologies
physical id: 0
bus info: pci@0000:09:00.0
logical name: enp9s0f0
version: 00
serial: 48:b0:2d:13:9b:6b
capacity: 10Gbit/s
width: 64 bits
clock: 33MHz
capabilities: pciexpress vpd msix pm bus_master cap_list ethernet physical␣

→˓1000bt-fd 10000bt-fd autonegotiation
configuration: autonegotiation=on broadcast=yes driver=mlx5_core␣

→˓driverversion=5.4-1.0.3 duplex=full firmware=20.27.4006 (NVD0000000001) ip=10.0.0.
→˓2 latency=0 link=yes multicast=yes

resources: iomemory:180-17f irq:33 memory:1818000000-1819ffffff

The instructions that follow will use the enp9s0f0 logical name for ifconfig commands, but these names
should be replaced with the corresponding logical names as determined by this step.

2. Run the generic_sender application on the sending system.

a. Bring up the network:

$ sudo ifconfig enp9s0f0 up 10.0.0.1

b. Build the sample apps:

$ cd ${rivermax_sdk}/apps
$ make

e. Launch the generic_sender application:

$ sudo ./generic_sender -l 10.0.0.1 -d 10.0.0.2 -p 5001 -y 1462 -k 8192 -z 500 -v
...
+###
| Sender index: 0
| Thread ID: 0x7fa1ffb1c0
| CPU core affinity: -1
| Number of streams in this thread: 1
| Memory address: 0x7f986e3010
| Memory length: 59883520[B]
| Memory key: 40308
+###
| Stream index: 0
| Source IP: 10.0.0.1

(continues on next page)

5.1. Setting-up GPUDirect RDMA 13

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

| Destination IP: 10.0.0.2
| Destination port: 5001
| Number of flows: 1
| Rate limit bps: 0
| Rate limit max burst in packets: 0
| Memory address: 0x7f986e3010
| Memory length: 59883520[B]
| Memory key: 40308
| Number of user requested chunks: 1
| Number of application chunks: 5
| Number of packets in chunk: 8192
| Packet's payload size: 1462
+**

3. Run the generic_receiver application on the receiving system.

a. Bring up the network:

$ sudo ifconfig enp9s0f0 up 10.0.0.2

b. Build the sample apps with GPUDirect support (CUDA=y):

$ cd ${rivermax_sdk}/apps
$ make CUDA=y

c. Launch the generic_receiver application:

$ sudo ./generic_receiver -i 10.0.0.2 -m 10.0.0.2 -s 10.0.0.1 -p 5001 -g 0
...
Attached flow 1 to stream.
Running main receive loop...
Got 5877704 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
Got 5877704 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
...

With both the generic_sender and generic_receiver processes active, the receiver will continue to print out
received packet statistics every second. Both processes can then be terminated with <ctrl-c>.

5.2 Enabling G-SYNC

For better performance and to keep up with the high refresh rate of Holoscan applications, we recommend the use of a
G-SYNC display.

Tip: Holoscan has been tested with these two G-SYNC displays:

• Asus ROG Swift PG279QM

• Asus ROG Swift 360 Hz PG259QNR

14 Chapter 5. Additional Setup

https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/specs/
https://rog.asus.com/us/monitors/27-to-31-5-inches/rog-swift-pg279qm-model/
https://rog.asus.com/us/monitors/23-to-24-5-inches/rog-swift-360hz-pg259qnr-model/

Holoscan SDK User Guide, Release 0.6.0

Follow these steps to ensure G-SYNC is enabled on your display:

1. Open the “NVIDIA Settings” Graphical application (nvidia-settings in Terminal).

2. Click on X Server Display Configuration then the Advanced button. This will show the Allow G-SYNC
on monitor not validated as G-SYNC compatible option. Enable the option and click Apply:

3. To show the refresh rate and G-SYNC label on the display window, click on OpenGL Settings for the se-
lected display. Now click Allow G-SYNC/G-SYNC Compatible and Enable G-SYNC/G-SYNC Compatible
Visual Indicator options and click Quit. This step is shown in below image. The Gsync indicator will be
at the top right screen once the application is running.

5.3 Disabling Variable Backlight

Various monitors have a Variable Backlight feature. That setting can add up to a frame of latency when enabled. Refer
to your monitor’s manufacturer instructions to disable it.

Tip: To disable variable backlight on the Asus ROG Swift monitors mentioned above, use the joystick button at the
back of the display, go to the image tag, select variable backlight, then switch that setting to OFF.

5.4 Enabling Exclusive Display Mode

By default, applications use a borderless fullscreen window managed by the window manager. Because the window
manager also manages other applications, applications may suffer a performance hit. To improve performance, exclu-
sive display mode can be used with Holoscan’s new visualization module (Holoviz), allowing the application to bypass
the window manager and render directly to the display. Refer to the Holoviz documentation for details.

5.5 Use both Integrated and Discrete GPUs on Holoscan developer
kits

Holoscan developer kits like the NVIDIA IGX Orin or the NVIDIA Clara AGX have both a discrete GPU (dGPU -
optional on IGX Orin) and an integrated GPU (iGPU - Tegra SoC). At this time, when these developer kits are flashed
(using HoloPack) to leverage the discrete GPU, the integrated GPU cannot be used due to conflicts between the CUDA
libraries for dGPU and iGPU stack.

Starting with the Holoscan SDK 0.5, we provide a utility container on NGC named L4T Compute Assist which isolates
the iGPU stack in order to enable iGPU compute on the developer kits configured for dGPU. Other applications can
run concurrently on the dGPU, natively or in another container.

Attention: This container enables using the iGPU for compute capabilities only (not graphics).

5.3. Disabling Variable Backlight 15

https://www.nvidia.com/en-us/edge-computing/products/igx/
https://www.nvidia.com/en-gb/clara/intelligent-medical-instruments/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/l4t-compute-assist

Holoscan SDK User Guide, Release 0.6.0

Fig. 5.1: Enable G-SYNC for the current display

16 Chapter 5. Additional Setup

Holoscan SDK User Guide, Release 0.6.0

Fig. 5.2: Enable Visual Indicator for the current display

5.5. Use both Integrated and Discrete GPUs on Holoscan developer kits 17

Holoscan SDK User Guide, Release 0.6.0

5.6 Deployment Software Stack

NVIDIA Holoscan accelerates deployment of production-quality applications by providing a set of OpenEmbed-
ded build recipes and reference configurations that can be leveraged to customize and build Holoscan-compatible
Linux4Tegra (L4T) embedded board support packages (BSP) on Holoscan Developer Kits.

Holoscan OpenEmbedded/Yocto recipes add OpenEmbedded recipes and sample build configurations to build BSPs
for NVIDIA Holoscan Developer Kits that feature support for discrete GPUs (dGPU), AJA Video Systems I/O boards,
and the Holoscan SDK. These BSPs are built on a developer’s host machine and are then flashed onto a Holoscan
Developer Kit using provided scripts.

There are two options available to set up a build environment and start building Holoscan BSP images using OpenEm-
bedded.

• The first sets up a local build environment in which all dependencies are fetched and installed manually by the
developer directly on their host machine. Please refer to the Holoscan OpenEmbedded/Yocto recipes README
for more information on how to use the local build environment.

• The second uses a Holoscan OpenEmbedded/Yocto Build Container that is provided by NVIDIA on NGC which
contains all of the dependencies and configuration scripts such that the entire process of building and flashing a
BSP can be done with just a few simple commands.

18 Chapter 5. Additional Setup

https://github.com/nvidia-holoscan/meta-tegra-holoscan
https://github.com/nvidia-holoscan/meta-tegra-holoscan/blob/main/README.md
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan-oe-builder

CHAPTER

SIX

THIRD PARTY HARDWARE SETUP

GPU compute performance is a key component of the Holoscan hardware platforms, and to optimize GPU based
video processing applications and provide lowest possible latency the Holoscan SDK now supports AJA Video Sys-
tems capture cards and Emergent Vision Technologies high-speed cameras. The following sections will provide more
information on how to setup the system with these technologies.

6.1 AJA Video Systems

AJA provides a wide range of proven, professional video I/O devices, and thanks to a partnership between NVIDIA
and AJA, Holoscan supports the AJA NTV2 SDK and device drivers as of the NTV2 SDK 16.1 release.

The AJA drivers and SDK now offer RDMA support for NVIDIA GPUs. This feature allows video data to be captured
directly from the AJA card to GPU memory, which significantly reduces latency and system PCI bandwidth for GPU
video processing applications as sysmem to GPU copies are eliminated from the processing pipeline.

The following instructions describe the steps required to setup and use an AJA device with RDMA support on Holoscan
Developer Kits. Note that the AJA NTV2 SDK support for Holoscan includes all of the AJA Developer Products, though
the following instructions have only been verified for the Corvid 44 12G BNC and KONA HDMI products, specifically.

Note: The addition of an AJA device to a Holoscan Developer Kit is optional. The Holoscan SDK has elements that
can be run with an AJA device with the additional features mentioned above, but those elements can also run without
AJA. For example, there are Holoscan sample applications that have an AJA live input component, however they can
also take in video replay as input. Similarly, the latency measurement tool can measure the latency of the video I/O
subsystem with or without an AJA device available.

6.1.1 Installing the AJA Hardware

This section describes how to install the AJA hardware on the Clara AGX Developer Kit. Note that the AJA Hardware
is also compatible with the NVIDIA IGX Orin Developer Kit.

To install an AJA Video Systems device into the Clara AGX Developer Kit, remove the side access panel by removing
two screws on the back of the Clara AGX. This provides access to the two available PCIe slots, labelled 13 and 14 in
the Clara AGX Developer Kit User Guide:

While these slots are physically identical PCIe x16 slots, they are connected to the Clara AGX via different PCIe
bridges. Only slot 14 shares the same PCIe bridge as the RTX6000 dGPU, and so the AJA device must be installed
into slot 14 for RDMA support to be available. The following image shows a Corvid 44 12G BNC card installed into
slot 14 as needed to enable RDMA support.

19

https://www.aja.com/
https://www.aja.com/family/developer
https://www.aja.com/products/corvid-44-12g-bnc
https://www.aja.com/products/kona-hdmi
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://www.aja.com/products/corvid-44-12g-bnc

Holoscan SDK User Guide, Release 0.6.0

20 Chapter 6. Third Party Hardware Setup

Holoscan SDK User Guide, Release 0.6.0

6.1.2 Installing the AJA Software

The AJA NTV2 SDK includes both the drivers (kernel module) that are required in order to enable an AJA device, as
well as the SDK (headers and libraries) that are used to access an AJA device from an application.

The drivers must be loaded every time the system is rebooted, and they must be loaded natively on the host system (i.e.
not inside a container). The drivers must be loaded regardless of whether applications will be run natively or inside a
container (see Using AJA Devices in Containers).

The SDK only needs to be installed on the native host and/or container that will be used to compile applications
with AJA support. The Holoscan SDK containers already have the NTV2 SDK installed, and so no additional steps
are required to build AJA-enabled applications (such as the reference Holoscan applications) within these containers.
However, installing the NTV2 SDK and utilities natively on the host is useful for the initial setup and testing of the
AJA device, so the following instructions cover this native installation.

Note: To summarize, the steps in this section must be performed on the native host, outside of a container, with the
following steps required once:

• Downloading the AJA NTV2 SDK Source

• Building the AJA NTV2 Drivers

The following steps required after every reboot:

• Loading the AJA NTV2 Drivers

And the following steps are optional (but recommended during the initial setup):

• Building and Installing the AJA NTV2 SDK

• Testing the AJA Device

Downloading the AJA NTV2 SDK Source

Navigate to a directory where you would like the source code to be downloaded, then perform the following to clone
the NTV2 SDK source code.

$ git clone https://github.com/nvidia-holoscan/ntv2.git
$ export NTV2=$(pwd)/ntv2

Note: These instructions use a fork of the official AJA NTV2 Repository that is maintained by NVIDIA and may
contain additional changes that are required for Holoscan SDK support. These changes will be pushed to the official AJA
NTV2 repository whenever possible with the goal to minimize or eliminate divergence between the two repositories.

Building the AJA NTV2 Drivers

The following will build the AJA NTV2 drivers with RDMA support enabled. Once built, the kernel module
(ajantv2.ko) and load/unload scripts (load_ajantv2 and unload_ajantv2) will be output to the ${NTV2}/bin di-
rectory.

$ export AJA_RDMA=1 # Or unset AJA_RDMA to disable RDMA support
$ unset AJA_IGPU # Or export AJA_IGPU=1 to run on the integrated GPU of the␣
→˓IGX Orin Devkit (L4T >= 35.4)
$ make -j --directory ${NTV2}/ajadriver/linux

6.1. AJA Video Systems 21

https://github.com/aja-video/ntv2

Holoscan SDK User Guide, Release 0.6.0

Loading the NVIDIA P2P RDMA Drivers (iGPU Only)

When RDMA support is enabled for the iGPU configuration, the nvidia-p2p kernel module must be loaded before the
AJA NTV2 drivers (Requires HoloPack 2.0 DP or JetPack 5.1.2+).

Ensure you can load it manually first:

$ sudo modprobe nvidia-p2p

Then, you can load it automatically during boot by adding it to /etc/modules:

$ echo nvidia-p2p | sudo tee -a /etc/modules

Attention: Ensure you have upgraded to JetPack 5.1.2 or newer if loading the nvidia-p2p kernel module fails, to
address symbol conflicts with the nvidia kernel module. The following error will appear in dmesg otherwise:

exports duplicate symbol nvidia_p2p_dma_map_pages

Loading the AJA NTV2 Drivers

Running any application that uses an AJA device requires the AJA kernel drivers to be loaded, even if the application
is being run from within a container. The drivers must be manually loaded every time the machine is rebooted using
the load_ajantv2 script:

$ sudo sh ${NTV2}/bin/load_ajantv2
loaded ajantv2 driver module
created node /dev/ajantv20

Note: The NTV2 environment variable must point to the NTV2 SDK path where the drivers were previ-
ously built as described in Building the AJA NTV2 Drivers.

Secure boot must be disabled in order to load unsigned module. If any errors occur while loading the
module refer to the Troubleshooting section, below.

Building and Installing the AJA NTV2 SDK

Since the AJA NTV2 SDK is already loaded into the Holoscan containers, this step is not strictly required in order to
build or run any Holoscan applications. However, this builds and installs various tools that can be useful for testing
the operation of the AJA hardware outside of Holoscan containers, and is required for the steps provided in Testing the
AJA Device.

$ sudo apt-get install -y cmake
$ mkdir ${NTV2}/cmake-build
$ cd ${NTV2}/cmake-build
$ export PATH=/usr/local/cuda/bin:${PATH}
$ cmake ..
$ make -j
$ sudo make install

22 Chapter 6. Third Party Hardware Setup

Holoscan SDK User Guide, Release 0.6.0

Testing the AJA Device

The following steps depend on tools that were built and installed by the previous step, Building and Installing the AJA
NTV2 SDK . If any errors occur, see the Troubleshooting section, below.

1. To ensure that an AJA device has been installed correctly, the ntv2enumerateboards utility can be used:

$ ntv2enumerateboards
AJA NTV2 SDK version 16.2.0 build 3 built on Wed Feb 02 21:58:01 UTC 2022
1 AJA device(s) found:
AJA device 0 is called 'KonaHDMI - 0'

This device has a deviceID of 0x10767400
This device has 0 SDI Input(s)
This device has 0 SDI Output(s)
This device has 4 HDMI Input(s)
This device has 0 HDMI Output(s)
This device has 0 Analog Input(s)
This device has 0 Analog Output(s)

47 video format(s):
1080i50, 1080i59.94, 1080i60, 720p59.94, 720p60, 1080p29.97, 1080p30,
1080p25, 1080p23.98, 1080p24, 2Kp23.98, 2Kp24, 720p50, 1080p50b,
1080p59.94b, 1080p60b, 1080p50a, 1080p59.94a, 1080p60a, 2Kp25, 525i59.94,
625i50, UHDp23.98, UHDp24, UHDp25, 4Kp23.98, 4Kp24, 4Kp25, UHDp29.97,
UHDp30, 4Kp29.97, 4Kp30, UHDp50, UHDp59.94, UHDp60, 4Kp50, 4Kp59.94,
4Kp60, 4Kp47.95, 4Kp48, 2Kp60a, 2Kp59.94a, 2Kp29.97, 2Kp30, 2Kp50a,
2Kp47.95a, 2Kp48a

2. To ensure that RDMA support has been compiled into the AJA driver and is functioning correctly, the testrdma
utility can be used:

$ testrdma -t500

test device 0 start 0 end 7 size 8388608 count 500

frames/errors 500/0

6.1.3 Using AJA Devices in Containers

Accessing an AJA device from a container requires the drivers to be loaded natively on the host (see Loading the AJA
NTV2 Drivers), then the device that is created by the load_ajantv2 script must be shared with the container using the
--device docker argument, such as –device /dev/ajantv20:/dev/ajantv20.

6.1. AJA Video Systems 23

Holoscan SDK User Guide, Release 0.6.0

6.1.4 Troubleshooting

1. Problem: The sudo sh ${NTV2}/bin/load_ajantv2 command returns an error.

Solutions:

a. Make sure the AJA card is properly installed and powered (see 2.a below)

b. Check if SecureBoot validation is disabled:

$ sudo mokutil --sb-state
SecureBoot enabled
SecureBoot validation is disabled in shim

If SecureBoot validation is enabled, disable it with the following procedure:

$ sudo mokutil --disable-validation

• Enter a temporary password and reboot the system.

• Upon reboot press any key when you see the blue screen MOK Management

• Select Change Secure Boot state

• Enter the password your selected

• Select Yes to disable Secure Book in shim-signed

• After reboot you can verify again that SecureBoot validation is disabled in shim.

2. Problem: The ntv2enumerateboards command does not find any devices.

Solutions:

a. Make sure that the AJA device is installed properly and detected by the system (see Installing the AJA
Hardware):

$ lspci
0000:00:00.0 PCI bridge: NVIDIA Corporation Device 1ad0 (rev a1)
0000:05:00.0 Multimedia video controller: AJA Video Device eb25 (rev 01)
0000:06:00.0 PCI bridge: Mellanox Technologies Device 1976
0000:07:00.0 PCI bridge: Mellanox Technologies Device 1976
0000:08:00.0 VGA compatible controller: NVIDIA Corporation Device 1e30 (rev a1)

b. Make sure that the AJA drivers are loaded properly (see Loading the AJA NTV2 Drivers):

$ lsmod
Module Size Used by
ajantv2 610066 0
nvidia_drm 54950 4
mlx5_ib 170091 0
nvidia_modeset 1250361 8 nvidia_drm
ib_core 211721 1 mlx5_ib
nvidia 34655210 315 nvidia_modeset

3. Problem: The testrdma command outputs the following error:

error - GPU buffer lock failed

Solution: The AJA drivers need to be compiled with RDMA support enabled. Follow the instructions in Building
the AJA NTV2 Drivers, making sure not to skip the export AJA_RDMA=1 when building the drivers.

24 Chapter 6. Third Party Hardware Setup

Holoscan SDK User Guide, Release 0.6.0

6.2 Emergent Vision Technologies (EVT)

Thanks to a collaboration with Emergent Vision Technologies, the Holoscan SDK now supports EVT high-speed cam-
eras.

Note: The addition of an EVT camera to the Holoscan Developer Kits is optional. The Holoscan SDK has an
application that can be run with the EVT camera, but there are other applications that can be run without EVT camera.

6.2.1 Installing EVT Hardware

The EVT cameras can be connected to Holoscan Developer Kits though Mellanox ConnectX SmartNIC, with the most
simple connection method being a single cable between a camera and the devkit. For 25 GigE cameras that use the
SFP28 interface, this can be achieved by using SFP28 cable with QSFP28 to SFP28 adaptor.

Note: The Holoscan SDK application has been tested using a SFP28 copper cable of 2M or less. Longer copper cables
or optical cables and optical modules can be used but these have not been tested as a part of this development.

Refer to the Clara AGX Developer Kit User Guide or the NVIDIA IGX Orin Developer Kit User Guide for the location
of the QSFP28 connector on the device.

For EVT camera setup, refer to Hardware Installation in EVT Camera User’s Manual. Users need to log in to find be
able to download Camera User’s Manual.

Tip: The EVT cameras require the user to buy the lens. Based on the application of camera, the lens can be bought
from any online store.

6.2.2 Installing EVT Software

The Emergent SDK needs to be installed in order to compile and run the Clara Holoscan applications with EVT camera.
The latest tested version of the Emergent SDK is eSDK 2.37.05 Linux Ubuntu 20.04.04 Kernel 5.10.65 JP
5.0 HP and can be downloaded from here. The Emergent SDK comes with headers, libraries and examples. To install
the SDK refer to the Software Installation section of EVT Camera User’s Manual. Users need to log in to find be able
to download Camera User’s Manual.

Note: The Emergent SDK depends on Rivermax SDK v1.20 and Mellanox OFED Network Drivers v5.8 which are
pre-installed by the SDK Manager on the Holoscan Developer Kits. To avoid duplicate installation of the Rivermax
SDK and the Mellanox OFED Network Drivers use the following command when installing the Emergent SDK:

sudo ./install_eSdk.sh no_mellanox

6.2. Emergent Vision Technologies (EVT) 25

https://emergentvisiontec.com/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://store.nvidia.com/en-us/networking/store/product/MCP2M00-A001E30N/NVIDIAMCP2M00A001E30NDACCableEthernet25GbESFP281m/
https://store.nvidia.com/en-us/networking/store/product/MAM1Q00A-QSA28/NVIDIAMAM1Q00AQSA28CableAdapter100Gbsto25GbsQSFP28toSFP28/
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://github.com/nvidia-holoscan/holoscan-docs/blob/main/devkits/nvidia-igx-orin/nvidia_igx_orin_user_guide.md
https://emergentvisiontec.com/resources/?tab=umg
https://www.bhphotovideo.com/c/search?Ntt=c%20mount%20lens&N=0&InitialSearch=yes&sts=ps
https://emergentvisiontec.com/resources/?tab=ss
https://emergentvisiontec.com/resources/?tab=umg

Holoscan SDK User Guide, Release 0.6.0

6.2.3 Post EVT Software Installation Steps

After installation of the software, execute the steps below to bring up the camera node on the Holoscan devkits in dGPU
mode.

1. Restart openibd to configure Mellanox device, if not already.

sudo /etc/init.d/openibd restart

2. Find out the logical name of the ethernet interface being used to connect EVT camera to Mellanox CX NIC using
below command.

sudo ibdev2netdev -v

An example of what output would look like is:

0007:03:00.0 mlx5_0 (MT4125 - MCX623106AN-CDAT) ConnectX-6 Dx EN adapter card, 100GbE,␣
→˓Dual-port QSFP56, PCIe 4.0 x16, No Crypto fw 22.33.1048 port 1 (ACTIVE) ==> eth1 (Up)
0007:03:00.1 mlx5_1 (MT4125 - MCX623106AN-CDAT) ConnectX-6 Dx EN adapter card, 100GbE,␣
→˓Dual-port QSFP56, PCIe 4.0 x16, No Crypto fw 22.33.1048 port 1 (DOWN) ==> eth2 (Down)

In above example, the camera is connected to ACTIVE port eth1.

Note:

• The logical name of the ethernet interface can be anything and does not need to be eth1 as in above example.

• if above command does not yield anything, do following and try again:

sudo /etc/init.d/openibd restart

3. Configure the NIC with IP address, if not already during the Installing EVT hardware step. The following
command uses the logical name of the ethernet interface found in step 2.

sudo ifconfig eth1 down
sudo ifconfig eth1 192.168.1.100 mtu 9000
sudo ifconfig eth1 up

6.2.4 Testing the EVT Camera

To test if the EVT camera and SDK was installed correctly, run the eCapture application with sudo privileges. First,
ensure that a valid Rivermax license file is under /opt/mellanox/rivermax/rivermax.lic, then follow the in-
structions under the eCapture section of EVT Camera User’s Manual.

26 Chapter 6. Third Party Hardware Setup

https://emergentvisiontec.com/resources/?tab=umg

Holoscan SDK User Guide, Release 0.6.0

6.2.5 Troubleshooting

1. Problem: The application fails to find the EVT camera.

Solution:

• Make sure that the MLNX ConnectX SmartNIC is configured with the correct IP address. Follow
section Post EVT Software Installation Steps

2. Problem: The application fails to open the EVT camera.

Solutions:

• Make sure that the application was run with sudo privileges.

• Make sure a valid Rivermax license file is located at /opt/mellanox/rivermax/rivermax.lic.

3. Problem: Fail to find eCapture application in the home window.

Solution:

• Open the terminal and find it under /opt/EVT/eCapture. The applications needs to be run with
sudo privileges.

4. Problem: The eCapture application fails to connect to the EVT camera with error message “GVCP ack error”.

Solutions: It could be an issue with the HR12 power connection to the camera. Disconnect the HR12
power connector from the camera and try reconnecting it.

5. Problem: The IP address of the Emergent camera is reset even after setting up with the above steps.

Solutions: Check whether the NIC settings in Ubuntu is set to “Connect automatically”. Go to Settings-
>Network->NIC for the Camera and then unselect “Connect automatically” and in the IPv6 tab, select
Disable.

6.2. Emergent Vision Technologies (EVT) 27

Holoscan SDK User Guide, Release 0.6.0

28 Chapter 6. Third Party Hardware Setup

CHAPTER

SEVEN

HOLOSCAN CORE CONCEPTS

Note: In its early days, the Holoscan SDK was tightly linked to the GXF core concepts. While the Holoscan SDK
still relies on GXF as a backend to execute applications, it now offers its own interface, including a C++ API (0.3), a
Python API (0.4), and the ability to write native operators (0.4) without requiring to wrap a GXF extension. Read the
Holoscan and GXF section for additional details.

An Application is composed of Fragments, each of which runs a graph of Operators. The implementation of that
graph is sometimes referred to as a pipeline, or workflow, which can be visualized below:

Fig. 7.1: Core concepts: Application

Fig. 7.2: Core concepts: Port

29

Holoscan SDK User Guide, Release 0.6.0

The core concepts of the Holoscan API are:

• Application: An application acquires and processes streaming data. An application is a collection of fragments
where each fragment can be allocated to execute on a physical node of a Holoscan cluster.

• Fragment: A fragment is a building block of the Application. It is a Directed Acyclic Graph (DAG) of operators.
A fragment can be assigned to a physical node of a Holoscan cluster during execution. The run-time execution
manages communication across fragments. In a Fragment, Operators (Graph Nodes) are connected to each other
by flows (Graph Edges).

• Operator: An operator is the most basic unit of work in this framework. An Operator receives streaming data
at an input port, processes it, and publishes it to one of its output ports. A Codelet in GXF would be replaced
by an Operator in the Holoscan SDK. An Operator encapsulates Receivers and Transmitters of a GXF
Entity as Input/Output Ports of the Operator.

• (Operator) Resource: Resources such as system memory or a GPU memory pool that an Operator needs to
perform its job. Resources are allocated during the initialization phase of the application. This matches the
semantics of GXF’s Memory Allocator or any other components derived from the Component class in GXF.

• Condition: A condition is a predicate that can be evaluated at runtime to determine if an operator should execute.
This matches the semantics of GXF’s Scheduling Term.

• Port: An interaction point between two operators. Operators ingest data at Input ports and publish data at
Output ports. Receiver, Transmitter, and MessageRouter in GXF would be replaced with the concept of
Input/Output Port of the Operator and the Flow (Edge) of the Application Workflow (DAG) in the Framework.

• Message: A generic data object used by operators to communicate information.

• Executor: An Executor that manages the execution of a Fragment on a physical node. The framework provides
a default Executor that uses a GXF Scheduler to execute an Application.

30 Chapter 7. Holoscan Core Concepts

CHAPTER

EIGHT

HOLOSCAN BY EXAMPLE

In this section, we demonstrate how to use the Holoscan SDK to build applications through a series of examples. The
concepts needed to build your own Holoscan applications will be covered as we go through each example.

Note: Examples source code and run instructions can be found in the examples directory on GitHub, or under /opt/
nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.1 Hello World

For our first example, we look at how to create a Hello World example using the Holoscan SDK.

In this example we’ll cover:

• how to define your application class

• how to define a one-operator workflow

• how to use a CountCondition to limit the number of times an operator is executed

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.1.1 Defining the HelloWorldApp class

For more details, see the Defining an Application Class section.

We define the HelloWorldApp class that inherits from holoscan’s Application base class. An instance of the appli-
cation is created in main. The run() method will then start the application.

31

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.6.0

C++

26 class HelloWorldApp : public holoscan::Application {
27 public:
28 void compose() override {
29 using namespace holoscan;
30

31 // Define the operators, allowing the hello operator to execute once
32 auto hello = make_operator<ops::HelloWorldOp>("hello", make_condition<CountCondition>

→˓(1));
33

34 // Define the workflow by adding operator into the graph
35 add_operator(hello);
36 }
37 };
38

39 int main(int argc, char** argv) {
40 auto app = holoscan::make_application<HelloWorldApp>();
41 app->run();
42

43 return 0;
44 }

Python

21 class HelloWorldApp(Application):
22 def compose(self):
23 # Define the operators
24 hello = HelloWorldOp(self, CountCondition(self, 1), name="hello")
25

26 # Define the one-operator workflow
27 self.add_operator(hello)
28

29 def main():
30 app = HelloWorldApp()
31 app.run()
32

33 if __name__ == "__main__":
34 main()

8.1.2 Defining the HelloWorldApp workflow

For more details, see the Application Workflows section.

When defining your application class, the primary task is to define the operators used in your application and the
interconnectivity between them to define the application workflow. The HelloWorldApp uses the simplest form of a
workflow which consists of a single operator: HelloWorldOp.

For the sake of this first example, we will ignore the details of defining a custom operator to focus on the highlighted
information below: when this operator runs (compute), it will print out Hello World! to the standard output:

32 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

C++

6 class HelloWorldOp : public Operator {
7 public:
8 HOLOSCAN_OPERATOR_FORWARD_ARGS(HelloWorldOp)
9

10 HelloWorldOp() = default;
11

12 void setup(OperatorSpec& spec) override {
13 }
14

15 void compute(InputContext& op_input, OutputContext& op_output,
16 ExecutionContext& context) override {
17 std::cout << std::endl;
18 std::cout << "Hello World!" << std::endl;
19 std::cout << std::endl;
20 }
21 };

Python

4 class HelloWorldOp(Operator):
5 """Simple hello world operator.
6

7 This operator has no ports.
8

9 On each tick, this operator prints out hello world.
10 """
11

12 def setup(self, spec: OperatorSpec):
13 pass
14

15 def compute(self, op_input, op_output, context):
16 print("")
17 print("Hello World!")
18 print("")

Defining the application workflow occurs within the application’s compose() method. In there, we first create an
instance of the HelloWorldOp operator defined above, then add it to our simple workflow using add_operator().

C++

26 class HelloWorldApp : public holoscan::Application {
27 public:
28 void compose() override {
29 using namespace holoscan;
30

31 // Define the operators, allowing the hello operator to execute once
32 auto hello = make_operator<ops::HelloWorldOp>("hello", make_condition<CountCondition>

→˓(1));
(continues on next page)

8.1. Hello World 33

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

33

34 // Define the workflow by adding operator into the graph
35 add_operator(hello);
36 }
37 };

Python

21 class HelloWorldApp(Application):
22 def compose(self):
23 # Define the operators
24 hello = HelloWorldOp(self, CountCondition(self, 1), name="hello")
25

26 # Define the one-operator workflow
27 self.add_operator(hello)

Holoscan applications deal with streaming data, so an operator’s compute() method will be called continuously until
some situation arises that causes the operator to stop. For our Hello World example, we want to execute the operator
only once. We can impose such a condition by passing a CountCondition object as an argument to the operator’s
constructor.

For more details, see the Configuring operator conditions section.

8.1.3 Running the Application

Running the application should give you the following output in your terminal:

Hello World!

Congratulations! You have successfully run your first Holoscan SDK application!

8.2 Ping Simple

Most applications will require more than one operator. In this example, we will create two operators where one operator
will produce and send data while the other operator will receive and print the data. The code in this example makes
use of the built-in PingTxOp and PingRxOp operators that are defined in the holoscan::ops namespace.

In this example we’ll cover:

• how to use built-in operators

• how to use add_flow() to connect operators together

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

34 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.6.0

8.2.1 Operators and Workflow

Here is a example workflow involving two operators that are connected linearly.

out...in

PingTxOp

out(out) : int

PingRxOp

[in]in : int

Fig. 8.1: A linear workflow

In this example, the source operator PingTxOp produces integers from 1 to 10 and passes it to the sink operator
PingRxOp which prints the integers to standard output.

8.2.2 Connecting Operators

We can connect two operators by calling add_flow() (C++/Python) in the application’s compose() method.

The add_flow() method (C++/Python) takes the source operator, the destination operator, and the optional port name
pairs. The port name pair is used to connect the output port of the source operator to the input port of the destination
operator. The first element of the pair is the output port name of the upstream operator and the second element is the
input port name of the downstream operator. An empty port name (“”) can be used for specifying a port name if the
operator has only one input/output port. If there is only one output port in the upstream operator and only one input
port in the downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose() method for our example. Note that
when an operator appears in an add_flow() statement, it doesn’t need to be added into the workflow separately using
add_operator().

C++

1 #include <holoscan/holoscan.hpp>
2 #include <holoscan/operators/ping_tx/ping_tx.hpp>
3 #include <holoscan/operators/ping_rx/ping_rx.hpp>
4

5 class MyPingApp : public holoscan::Application {
6 public:
7 void compose() override {
8 using namespace holoscan;
9 // Create the tx and rx operators

10 auto tx = make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10));
11 auto rx = make_operator<ops::PingRxOp>("rx");
12

13 // Connect the operators into the workflow: tx -> rx
14 add_flow(tx, rx);
15 }
16 };
17

18 int main(int argc, char** argv) {
19 auto app = holoscan::make_application<MyPingApp>();
20 app->run();

(continues on next page)

8.2. Ping Simple 35

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

21

22 return 0;
23 }

• The header files that define PingTxOp and PingRxOp are included on lines 2 and 3 respectively.

• We create an instance of the PingTxOp using the make_operator() function (line 10) with the name “tx” and
constrain it’s compute() method to execute 10 times.

• We create an instance of the PingRxOp using the make_operator() function (line 11) with the name “rx”.

• The tx and rx operators are connected using add_flow() (line 14)

Python

1 from holoscan.conditions import CountCondition
2 from holoscan.core import Application
3 from holoscan.operators import PingRxOp, PingTxOp
4

5 class MyPingApp(Application):
6 def compose(self):
7 # Create the tx and rx operators
8 tx = PingTxOp(self, CountCondition(self, 10), name="tx")
9 rx = PingRxOp(self, name="rx")

10

11 # Connect the operators into the workflow: tx -> rx
12 self.add_flow(tx, rx)
13

14

15 if __name__ == "__main__":
16 app = MyPingApp()
17 app.run()

• The built-in holoscan operators, PingRxOp and PingTxOp, are imported on line 3.

• We create an instance of the PingTxOp operator with the name “tx” and constrain it’s compute() method to
execute 10 times (line 8).

• We create an instance of the PingRxOp operator with the name “rx” (line 9).

• The tx and rx operators are connected using add_flow() which defines this application’s workflow (line 12).

8.2.3 Running the Application

Running the application should give you the following output in your terminal:

Rx message value: 1
Rx message value: 2
Rx message value: 3
Rx message value: 4
Rx message value: 5
Rx message value: 6
Rx message value: 7

(continues on next page)

36 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

Rx message value: 8
Rx message value: 9
Rx message value: 10

8.3 Ping Custom Op

In this section, we will modify the previous ping_simple example to add a custom operator into the workflow. We’ve
already seen a custom operator defined in the hello_world example but skipped over some of the details.

In this example we will cover:

• the details of creating your own custom operator class

• how to add input and output ports to your operator

• how to add parameters to your operator

• the data type of the messages being passed between operators

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.3.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

out...in out...in

PingTxOp

out(out) : int

PingMxOp

[in]in: int

out(out) : int

PingRxOp

[in]in: int

Fig. 8.2: A linear workflow with new custom operator

Compared to the previous example, we are adding a new PingMxOp operator between the PingTxOp and PingRxOp
operators. This new operator takes as input an integer, multiplies it by a constant factor, and then sends the new value
to PingRxOp. You can think of this custom operator as doing some data processing on an input stream before sending
the result to downstream operators.

8.3. Ping Custom Op 37

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.6.0

8.3.2 Configuring Operator Input and Output Ports

Our custom operator needs 1 input and 1 output port and can be added by calling spec.input() and spec.output()
methods within the operator’s setup()method. This requires providing the data type and name of the port as arguments
(for C++ API), or just the port name (for Python API). We will see an example of this in the code snippet below. For
more details, see Specifying operator inputs and outputs (C++) or Specifying operator inputs and outputs (Python).

8.3.3 Configuring Operator Parameters

Operators can be made more reusable by customizing their parameters during initialization. The custom parameters
can be provided either directly as arguments or accessed from the application’s YAML configuration file. We will
show how to use the former in this example to customize the “multiplier” factor of our PingMxOp custom operator.
Configuring operators using a YAML configuration file will be shown in a subsequent example. For more details, see
Configuring operator parameters.

The code snippet below shows how to define the PingMxOp class.

C++

1 #include <holoscan/holoscan.hpp>
2 #include <holoscan/operators/ping_tx/ping_tx.hpp>
3 #include <holoscan/operators/ping_rx/ping_rx.hpp>
4

5 namespace holoscan::ops {
6

7 class PingMxOp : public Operator {
8 public:
9 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingMxOp)

10

11 PingMxOp() = default;
12

13 void setup(OperatorSpec& spec) override {
14 spec.input<int>("in");
15 spec.output<int>("out");
16 spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value

→˓", 2);
17 }
18

19 void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&)␣
→˓override {

20 auto value = op_input.receive<int>("in");
21

22 std::cout << "Middle message value: " << value << std::endl;
23

24 // Multiply the value by the multiplier parameter
25 value *= multiplier_;
26

27 op_output.emit(value);
28 };
29

30 private:
31 Parameter<int> multiplier_;

(continues on next page)

38 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

32 };
33

34 } // namespace holoscan::ops

• The PingMxOp class inherits from the Operator base class (line 7).

• The HOLOSCAN_OPERATOR_FORWARD_ARGS macro (line 9) is syntactic sugar to help forward an operator’s con-
structor arguments to the Operator base class, and is a convenient shorthand to avoid having to manually define
constructors for your operator with the necessary parameters.

• Input/output ports with the names “in”/”out” are added to the operator spec on lines 14 and 15 respectively. The
port type of both ports are int as indicated by the template argument <int>.

• We add a “multiplier” parameter to the operator spec (line 16) with a default value of 2. This parameter is tied
to the private “multiplier_” data member.

• In the compute() method, we receive the integer data from the operator’s “in” port (line 20), print it’s value,
multiply it’s value by the multiplicative factor, and send the new value downstream (line 27).

• On line 20, note that the data being passed between the operators has the type int.

• The call to op_output.emit(value) on line 27 is equivalent to op_output.emit(value, "out") since this
operator has only 1 output port. If the operator has more than 1 output port, then the port name is required.

Python

1 from holoscan.conditions import CountCondition
2 from holoscan.core import Application, Operator, OperatorSpec
3 from holoscan.operators import PingRxOp, PingTxOp
4

5 class PingMxOp(Operator):
6 """Example of an operator modifying data.
7

8 This operator has 1 input and 1 output port:
9 input: "in"

10 output: "out"
11

12 The data from the input is multiplied by the "multiplier" parameter
13

14 """
15

16 def setup(self, spec: OperatorSpec):
17 spec.input("in")
18 spec.output("out")
19 spec.param("multiplier", 2)
20

21 def compute(self, op_input, op_output, context):
22 value = op_input.receive("in")
23 print(f"Middle message value: {value}")
24

25 # Multiply the values by the multiplier parameter
26 value *= self.multiplier
27

28 op_output.emit(value, "out")

8.3. Ping Custom Op 39

Holoscan SDK User Guide, Release 0.6.0

• The PingMxOp class inherits from the Operator base class (line 5).

• Input/output ports with the names “in”/”out” are added to the operator spec on lines 17 and 18 respectively.

• We add a “multiplier” parameter to the operator spec with a default value of 2 (line 19).

• In the compute() method, we receive the integer data from the operator’s “in” port (line 22), print it’s value,
multiply it’s value by the multiplicative factor, and send the new value downstream (line 28).

Now that the custom operator has been defined, we create the application, operators, and define the workflow.

C++

35 class MyPingApp : public holoscan::Application {
36 public:
37 void compose() override {
38 using namespace holoscan;
39 // Define the tx, mx, rx operators, allowing tx operator to execute 10 times
40 auto tx = make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10));
41 auto mx = make_operator<ops::PingMxOp>("mx", Arg("multiplier", 3));
42 auto rx = make_operator<ops::PingRxOp>("rx");
43

44 // Define the workflow: tx -> mx -> rx
45 add_flow(tx, mx);
46 add_flow(mx, rx);
47 }
48 };
49

50 int main(int argc, char** argv) {
51 auto app = holoscan::make_application<MyPingApp>();
52 app->run();
53

54 return 0;
55 }

• The tx, mx, and rx operators are created in the compose() method on lines 40-42.

• The custom mx operator is created in exactly the same way with make_operator() (line 41) as the built-in
operators, and configured with a “multiplier” parameter initialized to 3 which overrides the parameter’s default
value of 2 (line 16).

• The workflow is defined by connecting tx to mx, and mx to rx using add_flow() on lines 45-46.

Python

29 class MyPingApp(Application):
30 def compose(self):
31 # Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
32 tx = PingTxOp(self, CountCondition(self, 10), name="tx")
33 mx = PingMxOp(self, name="mx", multiplier=3)
34 rx = PingRxOp(self, name="rx")
35

36 # Define the workflow: tx -> mx -> rx
37 self.add_flow(tx, mx)

(continues on next page)

40 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

38 self.add_flow(mx, rx)
39

40

41 if __name__ == "__main__":
42 app = MyPingApp()
43 app.run()

• The tx, mx, and rx operators are created in the compose() method on lines 32-34.

• The custom mx operator is created in exactly the same way as the built-in operators (line 33), and configured
with a “multiplier” parameter initialized to 3 which overrides the parameter’s default value of 2 (line 19).

• The workflow is defined by connecting tx to mx, and mx to rx using add_flow() on lines 37-38.

8.3.4 Message Data Types

For the C++ API, the messages that are passed between the operators are the objects of the data type at the inputs and
outputs, so the value variable from lines 20 and 25 of the example above has the type int. For the Python API, the
messages passed between operators can be arbitrary Python objects so no special consideration is needed since it is not
restricted to the stricter parameter typing used for C++ API operators.

Let’s look at the code snippet for the built-in PingTxOp class and see if this helps to make it clearer.

C++

1 #include "holoscan/operators/ping_tx/ping_tx.hpp"
2

3 namespace holoscan::ops {
4

5 void PingTxOp::setup(OperatorSpec& spec) {
6 spec.output<int>("out");
7 }
8

9 void PingTxOp::compute(InputContext&, OutputContext& op_output, ExecutionContext&) {
10 auto value = index_++;
11 op_output.emit(value, "out");
12 }
13

14 } // namespace holoscan::ops

• The “out” port of the PingTxOp has the type int (line 6).

• An integer is published to the “out” port when calling emit() (line 11).

• The message received by the downstream PingMxOp operator when it calls op_input.receive<int>() has
the type int.

8.3. Ping Custom Op 41

Holoscan SDK User Guide, Release 0.6.0

Python

1 class PingTxOp(Operator):
2 """Simple transmitter operator.
3

4 This operator has a single output port:
5 output: "out"
6

7 On each tick, it transmits an integer to the "out" port.
8 """
9

10 def setup(self, spec: OperatorSpec):
11 spec.output("out")
12

13 def compute(self, op_input, op_output, context):
14 op_output.emit(self.index, "out")
15 self.index += 1

• No special consideration is necessary for the Python version, we simply call emit() and pass the integer object
(line 14).

Attention: For advance use cases, e.g., when writing C++ applications where you need interoperability between
C++ native and GXF operators you will need to use the holoscan::TensorMap type instead. See Interoperability
between GXF and native C++ operators for more details. If you are writing a Python application which needs a
mixture of Python wrapped C++ operators and native Python operators, see Interoperability between wrapped and
native Python operators

8.3.5 Running the Application

Running the application should give you the following output in your terminal:

Middle message value: 1
Rx message value: 3
Middle message value: 2
Rx message value: 6
Middle message value: 3
Rx message value: 9
Middle message value: 4
Rx message value: 12
Middle message value: 5
Rx message value: 15
Middle message value: 6
Rx message value: 18
Middle message value: 7
Rx message value: 21
Middle message value: 8
Rx message value: 24
Middle message value: 9
Rx message value: 27
Middle message value: 10
Rx message value: 30

42 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

8.4 Ping Multi Port

In this section, we look at how to create an application with a more complex workflow where operators may have
multiple input/output ports that send/receive a user-defined data type.

In this example we will cover:

• how to send/receive messages with a custom data type

• how to add a port that can receive any number of inputs

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.4.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

out1...in1

out2...in2

out1...receivers

out2...receivers

PingTxOp

out1(out) : ValueData

out2(out) : ValueData

PingMxOp

[in]in1 : ValueData

[in]in2 : ValueData

out1(out) : ValueData

out2(out) : ValueData

PingRxOp

[in]receivers : ValueData

Fig. 8.3: A workflow with multiple inputs and outputs

In this example, PingTxOp sends a stream of odd integers to the out1 port, and even integers to the out2 port.
PingMxOp receives these values using in1 and in2 ports, multiplies them by a constant factor, then forwards them
to a single port - receivers - on PingRxOp.

8.4.2 User Defined Data Types

In the previous ping examples, the port types for our operators were integers, but the Holoscan SDK can send any
arbitrary data type. In this example, we’ll see how to configure operators for our user-defined ValueData class.

C++

1 #include "holoscan/holoscan.hpp"
2

3 class ValueData {
4 public:
5 ValueData() = default;
6 explicit ValueData(int value) : data_(value) {
7 HOLOSCAN_LOG_TRACE("ValueData::ValueData(): {}", data_);
8 }
9 ~ValueData() { HOLOSCAN_LOG_TRACE("ValueData::~ValueData(): {}", data_); }

10

11 void data(int value) { data_ = value; }
(continues on next page)

8.4. Ping Multi Port 43

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

12

13 int data() const { return data_; }
14

15 private:
16 int data_;
17 };

The ValueData class wraps a simple integer (line 6, 16), but could have been arbitrarily complex.

Note: The HOLOSCAN_LOG_<LEVEL>() macros can be used for logging with fmtlib syntax (lines 7, 9 above) as
demonstrated across this example. See the Logging section for more details.

Python

1 from holoscan.conditions import CountCondition
2 from holoscan.core import Application, Operator, OperatorSpec
3

4 class ValueData:
5 """Example of a custom Python class"""
6

7 def __init__(self, value):
8 self.data = value
9

10 def __repr__(self):
11 return f"ValueData({self.data})"
12

13 def __eq__(self, other):
14 return self.data == other.data
15

16 def __hash__(self):
17 return hash(self.data)

The ValueData class is a simple wrapper, but could have been arbitrarily complex.

44 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

8.4.3 Defining an Explicit Number of Inputs and Outputs

After defining our custom ValueData class, we configure our operators’ ports to send/receive messages of this type,
similarly to the previous example.

This is the first operator - PingTxOp - sending ValueData objects on two ports, out1 and out2:

C++

18 namespace holoscan::ops {
19

20 class PingTxOp : public Operator {
21 public:
22 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingTxOp)
23

24 PingTxOp() = default;
25

26 void setup(OperatorSpec& spec) override {
27 spec.output<std::shared_ptr<ValueData>>("out1");
28 spec.output<std::shared_ptr<ValueData>>("out2");
29 }
30

31 void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
32 auto value1 = std::make_shared<ValueData>(index_++);
33 op_output.emit(value1, "out1");
34

35 auto value2 = std::make_shared<ValueData>(index_++);
36 op_output.emit(value2, "out2");
37 };
38 int index_ = 1;
39 };

• We configure the output ports with the ValueData type on lines 27 and 28 using spec.
output<std::shared_ptr<ValueData>>(). Therefore, the data type for the output ports is an object
to a shared pointer to a ValueData object.

• The values are then sent out using op_output.emit() on lines 33 and 36. The port name is required since
there is more than one port on this operator.

Note: Data types of the output ports are shared pointers (std::shared_ptr), hence the call to
std::make_shared<ValueData>(...) on lines 32 and 35.

Python

19 class PingTxOp(Operator):
20 """Simple transmitter operator.
21

22 This operator has:
23 outputs: "out1", "out2"
24

25 On each tick, it transmits a `ValueData` object at each port. The
(continues on next page)

8.4. Ping Multi Port 45

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

26 transmitted values are even on port1 and odd on port2 and increment with
27 each call to compute.
28 """
29

30 def __init__(self, fragment, *args, **kwargs):
31 self.index = 1
32 super().__init__(fragment, *args, **kwargs)
33

34 def setup(self, spec: OperatorSpec):
35 spec.output("out1")
36 spec.output("out2")
37

38 def compute(self, op_input, op_output, context):
39 value1 = ValueData(self.index)
40 self.index += 1
41 op_output.emit(value1, "out1")
42

43 value2 = ValueData(self.index)
44 self.index += 1
45 op_output.emit(value2, "out2")

• We configure the output ports on lines 35 and 36 using spec.output(). There is no need to reference the type
(ValueData) in Python.

• The values are then sent out using op_output.emit() on lines 41 and 45.

We then configure the middle operator - PingMxOp - to receive that data on ports in1 and in2:

C++

40 class PingMxOp : public Operator {
41 public:
42 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingMxOp)
43

44 PingMxOp() = default;
45

46 void setup(OperatorSpec& spec) override {
47 spec.input<std::shared_ptr<ValueData>>("in1");
48 spec.input<std::shared_ptr<ValueData>>("in2");
49 spec.output<std::shared_ptr<ValueData>>("out1");
50 spec.output<std::shared_ptr<ValueData>>("out2");
51 spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value

→˓", 2);
52 }
53

54 void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&)␣
→˓override {

55 auto value1 = op_input.receive<std::shared_ptr<ValueData>>("in1").value();
56 auto value2 = op_input.receive<std::shared_ptr<ValueData>>("in2").value();
57

58 HOLOSCAN_LOG_INFO("Middle message received (count: {})", count_++);
59

(continues on next page)

46 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

60 HOLOSCAN_LOG_INFO("Middle message value1: {}", value1->data());
61 HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data());
62

63 // Multiply the values by the multiplier parameter
64 value1->data(value1->data() * multiplier_);
65 value2->data(value2->data() * multiplier_);
66

67 op_output.emit(value1, "out1");
68 op_output.emit(value2, "out2");
69 };
70

71 private:
72 int count_ = 1;
73 Parameter<int> multiplier_;
74 };

• We configure the input ports with the std::shared_ptr<ValueData> type on lines 47 and 48 using spec.
input<std::shared_ptr<ValueData>>().

• The values are received using op_input.receive() on lines 55 and 56 using the port names. The received
values are of type std::shared_ptr<ValueData> as mentioned in the templated receive() method.

Python

46 class PingMxOp(Operator):
47 """Example of an operator modifying data.
48

49 This operator has:
50 inputs: "in1", "in2"
51 outputs: "out1", "out2"
52

53 The data from each input is multiplied by a user-defined value.
54 """
55

56 def __init__(self, fragment, *args, **kwargs):
57 self.count = 1
58 super().__init__(fragment, *args, **kwargs)
59

60 def setup(self, spec: OperatorSpec):
61 spec.input("in1")
62 spec.input("in2")
63 spec.output("out1")
64 spec.output("out2")
65 spec.param("multiplier", 2)
66

67 def compute(self, op_input, op_output, context):
68 value1 = op_input.receive("in1")
69 value2 = op_input.receive("in2")
70 print(f"Middle message received (count: {self.count})")
71 self.count += 1
72

(continues on next page)

8.4. Ping Multi Port 47

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

73 print(f"Middle message value1: {value1.data}")
74 print(f"Middle message value2: {value2.data}")
75

76 # Multiply the values by the multiplier parameter
77 value1.data *= self.multiplier
78 value2.data *= self.multiplier
79

80 op_output.emit(value1, "out1")
81 op_output.emit(value2, "out2")

Sending messages of arbitrary data types is pretty straightforward in Python. The code to define the operator input
ports (lines 61-62), and to receive them (lines 68, 69) did not change when we went from passing int to ValueData
objects.

PingMxOp processes the data, then sends it out on two ports, similarly to what is done by PingTxOp above.

8.4.4 Receiving Any Number of Inputs

In this workflow, PingRxOp has a single input port - receivers - that is connected to two upstream ports from
PingMxOp. When an input port needs to connect to multiple upstream ports, we define it with spec.param() instead
of spec.input(). The inputs are then stored in a vector, following the order they were added with add_flow().

C++

75 class PingRxOp : public Operator {
76 public:
77 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingRxOp)
78

79 PingRxOp() = default;
80

81 void setup(OperatorSpec& spec) override {
82 spec.param(receivers_, "receivers", "Input Receivers", "List of input receivers.", {}

→˓);
83 }
84

85 void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
86 auto value_vector =
87 op_input.receive<std::vector<std::shared_ptr<ValueData>>>("receivers").value();
88

89 HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
→˓vector.size());

90

91 HOLOSCAN_LOG_INFO("Rx message value1: {}", value_vector[0]->data());
92 HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data());
93 };
94

95 private:
96 Parameter<std::vector<IOSpec*>> receivers_;
97 int count_ = 1;
98 };

(continues on next page)

48 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

99

100 } // namespace holoscan::ops

• In the operator’s setup() method, we define a parameter receivers (line 82) that is tied to the private data
member receivers_ (line 96) of type Parameter<std::vector<IOSpec*>>.

• The values are retrieved using op_input.receive<std::vector<std::shared_ptr<ValueData>>>(...
).

• value_vector’s type is std::vector<std::shared_ptr<ValueData>> (lines 86-87).

Python

82 class PingRxOp(Operator):
83 """Simple receiver operator.
84

85 This operator has:
86 input: "receivers"
87

88 This is an example of a native operator that can dynamically have any
89 number of inputs connected to is "receivers" port.
90 """
91

92 def __init__(self, fragment, *args, **kwargs):
93 self.count = 1
94 super().__init__(fragment, *args, **kwargs)
95

96 def setup(self, spec: OperatorSpec):
97 spec.param("receivers", kind="receivers")
98

99 def compute(self, op_input, op_output, context):
100 values = op_input.receive("receivers")
101 print(f"Rx message received (count: {self.count}, size: {len(values)})")
102 self.count += 1
103 print(f"Rx message value1: {values[0].data}")
104 print(f"Rx message value2: {values[1].data}")

• In Python, a port that can be connected to multiple upstream ports is created by defining a parameter and setting
the argument kind="receivers" (line 97).

• The call to receive() returns a tuple of ValueData objects (line 100).

The rest of the code creates the application, operators, and defines the workflow:

8.4. Ping Multi Port 49

Holoscan SDK User Guide, Release 0.6.0

C++

100 class MyPingApp : public holoscan::Application {
101 public:
102 void compose() override {
103 using namespace holoscan;
104

105 // Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
106 auto tx = make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10));
107 auto mx = make_operator<ops::PingMxOp>("mx", Arg("multiplier", 3));
108 auto rx = make_operator<ops::PingRxOp>("rx");
109

110 // Define the workflow
111 add_flow(tx, mx, {{"out1", "in1"}, {"out2", "in2"}});
112 add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}});
113 }
114 };
115

116 int main(int argc, char** argv) {
117 auto app = holoscan::make_application<MyPingApp>();
118 app->run();
119

120 return 0;
121 }

Python

105 class MyPingApp(Application):
106 def compose(self):
107 # Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
108 tx = PingTxOp(self, CountCondition(self, 10), name="tx")
109 mx = PingMxOp(self, name="mx", multiplier=3)
110 rx = PingRxOp(self, name="rx")
111

112 # Define the workflow
113 self.add_flow(tx, mx, {("out1", "in1"), ("out2", "in2")})
114 self.add_flow(mx, rx, {("out1", "receivers"), ("out2", "receivers")})
115

116 if __name__ == "__main__":
117 app = MyPingApp()
118 app.run()

• The operators tx, mx, and rx are created in the application’s compose() similarly to previous examples.

• Since the operators in this example have multiple input/output ports, we need to specify the third, port name pair
argument when calling add_flow():

– tx/out1 is connected to mx/in1, and tx/out2 is connected to mx/in2.

– mx/out1 and mx/out2 are both connected to rx/receivers.

50 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

8.4.5 Running the Application

Running the application should give you output similar to the following in your terminal.

[info] [gxf_executor.cpp:222] Creating context
[info] [gxf_executor.cpp:1531] Loading extensions from configs...
[info] [gxf_executor.cpp:1673] Activating Graph...
[info] [gxf_executor.cpp:1703] Running Graph...
[info] [gxf_executor.cpp:1705] Waiting for completion...
[info] [gxf_executor.cpp:1706] Graph execution waiting. Fragment:
[info] [greedy_scheduler.cpp:195] Scheduling 3 entities
[info] [ping_multi_port.cpp:80] Middle message received (count: 1)
[info] [ping_multi_port.cpp:82] Middle message value1: 1
[info] [ping_multi_port.cpp:83] Middle message value2: 2
[info] [ping_multi_port.cpp:112] Rx message received (count: 1, size: 2)
[info] [ping_multi_port.cpp:114] Rx message value1: 3
[info] [ping_multi_port.cpp:115] Rx message value2: 6
[info] [ping_multi_port.cpp:80] Middle message received (count: 2)
[info] [ping_multi_port.cpp:82] Middle message value1: 3
[info] [ping_multi_port.cpp:83] Middle message value2: 4
[info] [ping_multi_port.cpp:112] Rx message received (count: 2, size: 2)
[info] [ping_multi_port.cpp:114] Rx message value1: 9
[info] [ping_multi_port.cpp:115] Rx message value2: 12
...
[info] [ping_multi_port.cpp:114] Rx message value1: 51
[info] [ping_multi_port.cpp:115] Rx message value2: 54
[info] [ping_multi_port.cpp:80] Middle message received (count: 10)
[info] [ping_multi_port.cpp:82] Middle message value1: 19
[info] [ping_multi_port.cpp:83] Middle message value2: 20
[info] [ping_multi_port.cpp:112] Rx message received (count: 10, size: 2)
[info] [ping_multi_port.cpp:114] Rx message value1: 57
[info] [ping_multi_port.cpp:115] Rx message value2: 60
[info] [greedy_scheduler.cpp:374] Scheduler stopped: Some entities are waiting for␣
→˓execution, but there are no periodic or async entities to get out of the deadlock.
[info] [greedy_scheduler.cpp:403] Scheduler finished.
[info] [gxf_executor.cpp:1714] Graph execution deactivating. Fragment:
[info] [gxf_executor.cpp:1715] Deactivating Graph...
[info] [gxf_executor.cpp:1718] Graph execution finished. Fragment:
[info] [gxf_executor.cpp:241] Destroying context

Note: Depending on your log level you may see more or fewer messages. The output above was generated using the
default value of INFO.
Refer to the Logging section for more details on how to set the log level.

8.4. Ping Multi Port 51

Holoscan SDK User Guide, Release 0.6.0

8.5 Video Replayer

So far we have been working with simple operators to demonstrate Holoscan SDK concepts. In this example, we look
at two built-in Holoscan operators that have many practical applications.

In this example we’ll cover:

• how to load a video file from disk using VideoStreamReplayerOp operator

• how to display video using HolovizOp operator

• how to configure your operator’s parameters using a YAML configuration file

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.5.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

output...receivers

VideoStreamReplayerOp

output(out) : Tensor

HolovizOp

[in]receivers : Tensor

Fig. 8.4: Workflow to load and display video from a file

We connect the “output” port of the replayer operator to the “receivers” port of the Holoviz operator.

8.5.2 Video Stream Replayer Operator

The built-in video stream replayer operator can be used to replay a video stream that has been encoded as gxf entities.
You can use the convert_video_to_gxf_entities.py script to encode a video file as gxf entities for use by this operator.

This operator processes the encoded file sequentially and supports realtime, faster than realtime, or slower than realtime
playback of prerecorded data. The input data can optionally be repeated to loop forever or only for a specified count.
For more details, see operators-video-stream-replayer.

We will use the replayer to read gxf entities from disk and send the frames downstream to the Holoviz operator.

8.5.3 Holoviz Operator

The built-in Holoviz operator provides the functionality to composite real time streams of frames with multiple different
other layers like segmentation mask layers, geometry layers and GUI layers.

We will use Holoviz to display frames that have been sent by the replayer operator to it’s “receivers” port which can
receive any number of inputs. In more intricate workflows, this port can receive multiple streams of input data where,
for example, one stream is the original video data while other streams detect objects in the video to create bounding
boxes and/or text overlays.

52 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy

Holoscan SDK User Guide, Release 0.6.0

8.5.4 Application Configuration File (YAML)

The SDK supports reading an optional YAML configuration file and can be used to customize the application’s work-
flow and operators. For more complex workflows, it may be helpful to use the application configuration file to help
separate operator parameter settings from your code. See Configuring an Application for additional details.

Tip: For C++ applications, the configuration file can be a nice way to set the behavior of the application at runtime
without having to recompile the code.

This example uses the following configuration file to configure the parameters for the replayer and Holoviz operators.
The full list of parameters can be found at operators-video-stream-replayer and operators-holoviz.

%YAML 1.2
replayer:
directory: "../data/endoscopy/video" # Path to gxf entity video data
basename: "surgical_video" # Look for <basename>.gxf_{entities|index}
frame_rate: 0 # Frame rate to replay. (default: 0 follow frame rate in␣

→˓timestamps)
repeat: true # Loop video? (default: false)
realtime: true # Play in realtime, based on frame_rate/timestamps (default:␣

→˓true)
count: 0 # Number of frames to read (default: 0 for no frame count␣

→˓restriction)

holoviz:
width: 854 # width of window size
height: 480 # height of window size
tensors:
- name: "" # name of tensor containing input data to display
type: color # input type e.g., color, triangles, text, depth_map
opacity: 1.0 # layer opacity
priority: 0 # determines render order, higher priority layers are rendered on␣

→˓top

The code below shows our video_replayer example. Operator parameters are configured from a configuration file
using from_config() (C++) and self.**kwargs() (Python).

C++

1 #include <holoscan/holoscan.hpp>
2 #include <holoscan/operators/video_stream_replayer/video_stream_replayer.hpp>
3 #include <holoscan/operators/holoviz/holoviz.hpp>
4

5 class VideoReplayerApp : public holoscan::Application {
6 public:
7 void compose() override {
8 using namespace holoscan;
9

10 // Define the replayer and holoviz operators and configure using yaml configuration
11 auto replayer = make_operator<ops::VideoStreamReplayerOp>("replayer", from_config(

→˓"replayer"));
(continues on next page)

8.5. Video Replayer 53

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

12 auto visualizer = make_operator<ops::HolovizOp>("holoviz", from_config("holoviz"));
13

14 // Define the workflow: replayer -> holoviz
15 add_flow(replayer, visualizer, {{"output", "receivers"}});
16 }
17 };
18

19 int main(int argc, char** argv) {
20 // Get the yaml configuration file
21 auto config_path = std::filesystem::canonical(argv[0]).parent_path();
22 config_path /= std::filesystem::path("video_replayer.yaml");
23 if (argc >= 2) {
24 config_path = argv[1];
25 }
26

27 auto app = holoscan::make_application<VideoReplayerApp>();
28 app->config(config_path);
29 app->run();
30

31 return 0;
32 }

• The built-in VideoStreamReplayerOp and HolovizOp operators are included from lines 1 and 2 respectively.

• We create an instance of VideoStreamReplayerOp named “replayer” with parameters initialized from the
YAML configuration file using the call to from_config() (line 11).

• We create an instance of HolovizOp named “holoviz” with parameters initialized from the YAML configuration
file using the call to from_config() (line 12).

• The “output” port of “replayer” operator is connected to the “receivers” port of the “holoviz” operator and defines
the application workflow (line 34).

• The application’s YAML configuration file contains the parameters for our operators, and is loaded on line 28.
If no argument is passed to the executable, the application looks for a file with the name “video_replayer.yaml”
in the same directory as the executable (lines 21-22), otherwise it treats the argument as the path to the app’s
YAML configuration file (lines 23-25).

Python

1 import os
2 import sys
3

4 from holoscan.core import Application
5 from holoscan.operators import HolovizOp, VideoStreamReplayerOp
6

7 sample_data_path = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")
8

9

10 class VideoReplayerApp(Application):
11 """Example of an application that uses the operators defined above.
12

13 This application has the following operators:
(continues on next page)

54 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

14

15 - VideoStreamReplayerOp
16 - HolovizOp
17

18 The VideoStreamReplayerOp reads a video file and sends the frames to the HolovizOp.
19 The HolovizOp displays the frames.
20 """
21

22 def compose(self):
23 video_dir = os.path.join(sample_data_path, "endoscopy", "video")
24 if not os.path.exists(video_dir):
25 raise ValueError(f"Could not find video data: {video_dir=}")
26

27 # Define the replayer and holoviz operators
28 replayer = VideoStreamReplayerOp(
29 self, name="replayer", directory=video_dir, **self.kwargs("replayer")
30)
31 visualizer = HolovizOp(self, name="holoviz", **self.kwargs("holoviz"))
32

33 # Define the workflow
34 self.add_flow(replayer, visualizer, {("output", "receivers")})
35

36

37 if __name__ == "__main__":
38

39 config_file = os.path.join(os.path.dirname(__file__), "video_replayer.yaml")
40

41 if len(sys.argv) >= 2:
42 config_file = sys.argv[1]
43

44 app = VideoReplayerApp()
45 app.config(config_file)
46 app.run()

• The built-in VideoStreamReplayerOp and HolovizOp operators are imported on line 5.

• We create an instance of VideoStreamReplayerOp named “replayer” with parameters initialized from the
YAML configuration file using **self.kwargs() (lines 28-30).

• For the python script, the path to the gxf entity video data is not set in the application configuration file but
determined by the code on lines 7 and 23 and is passed directly as the “directory” argument (line 29). This
allows more flexibility for the user to run the script from any directory by setting the HOLOSCAN_INPUT_PATH
directory (line 7).

• We create an instance of HolovizOp named “holoviz” with parameters initialized from the YAML configuration
file using **self.kwargs() (line 31).

• The “output” port of “replayer” operator is connected to the “receivers” port of the “holoviz” operator and defines
the application workflow (line 34).

• The application’s YAML configuration file contains the parameters for our operators, and is loaded on line 45. If
no argument is passed to the python script, the application looks for a file with the name “video_replayer.yaml”
in the same directory as the script (line 39), otherwise it treats the argument as the path to the app’s YAML
configuration file (lines 41-42).

8.5. Video Replayer 55

Holoscan SDK User Guide, Release 0.6.0

8.5.5 Running the Application

Running the application should bring up video playback of the surgical video referenced in the YAML file.

8.6 Video Replayer (Distributed)

In this example, we extend the previous video replayer application into a multi-node distributed application. A dis-
tributed application is made up of multiple Fragments (C++/Python), each of which may run on its own node.

In the distributed case we will:

• create one fragment that loads a video file from disk using VideoStreamReplayerOp operator

• create a second fragment that will display the video using the HolovizOp operator

These two fragments will be combined into a distributed application such that the display of the video frames could
occur on a separate node from the node where the data is read.

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

56 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.6.0

8.6.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

output...receivers

VideoStreamReplayerOp

output(out) : Tensor

HolovizOp

[in]receivers : Tensor

Fig. 8.5: Workflow to load and display video from a file

This is the same workflow as the single fragment video replayer, each operator is assigned to a separate fragment and
there is now a network connection between the fragments.

8.6.2 Defining and Connecting Fragments

Distributed applications define Fragments explicitly to isolate the different units of work that could be distributed to
different nodes. In this example:

• We define two classes that inherit from Fragment:

– Fragment1 contains an instance of VideoStreamReplayerOp named “replayer”.

– Fragment2 contains an instance of HolovizOp name “holoviz”.

• We create an application, DistributedVideoReplayerApp. In its compose method:

– we call make_fragment to initialize both fragments.

– we then connect the “output” port of “replayer” operator in fragment1 to the “receivers” port of the “holoviz”
operator in fragment2 to define the application workflow.

• The operators instantiated in the fragments can still be configured with parameters initialized from the YAML
configuration ingested by the application using from_config() (C++) or kwargs() (Python).

C++

1 #include <holoscan/holoscan.hpp>
2 #include <holoscan/operators/holoviz/holoviz.hpp>
3 #include <holoscan/operators/video_stream_replayer/video_stream_replayer.hpp>
4

5 class Fragment1 : public holoscan::Fragment {
6 public:
7 void compose() override {
8 using namespace holoscan;
9

10 auto replayer = make_operator<ops::VideoStreamReplayerOp>("replayer", from_config(
→˓"replayer"));

11 add_operator(replayer);
12 }
13 };
14

15 class Fragment2 : public holoscan::Fragment {
(continues on next page)

8.6. Video Replayer (Distributed) 57

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

16 public:
17 void compose() override {
18 using namespace holoscan;
19

20 auto visualizer = make_operator<ops::HolovizOp>("holoviz", from_config("holoviz"));
21 add_operator(visualizer);
22 }
23 };
24

25 class DistributedVideoReplayerApp : public holoscan::Application {
26 public:
27 void compose() override {
28 using namespace holoscan;
29

30 auto fragment1 = make_fragment<Fragment1>("fragment1");
31 auto fragment2 = make_fragment<Fragment2>("fragment2");
32

33 // Define the workflow: replayer -> holoviz
34 add_flow(fragment1, fragment2, {{"replayer.output", "holoviz.receivers"}});
35 }
36 };
37

38 int main(int argc, char** argv) {
39 // Get the yaml configuration file
40 auto config_path = std::filesystem::canonical(argv[0]).parent_path();
41 config_path /= std::filesystem::path("video_replayer_distributed.yaml");
42

43 auto app = holoscan::make_application<DistributedVideoReplayerApp>();
44 app->config(config_path);
45 app->run();
46

47 return 0;
48 }

Python

1 import os
2

3 from holoscan.core import Application, Fragment
4 from holoscan.operators import HolovizOp, VideoStreamReplayerOp
5

6 sample_data_path = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")
7

8

9 class Fragment1(Fragment):
10 def __init__(self, app, name):
11 super().__init__(app, name)
12

13 def compose(self):
14 # Set the video source

(continues on next page)

58 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

15 video_path = self._get_input_path()
16 logging.info(
17 f"Using video from {video_path}"
18)
19

20 # Define the replayer and holoviz operators
21 replayer = VideoStreamReplayerOp(
22 self, name="replayer", directory=video_path, **self.kwargs("replayer")
23)
24

25 self.add_operator(replayer)
26

27 def _get_input_path(self):
28 path = os.environ.get(
29 "HOLOSCAN_INPUT_PATH", os.path.join(os.path.dirname(__file__), "data")
30)
31 return os.path.join(path, "endoscopy/video")
32

33

34 class Fragment2(Fragment):
35 def compose(self):
36 visualizer = HolovizOp(self, name="holoviz", **self.kwargs("holoviz"))
37

38 self.add_operator(visualizer)
39

40

41 class DistributedVideoReplayerApp(Application):
42 """Example of a distributed application that uses the fragments and operators␣

→˓defined above.
43

44 This application has the following fragments:
45 - Fragment1
46 - holding VideoStreamReplayerOp
47 - Fragment2
48 - holding HolovizOp
49

50 The VideoStreamReplayerOp reads a video file and sends the frames to the HolovizOp.
51 The HolovizOp displays the frames.
52 """
53

54 def compose(self):
55 # Define the fragments
56 fragment1 = Fragment1(self, name="fragment1")
57 fragment2 = Fragment2(self, name="fragment2")
58

59 # Define the workflow
60 self.add_flow(fragment1, fragment2, {("replayer.output", "holoviz.receivers")})
61

62

63 if __name__ == "__main__":
64 config_file = os.path.join(os.path.dirname(__file__), "video_replayer_distributed.

→˓yaml")

(continues on next page)

8.6. Video Replayer (Distributed) 59

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

65

66 app = DistributedVideoReplayerApp()
67 app.config(config_file)
68 app.run()

This particular distributed application only has one operator per fragment, so the operators was added via
add_operator (C++/Python). In general, each fragment may have multiple operators and connections between oper-
ators within a fragment would be made using add_flow() (C++/Python) method within the fragment’s compute()
(C++/Python) method.

8.6.3 Running the Application

Running the application should bring up video playback of the surgical video referenced in the YAML file.

Note: Instructions for running the distributed application involve calling the application from the “driver” node as
well as from any worker nodes. For details, see the application run instructions in the examples directory on GitHub, or
under /opt/nvidia/holoscan/examples/video_replayer_distributed in the NGC container and the debian
package.

Tip: Refer to UCX Network Interface Selection when running a distributed application across multiple nodes.

60 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/video_replayer_distributed

Holoscan SDK User Guide, Release 0.6.0

8.7 Bring Your Own Model (BYOM)

The Holoscan platform is optimized for performing AI inferencing workflows. This section shows how the user can
easily modify the bring_your_own_model example to create their own AI applications.

In this example we’ll cover:

• the usage of FormatConverterOp, InferenceOp, SegmentationPostprocessorOp operators to add AI in-
ference into the workflow

• how to modify the existing code in this example to create an ultrasound segmentation application to visualize the
results from a spinal scoliosis segmentation model

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.7.1 Operators and Workflow

Here is the diagram of the operators and workflow used in the byom.py example.

Fig. 8.6: The BYOM inference workflow

The example code already contains the plumbing required to create the pipeline above where the video is loaded by
VideoStreamReplayer and passed to two branches. The first branch goes directly to Holoviz to display the original
video. The second branch in this workflow goes through AI inferencing and can be used to generate overlays such as
bounding boxes, segmentation masks, or text to add additional information.

This second branch has three operators we haven’t yet encountered.

• Format Converter: The input video stream goes through a preprocessing stage to convert the tensors to the
appropriate shape/format before being fed into the AI model. It is used here to convert the datatype of the image
from uint8 to float32 and resized to match the model’s expectations.

• Inference: This operator performs AI inferencing on the input video stream with the provided model. It supports
inferencing of multiple input video streams and models.

• Segmentation Postprocessor: this postprocessing stage takes the output of inference, either with the final softmax
layer (multiclass) or sigmoid (2-class), and emits a tensor with uint8 values that contain the highest probability
class index. The output of the segmentation postprocessor is then fed into the Holoviz visualizer to create the
overlay.

8.7. Bring Your Own Model (BYOM) 61

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/bring_your_own_model/python/byom.py

Holoscan SDK User Guide, Release 0.6.0

8.7.2 Prerequisites

To follow along this example, you can download the ultrasound dataset with the following commands:

$ wget --content-disposition \
https://api.ngc.nvidia.com/v2/resources/nvidia/clara-holoscan/holoscan_ultrasound_

→˓sample_data/versions/20220608/zip \
-O holoscan_ultrasound_sample_data_20220608.zip

$ unzip holoscan_ultrasound_sample_data_20220608.zip -d <SDK_ROOT>/data/ultrasound_
→˓segmentation

You can also follow along using your own dataset by adjusting the operator parameters based on your input video and
model, and converting your video and model to a format that is understood by Holoscan.

Input video

The video stream replayer supports reading video files that are encoded as gxf entities. These files are provided with
the ultrasound dataset as the ultrasound_256x256.gxf_entities and ultrasound_256x256.gxf_index files.

Note: To use your own video data, you can use the convert_video_to_gxf_entities.py script from here to
encode your video.

Input model

Currently, the inference operators in Holoscan are able to load ONNX models, or TensorRT engine files built for the
GPU architecture on which you will be running the model. TensorRT engines are automatically generated from ONNX
by the operators when the applications run.

If you are converting your model from PyTorch to ONNX, chances are your input is NCHW and will need to be
converted to NHWC. We provide an example transformation script on Github named graph_surgeon.py. You may
need to modify the dimensions as needed before modifying your model.

Tip: To get a better understanding of your model, and if this step is necessary, websites such as netron.app can be
used.

8.7.3 Understanding the Application Code

Before modifying the application, let’s look at the existing code to get a better understanding of how it works.

62 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy
https://onnx.ai/
https://developer.nvidia.com/tensorrt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#graph_surgeonpy
https://netron.app/

Holoscan SDK User Guide, Release 0.6.0

Python

1 import os
2 from argparse import ArgumentParser
3

4 from holoscan.core import Application
5

6 from holoscan.operators import (
7 FormatConverterOp,
8 HolovizOp,
9 InferenceOp,

10 SegmentationPostprocessorOp,
11 VideoStreamReplayerOp,
12)
13 from holoscan.resources import UnboundedAllocator
14

15

16 class BYOMApp(Application):
17 def __init__(self, data):
18 """Initialize the application
19

20 Parameters
21 ----------
22 data : Location to the data
23 """
24

25 super().__init__()
26

27 # set name
28 self.name = "BYOM App"
29

30 if data == "none":
31 data = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")
32

33 self.sample_data_path = data
34

35 self.model_path = os.path.join(os.path.dirname(__file__), "../model")
36 self.model_path_map = {
37 "byom_model": os.path.join(self.model_path, "identity_model.onnx"),
38 }
39

40 self.video_dir = os.path.join(self.sample_data_path, "endoscopy", "video")
41 if not os.path.exists(self.video_dir):
42 raise ValueError(f"Could not find video data: {self.video_dir=}")

• The built-in FormatConvertOp, InferenceOp, and SegmentationPostprocessorOp operators are imported
on lines 7, 9, and 10. These 3 operators make up the preprocessing, inference, and postprocessing stages of our
AI pipeline respectively.

• The UnboundedAllocator resource is imported on line 13. This is used by our application’s operators for
memory allocation.

• The paths to the identity model are defined on lines 35-38. This model passes it’s input tensor to it’s output,
and acts as a placeholder for this example.

8.7. Bring Your Own Model (BYOM) 63

Holoscan SDK User Guide, Release 0.6.0

• The directory of the endoscopy video files are defined on line 40.

Next, we look at the operators and their parameters defined in the application yaml file.

Python

43 def compose(self):
44 host_allocator = UnboundedAllocator(self, name="host_allocator")
45

46 source = VideoStreamReplayerOp(
47 self, name="replayer", directory=self.video_dir, **self.kwargs("replayer")
48)
49

50 preprocessor = FormatConverterOp(
51 self, name="preprocessor", pool=host_allocator, **self.kwargs("preprocessor")
52)
53

54 inference = InferenceOp(
55 self,
56 name="inference",
57 allocator=host_allocator,
58 model_path_map=self.model_path_map,
59 **self.kwargs("inference"),
60)
61

62 postprocessor = SegmentationPostprocessorOp(
63 self, name="postprocessor", allocator=host_allocator, **self.kwargs(

→˓"postprocessor")
64)
65

66 viz = HolovizOp(self, name="viz", **self.kwargs("viz"))

• An instance of the UnboundedAllocator resource class is created (line 44) and used by subsequent operators
for memory allocation. This allocator allocates memory dynamically on the host as needed. For applications
where latency becomes an issue, there is the BlockMemoryPool allocator.

• The preprocessor operator (line 50) takes care of converting the input video from the source video to a format
that can be used by the AI model.

• The inference operator (line 54) feeds the output from the preprocessor to the AI model to perform inference.

• The postprocessor operator (line 62) postprocesses the output from the inference operator before passing it down-
stream to the visualizer. Here, the segmentation postprocessor checks the probabilities output from the model to
determine which class is most likely and emits this class index. This is then used by the Holoviz operator to
create a segmentation mask overlay.

64 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

YAML

1 %YAML 1.2
2 replayer: # VideoStreamReplayer
3 basename: "surgical_video"
4 frame_rate: 0 # as specified in timestamps
5 repeat: true # default: false
6 realtime: true # default: true
7 count: 0 # default: 0 (no frame count restriction)
8

9 preprocessor: # FormatConverter
10 out_tensor_name: source_video
11 out_dtype: "float32"
12 resize_width: 512
13 resize_height: 512
14

15 inference: # Inference
16 backend: "trt"
17 pre_processor_map:
18 "byom_model": ["source_video"]
19 inference_map:
20 "byom_model": ["output"]
21

22 postprocessor: # SegmentationPostprocessor
23 in_tensor_name: output
24 # network_output_type: None
25 data_format: nchw
26

27 viz: # Holoviz
28 width: 854
29 height: 480
30 color_lut: [
31 [0.65, 0.81, 0.89, 0.1],
32]

• The preprocessor converts the tensors to float32 values (line 11) and ensures that the image is resized to
512x512 (line 12-13).

• The pre_processor_map parameter (lines 17-18) maps the model name(s) to input tensor name(s). Here,
“source_video” matches the output tensor name of the preprocessor (line 10). The inference_map parameter
maps the model name(s) to the output tensor name(s). Here, “output”, matches the input tensor name of the
postprocessor (line 23). For more details on InferenceOp parameters, see Customizing the Inference Operator
or refer to Inference.

• The network_output_type parameter is commented out on line 24 to remind ourselves that this second
branch is currently not generating anything interesting. If not specified, this parameter defaults to “softmax”
for SegmentationPostprocessorOp.

• The color lookup table defined on lines 30-32 is used here to create a segmentation mask overlay. The values
of each entry in the table are RGBA values between 0.0 and 1.0. For the alpha value, 0.0 is fully transparent and
1.0 is fully opaque.

Finally, we define the application and workflow.

8.7. Bring Your Own Model (BYOM) 65

Holoscan SDK User Guide, Release 0.6.0

Python

67 # Define the workflow
68 self.add_flow(source, viz, {("output", "receivers")})
69 self.add_flow(source, preprocessor, {("output", "source_video")})
70 self.add_flow(preprocessor, inference, {("tensor", "receivers")})
71 self.add_flow(inference, postprocessor, {("transmitter", "in_tensor")})
72 self.add_flow(postprocessor, viz, {("out_tensor", "receivers")})
73

74

75 if __name__ == "__main__":
76 # Parse args
77 parser = ArgumentParser(description="BYOM demo application.")
78 parser.add_argument(
79 "-d",
80 "--data",
81 default="none",
82 help=("Set the data path"),
83)
84

85 args = parser.parse_args()
86

87 config_file = os.path.join(os.path.dirname(__file__), "byom.yaml")
88

89 app = BYOMApp(data=args.data)
90 app.config(config_file)
91 app.run()

• The add_flow() on line 66 defines the first branch to display the original video.

• The add_flow() commands from line 67-70 defines the second branch to display the segmentation mask over-
lay.

8.7.4 Modifying the Application for Ultrasound Segmentation

To create the ultrasound segmentation application, we need to swap out the input video and model to use the ultrasound
files, and adjust the parameters to ensure the input video is resized correctly to the model’s expectations.

We will need to modify the python and yaml files to change our application to the ultrasound segmentation application.

Python

1 class BYOMApp(Application):
2 def __init__(self, data):
3 """Initialize the application
4

5 Parameters
6 ----------
7 data : Location to the data
8 """
9

10 super().__init__()
(continues on next page)

66 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

11

12 # set name
13 self.name = "BYOM App"
14

15 if data == "none":
16 data = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")
17

18 self.sample_data_path = data
19

20 self.model_path = os.path.join(self.sample_data_path, "ultrasound_segmentation",
→˓"model")

21 self.model_path_map = {
22 "byom_model": os.path.join(self.model_path, "us_unet_256x256_nhwc.onnx"),
23 }
24

25 self.video_dir = os.path.join(self.sample_data_path, "ultrasound_segmentation",
→˓"video")

26 if not os.path.exists(self.video_dir):
27 raise ValueError(f"Could not find video data: {self.video_dir=}")

• Update self.model_path_map to the ultrasound segmentation model (lines 20-23).

• Update self.video_dir to point to the directory of the ultrasound video files (line 25).

YAML

1 replayer: # VideoStreamReplayer
2 basename: "ultrasound_256x256"
3 frame_rate: 0 # as specified in timestamps
4 repeat: true # default: false
5 realtime: true # default: true
6 count: 0 # default: 0 (no frame count restriction)
7

8 preprocessor: # FormatConverter
9 out_tensor_name: source_video

10 out_dtype: "float32"
11 resize_width: 256
12 resize_height: 256
13

14 inference: # Inference
15 backend: "trt"
16 pre_processor_map:
17 "byom_model": ["source_video"]
18 inference_map:
19 "byom_model": ["output"]
20

21 postprocessor: # SegmentationPostprocessor
22 in_tensor_name: output
23 network_output_type: softmax
24 data_format: nchw
25

(continues on next page)

8.7. Bring Your Own Model (BYOM) 67

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

26 viz: # Holoviz
27 width: 854
28 height: 480
29 color_lut: [
30 [0.65, 0.81, 0.89, 0.1],
31 [0.2, 0.63, 0.17, 0.7]
32]

• Update basename to the basename of the ultrasound video files (line 2).

• The AI model expects the width and height of the images to be 256x256, update the preprocessor’s parameters
to resize the input to 256x256 (line 11-12).

• The AI model’s final output layer is a softmax, so we indicate this to the postprocessor (line 23).

• Since this model predicts between two classes, we need another entry in Holoviz’s color lookup table (line 31).
Note that the alpha value of the first color entry is 0.1 (line 30) so the mask for the background class may not be
visible. The second entry we just added is a green color and has an alpha value of 0.7 so it will be easily visible.

The above changes are enough to update the byom example to the ultrasound segmentation application.

In general, when deploying your own AI models, you will need to consider the operators in the second branch. This
example uses a pretty typical AI workflow:

• Input: This could be a video on disk, an input stream from a capture device, or other data stream.

• Preprocessing: You may need to preprocess the input stream to convert tensors into the shape and format that is
expected by your AI model (e.g., converting datatype and resizing).

• Inference: Your model will need to be in onnx or trt format.

• Postprocessing: An operator that postprocesses the output of the model to a format that can be readily used by
downstream operators.

• Output: The postprocessed stream can be displayed or used by other downstream operators.

The Holoscan SDK comes with a number of built-in operators that you can use to configure your own workflow.
If needed, you can write your own custom operators or visit Holohub for additional implementations and ideas for
operators.

8.7.5 Running the Application

After modifying the application as instructed above, running the application should bring up the ultrasound video with
a segmentation mask overlay similar to the image below.

Note: If you run the byom.py application without modification and are using the debian installation, you may run into
the following error message:

[error] Error in Inference Manager ... TRT Inference: failed to build TRT engine file.

In this case, modifying the write permissions for the model directory should help (use with caution):

sudo chmod a+w /opt/nvidia/holoscan/examples/bring_your_own_model/model

68 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators
https://nvidia-holoscan.github.io/holohub/

Holoscan SDK User Guide, Release 0.6.0

Fig. 8.7: Ultrasound Segmentation

8.7.6 Customizing the Inference Operator

The builtin InferenceOp operator provides the functionality of the Inference. This operator has a receivers port
that can connect to any number of upstream ports to allow for multiai inferencing, and one transmitter port to send
results downstream. Below is a description of some of the operator’s parameters and a general guidance on how to use
them.

• backend: if the input models are in tensorrt engine file format, select trt as the backend. If the input
models are in onnx format select either trt or onnx as the backend.

• allocator: Can be passed to this operator to specify how the output tensors are allocated.

• model_path_map: contains dictionary keys with unique strings that refer to each model. The values are set to
the path to the model files on disk. All models must be either in onnx or in tensorrt engine file format.
The Holoscan Inference Module will do the onnx to tensorrt model conversion if the TensorRT engine files
do not exist.

• pre_processor_map: this dictionary should contain the same keys as model_path_map, mapping to the output
tensor name for each model.

• inference_map: this dictionary should contain the same keys as model_path_map, mapping to the output
tensor name for each model.

• enable_fp16: Boolean variable indicating if half-precision should be used to speed up inferencing. The default
value is False, and uses single-precision (32-bit fp) values.

• input_on_cuda: indicates whether input tensors are on device or host

• output_on_cuda: indicates whether output tensors are on device or host

• transmit_on_cuda: if True, it means the data transmission from the inference will be on Device, otherwise it
means the data transmission from the inference will be on Host

8.7. Bring Your Own Model (BYOM) 69

Holoscan SDK User Guide, Release 0.6.0

8.7.7 Common Pitfalls Deploying New Models

Color Channel Order

It is important to know what channel order your model expects. This may be indicated by the training data, pre-training
transformations performed at training, or the expected inference format used in your application.

For example, if your inference data is RGB, but your model expects BGR, you will need to add the following to your
segmentation_preprocessor in the yaml file: out_channel_order: [2,1,0].

Normalizing Your Data

Similarly, default scaling for streaming data is [0,1], but dependent on how your model was trained, you may be
expecting [0,255].

For the above case you would add the following to your segmentation_preprocessor in the yaml file:

scale_min: 0.0 scale_max: 255.0

Network Output Type

Models often have different output types such as Sigmoid, Softmax, or perhaps something else, and you may need to
examine the last few layers of your model to determine which applies to your case.

As in the case of our ultrasound segmentation example above, we added the following in our yaml file:
network_output_type: softmax

70 Chapter 8. Holoscan by Example

CHAPTER

NINE

CREATING AN APPLICATION

In this section, we’ll address:

• how to define an Application class

• how to configure an Application

• how to define different types of workflows

• how to build and run your application

Note: This section covers basics of applications running as a single fragment. For multi-fragment applications, refer
to the distributed application documentation.

9.1 Defining an Application Class

The following code snippet shows an example Application code skeleton:

C++

• We define the App class that inherits from the Application base class.

• We create an instance of the App class in main() using the make_application() function.

• The run() method starts the application which will execute its compose() method where the custom workflow
will be defined.

#include <holoscan/holoscan.hpp>

class App : public holoscan::Application {
public:
void compose() override {
// Define Operators and workflow
// ...

}
};

int main() {
auto app = holoscan::make_application<App>();
app->run();

(continues on next page)

71

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

return 0;
}

Python

• We define the App class that inherits from the Application base class.

• We create an instance of the App class in __main__.

• The run() method starts the application which will execute its compose() method where the custom workflow
will be defined.

from holoscan.core import Application

class App(Application):

def compose(self):
Define Operators and workflow
...

if __name__ == "__main__":
app = App()
app.run()

Tip: This is also illustrated in the hello_world example.

It is also possible to instead launch the application asynchronously (i.e. non-blocking for the thread launching the
application), as shown below:

C++

This can be done simply by replacing the call to run() with run_async() which returns a std::future. Calling
future.wait() will block until the application has finished running.

int main() {
auto app = holoscan::make_application<App>();
future = app->run_async();
future.wait();
return 0;

}

72 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 0.6.0

Python

This can be done simply by replacing the call to run() with run_async() which returns a Python concurrent.
futures.Future. Calling future.result() will block until the application has finished running.

if __name__ == "__main__":
app = App()
future = app.run_async()
future.result()

Tip: This is also illustrated in the ping_simple_run_async example.

9.2 Configuring an Application

An application can be configured at different levels:

1. providing the GXF extensions that need to be loaded (when using GXF operators)

2. configuring parameters for your application, including for:

1. the operators in the workflow

2. the scheduler of your application

3. configuring some runtime properties when deploying for production

The sections below will describe how to configure each of them, starting with a native support for YAML-based con-
figuration for convenience.

9.2.1 YAML Configuration support

Holoscan supports loading arbitrary parameters from a YAML configuration file at runtime, making it convenient to
configure each item listed above, or other custom parameters you wish to add on top of the existing API. For C++
applications, it also provides the ability to change the behavior of your application without needing to recompile it.

Note: Usage of the YAML utility is optional. Configurations can be hardcoded in your program, or done using any
parser of your choosing.

Here is an example YAML configuration:

string_param: "test"
float_param: 0.50
bool_param: true
dict_param:
key_1: value_1
key_2: value_2

Ingesting these parameters can be done using the two methods below:

9.2. Configuring an Application 73

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_simple_run_async

Holoscan SDK User Guide, Release 0.6.0

C++

• The config() method takes the path to the YAML configuration file. If the input path is relative, it will be
relative to the current working directory.

• The from_config() method returns an ArgList object for a given key in the YAML file. It holds a list of Arg
objects, each of which holds a name (key) and a value.

– If the ArgList object has only one Arg (when the key is pointing to a scalar item), it can be converted to
the desired type using the as() method by passing the type as an argument.

– The key can be a dot-separated string to access nested fields.

// Pass configuration file
auto app = holoscan::make_application<App>();
app->config("path/to/app_config.yaml");

// Scalars
auto string_param = app->from_config("string_param").as<std::string>();
auto float_param = app->from_config("float_param").as<float>();
auto bool_param = app->from_config("bool_param").as<bool>();

// Dict
auto dict_param = app->from_config("dict_param");
auto dict_nested_param = app->from_config("dict_param.key_1").as<std::string>();

// Print
std::cout << "string_param: " << string_param << std::endl;
std::cout << "float_param: " << float_param << std::endl;
std::cout << "bool_param: " << bool_param << std::endl;
std::cout << "dict_param:\n" << dict_param.description() << std::endl;
std::cout << "dict_param['key1']: " << dict_nested_param << std::endl;

// // Output
// string_param: test
// float_param: 0.5
// bool_param: 1
// dict_param:
// name: arglist
// args:
// - name: key_1
// type: YAML::Node
// value: value_1
// - name: key_2
// type: YAML::Node
// value: value_2
// dict_param['key1']: value_1

74 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 0.6.0

Python

• The config() method takes the path to the YAML configuration file. If the input path is relative, it will be
relative to the current working directory.

• The kwargs() method return a regular python dict for a given key in the YAML file.

– Advanced: this method wraps the from_config() method similar to the C++ equivalent, which returns
an ArgList object if the key is pointing to a map item, or an Arg object if the key is pointing to a scalar
item. An Arg object can be cast to the desired type (e.g., str(app.from_config("string_param"))).

Pass configuration file
app = App()
app.config("path/to/app_config.yaml")

Scalars
string_param = app.kwargs("string_param")["string_param"]
float_param = app.kwargs("float_param")["float_param"]
bool_param = app.kwargs("bool_param")["bool_param"]

Dict
dict_param = app.kwargs("dict_param")
dict_nested_param = dict_param["key_1"]

Print
print(f"string_param: {string_param}")
print(f"float_param: {float_param}")
print(f"bool_param: {bool_param}")
print(f"dict_param: {dict_param}")
print(f"dict_param['key_1']: {dict_nested_param}")

Output:
string_param: test
float_param: 0.5
bool_param: True
dict_param: {'key_1': 'value_1', 'key_2': 'value_2'}
dict_param['key_1']: 'value_1'

Warning: from_config() cannot be used as inputs to the built-in operators at this time, it’s therefore
recommended to use kwargs() in Python.

Tip: This is also illustrated in the video_replayer example.

Attention: With both from_config and kwargs, the returned ArgList/dictionary will include both the key and
its associated item if that item value is a scalar. If the item is a map/dictionary itself, the input key is dropped, and
the output will only hold the key/values from that item.

9.2. Configuring an Application 75

Holoscan SDK User Guide, Release 0.6.0

9.2.2 Loading GXF extensions

If you use operators that depend on GXF extensions for their implementations (known as GXF operators), the shared
libraries (.so) of these extensions need to be dynamically loaded as plugins at runtime.

The SDK already automatically handles loading the required extensions for the built-in operators in both C++ and
Python, as well as common extensions (listed here). To load additional extensions for your own operators, you can use
one of the following approach:

YAML

extensions:
- libgxf_myextension1.so
- /path/to/libgxf_myextension2.so

C++

auto app = holoscan::make_application<App>();
auto exts = {"libgxf_myextension1.so", "/path/to/libgxf_myextension2.so"};
for (auto& ext : exts) {
app->executor().extension_manager()->load_extension(ext);

}

PYTHON

from holoscan.gxf import load_extensions
from holoscan.core import Application
app = Application()
context = app.executor.context_uint64
exts = ["libgxf_myextension1.so", "/path/to/libgxf_myextension2.so"]
load_extensions(context, exts)

Note: To be discoverable, paths to these shared libraries need to either be absolute, relative to your working directory,
installed in the lib/gxf_extensions folder of the holoscan package, or listed under the HOLOSCAN_LIB_PATH or
LD_LIBRARY_PATH environment variables.

9.2.3 Configuring operators

Operators are defined in the compose() method of your application. They are not instantiated (with the initialize
method) until an application’s run() method is called.

Operators have three type of fields which can be configured: parameters, conditions, and resources.

76 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 0.6.0

Configuring operator parameters

Operators could have parameters defined in their setup method to better control their behavior (see details when
creating your own operators). The snippet below would be the implementation of this method for a minimal operator
named MyOp, that takes a string and a boolean as parameters; we’ll ignore any extra details for the sake of this example:

C++

void setup(OperatorSpec& spec) override {
spec.param(string_param_, "string_param");
spec.param(bool_param_, "bool_param");

}

PYTHON

def setup(self, spec: OperatorSpec):
spec.param("string_param")
spec.param("bool_param")
Optional in python. Could define `self.<param_name>` instead in `def __init__`

Tip: Given an instance of an operator class, you can print a human-readable description of its specification to inspect
the parameter fields that can be configured on that operator class:

C++

std::cout << operator_object->spec()->description() << std::endl;

PYTHON

print(operator_object.spec)

Given this YAML configuration:

myop_param:
string_param: "test"
bool_param: true

bool_param: false # we'll use this later

We can configure an instance of the MyOp operator in the application’s compose method like this:

9.2. Configuring an Application 77

Holoscan SDK User Guide, Release 0.6.0

C++

void compose() override {
// Using YAML
auto my_op1 = make_operator<MyOp>("my_op1", from_config("myop_param"));

// Same as above
auto my_op2 = make_operator<MyOp>("my_op2",
Arg("string_param", std::string("test")), // can use Arg(key, value)...
Arg("bool_param") = true // ... or Arg(key) = value

);
}

PYTHON

def compose(self):
Using YAML
my_op1 = MyOp(self, name="my_op1", **self.kwargs("myop_param"))

Same as above
my_op2 = MyOp(self,
name="my_op2",
string_param="test",
bool_param=True,

)

Tip: This is also illustrated in the ping_custom_op example.

If multiple ArgList are provided with duplicate keys, the latest one overrides them:

C++

void compose() override {
// Using YAML
auto my_op1 = make_operator<MyOp>("my_op1",
from_config("myop_param"),
from_config("bool_param")

);

// Same as above
auto my_op2 = make_operator<MyOp>("my_op2",
Arg("string_param", "test"),
Arg("bool_param") = true,
Arg("bool_param") = false

);

// -> my_op `bool_param_` will be set to `false`
}

78 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 0.6.0

PYTHON

def compose(self):
Using YAML
my_op1 = MyOp(self, name="my_op1",
from_config("myop_param"),
from_config("bool_param"),

)

Note: We're using from_config above since we can't merge automatically with kwargs
as this would create duplicated keys. However, we recommend using kwargs in python
to avoid limitations with wrapped operators, so the code below is preferred.

Same as above
params = self.kwargs("myop_param").update(self.kwargs("bool_param"))
my_op2 = MyOp(self, name="my_op2", params)

-> my_op `bool_param` will be set to `False`

Configuring operator conditions

By default, operators with no input ports will continuously run, while operators with input ports will run as long as
they receive inputs (as they’re configured with the MessageAvailableCondition).

To change that behavior, one or more other conditions classes can be passed to the constructor of an operator to define
when it should execute.

For example, we set three conditions on this operator my_op:

C++

void compose() override {
// Limit to 10 iterations
auto c1 = make_condition<CountCondition>("my_count_condition", 10);

// Wait at least 200 milliseconds between each execution
auto c2 = make_condition<PeriodicCondition>("my_periodic_condition", "200ms");

// Stop when the condition calls `disable_tick()`
auto c3 = make_condition<BooleanCondition>("my_bool_condition");

// Pass directly to the operator constructor
auto my_op = make_operator<MyOp>("my_op", c1, c2, c3);

}

9.2. Configuring an Application 79

Holoscan SDK User Guide, Release 0.6.0

PYTHON

def compose(self):
Limit to 10 iterations
c1 = CountCondition(self, 10, name="my_count_condition")

Wait at least 200 milliseconds between each execution
c2 = PeriodicCondition(self, timedelta(milliseconds=200), name="my_periodic_condition")

Stop when the condition calls `disable_tick()`
c3 = BooleanCondition(self, name="my_bool_condition")

Pass directly to the operator constructor
my_op = MyOp(self, c1, c2, c3, name="my_op")

Tip: This is also illustrated in the conditions examples.

Note: You’ll need to specify a unique name for the conditions if there are multiple conditions applied to an operator.

Configuring operator resources

Some resources can be passed to the operator’s constructor, typically an allocator passed as a regular parameter.

For example:

C++

void compose() override {
// Allocating memory pool of specific size on the GPU
// ex: width * height * channels * channel size in bytes
auto block_size = 640 * 480 * 4 * 2;
auto p1 = make_resource<BlockMemoryPool>("my_pool1", 1, size, 1);

// Provide unbounded memory pool
auto p2 = make_condition<UnboundedAllocator>("my_pool2");

// Pass to operator as parameters (name defined in operator setup)
auto my_op = make_operator<MyOp>("my_op",

Arg("pool1", p1),
Arg("pool2", p2));

}

80 Chapter 9. Creating an Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/conditions

Holoscan SDK User Guide, Release 0.6.0

PYTHON

def compose(self):
Allocating memory pool of specific size on the GPU
ex: width * height * channels * channel size in bytes
block_size = 640 * 480 * 4 * 2;
p1 = BlockMemoryPool(self, name="my_pool1", storage_type=1, block_size=block_size, num_

→˓blocks=1)

Provide unbounded memory pool
p2 = UnboundedAllocator(self, name="my_pool2")

Pass to operator as parameters (name defined in operator setup)
auto my_op = MyOp(self, name="my_op", pool1=p1, pool2=p2)

9.2.4 Configuring the scheduler

The scheduler controls how the application schedules the execution of the operators that make up its workflow.

The default scheduler is a single-threaded GreedyScheduler. An application can be configured to use a different
scheduler Scheduler (C++/Python) or change the parameters from the default scheduler, using the scheduler()
function (C++/Python).

For example, if an application needs to run multiple operators in parallel, a MultiThreadScheduler can instead be
used.

The code snippet belows shows how to set and configure a non-default scheduler:

C++

• We create an instance of a holoscan::Scheduler derived class by using the make_scheduler() function. Like
operators, parameters can come from explicit Args or ArgList, or from a YAML configuration.

• The scheduler() method assigns the scheduler to be used by the application.

auto app = holoscan::make_application<App>();
auto scheduler = app->make_scheduler<holoscan::MultiThreadScheduler>(
"myscheduler",
Arg("worker_thread_number", 4),
Arg("stop_on_deadlock", true)

);
app->scheduler(scheduler);
app->run();

9.2. Configuring an Application 81

Holoscan SDK User Guide, Release 0.6.0

Python

• We create an instance of a Scheduler class in the schedulers module. Like operators, parameters can come
from an explicit Arg or ArgList, or from a YAML configuration.

• The scheduler() method assigns the scheduler to be used by the application.

app = App()
scheduler = holoscan.schedulers.MultiThreadScheduler(

app,
name="myscheduler",
worker_thread_number=4,
stop_on_deadlock=True,

)
app.scheduler(scheduler)
app.run()

Tip: This is also illustrated in the multithread example.

9.2.5 Configuring runtime properties

As described below, applications can run simply by executing the C++ or Python application manually on a given
node, or by packaging it in a HAP container. With the latter, runtime properties need to be configured: refer to the
App Runner Configuration for details.

9.3 Application Workflows

Note: Operators are initialized according to the topological order of its fragment-graph. When an application runs,
the operators are executed in the same topological order. Topological ordering of the graph ensures that all the data
dependencies of an operator are satisfied before its instantiation and execution. If there is a cycle in the graph, the
initialization and execution order of the operators are undefined. Currently, we do not support specifying a different
and explicit instantiation and execution order of the operators.

9.3.1 One-operator Workflow

The simplest form of a workflow would be a single operator.

MyOp

Fig. 9.1: A one-operator workflow

The graph above shows an Operator (C++/Python) (named MyOp) that has neither inputs nor output ports.

• Such an operator may accept input data from the outside (e.g., from a file) and produce output data (e.g., to a
file) so that it acts as both the source and the sink operator.

82 Chapter 9. Creating an Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/multithread
https://en.wikipedia.org/wiki/Topological_sorting

Holoscan SDK User Guide, Release 0.6.0

• Arguments to the operator (e.g., input/output file paths) can be passed as parameters as described in the section
above.

We can add an operator to the workflow by calling add_operator (C++/Python) method in the compose() method.

The following code shows how to define a one-operator workflow in compose() method of the App class (assuming
that the operator class MyOp is declared/defined in the same file).

CPP

1 class App : public holoscan::Application {
2 public:
3 void compose() override {
4 // Define Operators
5 auto my_op = make_operator<MyOp>("my_op");
6

7 // Define the workflow
8 add_operator(my_op);
9 }

10 };

PYTHON

1 class App(Application):
2

3 def compose(self):
4 # Define Operators
5 my_op = MyOp(self, name="my_op")
6

7 # Define the workflow
8 self.add_operator(my_op)

9.3.2 Linear Workflow

Here is an example workflow where the operators are connected linearly:

output...input output...input

SourceOp

output(out) : Tensor

ProcessOp

[in]input : Tensor

output(out) : Tensor

SinkOp

[in]input : Tensor

Fig. 9.2: A linear workflow

In this example, SourceOp produces a message and passes it to ProcessOp. ProcessOp produces another message
and passes it to SinkOp.

We can connect two operators by calling the add_flow() method (C++/Python) in the compose() method.

The add_flow() method (C++/Python) takes the source operator, the destination operator, and the optional port name
pairs. The port name pair is used to connect the output port of the source operator to the input port of the destination
operator. The first element of the pair is the output port name of the upstream operator and the second element is the

9.3. Application Workflows 83

Holoscan SDK User Guide, Release 0.6.0

input port name of the downstream operator. An empty port name (“”) can be used for specifying a port name if the
operator has only one input/output port. If there is only one output port in the upstream operator and only one input
port in the downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose() method of the App class (assuming that
the operator classes SourceOp, ProcessOp, and SinkOp are declared/defined in the same file).

CPP

1 class App : public holoscan::Application {
2 public:
3 void compose() override {
4 // Define Operators
5 auto source = make_operator<SourceOp>("source");
6 auto process = make_operator<ProcessOp>("process");
7 auto sink = make_operator<SinkOp>("sink");
8

9 // Define the workflow
10 add_flow(source, process); // same as `add_flow(source, process, {{"output", "input"}

→˓});`
11 add_flow(process, sink); // same as `add_flow(process, sink, {{"", ""}});`
12 }
13 };

PYTHON

1 class App(Application):
2

3 def compose(self):
4 # Define Operators
5 source = SourceOp(self, name="source")
6 process = ProcessOp(self, name="process")
7 sink = SinkOp(self, name="sink")
8

9 # Define the workflow
10 self.add_flow(source, process) # same as `self.add_flow(source, process, {(

→˓"output", "input")})`
11 self.add_flow(process, sink) # same as `self.add_flow(process, sink, {("", "")}

→˓)`

9.3.3 Complex Workflow (Multiple Inputs and Outputs)

You can design a complex workflow like below where some operators have multi-inputs and/or multi-outputs:

84 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 0.6.0

image...{image1,image2}

metadata...metadata

roi...roiimage...image

image...imageimage...imageimage...image

seg_image...seg_image

Reader1

image(out)

metadata(out)

Processor1

[in]image1

[in]image2

[in]metadata

image(out)

Reader2

roi(out)

Processor2

[in]image

[in]roi

image(out)

Processor3

[in]image

seg_image(out)

Notifier

[in]image

Writer

[in]image

[in]seg_image

Fig. 9.3: A complex workflow (multiple inputs and outputs)
9.3. Application Workflows 85

Holoscan SDK User Guide, Release 0.6.0

CPP

1 class App : public holoscan::Application {
2 public:
3 void compose() override {
4 // Define Operators
5 auto reader1 = make_operator<Reader1>("reader1");
6 auto reader2 = make_operator<Reader2>("reader2");
7 auto processor1 = make_operator<Processor1>("processor1");
8 auto processor2 = make_operator<Processor2>("processor2");
9 auto processor3 = make_operator<Processor3>("processor3");

10 auto writer = make_operator<Writer>("writer");
11 auto notifier = make_operator<Notifier>("notifier");
12

13 // Define the workflow
14 add_flow(reader1, processor1, {{"image", "image1"}, {"image", "image2"}, {"metadata",

→˓ "metadata"}});
15 add_flow(reader1, processor1, {{"image", "image2"}});
16 add_flow(reader2, processor2, {{"roi", "roi"}});
17 add_flow(processor1, processor2, {{"image", "image"}});
18 add_flow(processor1, writer, {{"image", "image"}});
19 add_flow(processor2, notifier);
20 add_flow(processor2, processor3);
21 add_flow(processor3, writer, {{"seg_image", "seg_image"}});
22 }
23 };

PYTHON

1 class App(Application):
2

3 def compose(self):
4 # Define Operators
5 reader1 = Reader1Op(self, name="reader1")
6 reader2 = Reader2Op(self, name="reader2")
7 processor1 = Processor1Op(self, name="processor1")
8 processor2 = Processor2Op(self, name="processor2")
9 processor3 = Processor3Op(self, name="processor3")

10 notifier = NotifierOp(self, name="notifier")
11 writer = WriterOp(self, name="writer")
12

13 # Define the workflow
14 self.add_flow(reader1, processor1, {("image", "image1"), ("image", "image2"), (

→˓"metadata", "metadata")})
15 self.add_flow(reader2, processor2, {("roi", "roi")})
16 self.add_flow(processor1, processor2, {("image", "image")})
17 self.add_flow(processor1, writer, {("image", "image")})
18 self.add_flow(processor2, notifier)
19 self.add_flow(processor2, processor3)
20 self.add_flow(processor3, writer, {("seg_image", "seg_image")})

86 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 0.6.0

9.4 Building and running your Application

C++

You can build your C++ application using CMake, by calling find_package(holoscan) in your CMakeLists.txt
to load the SDK libraries. Your executable will need to link against:

• holoscan::core

• any operator defined outside your main.cpp which you wish to use in your app workflow, such as:

– SDK built-in operators under the holoscan::ops namespace

– operators created separately in your project with add_library

– operators imported externally using with find_library or find_package

Listing 9.1: <src_dir>/CMakeLists.txt

Your CMake project
cmake_minimum_required(VERSION 3.20)
project(my_project CXX)

Finds the holoscan SDK
find_package(holoscan REQUIRED CONFIG PATHS "/opt/nvidia/holoscan")

Create an executable for your application
add_executable(my_app main.cpp)

Link your application against holoscan::core and any existing operators you'd like to␣
→˓use
target_link_libraries(my_app
PRIVATE
holoscan::core
holoscan::ops::<some_built_in_operator_target>
<some_other_operator_target>
<...>

)

Tip: This is also illustrated in all the examples:

• in CMakeLists.txt for the SDK installation directory - /opt/nvidia/holoscan/examples

• in CMakeLists.min.txt for the SDK source directory

Once your CMakeLists.txt is ready in <src_dir>, you can build in <build_dir> with the command line below.
You can optionally pass Holoscan_ROOT if the SDK installation you’d like to use differs from the PATHS given to
find_package(holoscan) above.

Configure
cmake -S <src_dir> -B <build_dir> -D Holoscan_ROOT="/opt/nvidia/holoscan"
Build
cmake --build <build_dir> -j

You can then run your application by running <build_dir>/my_app.

9.4. Building and running your Application 87

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#readme

Holoscan SDK User Guide, Release 0.6.0

Python

Python applications do not require building. Simply ensure that:

• The holoscan python module is installed in your dist-packages or is listed under the PYTHONPATH env vari-
able so you can import holoscan.core and any built-in operator you might need in holoscan.operators.

• Any external operators are available in modules in your dist-packages or contained in PYTHONPATH.

Note: While python applications do not need to be built, they might depend on operators that wrap C++ operators.
All python operators built-in in the SDK already ship with the python bindings pre-built. Follow this section if you are
wrapping C++ operators yourself to use in your python application.

You can then run your application by running python3 my_app.py.

Note: Given a CMake project, a pre-built executable, or a python application, you can also use the Holoscan CLI to
package and run your Holoscan application in a OCI-compliant container image.

88 Chapter 9. Creating an Application

CHAPTER

TEN

CREATING A DISTRIBUTED APPLICATION

Distributed applications refer to those where the workflow is divided into multiple fragments that may be run on separate
nodes. For example, data might be collected via a sensor at the edge, sent to a separate workstation for processing,
and then the processed data could be sent back to the edge node for visualization. Each node would run a single
fragment consisting of a computation graph built up of operators. Thus one fragment is the equivalent of a non-
distributed application. In the distributed context, the Application initializes the different fragments and then defines
the connections between them to build up the full distributed application workflow.

In this section we’ll describe:

• how to define a distributed Application

• how to build and run a distributed application

10.1 Defining a Distributed Application Class

Tip: Defining distributed applications is also illustrated in the video_replayer_distributed and ping_distributed ex-
amples.

Defining a single Fragment (C++/Python) involves adding operators using make_operator() (C++) or the operator
constructor (Python), and defining the connections between them using the add_flow() method (C++/Python) in the
compose() method. Thus, defining a Fragment is just like defining a non-distributed Application except that the class
should inherit from Fragment instead of Application.

The application will then be defined by initializing fragments within the application’s compose() method. The
add_flow() method (C++/Python) can be used to define the connections across fragments.

C++

• We define the Fragment1 and Fragment2 classes that inherit from the Fragment base class.

• We define the App class that inherits from the Application base class.

• The App class initializes any fragments used and defines the connections between them. Here we have used
dummy port and operator names in the example add_flow call connecting the fragments since no specific oper-
ators are shown in this example.

• We create an instance of the App class in main() using the make_application() function.

• The run() method starts the application which will execute its compose() method where the custom workflow
will be defined.

89

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed

Holoscan SDK User Guide, Release 0.6.0

#include <holoscan/holoscan.hpp>

class Fragment1 : public holoscan::Fragment {
public:
void compose() override {
// Define Operators and workflow for Fragment1
// ...

}
};

class Fragment2 : public holoscan::Fragment {
public:
void compose() override {
// Define Operators and workflow for Fragment2
// ...

}
};

class App : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

auto fragment1 = make_fragment<Fragment1>("fragment1");
auto fragment2 = make_fragment<Fragment2>("fragment2");

// Define the workflow: replayer -> holoviz
add_flow(fragment1, fragment2, {{"fragment1_operator_name.output_port_name",

"fragment2_operator_name.input_port_name"}});
}

};

int main() {
auto app = holoscan::make_application<App>();
app->run();
return 0;

}

Python

• We define the Fragment1 and Fragment2 classes that inherit from the Fragment base class.

• We define the App class that inherits from the Application base class.

• The App class initializes any fragments used and defines the connections between them. Here we have used
dummy port and operator names in the example add_flow call connecting the fragments since no specific oper-
ators are shown in this example.

• We create an instance of the App class in __main__.

• The run() method starts the application which will execute its compose() method where the custom workflow
will be defined.

90 Chapter 10. Creating a Distributed Application

Holoscan SDK User Guide, Release 0.6.0

from holoscan.core import Application, Fragment

class Fragment1(Fragment):

def compose(self):
Define Operators and workflow
...

class Fragment2(Fragment):

def compose(self):
Define Operators and workflow
...

class App(Application):

def compose(self):
fragment1 = Fragment1(self, name="fragment1")
fragment2 = Fragment2(self, name="fragment2")

self.add_flow(fragment1, fragment2, {("fragment1_operator_name.output_port_name",
"fragment2_operator_name.input_port_name")}

→˓)

if __name__ == "__main__":
app = App()
app.run()

10.1.1 Serialization of Custom Data Types for Distributed Applications

Transmission of data between fragments of a multi-fragment application is done via the Unified Communications X
(UCX) library. In order to transmit data, it must be serialized into a binary form suitable for transmission over a network.
For Tensors ({ref}C++/Python), strings and various scalar and vector numeric types, serialization is already built in.
For more details on concrete examples of how to extend the data serialization support to additional user-defined classes,
see the separate page on serialization.

10.2 Building and running a Distributed Application

C++

Building a distributed application works in the same way as for a non-distributed one. See Building and running your
Application

10.2. Building and running a Distributed Application 91

Holoscan SDK User Guide, Release 0.6.0

Python

Python applications do not require building. See Building and running your Application.

Running an application in a distributed setting requires launching the application binary on all nodes involved in the
distributed application. A single node must be selected to act as the application driver. This is achieved by using
the --driver command-line option. Worker nodes are initiated by launching the application with the --worker
command-line option. It’s possible for the driver node to also serve as a worker if both options are specified.

The address of the driver node must be specified for each process (both the driver and worker(s)) to identify the appro-
priate network interface for communication. This can be done via the --address command-line option, which takes
a value in the form of [<IPv4 address or hostname>][:<port>] (e.g., --address 192.168.50.68:10000):

• The driver’s IP (or hostname) MUST be set for each process (driver and worker(s)) when running distributed
applications on multiple nodes (default: 0.0.0.0). It can be set without the port (e.g., --address 192.168.
50.68).

• In a single-node application, the driver’s IP (or hostname) can be omitted, allowing any network interface (0.0.
0.0) to be selected by the UCX library.

• The port is always optional (default: 8765). It can be set without the IP (e.g., --address :10000).

The worker node’s address can be defined using the --worker-address command-line option ([<IPv4 address or
hostname>][:<port>]). If it’s not specified, the application worker will default to the host address (0.0.0.0) and
select an available port randomly from the range 10000 to 32767.

The --fragments command-line option is used in combination with --worker to specify a comma-separated list
of fragment names to be run by a worker. If not specified, the application driver will assign a single fragment to the
worker. To indicate that a worker should run all fragments, you can specify --fragments all.

The --config command-line option can be used to designate a path to a configuration file to be used by the application.

Below is an example launching a three fragment application named my_app on two separate nodes:

• The application driver is launched at 192.168.50.68:10000 on the first node (A), with a worker running two
fragments, “fragment1” and “fragment3”.

• On a separate node (B), the application launches a worker for “fragment2”, which will connect to the driver at
the address above.

C++

Node A
my_app --driver --worker --address 192.168.50.68:10000 --fragments fragment1,fragment3
Node B
my_app --worker --address 192.168.50.68:10000 --fragments fragment2

Python

Node A
python3 my_app.py --driver --worker --address 192.168.50.68:10000 --fragments fragment1,
→˓fragment3
Node B
python3 my_app.py --worker --address 192.168.50.68:10000 --fragments fragment2

Note:

92 Chapter 10. Creating a Distributed Application

https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use

Holoscan SDK User Guide, Release 0.6.0

UCX Network Interface Selection

UCX is used in the Holoscan SDK for communication across fragments in distributed applications. It is designed
to select the best network device based on performance characteristics (bandwidth, latency, NUMA locality, etc). In
some scenarios (under investigation) UCX cannot find the correct network interface to use, and the application fails to
run. In this case, you can manually specify the network interface to use by setting the UCX_NET_DEVICES environment
variable.

For example, if the user wants to use the network interface eth0, you can set the environment variable as follows,
before running the application:

export UCX_NET_DEVICES=eth0

Or, if you are running a packaged distributed application with the Holoscan CLI , use the --nic eth0 option to man-
ually specify the network interface to use.

The available network interface names can be found by running the following command:

ucx_info -d | grep Device: | awk '{print $3}' | sort | uniq
or
ip -o -4 addr show | awk '{print $2, $4}' # to show interface name and IP

Warning:

Known limitations

The following are known limitations of the distributed application support in the SDK, which will be addressed in
future updates:

1. The driver calls the compose() method of the fragments.

Although the driver doesn’t execute fragments, it still invokes the compose()method of the fragments to determine
the number of connections between them.

2. A connection error message is displayed even when the distributed application is running
correctly.

The message Connection dropped with status -25 (Connection reset by remote peer) appears in
the console even when the application is functioning properly. This is a known issue and will be addressed in future
updates, ensuring that this message will only be displayed in the event of an actual connection error.

3. An operator in one fragment cannot have output port(s) connected to the multiple input ports
of the operator(s) in another fragment.

The distributed application will not function if there are multiple input/output port connections between two oper-
ators in different fragments, as illustrated in the figure below.

10.2. Building and running a Distributed Application 93

https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use

Holoscan SDK User Guide, Release 0.6.0

Fig. 10.1: Illustration of a non-working scenario: Multiple input/output ports are connected between two operators
in different fragments.

The distributed application test cases shows examples of working and non-working scenarios.
(ForwardedTwoMultiInputsOutputsFragmentsApp shows the workaround for this limitation.)

4. GPU tensors can only currently be sent/received by UCX from device 0.

Because the device ID associated with the network context is currently hardcoded in the executor code, GPU tensors
can only be sent/received between fragments from device 0.

94 Chapter 10. Creating a Distributed Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/tests/system/distributed_app.cpp

Holoscan SDK User Guide, Release 0.6.0

Tip: Given a CMake project, a pre-built executable, or a python application, you can also use the Holoscan CLI to
package and run your Holoscan application in a OCI-compliant container image.

10.2.1 Environment Variables for Distributed Applications

Holoscan SDK environment variables.

Environment variables can be set to override the default behavior of the scheduler used when running a distributed
application.

• HOLOSCAN_DISTRIBUTED_APP_SCHEDULER : controls which scheduler is used for distributed appli-
cations. It can be set to either greedy or multithread. If unspecified, the default scheduler is greedy.

• HOLOSCAN_STOP_ON_DEADLOCK : can be used in combination with
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER to control whether or not the application will automatically
stop on deadlock. Values of “True”, “1” or “ON” will be interpreted as true (enable stop on deadlock). It is
true if unspecified. This environment variable is only used when HOLOSCAN_DISTRIBUTED_APP_SCHEDULER
is explicitly set.

• HOLOSCAN_STOP_ON_DEADLOCK_TIMEOUT : controls the delay (in ms) without activity required
before an application is considered to be in deadlock. It must be an integer value (units are ms).

• HOLOSCAN_MAX_DURATION_MS : sets the application to automatically terminate after the requested
maximum duration (in ms) has elapsed. It must be an integer value (units are ms). This environment variable is
only used when HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

• HOLOSCAN_CHECK_RECESSION_PERIOD_MS : controls how long (in ms) the scheduler waits before
re-checking the status of operators in an application. It must be a floating point value (units are ms). This
environment variable is only used when HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

• HOLOSCAN_UCX_SERIALIZATION_BUFFER_SIZE : can be used to override the default 7 kB serializa-
tion buffer size. This should typically not be needed as tensor types store only a small header in this buffer to
avoid explicitly making a copy of their data. However, other data types do get directly copied to the serialization
buffer and in some cases it may be necessary to increase it.

UCX-specific environment variables

Transmission of data between fragments of a multi-fragment application is done via the Unified Communications X
(UCX) library, a point-to-point communication framework designed to utilize the best available hardware resources
(shared memory, TCP, GPUDirect RDMA, etc). UCX has many parameters that can be controlled via environment
variables. A few that are particularly relevant to Holoscan SDK distributed applications are listed below:

• The UCX_TLS environment variable can be used to control which transport layers are enabled. By default,
UCX_TLS=all and UCX will attempt to choose the optimal transport layer automatically.

• The UCX_NET_DEVICES environment variable is by default set to all meaning that UCX may choose to use
any available network interface controller (NIC). In some cases it may be necessary to restrict UCX to a specific
device or set of devices, which can be done by setting UCX_NET_DEVICES to a comma separated list of the device
names (i.e. as obtained by linux command ifconfig -a or ip link show).

• Setting UCX_TCP_CM_REUSEADDR=y is recommended to enable ports to be reused without having to wait the full
socket TIME_WAIT period after a socket is closed.

10.2. Building and running a Distributed Application 95

https://openucx.readthedocs.io
https://openucx.readthedocs.io
https://openucx.readthedocs.io/en/master/faq.html#which-transports-does-ucx-use

Holoscan SDK User Guide, Release 0.6.0

• The UCX_LOG_LEVEL environment variable can be used to control the logging level of UCX. The default is setting
is WARN, but changing to a lower level such as INFO will provide more verbose output on which transports and
devices are being used.

• By default, Holoscan SDK will automatically set UCX_PROTO_ENABLE=y upon application launch to en-
able the newer “v2” UCX protocols. If for some reason, the older v1 protocols are needed, one can set
UCX_PROTO_ENABLE=n in the environment to override this setting. When the v2 protocols are enabled, one
can optionally set UCX_PROTO_INFO=y to enable detailed logging of what protocols are being used at runtime.

Tip: A list of all available UCX environment variables and a brief description of each can be obtained by running
ucx_info -f from the Holoscan SDK container. Holoscan SDK uses UCX’s active message (AM) protocols, so
environment variables related to other protocols such as tag-mat

10.3 Serialization

Distributed applications must serialize any objects that are to be sent between the fragments of a multi-fragment ap-
plication. Serialization involves binary serialization to a buffer that will be sent from one fragment to another via the
Unified Communications X (UCX) library. For tensor types (e.g. holoscan::Tensor), no actual copy is made, but in-
stead transmission is done directly from the original tensor’s data and only a small amount of header information is
copied to the serialization buffer.

A table of the types that have codecs pre-registered so that they can be serialized between fragments using Holoscan
SDK is given below.

Type Class Specific Types
integers int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, uint32_t, uint64_t
floating point float, double, complex <float>, complex<double>
boolean bool
strings std::string
std::vector<T> T is std::string or any of the boolean, integer or floating point types above
std::vector<std::vector<T>> T is std::string or any of the boolean, integer or floating point types above
std::vector<HolovizOp::InputSpec>a vector of InputSpec objects that are specific to HolovizOp
std::shared_ptr<%> T is any of the scalar, vector or std::string types above
tensor types holoscan::Tensor, nvidia::gxf::Tensor, nvidia::gxf::VideoBuffer,

nvidia::gxf::AudioBuffer
GXF-specific types nvidia::gxf::TimeStamp, nvidia::gxf::EndOfStream

10.3.1 Python

For the Python API, any array-like object supporting the DLPack interface, __array_interface__ or
__cuda_array_interface__ will be transmitted using Tensor serialization. This is done to avoid data copies for
performance reasons. Objects of type list[holoscan.HolovizOp.InputSpec] will be sent using the underlying
C++ serializer for std::vector<HolovizOp::InputSpec>. All other Python objects will be serialized to/from a
std::string using the cloudpickle library. One restriction imposed by the use of cloudpickle is that all fragments in
a distributed application must be running the same Python version.

96 Chapter 10. Creating a Distributed Application

https://openucx.readthedocs.io/en/master/faq.html#how-can-i-tell-which-protocols-and-transports-are-being-used-for-communication
https://dmlc.github.io/dlpack/latest/
https://numpy.org/doc/stable/reference/arrays.interface.html
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://github.com/cloudpipe/cloudpickle

Holoscan SDK User Guide, Release 0.6.0

10.3.2 C++

For any additional C++ classes that need to be serialized for transmission between fragments in a distributed application,
the user must create their own codec and register it with the Holoscan SDK framework. As a concrete example, suppose
that we had the following simple Coordinate class that we wish to send between fragments.

struct Coordinate {
float x;
float y;
float z;

};

To create a codec capable of serializing and deserializing this type one should define a holoscan::codec class for it
as shown below.

#include "holoscan/core/codec_registry.hpp"
#include "holoscan/core/errors.hpp"
#include "holoscan/core/expected.hpp"

namespace holoscan {

template <>
struct codec<Coordinate> {
static expected<size_t, RuntimeError> serialize(const Coordinate& value, Endpoint*␣

→˓endpoint) {
return serialize_trivial_type<Coordinate>(value, endpoint);

}
static expected<Coordinate, RuntimeError> deserialize(Endpoint* endpoint) {
return deserialize_trivial_type<Coordinate>(endpoint);

}
};

} // namespace holoscan

where the first argument to serialize is a const reference to the type to be serialized and the return value is an
expected containing the number of bytes that were serialized. The deserialize method returns an expected
containing the deserialized object. The Endpoint class is a base class representing the serialization endpoint (For
distributed applications, the actual endpoint class used is UcxSerializationBuffer).

The helper functions serialize_trivial_type (deserialize_trivial_type) can be used to serialize (deseri-
alize) any plain-old-data (POD) type. Specifically, POD types can be serialized by just copying sizeof(Type) bytes
to/from the endpoint. The read_trivial_type() and ~holoscan::Endpoint::write_trivial_type methods
could be used directly instead.

template <>
struct codec<Coordinate> {
static expected<size_t, RuntimeError> serialize(const Coordinate& value, Endpoint*␣

→˓endpoint) {
return endpoint->write_trivial_type(&value);

}
static expected<Coordinate, RuntimeError> deserialize(Endpoint* endpoint) {

Coordinate encoded;
auto maybe_value = endpoint->read_trivial_type(&encoded);

(continues on next page)

10.3. Serialization 97

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

if (!maybe_value) { return forward_error(maybe_value); }
return encoded;

}
};

In practice, one would not actually need to define codec<Coordinate> at all since Coordinate is a trivially se-
rializable type and the existing codec treats any types for which there is not a template specialization as a trivially
serializable type. It is, however, still necessary to register the codec type with the CodecRegistry as described below.

For non-trivial types, one will likely also need to use the read() and write() methods to implement the codec.
Example use of these for the built-in codecs can be found in holoscan/core/codecs.hpp.

Once such a codec has been defined, the remaining step is to register it with the static CodecRegistry class. This will
make the UCX-based classes used by distributed applications aware of the existence of a codec for serialization of this
object type. If the type is specific to a particular operator, then one can register it via the register_codec() class.

#include "holoscan/core/codec_registry.hpp"

namespace holoscan::ops {

void MyCoordinateOperator::initialize() {
register_codec<Coordinate>("Coordinate");

// ...

// parent class initialize() call must be after the argument additions above
Operator::initialize();

}

} // namespace holoscan::ops

Here, the argument provided to register_codec is the name the registry will use for the codec. This name will be
serialized in the message header so that the deserializer knows which deserialization function to use on the received
data. In this example, we chose a name that matches the class name, but that is not a requirement. If the name matches
one that is already present in the CodecRegistry class, then any existing codec under that name will be replaced by
the newly registered one.

It is also possible to directly register the type outside of the context of initialize() by directly retrieving the static
instance of the codec registry as follows.

namespace holoscan {

CodecRegistry::get_instance().add_codec<Coordinate>("Coordinate");

} // namespace holoscan

98 Chapter 10. Creating a Distributed Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/include/holoscan/core/codecs.hpp

CHAPTER

ELEVEN

PACKAGING HOLOSCAN APPLICATIONS

The Holoscan App Packager, included as part of the Holoscan CLI as the package command, allows you to package
your Holoscan applications into a HAP-compliant container image for distribution and deployment.

11.1 Prerequisites

11.1.1 Dependencies

Ensure the following are installed in the environment where you want to run the CLI:

• PIP dependencies (automatically installed with the holoscan python wheel)

• NVIDIA Container Toolkit with Docker

– Developer Kits (aarch64): already included in HoloPack and JetPack

– x86_64: tested with NVIDIA Container Toolkit 1.13.3 w/Docker v24.0.1

• Docker BuildX plugin

1. Check if it is installed:

$ docker buildx version
github.com/docker/buildx v0.10.5 86bdced

2. If not, run the following commands based on the official doc:

Install Docker dependencies
sudo apt-get update
sudo apt-get install ca-certificates curl gnupg

Add Docker Official GPG Key
sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o␣
→˓/etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg

Configure Docker APT Repository
echo \
"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.
→˓gpg] https://download.docker.com/linux/ubuntu \
"$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

(continues on next page)

99

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/requirements.txt
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

Install Docker BuildX Plugin
sudo apt-get update
sudo apt-get install docker-buildx-plugin

• QEMU (Optional)

– used for packaging container images of different architectures than the host (example: x86_64 -> arm64)

11.1.2 CLI Installation

The Holoscan CLI is installed as part of the Holoscan SDK and can be called with the following instructions depending
on your installation:

If installed as a python wheel

• In a virtual environment: the holoscan CLI should already be in the PATH

• Globally: ensure that $HOME/.local/bin is added to your PATH. Run the following command make it available
across sessions:

echo 'export PATH=$HOME/.local/bin:$PATH' >> ~/.bashrc

If installed as a debian package

Ensure that /opt/nvidia/holoscan/ is added to your PATH. Run the following command make it available across
sessions:

echo 'alias holoscan=/opt/nvidia/holoscan/bin/holoscan' >> ~/.bashrc

If built or installed from source (local only)

Ensure that ${BUILD_OR_INSTALL_DIR}/bin is added to your PATH. Run the following command make it available
across sessions:

echo 'alias holoscan=${BUILD_OR_INSTALL_DIR}/bin/holoscan' >> ~/.bashrc

Warning: The Holoscan CLI is not available inside the NGC Container nor the development container (from
source).

11.2 Package an application

Tip: The packager feature is also illustrated in the cli_packager and video_replayer_distributed examples.

1. Ensure to use the HAP environment variables wherever possible when accessing data. For example:

Let’s take a look at the distributed video replayer example (examples/video_replayer_distributed).

• Using the Application Configuration File

100 Chapter 11. Packaging Holoscan Applications

https://github.com/multiarch/qemu-user-static
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/cli_packager
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/video_replayer_distributed

Holoscan SDK User Guide, Release 0.6.0

C++

In the main function, we call the app->config(config_path) function with the default configuration
file. The app->config(...) checks to see if the application was executed with --config argument first.
If --config was set, the method uses the configuration file from the --config argument. Otherwise, it
checks if the environment variable HOLOSCAN_CONFIG_PATH is set and uses that value as the source. If
neither were set, the default configuration file (config_path) is used.

int main(int argc, char** argv) {
// Get the yaml configuration file
auto config_path = std::filesystem::canonical(argv[0]).parent_path();
config_path /= std::filesystem::path("video_replayer_distributed.yaml");

auto app = holoscan::make_application<DistributedVideoReplayerApp>();
app->config(config_path);
app->run();

return 0;
}

Python

In the main function, we call the app.config(config_file_path) function with the default configu-
ration file. The app.config(...) method checks to see if the application was executed with --config
argument first. If --config was set, the method uses the configuration file from the --config argument.
Otherwise, it checks if the environment variable HOLOSCAN_CONFIG_PATH is set and uses that value as the
source. If neither were set, the default configuration file (config_file_path) is used.

def main():
input_path = get_input_path()
config_file_path = os.path.join(os.path.dirname(__file__), "video_replayer_

→˓distributed.yaml")

logging.info(f"Reading application configuration from {config_file_path}")

app = DistributedVideoReplayerApp(input_path)
app.config(config_file_path)
app.run()

• Using Environment Variable HOLOSCAN_INPUT_PATH for Data Input

C++

In Fragment1, we try to set the input video directory with the value defined in HOLOSCAN_INPUT_PATH.
When we instantiate a new Video Stream Replayer operator, we pass in all configuration values from the
from_config("replayer") call. In addition, we include args that we created with the value from
HOLOSCAN_INPUT_PATH if available as the last argument to override the directory setting.

class Fragment1 : public holoscan::Fragment {
public:
void compose() override {
using namespace holoscan;

(continues on next page)

11.2. Package an application 101

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

ArgList args;
auto data_directory = std::getenv("HOLOSCAN_INPUT_PATH");
if (data_directory != nullptr && data_directory[0] != '\0') {
auto video_directory = std::filesystem::path(data_directory);
video_directory /= "endoscopy/video";
args.add(Arg("directory", video_directory.string()));
HOLOSCAN_LOG_INFO("Using video from {}", video_directory.string());

}
auto replayer =

make_operator<ops::VideoStreamReplayerOp>("replayer", from_config(
→˓"replayer"), args);

add_operator(replayer);
}

};

Python

In Fragment1, we try to set the input video directory with the value defined in HOLOSCAN_INPUT_PATH.
When we instantiate a new Video Stream Replayer operator, we pass in the video_path along with all
replayer configurations found in the configuration file.

class Fragment1(Fragment):
def __init__(self, app, name):

super().__init__(app, name)

def __init__(self, app, name):
super().__init__(app, name)

def compose(self):
Set the video source
video_path = self._get_input_path()
logging.info(

f"Using video from {video_path}"
)

Define the replayer and holoviz operators
replayer = VideoStreamReplayerOp(

self, name="replayer", directory=video_path, **self.kwargs("replayer
→˓")

)

self.add_operator(replayer)

def _get_input_path(self):
path = os.environ.get(

"HOLOSCAN_INPUT_PATH", os.path.join(os.path.dirname(__file__), "data
→˓")

)
return os.path.join(path, "endoscopy/video")

2. Include a YAML configuration file as described in the Application Runner Configuration page.

102 Chapter 11. Packaging Holoscan Applications

Holoscan SDK User Guide, Release 0.6.0

3. Use the holoscan package command to create a HAP container image. For example:

holoscan package --platform x64-workstation --tag my-awesome-app --config /path/to/
→˓my/awesome/application/config.yaml /path/to/my/awesome/application/

11.3 Run a packaged application

The packaged Holoscan application container image can run with the Holoscan App Runner:

holoscan run -i /path/to/my/input -o /path/to/application/generated/output my-
→˓application:1.0.1

Since the packaged Holoscan application container images are OCI-compliant, they’re also compatible with Docker,
Kubernetes, and containerd.

Each packaged Holoscan application container image includes tools inside for extracting the embedded application,
manifest files, models, etc. To access the tool and to view all available options, run the following:

docker run -it my-container-image[:tag] help

The command should prints following:

USAGE: /var/holoscan/tools [command] [arguments]...
Command List

extract --------------------------- Extract data based on mounted volume paths.
/var/run/holoscan/export/app extract the application
/var/run/holoscan/export/config extract app.json and pkg.json manifest files␣

→˓and application YAML.
/var/run/holoscan/export/models extract models
/var/run/holoscan/export/docs extract documentation files
/var/run/holoscan/export extract all of the above
IMPORTANT: ensure the directory to be mounted for data extraction is created␣

→˓first on the host system.
and has the correct permissions. If the directory had been created by␣

→˓the container previously
with the user and group being root, please delete it and manually␣

→˓create it again.
show ----------------------------- Print manifest file(s): [app|pkg] to the␣

→˓terminal.
app print app.json
pkg print pkg.json

env ------------------------- Print all environment variables to the terminal.

Note: The tools can also be accessed inside the Docker container via /var/holoscan/tools.

For example, run the following commands to extract the manifest files and the application configuration file:

create a directory on the host system first
mkdir -p config-files

mount the directory created to /var/run/holoscan/export/config
(continues on next page)

11.3. Run a packaged application 103

https://www.docker.com
https://kubernetes.io/
https://containerd.io/

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

docker run -it --rm -v $(pwd)/config-files:/var/run/holoscan/export/config my-container-
→˓image[:tag] extract

include -u 1000 if the above command reports a permission error
docker run -it --rm -u 1000 -v $(pwd)/config-files:/var/run/holoscan/export/config my-
→˓container-image[:tag] extract

If the permission error continues to occur, please check if the mounted directory has␣
→˓the correct permission.
If it doesn't, please recreate it or change the permissions as needed.

list files extracted
ls config-files/

output:
app.json app.yaml pkg.json

104 Chapter 11. Packaging Holoscan Applications

CHAPTER

TWELVE

CREATING OPERATORS

Tip: Creating a custom operator is also illustrated in the ping_custom_op example.

12.1 C++ Operators

When assembling a C++ application, two types of operators can be used:

1. Native C++ operators: custom operators defined in C++ without using the GXF API, by creating a subclass of
holoscan::Operator. These C++ operators can pass arbitrary C++ objects around between operators.

2. GXF Operators: operators defined in the underlying C++ library by inheriting from the
holoscan::ops::GXFOperator class. These operators wrap GXF codelets from GXF extensions. Ex-
amples are VideoStreamReplayerOp for replaying video files, FormatConverterOp for format conversions,
and HolovizOp for visualization.

Note: It is possible to create an application using a mixture of GXF operators and native operators. In this case, some
special consideration to cast the input and output tensors appropriately must be taken, as shown in a section below.

12.1.1 Native C++ Operators

Operator Lifecycle (C++)

The lifecycle of a holoscan::Operator is made up of three stages:

• start() is called once when the operator starts, and is used for initializing heavy tasks such as allocating memory
resources and using parameters.

• compute() is called when the operator is triggered, which can occur any number of times throughout the operator
lifecycle between start() and stop().

• stop() is called once when the operator is stopped, and is used for deinitializing heavy tasks such as deallocating
resources that were previously assigned in start().

All operators on the workflow are scheduled for execution. When an operator is first executed, the start() method
is called, followed by the compute() method. When the operator is stopped, the stop() method is called. The
compute() method is called multiple times between start() and stop().

105

Holoscan SDK User Guide, Release 0.6.0

If any of the scheduling conditions specified by Conditions are not met (for example, the CountCondition would
cause the scheduling condition to not be met if the operator has been executed a certain number of times), the operator
is stopped and the stop() method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (C++) section of the user guide.

Typically, the start() and the stop() functions are only called once during the application’s lifecycle. However, if
the scheduling conditions are met again, the operator can be scheduled for execution, and the start() method will be
called again.

start stopcompute

Fig. 12.1: The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above methods. The following example
shows how to implement a custom operator that overrides start, stop and compute methods.

Listing 12.1: The basic structure of a Holoscan Operator (C++)

1 #include "holoscan/holoscan.hpp"
2

3 using holoscan::Operator;
4 using holoscan::OperatorSpec;
5 using holoscan::InputContext;
6 using holoscan::OutputContext;
7 using holoscan::ExecutionContext;
8 using holoscan::Arg;
9 using holoscan::ArgList;

10

11 class MyOp : public Operator {
12 public:
13 HOLOSCAN_OPERATOR_FORWARD_ARGS(MyOp)
14

15 MyOp() = default;
16

17 void setup(OperatorSpec& spec) override {
18 }
19

20 void start() override {
21 HOLOSCAN_LOG_TRACE("MyOp::start()");
22 }
23

24 void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
25 HOLOSCAN_LOG_TRACE("MyOp::compute()");
26 };
27

28 void stop() override {
29 HOLOSCAN_LOG_TRACE("MyOp::stop()");
30 }
31 };

106 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

Creating a custom operator (C++)

To create a custom operator in C++ it is necessary to create a subclass of holoscan::Operator. The following
example demonstrates how to use native operators (the operators that do not have an underlying, pre-compiled GXF
Codelet).

Code Snippet: examples/ping_multi_port/cpp/ping_multi_port.cpp

Listing 12.2: examples/ping_multi_port/cpp/ping_multi_port.cpp

21 #include "holoscan/holoscan.hpp"
22

23 class ValueData {
24 public:
25 ValueData() = default;
26 explicit ValueData(int value) : data_(value) {
27 HOLOSCAN_LOG_TRACE("ValueData::ValueData(): {}", data_);
28 }
29 ~ValueData() {
30 HOLOSCAN_LOG_TRACE("ValueData::~ValueData(): {}", data_);
31 }
32

33 void data(int value) { data_ = value; }
34

35 int data() const { return data_; }
36

37 private:
38 int data_;
39 };
40

41 namespace holoscan::ops {
42

43 class PingTxOp : public Operator {
44 public:
45 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingTxOp)
46

47 PingTxOp() = default;
48

49 void setup(OperatorSpec& spec) override {
50 spec.output<std::shared_ptr<ValueData>>("out1");
51 spec.output<std::shared_ptr<ValueData>>("out2");
52 }
53

54 void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
55 auto value1 = std::make_shared<ValueData>(index_++);
56 op_output.emit(value1, "out1");
57

58 auto value2 = std::make_shared<ValueData>(index_++);
59 op_output.emit(value2, "out2");
60 };
61 int index_ = 0;
62 };
63

64 class PingMiddleOp : public Operator {
(continues on next page)

12.1. C++ Operators 107

https:://links-need-to-be-corrected.com

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

65 public:
66 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingMiddleOp)
67

68 PingMiddleOp() = default;
69

70 void setup(OperatorSpec& spec) override {
71 spec.input<std::shared_ptr<ValueData>>("in1");
72 spec.input<std::shared_ptr<ValueData>>("in2");
73 spec.output<std::shared_ptr<ValueData>>("out1");
74 spec.output<std::shared_ptr<ValueData>>("out2");
75 spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value

→˓", 2);
76 }
77

78 void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&)␣
→˓override {

79 auto value1 = op_input.receive<std::shared_ptr<ValueData>>("in1").value();
80 auto value2 = op_input.receive<std::shared_ptr<ValueData>>("in2").value();
81

82 HOLOSCAN_LOG_INFO("Middle message received (count: {})", count_++);
83

84 HOLOSCAN_LOG_INFO("Middle message value1: {}", value1->data());
85 HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data());
86

87 // Multiply the values by the multiplier parameter
88 value1->data(value1->data() * multiplier_);
89 value2->data(value2->data() * multiplier_);
90

91 op_output.emit(value1, "out1");
92 op_output.emit(value2, "out2");
93 };
94

95 private:
96 int count_ = 1;
97 Parameter<int> multiplier_;
98 };
99

100 class PingRxOp : public Operator {
101 public:
102 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingRxOp)
103

104 PingRxOp() = default;
105

106 void setup(OperatorSpec& spec) override {
107 spec.param(receivers_, "receivers", "Input Receivers", "List of input receivers.", {}

→˓);
108 }
109

110 void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
111 auto value_vector =
112 op_input.receive<std::vector<std::shared_ptr<ValueData>>>("receivers").value();
113

(continues on next page)

108 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

114 HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
→˓vector.size());

115

116 HOLOSCAN_LOG_INFO("Rx message value1: {}", value_vector[0]->data());
117 HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data());
118 };
119

120 private:
121 Parameter<std::vector<IOSpec*>> receivers_;
122 int count_ = 1;
123 };
124

125 } // namespace holoscan::ops
126

127 class App : public holoscan::Application {
128 public:
129 void compose() override {
130 using namespace holoscan;
131

132 auto tx = make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10));
133 auto mx = make_operator<ops::PingMiddleOp>("mx", Arg("multiplier", 3));
134 auto rx = make_operator<ops::PingRxOp>("rx");
135

136 add_flow(tx, mx, {{"out1", "in1"}, {"out2", "in2"}});
137 add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}});
138 }
139 };
140

141 int main(int argc, char** argv) {
142 auto app = holoscan::make_application<MyPingApp>();
143 app->run();
144

145 return 0;
146 }

Code Snippet: examples/native_operator/cpp/app_config.yaml

In this application, three operators are created: PingTxOp, PingMxOp, and PingRxOp

1. The PingTxOp operator is a source operator that emits two values every time it is invoked. The values are emitted
on two different output ports, out1 (for even integers) and out2 (for odd integers).

2. The PingMxOp operator is a middle operator that receives two values from the PingTxOp operator and emits two
values on two different output ports. The values are multiplied by the multiplier parameter.

3. The PingRxOp operator is a sink operator that receives two values from the PingMxOp operator. The values are
received on a single input, receivers, which is a vector of input ports. The PingRxOp operator receives the
values in the order they are emitted by the PingMxOp operator.

As covered in more detail below, the inputs to each operator are specified in the setup() method of the operator. Then
inputs are received within the compute()method via op_input.receive() and outputs are emitted via op_output.
emit().

Note that for native C++ operators as defined here, any object including a shared pointer can be emitted or received.
For large objects such as tensors it may be preferable from a performance standpoint to transmit a shared pointer to
the object rather than making a copy. When shared pointers are used and the same tensor is sent to more than one

12.1. C++ Operators 109

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/cpp/app_config.yaml

Holoscan SDK User Guide, Release 0.6.0

downstream operator, one should avoid in-place operations on the tensor or race conditions between operators may
occur.

Specifying operator parameters (C++)

In the example holoscan::ops::PingMxOp operator above, we have a parameter multiplier that is declared as
part of the class as a private member using the param() templated type:

Parameter<int> multiplier_;

It is then added to the OperatorSpec attribute of the operator in its setup() method, where an associated string key
must be provided. Other properties can also be mentioned such as description and default value:

// Provide key, and optionally other information
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value",␣
→˓2);

Note: If your parameter is of a custom type, you must register that type and provide a YAML encoder/decoder, as
documented under holoscan::Operator::register_converter()

See the Configuring operator parameters section to learn how an application can set these parameters.

Specifying operator inputs and outputs (C++)

To configure the input(s) and output(s) of C++ native operators, call the spec.input() and spec.output() methods
within the setup() method of the operator.

The spec.input() and spec.output() methods should be called once for each input and output to be added. The
OperatorSpec object and the setup() method will be initialized and called automatically by the Application class
when its run() method is called.

These methods (spec.input() and spec.output()) return an IOSpec object that can be used to configure the
input/output port.

By default, the holoscan::MessageAvailableCondition and holoscan::DownstreamMessageAffordableCondition
conditions are applied (with a min_size of 1) to the input/output ports. This means that the operator’s compute()
method will not be invoked until a message is available on the input port and the downstream operator’s input port
(queue) has enough capacity to receive the message.

void setup(OperatorSpec& spec) override {
spec.input<std::shared_ptr<ValueData>>("in");
// Above statement is equivalent to:
// spec.input<std::shared_ptr<ValueData>>("in")
// .condition(ConditionType::kMessageAvailable, Arg("min_size") = 1);

spec.output<std::shared_ptr<ValueData>>("out");
// Above statement is equivalent to:
// spec.output<std::shared_ptr<ValueData>>("out")
// .condition(ConditionType::kDownstreamMessageAffordable, Arg("min_size") =␣

→˓1);
...

}

110 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

In the above example, the spec.input() method is used to configure the input port to have the
holoscan::MessageAvailableCondition with a minimum size of 1. This means that the operator’s compute()
method will not be invoked until a message is available on the input port of the operator. Similarly, the spec.output()
method is used to configure the output port to have the holoscan::DownstreamMessageAffordableCondition
with a minimum size of 1. This means that the operator’s compute() method will not be invoked until the downstream
operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the IOSpec::condition() method to configure the conditions. For example,
to configure the input and output ports to have no conditions, you can use the following code:

void setup(OperatorSpec& spec) override {
spec.input<std::shared_ptr<ValueData>>("in")

.condition(ConditionType::kNone);

spec.output<std::shared_ptr<ValueData>>("out")
.condition(ConditionType::kNone);

// ...
}

The example code in the setup() method configures the input port to have no conditions, which means that the
compute() method will be called as soon as the operator is ready to compute. Since there is no guarantee that the
input port will have a message available, the compute() method should check if there is a message available on the
input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types of input data within the
compute() method of your operator class, where its template argument (DataT) is the data type of the input. This
method takes the name of the input port as an argument (which can be omitted if your operator has a single input port),
and returns the input data. If input data is not available, the method returns an object of the holoscan::RuntimeError
class which contains an error message describing the reason for the failure. The holoscan::RuntimeError class is
a derived class of std::runtime_error and supports accessing more error information, for example, with what()
method.

In the example code fragment below, the PingRxOp operator receives input on a port called “in” with data type
ValueData. The receive() method is used to access the input data. The value is checked to be valid or not with
the if condition. If value is of holoscan::RuntimeError type, then if condition will be false. Otherwise, the
data() method of the ValueData class is called to get the value of the input data.

// ...

class PingRxOp : public holoscan::ops::GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp, holoscan::ops::GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {

spec.input<ValueData>("in");
}
void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of `value` is `ValueData`
auto value = op_input.receive<ValueData>("in");
if (value){
HOLOSCAN_LOG_INFO("Message received (value: {})", value.data());

}
}

};

For GXF Entity objects (holoscan::gxf::Entity wraps underlying GXF nvidia::gxf::Entity class), the

12.1. C++ Operators 111

Holoscan SDK User Guide, Release 0.6.0

receive() method will return the GXF Entity object for the input of the specified name. In the example below,
the PingRxOp operator receives input on a port called “in” with data type holoscan::gxf::Entity.

// ...

class PingRxOp : public holoscan::ops::GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp, holoscan::ops::GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {

spec.input<holoscan::gxf::Entity>("in");
}
void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of `in_entity` is 'holoscan::gxf::Entity'.
auto in_entity = op_input.receive<holoscan::gxf::Entity>("in");
if (in_entity) {
// Process with `in_entity`.
// ...

}
}

};

For objects of type std::any, the receive() method will return a std::any object containing the input of the
specified name. In the example below, the PingRxOp operator receives input on a port called “in” with data type
std::any. The type() method of the std::any object is used to determine the actual type of the input data, and the
std::any_cast<T>() function is used to retrieve the value of the input data.

// ...

class PingRxOp : public holoscan::ops::GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp, holoscan::ops::GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {

spec.input<std::any>("in");
}
void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of `in_any` is 'std::any'.
auto in_any = op_input.receive<std::any>("in");
auto& in_any_type = in_any.type();

if (in_any_type == typeid(holoscan::gxf::Entity)) {
auto in_entity = std::any_cast<holoscan::gxf::Entity>(in_any);
// Process with `in_entity`.
// ...

} else if (in_any_type == typeid(std::shared_ptr<ValueData>)) {
auto in_message = std::any_cast<std::shared_ptr<ValueData>>(in_any);
// Process with `in_message`.
// ...

} else if (in_any_type == typeid(nullptr_t)) {
// No message is available.

} else {
HOLOSCAN_LOG_ERROR("Invalid message type: {}", in_any_type.name());
return;

(continues on next page)

112 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

}
}

};

The Holoscan SDK provides built-in data types called Domain Objects, defined in the include/holoscan/core/
domain directory. For example, the holoscan::Tensor is a Domain Object class that is used to represent a multi-
dimensional array of data, which can be used directly by OperatorSpec, InputContext, and OutputContext.

Tip: This holoscan::Tensor class is a wrapper around the DLManagedTensorCtx struct holding a DLManagedTen-
sor object. As such, it provides a primary interface to access Tensor data and is interoperable with other frameworks
that support the DLPack interface.

Warning: Passing holoscan::Tensor objects to/from GXF operators directly is not supported. Instead, they
need to be passed through holoscan::gxf::Entity objects. See the interoperability section for more details.

Note: A warning will currently be raised if an input port has the same name as an output port. This warning can be
ignored and will be removed in a future release.

Receiving any number of inputs (C++)

Instead of assigning a specific number of input ports, it may be desired to have the ability to receive any number
of objects on a port in certain situations. This can be done by defining Parameter with std::vector<IOSpec*>>
(Parameter<std::vector<IOSpec*>> receivers_) and calling spec.param(receivers_, "receivers",
"Input Receivers", "List of input receivers.", {}); as done for PingRxOp in the native operator ping
example.

Listing 12.3: examples/ping_multi_port/cpp/ping_multi_port.cpp

98 class PingRxOp : public Operator {
99 public:

100 HOLOSCAN_OPERATOR_FORWARD_ARGS(PingRxOp)
101

102 PingRxOp() = default;
103

104 void setup(OperatorSpec& spec) override {
105 spec.param(receivers_, "receivers", "Input Receivers", "List of input receivers.", {}

→˓);
106 }
107

108 void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
109 auto value_vector = op_input.receive<std::vector<ValueData>>("receivers");
110

111 HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
→˓vector.size());

112

113 HOLOSCAN_LOG_INFO("Rx message value1: {}", value_vector[0]->data());
114 HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data());

(continues on next page)

12.1. C++ Operators 113

https://dmlc.github.io/dlpack/latest/c_api.html#_CPPv415DLManagedTensor
https://dmlc.github.io/dlpack/latest/c_api.html#_CPPv415DLManagedTensor
https://dmlc.github.io/dlpack/latest/

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

115 };
116

117 private:
118 Parameter<std::vector<IOSpec*>> receivers_;
119 int count_ = 1;
120 };
121

122 } // namespace holoscan::ops
123

124 class App : public holoscan::Application {
125 public:
126 void compose() override {
127 using namespace holoscan;
128

129 auto tx = make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10));
130 auto mx = make_operator<ops::PingMiddleOp>("mx", Arg("multiplier", 3));
131 auto rx = make_operator<ops::PingRxOp>("rx");
132

133 add_flow(tx, mx, {{"out1", "in1"}, {"out2", "in2"}});
134 add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}});
135 }
136 };

Then, once the following configuration is provided in the compose() method, the PingRxOp will receive two inputs
on the receivers port.

134: add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}});

By using a parameter (receivers) with std::vector<holoscan::IOSpec*> type, the framework creates input
ports (receivers:0 and receivers:1) implicitly and connects them (and adds the references of the input ports to
the receivers vector).

Building your C++ operator

You can build your C++ operator using CMake, by calling find_package(holoscan) in your CMakeLists.txt to
load the SDK libraries. Your operator will need to link against holoscan::core:

Listing 12.4: <src_dir>/CMakeLists.txt

Your CMake project
cmake_minimum_required(VERSION 3.20)
project(my_project CXX)

Finds the holoscan SDK
find_package(holoscan REQUIRED CONFIG PATHS "/opt/nvidia/holoscan")

Create a library for your operator
add_library(my_operator SHARED my_operator.cpp)

Link your operator against holoscan::core
target_link_libraries(my_operator

(continues on next page)

114 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

PUBLIC holoscan::core
)

Once your CMakeLists.txt is ready in <src_dir>, you can build in <build_dir> with the command line below.
You can optionally pass Holoscan_ROOT if the SDK installation you’d like to use differs from the PATHS given to
find_package(holoscan) above.

Configure
cmake -S <src_dir> -B <build_dir> -D Holoscan_ROOT="/opt/nvidia/holoscan"
Build
cmake --build <build_dir> -j

Using your C++ Operator in an Application

• If the application is configured in the same CMake project as the operator, you can simply add the operator
CMake target library name under the application executable target_link_libraries call, as the operator
CMake target is already defined.

operator
add_library(my_op my_op.cpp)
target_link_libraries(my_operator PUBLIC holoscan::core)

application
add_executable(my_app main.cpp)
target_link_libraries(my_operator
PRIVATE
holoscan::core
my_op

)

• If the application is configured in a separate project as the operator, you need to export the operator in
its own CMake project, and import it in the application CMake project, before being able to list it under
target_link_libraries also. This is the same as what is done for the SDK built-in operators, available
under the holoscan::ops namespace.

You can then include the headers to your C++ operator in your application code.

12.1.2 GXF Operators

With the Holoscan C++ API, we can also wrap GXF Codelets from GXF extensions as Holoscan Operators.

Note: If you do not have an existing GXF extension, we recommend developing native operators using the C++ or
Python APIs to skip the need for wrapping gxf codelets as operators. If you do need to create a GXF Extension, follow
the Creating a GXF Extension section for a detailed explanation of the GXF extension development process.

Given an existing GXF extension, we can create a simple “identity” application consisting of a replayer, which reads
contents from a file on disk, and our recorder from the last section, which will store the output of the replayer exactly
in the same format. This allows us to see whether the output of the recorder matches the original input files.

The MyRecorderOp Holoscan Operator implementation below will wrap the MyRecorder GXF Codelet shown here.

12.1. C++ Operators 115

https://cmake.org/cmake/help/latest/guide/importing-exporting/index.html

Holoscan SDK User Guide, Release 0.6.0

Operator definition

Listing 12.5: my_recorder_op.hpp

1 #ifndef APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP
2 #define APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP
3

4 #include "holoscan/core/gxf/gxf_operator.hpp"
5

6 namespace holoscan::ops {
7

8 class MyRecorderOp : public holoscan::ops::GXFOperator {
9 public:

10 HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(MyRecorderOp, holoscan::ops::GXFOperator)
11

12 MyRecorderOp() = default;
13

14 const char* gxf_typename() const override { return "MyRecorder"; }
15

16 void setup(OperatorSpec& spec) override;
17

18 void initialize() override;
19

20 private:
21 Parameter<holoscan::IOSpec*> receiver_;
22 Parameter<std::shared_ptr<holoscan::Resource>> my_serializer_;
23 Parameter<std::string> directory_;
24 Parameter<std::string> basename_;
25 Parameter<bool> flush_on_tick_;
26 };
27

28 } // namespace holoscan::ops
29

30 #endif /* APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP */

The holoscan::ops::MyRecorderOp class wraps a MyRecorder GXF Codelet by inheriting from the
holoscan::ops::GXFOperator class. The HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER macro is used
to forward the arguments of the constructor to the base class.

We first need to define the fields of the MyRecorderOp class. You can see that fields with the same names are defined
in both the MyRecorderOp class and the MyRecorder GXF codelet .

116 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

Listing 12.6: Parameter declarations in
gxf_extensions/my_recorder/my_recorder.hpp

22 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
23 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>> my_

→˓serializer_;
24 nvidia::gxf::Parameter<std::string> directory_;
25 nvidia::gxf::Parameter<std::string> basename_;
26 nvidia::gxf::Parameter<bool> flush_on_tick_;

Comparing the MyRecorderOp holoscan parameter to the MyRecorder gxf codelet:

Holoscan Operator GXF Codelet
holoscan::Parameter nvidia::gxf::Parameter
holoscan::IOSpec* nvidia::gxf::Handle<nvidia::gxf::Receiver>> or

nvidia::gxf::Handle<nvidia::gxf::Transmitter>>
std::shared_ptr<holoscan::Resource>>nvidia::gxf::Handle<T>> example: T is

nvidia::gxf::EntitySerializer

We then need to implement the following functions:

• const char* gxf_typename() const override: return the GXF type name of the Codelet. The fully-
qualified class name (MyRecorder) for the GXF Codelet is specified.

• void setup(OperatorSpec& spec) override: setup the OperatorSpec with the inputs/outputs and param-
eters of the Operator.

• void initialize() override: initialize the Operator.

Setting up parameter specifications

The implementation of the setup(OperatorSpec& spec) function is as follows:

Listing 12.7: my_recorder_op.cpp

1 #include "./my_recorder_op.hpp"
2

3 #include "holoscan/core/fragment.hpp"
4 #include "holoscan/core/gxf/entity.hpp"
5 #include "holoscan/core/operator_spec.hpp"
6

7 #include "holoscan/core/resources/gxf/video_stream_serializer.hpp"
8

9 namespace holoscan::ops {
10

11 void MyRecorderOp::setup(OperatorSpec& spec) {
12 auto& input = spec.input<holoscan::gxf::Entity>("input");
13 // Above is same with the following two lines (a default condition is assigned to the␣

→˓input port if not specified):
14 //
15 // auto& input = spec.input<holoscan::gxf::Entity>("input")
16 // .condition(ConditionType::kMessageAvailable, Arg("min_size") =␣

→˓1);
(continues on next page)

12.1. C++ Operators 117

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

17

18 spec.param(receiver_, "receiver", "Entity receiver", "Receiver channel to log", &
→˓input);

19 spec.param(my_serializer_,
20 "serializer",
21 "Entity serializer",
22 "Serializer for serializing input data");
23 spec.param(directory_, "out_directory", "Output directory path", "Directory path to␣

→˓store received output");
24 spec.param(basename_, "basename", "File base name", "User specified file name without␣

→˓extension");
25 spec.param(flush_on_tick_,
26 "flush_on_tick",
27 "Boolean to flush on tick",
28 "Flushes output buffer on every `tick` when true",
29 false);
30 }
31

32 void MyRecorderOp::initialize() {...}
33

34 } // namespace holoscan::ops

Here, we set up the inputs/outputs and parameters of the Operator. Note how the content of this function is very similar
to the MyRecorder GXF codelet’s registerInterface function.

• In the C++ API, GXF Receiver and Transmitter components (such as DoubleBufferReceiver and
DoubleBufferTransmitter) are considered as input and output ports of the Operator so we register the in-
puts/outputs of the Operator with input<T> and output<T> functions (where T is the data type of the port).

• Compared to the pure GXF application that does the same job, the Schedul-
ingTerm of an Entity in the GXF Application YAML are specified as Conditions
on the input/output ports (e.g., holoscan::MessageAvailableCondition and
holoscan::DownstreamMessageAffordableCondition).

The highlighted lines in MyRecorderOp::setup above match the following highlighted statements of GXF Application
YAML:

Listing 12.8: A part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

35 name: recorder
36 components:
37 - name: input
38 type: nvidia::gxf::DoubleBufferReceiver
39 - name: allocator
40 type: nvidia::gxf::UnboundedAllocator
41 - name: component_serializer
42 type: nvidia::gxf::StdComponentSerializer
43 parameters:
44 allocator: allocator
45 - name: entity_serializer
46 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
47 parameters:
48 component_serializers: [component_serializer]

(continues on next page)

118 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

49 - type: MyRecorder
50 parameters:
51 receiver: input
52 serializer: entity_serializer
53 out_directory: "/tmp"
54 basename: "tensor_out"
55 - type: nvidia::gxf::MessageAvailableSchedulingTerm
56 parameters:
57 receiver: input
58 min_size: 1

In the same way, if we had a Transmitter GXF component, we would have the following statements (Please see
available constants for holoscan::ConditionType):

auto& output = spec.output<holoscan::gxf::Entity>("output");
// Above is same with the following two lines (a default condition is assigned to the␣

→˓output port if not specified):
//
// auto& output = spec.output<holoscan::gxf::Entity>("output")
// .condition(ConditionType::kDownstreamMessageAffordable, Arg(

→˓"min_size") = 1);

Initializing the operator

Next, the implementation of the initialize() function is as follows:

Listing 12.9: my_recorder_op.cpp

1 #include "./my_recorder_op.hpp"
2

3 #include "holoscan/core/fragment.hpp"
4 #include "holoscan/core/gxf/entity.hpp"
5 #include "holoscan/core/operator_spec.hpp"
6

7 #include "holoscan/core/resources/gxf/video_stream_serializer.hpp"
8

9 namespace holoscan::ops {
10

11 void MyRecorderOp::setup(OperatorSpec& spec) {...}
12

13 void MyRecorderOp::initialize() {
14 // Set up prerequisite parameters before calling GXFOperator::initialize()
15 auto frag = fragment();
16 auto serializer =
17 frag->make_resource<holoscan::VideoStreamSerializer>("serializer");
18 add_arg(Arg("serializer") = serializer);
19

20 GXFOperator::initialize();
21 }
22

23 } // namespace holoscan::ops

12.1. C++ Operators 119

Holoscan SDK User Guide, Release 0.6.0

Here we set up the pre-defined parameters such as the serializer. The highlighted lines above matches the high-
lighted statements of GXF Application YAML:

Listing 12.10: Another part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

35 name: recorder
36 components:
37 - name: input
38 type: nvidia::gxf::DoubleBufferReceiver
39 - name: allocator
40 type: nvidia::gxf::UnboundedAllocator
41 - name: component_serializer
42 type: nvidia::gxf::StdComponentSerializer
43 parameters:
44 allocator: allocator
45 - name: entity_serializer
46 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
47 parameters:
48 component_serializers: [component_serializer]
49 - type: MyRecorder
50 parameters:
51 receiver: input
52 serializer: entity_serializer
53 out_directory: "/tmp"
54 basename: "tensor_out"
55 - type: nvidia::gxf::MessageAvailableSchedulingTerm
56 parameters:
57 receiver: input
58 min_size: 1

Note: The Holoscan C++ API already provides the holoscan::VideoStreamSerializer class which
wraps the nvidia::holoscan::stream_playback::VideoStreamSerializer GXF component, used here as
serializer.

Building your GXF operator

There are no differences in CMake between building a GXF operator and building a native C++ operator, since
the GXF codelet is actually loaded through a GXF extension as a plugin, and does not need to be added to
target_link_libraries(my_operator ...).

Using your GXF Operator in an Application

There are no differences in CMake between using a GXF operator and using a native C++ operator in an application.
However, the application will need to load the GXF extension library which holds the wrapped GXF codelet symbols,
so the application needs to be configured to find the extension library in its yaml configuration file, as documented here.

120 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

12.1.3 Interoperability between GXF and native C++ operators

To support sending or receiving tensors to and from operators (both GXF and native C++ operators), the Holoscan
SDK provides the C++ classes below:

• A class template called holoscan::MyMap which inherits from std::unordered_map<std::string,
std::shared_ptr<T>>. The template parameter T can be any type, and it is used to specify the type of the
std::shared_ptr objects stored in the map.

•

A holoscan::TensorMap class defined as a specialization of holoscan::Map for the holoscan::Tensor type.

Fig. 12.2: Supporting Tensor Interoperability

Consider the following example, where GXFSendTensorOp and GXFReceiveTensorOp are GXF operators, and where
ProcessTensorOp is a C++ native operator:

signal...in out...signal

GXFSendTensorOp

signal(out) : Tensor

ProcessTensorOp

[in]in : TensorMap

out(out) : TensorMap

GXFReceiveTensorOp

[in]signal : Tensor

Fig. 12.3: The tensor interoperability between C++ native operator and GXF operator

The following code shows how to implement ProcessTensorOp’s compute() method as a C++ native operator com-
municating with GXF operators. Focus on the use of the holoscan::gxf::Entity:

Listing 12.11: examples/tensor_interop/cpp/tensor_interop.cpp

81 void compute(InputContext& op_input, OutputContext& op_output,
82 ExecutionContext& context) override {
83 // The type of `in_message` is 'holoscan::TensorMap'.
84 auto in_message = op_input.receive<holoscan::TensorMap>("in").value();
85 // the type of out_message is TensorMap
86 TensorMap out_message;

(continues on next page)

12.1. C++ Operators 121

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

87

88 for (auto& [key, tensor] : in_message) { // Process with 'tensor' here.
89 cudaError_t cuda_status;
90 size_t data_size = tensor->nbytes();
91 std::vector<uint8_t> in_data(data_size);
92 CUDA_TRY(cudaMemcpy(in_data.data(), tensor->data(), data_size,␣

→˓cudaMemcpyDeviceToHost));
93 HOLOSCAN_LOG_INFO("ProcessTensorOp Before key: '{}', shape: ({}), data: [{}]",
94 key,
95 fmt::join(tensor->shape(), ","),
96 fmt::join(in_data, ","));
97 for (size_t i = 0; i < data_size; i++) { in_data[i] *= 2; }
98 HOLOSCAN_LOG_INFO("ProcessTensorOp After key: '{}', shape: ({}), data: [{}]",
99 key,

100 fmt::join(tensor->shape(), ","),
101 fmt::join(in_data, ","));
102 CUDA_TRY(cudaMemcpy(tensor->data(), in_data.data(), data_size,␣

→˓cudaMemcpyHostToDevice));
103 out_message.insert({key, tensor});
104 }
105 // Send the processed message.
106 op_output.emit(out_message);
107 };

• The input message is of type holoscan::TensorMap object.

• Every holoscan::Tensorin the TensorMap object is copied on the host as in_data.

• The data is processed (values multiplied by 2)

• The data is moved back to the holoscan::Tensor object on the GPU.

• A new holoscan::TensorMap object out_messageis created to be sent to the next operator with op_output.
emit().

Note: A complete example of the C++ native operator that supports interoperability with GXF operators is available
in the examples/tensor_interop/cpp directory.

12.2 Python Operators

When assembling a Python application, two types of operators can be used:

1. Native Python operators: custom operators defined in Python, by creating a subclass of holoscan.core.
Operator. These Python operators can pass arbitrary Python objects around between operators and are not
restricted to the stricter parameter typing used for C++ API operators.

2. Python wrappings of C++ Operators: operators defined in the underlying C++ library by inheriting from the
holoscan::Operator class. These operators have Python bindings available within the holoscan.operators
module. Examples are VideoStreamReplayerOp for replaying video files, FormatConverterOp for format
conversions, and HolovizOp for visualization.

Note: It is possible to create an application using a mixture of Python wrapped C++ operators and native Python

122 Chapter 12. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/cpp

Holoscan SDK User Guide, Release 0.6.0

operators. In this case, some special consideration to cast the input and output tensors appropriately must be taken, as
shown in a section below.

12.2.1 Native Python Operator

Operator Lifecycle (Python)

The lifecycle of a holoscan.core.Operator is made up of three stages:

• start() is called once when the operator starts, and is used for initializing heavy tasks such as allocating memory
resources and using parameters.

• compute() is called when the operator is triggered, which can occur any number of times throughout the operator
lifecycle between start() and stop().

• stop() is called once when the operator is stopped, and is used for deinitializing heavy tasks such as deallocating
resources that were previously assigned in start().

All operators on the workflow are scheduled for execution. When an operator is first executed, the start() method
is called, followed by the compute() method. When the operator is stopped, the stop() method is called. The
compute() method is called multiple times between start() and stop().

If any of the scheduling conditions specified by Conditions are not met (for example, the CountCondition would
cause the scheduling condition to not be met if the operator has been executed a certain number of times), the operator
is stopped and the stop() method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (Python) section of the user guide.

Typically, the start() and the stop() functions are only called once during the application’s lifecycle. However, if
the scheduling conditions are met again, the operator can be scheduled for execution, and the start() method will be
called again.

start stopcompute

Fig. 12.4: The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above methods. The following example
shows how to implement a custom operator that overrides start, stop and compute methods.

Listing 12.12: The basic structure of a Holoscan Operator (Python)

1 from holoscan.core import (
2 ExecutionContext,
3 InputContext,
4 Operator,
5 OperatorSpec,
6 OutputContext,
7)
8

9

10 class MyOp(Operator):
11

(continues on next page)

12.2. Python Operators 123

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

12 def __init__(self, fragment, *args, **kwargs):
13 super().__init__(fragment, *args, **kwargs)
14

15 def setup(self, spec: OperatorSpec):
16 pass
17

18 def start(self):
19 pass
20

21 def compute(self, op_input: InputContext, op_output: OutputContext, context:␣
→˓ExecutionContext):

22 pass
23

24 def stop(self):
25 pass

Creating a custom operator (Python)

To create a custom operator in Python it is necessary to create a subclass of holoscan.core.Operator. A simple
example of an operator that takes a time-varying 1D input array named “signal” and applies convolution with a boxcar
(i.e. rect) kernel.

For simplicity, this operator assumes that the “signal” that will be received on the input is already a numpy.ndarray
or is something that can be cast to one via (np.asarray). We will see more details in a later section on how we can
interoperate with various tensor classes, including the GXF Tensor objects used by some of the C++-based operators.

Code Snippet: examples/numpy_native/convolve.py

Listing 12.13: examples/numpy_native/convolve.py

16 import os
17

18 from holoscan.conditions import CountCondition
19 from holoscan.core import Application, Operator, OperatorSpec
20 from holoscan.logger import LogLevel, set_log_level
21

22 import numpy as np
23

24

25 class SignalGeneratorOp(Operator):
26 """Generate a time-varying impulse.
27

28 Transmits an array of zeros with a single non-zero entry of a
29 specified `height`. The position of the non-zero entry shifts
30 to the right (in a periodic fashion) each time `compute` is
31 called.
32

33 Parameters
34 ----------
35 fragment : holoscan.core.Fragment
36 The Fragment (or Application) the operator belongs to.
37 height : number

(continues on next page)

124 Chapter 12. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.py

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

38 The height of the signal impulse.
39 size : number
40 The total number of samples in the generated 1d signal.
41 dtype : numpy.dtype or str
42 The data type of the generated signal.
43 """
44

45 def __init__(self, fragment, *args, height=1, size=10, dtype=np.int32, **kwargs):
46 self.count = 0
47 self.height = height
48 self.dtype = dtype
49 self.size = size
50 super().__init__(fragment, *args, **kwargs)
51

52 def setup(self, spec: OperatorSpec):
53 spec.output("signal")
54

55 def compute(self, op_input, op_output, context):
56

57 # single sample wide impulse at a time-varying position
58 signal = np.zeros((self.size,), dtype=self.dtype)
59 signal[self.count % signal.size] = self.height
60 self.count += 1
61

62 op_output.emit(signal, "signal")
63

64

65 class ConvolveOp(Operator):
66 """Apply convolution to a tensor.
67

68 Convolves an input signal with a "boxcar" (i.e. "rect") kernel.
69

70 Parameters
71 ----------
72 fragment : holoscan.core.Fragment
73 The Fragment (or Application) the operator belongs to.
74 width : number
75 The width of the boxcar kernel used in the convolution.
76 unit_area : bool, optional
77 Whether or not to normalize the convolution kernel to unit area.
78 If False, all samples have implitude one and the dtype of the
79 kernel will match that of the signal. When True the sum over
80 the kernel is one and a 32-bit floating point data type is used
81 for the kernel.
82 """
83

84 def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs):
85 self.count = 0
86 self.width = width
87 self.unit_area = unit_area
88 super().__init__(fragment, *args, **kwargs)
89

(continues on next page)

12.2. Python Operators 125

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

90 def setup(self, spec: OperatorSpec):
91 spec.input("signal_in")
92 spec.output("signal_out")
93

94 def compute(self, op_input, op_output, context):
95

96 signal = op_input.receive("signal_in")
97 assert isinstance(signal, np.ndarray)
98

99 if self.unit_area:
100 kernel = np.full((self.width,), 1/self.width, dtype=np.float32)
101 else:
102 kernel = np.ones((self.width,), dtype=signal.dtype)
103

104 convolved = np.convolve(signal, kernel, mode='same')
105

106 op_output.emit(convolved, "signal_out")
107

108

109 class PrintSignalOp(Operator):
110 """Print the received signal to the terminal."""
111

112 def setup(self, spec: OperatorSpec):
113 spec.input("signal")
114

115 def compute(self, op_input, op_output, context):
116 signal = op_input.receive("signal")
117 print(signal)
118

119

120 class ConvolveApp(Application):
121 """Minimal signal processing application.
122

123 Generates a time-varying impulse, convolves it with a boxcar kernel, and
124 prints the result to the terminal.
125

126 A `CountCondition` is applied to the generate to terminate execution
127 after a specific number of steps.
128 """
129

130 def compose(self):
131 signal_generator = SignalGeneratorOp(
132 self,
133 CountCondition(self, count=24),
134 name="generator",
135 **self.kwargs("generator"),
136)
137 convolver = ConvolveOp(self, name="conv", **self.kwargs("convolve"))
138 printer = PrintSignalOp(self, name="printer")
139 self.add_flow(signal_generator, convolver)
140 self.add_flow(convolver, printer)
141

(continues on next page)

126 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

142

143 if __name__ == "__main__":
144 set_log_level(LogLevel.WARN)
145

146 app = ConvolveApp()
147 config_file = os.path.join(os.path.dirname(__file__), 'convolve.yaml')
148 app.config(config_file)
149 app.run()

Code Snippet: examples/numpy_native/convolve.yaml

Listing 12.14: examples/numpy_native/convolve.yaml

17 signal_generator:
18 height: 1
19 size: 20
20 dtype: int32
21

22 convolve:
23 width: 4
24 unit_area: false

In this application, three native Python operators are created: SignalGeneratorOp, ConvolveOp and
PrintSignalOp. The SignalGeneratorOp generates a synthetic signal such as [0, 0, 1, 0, 0, 0] where the
position of the non-zero entry varies each time it is called. ConvolveOp performs a 1D convolution with a boxcar (i.e.
rect) function of a specified width. PrintSignalOp just prints the received signal to the terminal.

As covered in more detail below, the inputs to each operator are specified in the setup() method of the operator. Then
inputs are received within the compute method via op_input.receive() and outputs are emitted via op_output.
emit().

Note that for native Python operators as defined here, any Python object can be emitted or received. When trasmitting
between operators, a shared pointer to the object is transmitted rather than a copy. In some cases, such as sending the
same tensor to more than one downstream operator, it may be necessary to avoid in-place operations on the tensor in
order to avoid any potential race conditions between operators.

Specifying operator parameters (Python)

In the example SignalGeneratorOp operator above, we added three keyword arguments in the operator’s __init__
method, used inside the compose() method of the operator to adjust its behavior:

def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs):
Internal counter for the time-dependent signal generation
self.count = 0

Parameters
self.width = width
self.unit_area = unit_area

To forward remaining arguments to any underlying C++ Operator class
super().__init__(fragment, *args, **kwargs)

Note: As an alternative closer to C++, these parameters can be added through the OperatorSpec attribute of the

12.2. Python Operators 127

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.yaml

Holoscan SDK User Guide, Release 0.6.0

operator in its setup() method, where an associated string key must be provided as well as a default value:

def setup(self, spec: OperatorSpec):
spec.param("width", 4)
spec.param("unit_area", False)

Other kwargs properties can also be passed to spec.param such as headline, description (used by GXF applica-
tions), or kind (used when Receiving any number of inputs (Python)).

See the Configuring operator parameters section to learn how an application can set these parameters.

Specifying operator inputs and outputs (Python)

To configure the input(s) and output(s) of Python native operators, call the spec.input() and spec.output() meth-
ods within the setup() method of the operator.

The spec.input() and spec.output() methods should be called once for each input and output to be added. The
holoscan.core.OperatorSpec object and the setup() method will be initialized and called automatically by the
Application class when its run() method is called.

These methods (spec.input() and spec.output()) return an IOSpec object that can be used to configure the
input/output port.

By default, the holoscan.conditions.MessageAvailableCondition and holoscan.conditions.
DownstreamMessageAffordableCondition conditions are applied (with a min_size of 1) to the input/output
ports. This means that the operator’s compute() method will not be invoked until a message is available on the input
port and the downstream operator’s input port (queue) has enough capacity to receive the message.

def setup(self, spec: OperatorSpec):
spec.input("in")
Above statement is equivalent to:
spec.input("in")
.condition(ConditionType.MESSAGE_AVAILABLE, min_size = 1)
spec.output("out")
Above statement is equivalent to:
spec.output("out")
.condition(ConditionType.DOWNSTREAM_MESSAGE_AFFORDABLE, min_size = 1)

In the above example, the spec.input() method is used to configure the input port to have the holoscan.
conditions.MessageAvailableCondition with a minimum size of 1. This means that the operator’s
compute() method will not be invoked until a message is available on the input port of the operator. Sim-
ilarly, the spec.output() method is used to configure the output port to have a holoscan.conditions.
DownstreamMessageAffordableCondition with a minimum size of 1. This means that the operator’s compute()
method will not be invoked until the downstream operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the IOSpec.condition() method to configure the conditions. For example,
to configure the input and output ports to have no conditions, you can use the following code:

from holoscan.core import ConditionType, OperatorSpec
...

def setup(self, spec: OperatorSpec):
spec.input("in").condition(ConditionType.NONE)
spec.output("out").condition(ConditionType.NONE)

128 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 0.6.0

The example code in the setup() method configures the input port to have no conditions, which means that the
compute() method will be called as soon as the operator is ready to compute. Since there is no guarantee that the
input port will have a message available, the compute() method should check if there is a message available on the
input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types of input data within the
compute() method of your operator class. This method takes the name of the input port as an argument (which can
be omitted if your operator has a single input port).

For standard Python objects, receive() will directly return the Python object for input of the specified name.

The Holoscan SDK also provides built-in data types called Domain Objects, defined in the include/holoscan/
core/domain directory. For example, the Tensor is a Domain Object class that is used to represent a multi-
dimensional array of data, which can be used directly by OperatorSpec, InputContext, and OutputContext.

Tip: This holoscan.core.Tensor class supports both DLPack and NumPy’s array interface
(__array_interface__ and __cuda_array_interface__) so that it can be used with other Python libraries such
as CuPy, PyTorch, JAX, TensorFlow, and Numba.

Warning: Passing holoscan.core.Tensor objects to/from Python wrapped C++ operators (both C++ native
and GXF-based) directly is not yet supported. At this time, they need to be passed through holoscan.gxf.Entity
objects. See the interoperability section for more details. This won’t be necessary in the future for native C++
operators.

In both cases, it will return None if there is no message available on the input port:

...
def compute(self, op_input, op_output, context):

msg = op_input.receive("in")
if msg:

Do something with msg

Receiving any number of inputs (Python)

Instead of assigning a specific number of input ports, it may be desired to have the ability to receive any number of
objects on a port in certain situations. This can be done by calling spec.param(port_name, kind='receivers')
as done for PingRxOp in the native operator ping example located at examples/native_operator/python/ping.
py:

Code Snippet: examples/native_operator/python/ping.py

Listing 12.15: examples/native_operator/python/ping.py

124 class PingRxOp(Operator):
125 """Simple receiver operator.
126

127 This operator has:
128 input: "receivers"
129

130 This is an example of a native operator that can dynamically have any
131 number of inputs connected to is "receivers" port.
132 """

(continues on next page)

12.2. Python Operators 129

https://dmlc.github.io/dlpack/latest/
https://numpy.org/doc/stable/reference/arrays.interface.html
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://docs.cupy.dev/en/stable/user_guide/interoperability.html
https://github.com/pytorch/pytorch/issues/15601
https://github.com/google/jax/issues/1100#issuecomment-580773098
https://github.com/tensorflow/community/pull/180
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/python/ping.py

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

133

134 def __init__(self, fragment, *args, **kwargs):
135 self.count = 1
136 # Need to call the base class constructor last
137 super().__init__(fragment, *args, **kwargs)
138

139 def setup(self, spec: OperatorSpec):
140 spec.param("receivers", kind="receivers")
141

142 def compute(self, op_input, op_output, context):
143 values = op_input.receive("receivers")
144 print(f"Rx message received (count: {self.count}, size: {len(values)})")
145 self.count += 1
146 print(f"Rx message value1: {values[0].data}")
147 print(f"Rx message value2: {values[1].data}")

and in the compose method of the application, two parameters are connected to this “receivers” port:

self.add_flow(mx, rx, {("out1", "receivers"), ("out2", "receivers")})

This line connects both the out1 and out2 ports of operator mx to the receivers port of operator rx.

Here, values as returned by op_input.receive("receivers") will be a tuple of python objects.

12.2.2 Python wrapping of a C++ operator

Note: While we provide some utilities to simplify part of the process, this section is designed for advanced developers,
since the wrapping of the C++ class using pybind11 is mostly manual and can vary greatly between each operator.

For convenience while maintaining highest performance, operators written in C++ can be wrapped in Python. In
the Holoscan SDK, we’ve used pybind11 to wrap all the built-in operators in python/holoscan/operators. We’ll
highlight the main components below:

Trampoline classes for handling Python kwargs

In a C++ file (my_op_pybind.cpp in our skeleton code below), create a subclass of the C++ Operator class to wrap.
In the subclass, define a new constructor which takes a Fragment, an explicit list of parameters with potential de-
fault values (argA, argB below. . .), and an operator name to fully initialize the operator similar to what is done in
Fragment::make_operator:

Listing 12.16: my_op_python/my_op_pybind.cpp

#include <holoscan/core/fragment.hpp>
#include <holoscan/core/operator.hpp>
#include <holoscan/core/operator_spec.hpp>

#include "my_op.hpp"

class PyMyOp : public MyOp {
public:

(continues on next page)

130 Chapter 12. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/tree/v0.6.0/python/holoscan/operators
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/include/holoscan/core/fragment.hpp#L207

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

using MyOp::MyOp;

PyMyOp(
Fragment* fragment,
TypeA argA, TypeB argB = 0, ...,
const std::string& name = "my_op"

) : MyOp(ArgList{
Arg{"argA", argA},
Arg{"argB", argB},
...

}) {
If you have arguments you can't pass directly to the `MyOp` constructor as an `Arg`,␣

→˓do
the conversion and pass the result to `this->add_arg` before setting up the spec␣

→˓below.
name_ = name;
fragment_ = fragment;
spec_ = std::make_shared<OperatorSpec>(fragment);
setup(*spec_.get());

}
}

Example: Look at the implementation of PyLSTMTensorRTInferenceOp on HoloHub for a specific example, or any
of the Py*Op classes used for the SDK built-in operators here. In the latter, you can find examples of add_arg used
for less straightforward arguments.

Documentation strings

Prepare documentation strings (const char*) for your python class and its parameters, which we’ll use in the next
step.

Note: Below we use a PYDOCmacro defined in the SDK and available in HoloHub as a utility to remove leading spaces.
In this skeleton example, the documentation code is located in a header file named my_op_pybind_docs.hpp, under
a custom doc::MyOp namespace. None of this is required, you just need to make the strings available in some way for
the next section.

Listing 12.17: my_op_python/my_op_pybind_docs.hpp

#include "../macros.hpp"

namespace doc::MyOp {

PYDOC(cls, R"doc(
My operator.
)doc")

PYDOC(constructor, R"doc(
Create the operator.

Parameters
(continues on next page)

12.2. Python Operators 131

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/lstm_tensor_rt_inference.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/operators/operators.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/macros.hpp
https://github.com/nvidia-holoscan/holohub/blob/main/cmake/pydoc/macros.hpp

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

fragment : holoscan.core.Fragment

The fragment that the operator belongs to.
argA : TypeA

argA description
argB : TypeB, optional

argB description
name : str, optional

The name of the operator.
)doc")

PYDOC(initialize, R"doc(
Initialize the operator.

This method is called only once when the operator is created for the first time,
and uses a light-weight initialization.
)doc")

PYDOC(setup, R"doc(
Define the operator specification.

Parameters

spec : holoscan.core.OperatorSpec

The operator specification.
)doc")

}

Examples: Continuing with the LSTMTensorRTInferenceOp example on HoloHub, the documentation strings are
defined in lstm_tensor_rt_inference_pydoc.hpp. The documentation strings for the SDK built-in operators are located
in operators_pydoc.hpp.

Writing glue code

In the same C++ file as the first section, call py::class_ within PYBIND11_MODULE to define your operator python
class.

Note:

• If you are implementing the python wrapping in Holohub, the <module_name> passed to PYBIND_11_MODULE
must match _<CPP_CMAKE_TARGET> (covered in more details in the next section), in this case, _my_op.

• If you are implementing the python wrapping in a standalone CMake project,the <module_name> passed to
PYBIND_11_MODULE must match the name of the module passed to the pybind11-add-module CMake function.

Listing 12.18: my_op_python/my_op_pybind.cpp (continued)

#include <pybind11/pybind11.h>

#include "my_op_pybind_docs.hpp"
(continues on next page)

132 Chapter 12. Creating Operators

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/lstm_tensor_rt_inference_pydoc.hpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/operators/operators_pydoc.hpp
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

using pybind11::literals::operator""_a;
namespace py = pybind11;

#define STRINGIFY(x) #x
#define MACRO_STRINGIFY(x) STRINGIFY(x)

// See notes above, value of `<module_name>` is important
PYBIND11_MODULE(<module_name>, m) {
m.doc() = R"pbdoc(
My Module Python Bindings

.. currentmodule:: <module_name>
.. autosummary::
:toctree: _generate
add
subtract

)pbdoc";

#ifdef VERSION_INFO
m.attr("__version__") = MACRO_STRINGIFY(VERSION_INFO);

#else
m.attr("__version__") = "dev";

#endif

py::class_<MyOp, PyMyOp, Operator, std::shared_ptr<MyOp>>(
m, "MyOp", doc::MyOp::doc_cls)

.def(py::init<Fragment*, TypeA, TypeB, ..., const std::string&>(),
"fragment"_a,
"argA"_a,
"argB"_a = 0,
...,
"name"_a = "my_op",
doc::MyOp::doc_constructor)

.def("initialize",
&MyOp::initialize,
doc::MyOp::doc_initialize)

.def("setup",
&MyOp::setup,
"spec"_a,
doc::MyOp::doc_setup);

}

Examples: Like the trampoline class, the PYBIND11_MODULE implementation of the LSTMTensorRTInferenceOp
example on HoloHub is located in lstm_tensor_rt_inference.cpp. For the SDK built-in operators, their class bindings
are all implemented within a single PYBIND11_MODULE in operators.cpp.

12.2. Python Operators 133

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/lstm_tensor_rt_inference.cpp#L104
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/operators/operators.cpp#L469

Holoscan SDK User Guide, Release 0.6.0

Configuring with CMake

We use CMake to configure pybind11 and build the bindings for the C++ operator you wish to wrap. There are two
approaches detailed below, one for HoloHub (recommended), one for standalone CMake projects.

Tip: To have your bindings built, ensure the CMake code below is executed as part of a CMake project which al-
ready defines the C++ operator as a CMake target, either built in your project (with add_library) or imported (with
find_package or find_library).

In HoloHub

We provide a CMake utility function named pybind11_add_holohub_module in HoloHub to facilitate configuring
and building your python bindings.

In our skeleton code below, a top-level CMakeLists.txt which already defined the my_op target for the C++ op-
erator would need to do add_subdirectory(my_op_python) to include the following CMakeLists.txt. The
pybind11_add_holohub_module lists that C++ operator target, the C++ class to wrap, and the path to the C++
binding source code we implemented above. Note how the <module_name> from the previous section would need to
match _<CPP_CMAKE_TARGET> i.e. _my_op.

Listing 12.19: my_op_python/CMakeLists.txt

include(pybind11_add_holohub_module)
pybind11_add_holohub_module(

CPP_CMAKE_TARGET my_op
CLASS_NAME "MyOp"
SOURCES my_op_pybind.cpp

)

Example: the cmake configuration for the LSTMTensorRTInferenceOp python bindings on HoloHub can be found
here. This directory is reachable thanks to the add_subdirectory(python) in the CMakeLists.txt one folder above,
but that’s an arbitrary opinionated location and not a required directory structure.

Standalone CMake

Follow the pybind11 documentation to configure your CMake project to use pybind11. Then, use the py-
bind11_add_module function with the cpp files containing the code above, and link against holoscan::core and
the library that exposes your C++ operator to wrap.

Listing 12.20: my_op_python/CMakeLists.txt

pybind11_add_module(my_python_module my_op_pybind.cpp)
target_link_libraries(my_python_module
PRIVATE holoscan::core
PUBLIC my_op

)

Example: in the SDK, this is done here.

134 Chapter 12. Creating Operators

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/CMakeLists.txt
https://pybind11.readthedocs.io/en/stable/compiling.html#building-with-cmake
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/CMakeLists.txt

Holoscan SDK User Guide, Release 0.6.0

Importing the class in Python

In HoloHub

When building your project, two files will be generated inside <build_or_install_dir>/python/lib/holohub/
my_op:

1. the shared library for your bindings (_my_op.cpython-<pyversion>-<arch>-linux-gnu.so)

2. an __init__.py file that makes the necessary imports to expose this in python

Assuming you have export PYTHONPATH=<build_or_install_dir>/python/lib/, you should then be able to
create an application in Holohub that imports your class via:

from holohub.my_op import MyOp

Example: LSTMTensorRTInferenceOp is imported in the Endoscopy Tool Tracking application on HoloHub here.

Standalone CMake

When building your project, a shared library file holding the python bindings and named my_python_module.
cpython-<pyversion>-<arch>-linux-gnu.so will be generated inside <build_or_install_dir>/
my_op_python (configurable with OUTPUT_NAME and LIBRARY_OUTPUT_DIRECTORY respectively in CMake).

From there, you can import it in python via:

import holoscan.core
import holoscan.gxf # if your c++ operator uses gxf extensions

from <build_or_install_dir>.my_op_python import MyOp

Tip: To imitate HoloHub’s behavior, you can also place that file alongside the .so file, name it __init__.
py, and replace <build_or_install_dir> by .. It can then be imported as a python module, assuming
<build_or_install_dir> is a module under the PYTHONPATH environment variable.

12.2.3 Interoperability between wrapped and native Python operators

As described in the Interoperability between GXF and native C++ operators section, holoscan::Tensor objects can
be passed to GXF operators using a holoscan::TesnorMap message that holds the tensor(s). In Python, this is done
by sending dict type objects that have tensor names as the keys and holoscan Tensor or array-like objects as the values.

Consider the following example, where VideoStreamReplayerOp and HolovizOp are Python wrapped C++ opera-
tors, and where ImageProcessingOp is a Python native operator:

output_tensor...input_tensor output_tensor...receivers

VideoStreamReplayerOp

output_tensor(out) : Tensor

ImageProcessingOp

[in]input_tensor : dict[str,Tensor]

output_tensor(out) : dict[str,Tensor]

HolovizOp

[in]receivers : Tensor

Fig. 12.5: The tensor interoperability between Python native operator and C++-based Python GXF operator

The following code shows how to implement ImageProcessingOp’s compute() method as a Python native operator
communicating with C++ operators:

12.2. Python Operators 135

https://github.com/nvidia-holoscan/holohub/blob/06365894c7231c312e1217461f9014e3b50425e8/applications/endoscopy_tool_tracking/python/endoscopy_tool_tracking.py#L35

Holoscan SDK User Guide, Release 0.6.0

Listing 12.21: examples/tensor_interop/python/tensor_interop.py

81 def compute(self, op_input, op_output, context):
82 # in_message is of type dict
83 in_message = op_input.receive("input_tensor")
84

85 # out_message is of dict
86 out_message = dict()
87

88 # smooth along first two axes, but not the color channels
89 sigma = (self.sigma, self.sigma, 0)
90

91 for key, value in in_message.items():
92 print(f"message received (count: {self.count})")
93 self.count += 1
94

95 cp_array = cp.asarray(value)
96

97 # process cp_array
98 cp_array = ndi.gaussian_filter(cp_array, sigma)
99

100 out_message[key] = cp_array
101

102 op_output.emit(out_message, "output_tensor")

• The op_input.receive() method call returns a dict object.

• The holoscan.core.Tensor object is converted to a CuPy array by using cupy.asarray() method call.

• The CuPy array is used as an input to the ndi.gaussian_filter() function call with a parameter sigma. The
result of the ndi.gaussian_filter() function call is a CuPy array.

• Finally, a new dict object is created ,out_message, to be sent to the next operator with op_output.
emit(). The CuPy array, cp_array, is added to it where the key is the tensor name. CuPy arrays do not
have to explicitly be converted to a holocan.core.Tensor object first since they implement a DLPack (and
__cuda__array_interface__) interface.

Note: A complete example of the Python native operator that supports interoperability with Python wrapped C++
operators is available in the examples/tensor_interop/python directory.

You can add multiple tensors to a single dict object , as in the example below:

Operator sending a message:

out_message = {
"video": output_array,
"labels": labels,
"bbox_coords": bbox_coords,

}

emit the tensors
op_output.emit(out_message, "outputs")

Operator receiving the message, assuming the outputs port above is connected to the inputs port below with
add_flow()has the corresponding tensors:

136 Chapter 12. Creating Operators

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/python

Holoscan SDK User Guide, Release 0.6.0

in_message = op_input.receive("inputs")
Tensors and tensor names
video_tensor = in_message["video"]
labels_tensor = in_message["labels"]
bbox_coords_tensor = in_message["bbox_coords"]

Note: Some existing operators allow configuring the name of the tensors they send/receive. An example is the
tensors parameter of HolovizOp, where the name for each tensor maps to the names of the tensors in the Entity
(see the holoviz entry in apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml).

A complete example of a Python native operator that emits multiple tensors to a downstream C++ operator is available
in the examples/holoviz/python directory.

There is a special serialization code for tensor types for emit/receive of tensor objects over a UCX connection that
avoids copying the tensor data to an intermediate buffer. For distributed apps, we cannot just send the Python object as
we do between operators in a single fragment app, but instead we need to cast it to holoscan::Tensor to use a special
zero-copy code path. However, we also transmit a header indicating if the type was originally some other array-like
object and attempt to return the same type again on the other side so that the behavior remains more similar to the
non-distributed case.

Transmitted object Received Object
holoscan.Tensor holoscan.Tensor
dict of array-like dict of holoscan.Tensor
host array-like object (with __array_interface__) numpy.ndarray
device array-like object (with __cuda_array_interface__) cupy.ndarray

This avoids NumPy or CuPy arrays being serialized to a string via cloudpickle so that they can efficiently be transmitted
and the same type is returned again on the opposite side. Worth mentioning is that ,if the type emitted was e.g. a
PyTorch host/device tensor on emit, the received value will be a numpy/cupy array since ANY object implementing
the interfaces returns those types.

12.2. Python Operators 137

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python

Holoscan SDK User Guide, Release 0.6.0

138 Chapter 12. Creating Operators

CHAPTER

THIRTEEN

LOGGING

13.1 Overview

The Holoscan SDK uses the Logger module to convey messages to the user. These messages are categorized into
different severity levels (see below) to inform users of the severity of a message and as a way to control the number and
verbosity of messages that are printed to the terminal. There are two settings which can be used for this purpose:

• Logger level

• Logger format

13.1.1 Logger Level

Messages that are logged using the Logger module have a severity level, e.g., messages can be categorized as INFO,
WARN, ERROR, etc.

The default logging level for an application is to print out messages with severity INFO or above, i.e., messages that are
categorized as INFO, WARN, ERROR, and CRITICAL. You can modify this default by calling set_log_level()
(C++/Python) in the application code to override the SDK default logging level and give it one of the following log
levels.

• TRACE

• DEBUG

• INFO

• WARN

• ERROR

• CRITICAL

• OFF

139

Holoscan SDK User Guide, Release 0.6.0

CPP

1 #include <holoscan/holoscan.hpp>
2

3 int main() {
4 holoscan::set_log_level(holoscan::LogLevel::WARN);
5 // ...
6 return 0;
7 }

PYTHON

1 from holoscan.logger import set_log_level
2

3 def main():
4 set_log_level(LogLevel::WARN)
5 # ...
6

7 if __name__ == "__main__":
8 main()

Additionally, at runtime, the user can set the HOLOSCAN_LOG_LEVEL environment variable to one of the values listed
above. This provides users with the flexibility to enable printing of diagnostic information for debugging purposes
when an issue occurs.

export HOLOSCAN_LOG_LEVEL=TRACE

Note: Under the hood, Holoscan SDK uses GXF to execute the computation graph. By default, this GXF layer uses
the same logging level as Holoscan SDK. If it is desired to override the logging level of this executor independently
of the Holoscan SDK logging level, environment variable HOLOSCAN_EXECUTOR_LOG_LEVEL can be used. It supports
the same levels as HOLOSCAN_LOG_LEVEL.

Note: For distributed applications, it can sometimes be useful to also enable additional logging for the UCX library
used to transmit data between fragments. This can be done by setting the UCX environment variable UCX_LOG_LEVEL
to one of: fatal, error, warn, info, debug, trace, req, data, async, func, poll. These have the behavior as described here:
UCX log levels.

Precedence

If the HOLOSCAN_LOG_LEVEL environment variable is set, this setting is used to set the logging level. If the environment
variable is not set, then the application setting is used if available. If not, the SDK default setting of INFO is used as
the logging level.

140 Chapter 13. Logging

https://github.com/openucx/ucx/blob/v1.14.0/src/ucs/config/types.h#L16C1-L31

Holoscan SDK User Guide, Release 0.6.0

13.2 Logger Format

When a message is printed out, the default message format shows the message severity level, filename:linenumber, and
the message to be printed.

For example:

[info] [ping_multi_port.cpp:114] Rx message value1: 51
[info] [ping_multi_port.cpp:115] Rx message value2: 54

You can modify this default by calling set_log_pattern() (C++/Python) in the application code to override the
SDK default logging format.

The pattern string can be one of the following pre-defined values

• SHORT : prints message severity level, and message

• DEFAULT : prints message severity level, filename:linenumber, and message

• LONG : prints timestamp, application, message severity level, filename:linenumber, and message

• FULL : prints timestamp, thread id, application, message severity level, filename:linenumber, and message

CPP

1 #include <holoscan/holoscan.hpp>
2

3 int main() {
4 holoscan::set_log_pattern("SHORT")
5 // ...
6 return 0;
7 }

PYTHON

1 from holoscan.logger import set_log_pattern
2

3 def main():
4 set_log_pattern("SHORT")
5 # ...
6

7 if __name__ == "__main__":
8 main()

With this logger format, the above application would display messages with the following format:

[info] Rx message value1: 51
[info] Rx message value2: 54

Alternatively, the pattern string can be a custom pattern to customize the logger format. Using this string pattern

"[%Y-%m-%d %H:%M:%S.%e] [%n] [%^%l%$] [%s:%#] %v";

would display messages with the following format:

13.2. Logger Format 141

Holoscan SDK User Guide, Release 0.6.0

[2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:114] Rx message value1:␣
→˓51
[2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:115] Rx message value2:␣
→˓54

For more details on custom formatting and details of each flag, please see the spdlog wiki page.

Additionally, at runtime, the user can also set the HOLOSCAN_LOG_FORMAT environment variable to modify the logger
format. The accepted string pattern is the same as the string pattern for the set_log_pattern() api mentioned above.

Note: If the HOLOSCAN_LOG_FORMAT environment variable is set, this setting is used to set the logger format. If the
environment variable is not set, then the application setting is used if available. If not, the SDK default message format
is used.

13.3 Calling the Logger in Your Application

The C++ API uses the HOLOSCAN_LOG_XXX() macros to log messages in the application. These macros use the
fmtlib format string syntax for their format strings.

Users of the Python API should use the built-in logging module to log messages.

142 Chapter 13. Logging

https://github.com/gabime/spdlog/wiki/3.-Custom-formatting#pattern-flags
https://fmt.dev/latest/syntax.html
https://docs.python.org/3/howto/logging.html

CHAPTER

FOURTEEN

BUILT-IN OPERATORS AND EXTENSIONS

The units of work of Holoscan applications are implemented within Operators, as described in the core concepts of
the SDK. The operators included in the SDK provide domain-agnostic functionalities such as IO, machine learning
inference, processing, and visualization, optimized for AI streaming pipelines, relying on a set of Core Technologies.

14.1 Operators

The operators below are defined under the holoscan::ops namespace for C++ and CMake, and under the holoscan.
operators module in Python.

Class CMake target/lib Documentation
AJASourceOp aja C++/Python
BayerDemosaicOp bayer_demosaic C++/Python
FormatConverterOp format_converter C++/Python
HolovizOp holoviz C++/Python
InferenceOp inference C++/Python
InferenceProcessorOp inference_processor C++/Python
PingRxOp ping_rx C++/Python
PingTxOp ping_tx C++/Python
SegmentationPostprocessorOp segmentation_postprocessor C++/Python
VideoStreamRecorderOp video_stream_recorder C++/Python
VideoStreamReplayerOp video_stream_replayer C++/Python
V4L2VideoCaptureOp v4l2 C++/Python

Given an instance of an operator class, you can print a human-readable description of its specification to inspect the
inputs, outputs, and parameters that can be configured on that operator class:

C++

std::cout << operator_object->spec()->description() << std::endl;

143

Holoscan SDK User Guide, Release 0.6.0

Python

print(operator_object.spec)

Note: The Holoscan SDK uses meta-programming with templating and std::any to support arbitrary data types.
Because of this, some type information (and therefore values) might not be retrievable by the description API. If
more details are needed, we recommend inspecting the list of Parameter members in the operator header to identify
their type.

14.2 Extensions

The Holoscan SDK also includes some GXF extensions with GXF codelets, which are typically wrapped as operators,
or present for legacy reasons. In addition to the core GXF extensions (std, cuda, serialization, multimedia) listed here,
the Holoscan SDK includes the following GXF extensions:

• bayer_demosaic

• gxf_holoscan_wrapper

• opengl

• stream_playback

• ucx_holoscan

14.2.1 Bayer Demosaic

The bayer_demosaic extension includes the nvidia::holoscan::BayerDemosaic codelet. It performs color filter
array (CFA) interpolation for 1-channel inputs of 8 or 16-bit unsigned integer and outputs an RGB or RGBA image. It
is wrapped by the nvidia::holoscan::ops::BayerDemosaicOp operator.

Note: The BayerDemosaicOp will be converted to a native operator in future releases.

14.2.2 GXF Holoscan Wrapper

The gxf_holoscan_wrapper extension includes the holoscan::gxf::OperatorWrapper codelet. It is used as a
utility base class to wrap a holoscan operator to interface with the GXF framework.

Learn more about it in the Using Holoscan Operators in GXF Applications section.

144 Chapter 14. Built-in Operators and Extensions

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/include/holoscan/operators

Holoscan SDK User Guide, Release 0.6.0

14.2.3 OpenGL

The opengl_renderer extension includes the nvidia::holoscan::OpenGLRenderer codelet. It displays a
VideoBuffer, leveraging OpenGL/CUDA interop.

Warning: This codelet is deprecated, and will be removed in a future release in favor of a the holoviz operator.

Parameter Description Type
signal Input Channel gxf::Handle<gxf::Receiver>
width Width of the rendering window unsigned int
height Height of the rendering window unsigned int
win-
dow_close_scheduling_term

BooleanSchedulingTerm to stop the codelet from tick-
ing after all messages are published

gxf::Handle<gxf::BooleanSchedulingTerm>

14.2.4 Stream Playback

The stream_playback extension includes the nvidia::holoscan::stream_playback::VideoStreamSerializer
entity serializer to/from a Tensor Object. This extension does not include any codelets: reading and writing video
stream (gxf entity files) from the disk was implemented as native operators with VideoStreamRecorderOp and
VideoStreamReplayerOp, though they leverage the VideoStreamSerializer from this extension.

Note: The VideoStreamSerializer codelet is based on the nvidia::gxf::StdEntitySerializer with the
addition of a repeat feature. (If the repeat parameter is true and the frame count is out of the maximum frame
index, unnecessary warning messages are printed with nvidia::gxf::StdEntitySerializer.)

14.2.5 UCX (Holoscan)

The ucx_holoscan extension includes nvidia::holoscan::UcxHoloscanComponentSerializer which
is a nvidia::gxf::ComponentSerializer that handles serialization of holoscan::Message and
holoscan::Tensor types for transmission using the Unified Communication X (UCX) library. UCX is the
library used by Holoscan SDK to enable communication of data between fragments in distributed applications.

Note: The UcxHoloscanComponentSerializer is intended for use in combination with other UCX compo-
nents defined in the GXF UCX extension. Specifically, it can be used by the UcxEntitySerializer where it
can operate alongside the UcxComponentSerializer that serializes GXF-specific types (nvidia::gxf::Tensor,
nvidia::gxf::VideoBuffer, etc.). This way both GXF and Holoscan types can be serialized by distributed appli-
cations.

14.2. Extensions 145

Holoscan SDK User Guide, Release 0.6.0

14.2.6 HoloHub

Visit the HoloHub repository to find a collection of additional Holoscan operators and extensions.

146 Chapter 14. Built-in Operators and Extensions

CHAPTER

FIFTEEN

VISUALIZATION

15.1 Overview

Holoviz provides the functionality to composite real time streams of frames with multiple different other layers like
segmentation mask layers, geometry layers and GUI layers.

For maximum performance Holoviz makes use of Vulkan, which is already installed as part of the Nvidia GPU driver.

Holoscan provides the Holoviz operator which is sufficient for many, even complex visualization tasks. The Holoviz
operator is used by multiple Holoscan example applications.

Additionally, for more advanced use cases, the Holoviz module can be used to create application specific visualization
operators. The Holoviz module provides a C++ API and is also used by the Holoviz operator.

The term Holoviz is used for both the Holoviz operator and the Holoviz module below. Both the operator and the
module roughly support the same features set. Where applicable information how to use a feature with the operator
and the module is provided. It’s explicitly mentioned below when features are not supported by the operator.

15.2 Layers

The core entity of Holoviz are layers. A layer is a two-dimensional image object. Multiple layers are composited to
create the final output.

These layer types are supported by Holoviz:

• image layer

• geometry layer

• GUI layer

All layers have common attributes which define the look and also the way layers are finally composited.

The priority determines the rendering order of the layers. Before rendering the layers they are sorted by priority, the
layers with the lowest priority are rendered first so that the layer with the highest priority is rendered on top of all other
layers. If layers have the same priority then the render order of these layers is undefined.

The example below draws a transparent geometry layer on top of an image layer (geometry data and image data creation
is omitted in the code). Although the geometry layer is specified first, it is drawn last because it has a higher priority
(1) than the image layer (0).

147

https://www.vulkan.org/
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.6.0

Operator

The operator has a receivers port which accepts tensors and video buffers produced by other operators. Each tensor
or video buffer will result in a layer.

The operator autodetects the layer type for certain input types (e.g. a video buffer will result in a image layer).

For other input types or more complex use cases input specifications can be provided either at initialization time as a
parameter or dynamically at run time.

std::vector<ops::HolovizOp::InputSpec> input_specs;

auto& geometry_spec =
input_specs.emplace_back(ops::HolovizOp::InputSpec("point_tensor",␣

→˓ops::HolovizOp::InputType::POINTS));
geometry_spec.priority_ = 1;
geometry_spec.opacity_ = 0.5;

auto& image_spec =
input_specs.emplace_back(ops::HolovizOp::InputSpec("image_tensor",␣

→˓ops::HolovizOp::InputType::IMAGE));
image_spec.priority_ = 0;

auto visualizer = make_operator<ops::HolovizOp>("holoviz", Arg("tensors", input_specs));

// the source provides two tensors named "point_tensor" and "image_tensor" at the
→˓"outputs" port.
add_flow(source, visualizer, {{"outputs", "receivers"}});

Module

The definition of a layer is started by calling one of the layer begin functions viz::BeginImageLayer(),
viz::BeginGeometryLayer() or viz::BeginImGuiLayer(). The layer definition ends with viz::EndLayer().

The start of a layer definition is resetting the layer attributes like priority and opacity to their defaults. So for the image
layer, there is no need to set the opacity to 1.0 since the default is already 1.0.

namespace viz = holoscan::viz;

viz::Begin();

viz::BeginGeometryLayer();
viz::LayerPriority(1);
viz::LayerOpacity(0.5);
/// details omitted
viz::EndLayer();

viz::BeginImageLayer();
viz::LayerPriority(0);
/// details omitted
viz::EndLayer();

viz::End();

148 Chapter 15. Visualization

Holoscan SDK User Guide, Release 0.6.0

15.2.1 Image Layers

Operator

Image data can either be on host or device (GPU), both tensors and video buffers are accepted.

std::vector<ops::HolovizOp::InputSpec> input_specs;

auto& image_spec =
input_specs.emplace_back(ops::HolovizOp::InputSpec("image",␣

→˓ops::HolovizOp::InputType::IMAGE));

auto visualizer = make_operator<ops::HolovizOp>("holoviz", Arg("tensors", input_specs));

// the source provides an image named "image" at the "outputs" port.
add_flow(source, visualizer, {{"output", "receivers"}});

Module

The function viz::BeginImageLayer() starts an image layer. An image layer displays a rectangular 2D image.

The image data is defined by calling viz::ImageCudaDevice(), viz::ImageCudaArray() or viz::ImageHost().
Various input formats are supported, see viz::ImageFormat.

For single channel image formats image colors can be looked up by defining a lookup table with viz::LUT().

viz::BeginImageLayer();
viz::ImageHost(width, height, format, data);
viz::EndLayer();

15.2.2 Geometry Layers

A geometry layer is used to draw geometric primitives such as points, lines, rectangles, ovals or text.

Coordinates start with (0, 0) in the top left and end with (1, 1) in the bottom right.

Operator

See holoviz_geometry.cpp and holoviz_geometry.py.

Module

The function viz::BeginGeometryLayer() starts a geometry layer.

See viz::PrimitiveTopology for supported geometry primitive topologies.

There are functions to set attributes for geometric primitives like color (viz::Color()), line width
(viz::LineWidth()) and point size (viz::PointSize()).

The code below draws a red rectangle and a green text.

15.2. Layers 149

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/cpp/holoviz_geometry.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python/holoviz_geometry.py

Holoscan SDK User Guide, Release 0.6.0

namespace viz = holoscan::viz;

viz::BeginGeometryLayer();

// draw a red rectangle
viz::Color(1.f, 0.f, 0.f, 0.f);
const float data[]{0.1f, 0.1f, 0.9f, 0.9f};
viz::Primitive(viz::PrimitiveTopology::RECTANGLE_LIST, 1, sizeof(data) / sizeof(data[0]),
→˓ data);

// draw green text
viz::Color(0.f, 1.f, 0.f, 0.f);
viz::Text(0.5f, 0.5f, 0.2f, "Text");

viz::EndLayer();

15.2.3 ImGui Layers

Note: ImGui layers are not supported when using the Holoviz operator.

The Holoviz module supports user interface layers created with Dear ImGui.

If using Dear ImGui, create a context and pass it to Holoviz using viz::ImGuiSetCurrentContext(), do this before
calling viz::Init(). Background: the Dear ImGui context is a global variable. Global variables are not shared
across so/DLL boundaries. Therefore the app needs to create the Dear ImGui context first and then provide the pointer
to Holoviz like this:

ImGui::CreateContext();
holoscan::viz::ImGuiSetCurrentContext(ImGui::GetCurrentContext());

Calls to the Dear ImGui API are allowed between viz::BeginImGuiLayer() and viz::EndImGuiLayer() are used
to draw to the ImGui layer. The ImGui layer behaves like other layers and is rendered with the layer opacity and priority.

The code below creates a Dear ImGui window with a checkbox used to conditionally show a image layer.

namespace viz = holoscan::viz;

bool show_image_layer = false;
while (!viz::WindowShouldClose()) {

viz::Begin();

viz::BeginImGuiLayer();

ImGui::Begin("Options");
ImGui::Checkbox("Image layer", &show_image_layer);
ImGui::End();

viz::EndLayer();

if (show_image_layer) {
viz::BeginImageLayer();

(continues on next page)

150 Chapter 15. Visualization

https://github.com/ocornut/imgui

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

viz::ImageHost(...);
viz::EndLayer();

}

viz::End();
}

ImGUI is a static library and has no stable API. Therefore the application and Holoviz have to use the same ImGUI
version. Therefore the link target holoscan::viz::imgui is exported, make sure to link your app against that target.

15.2.4 Depth Map Layers

A depth map is a single channel 2d array where each element represents a depth value. The data is rendered as a 3d
object using points, lines or triangles. The color for the elements can also be specified.

Supported format for the depth map:

• 8-bit unsigned normalized format that has a single 8-bit depth component

Supported format for the depth color map:

• 32-bit unsigned normalized format that has an 8-bit R component in byte 0, an 8-bit G component in byte 1, an
8-bit B component in byte 2, and an 8-bit A component in byte 3

Depth maps are rendered in 3D and support camera movement.

The camera is operated using the mouse.

• Orbit (LMB)

• Pan (LMB + CTRL | MMB)

• Dolly (LMB + SHIFT | RMB | Mouse wheel)

• Look Around (LMB + ALT | LMB + CTRL + SHIFT)

• Zoom (Mouse wheel + SHIFT)

Operator

std::vector<ops::HolovizOp::InputSpec> input_specs;

auto& depth_map_spec =
input_specs.emplace_back(ops::HolovizOp::InputSpec("depth_map",␣

→˓ops::HolovizOp::InputType::DEPTH_MAP));
depth_map_spec.depth_map_render_mode_ = ops::HolovizOp::DepthMapRenderMode::TRIANGLES;

auto visualizer = make_operator<ops::HolovizOp>("holoviz",
Arg("tensors", input_specs));

// the source provides an depth map named "depth_map" at the "output" port.
add_flow(source, visualizer, {{"output", "receivers"}});

15.2. Layers 151

Holoscan SDK User Guide, Release 0.6.0

Module

See holoviz depth map demo.

15.3 Views

By default a layer will fill the whole window. When using a view, the layer can be placed freely within the window.

Layers can also be placed in 3D space by specifying a 3D transformation matrix.

Note: For geometry layers there is a default matrix which allows coordinates in the range of [0 . . . 1] instead of the
Vulkan [-1 . . . 1] range. When specifying a matrix for a geometry layer, this default matrix is overwritten.

When multiple views are specified the layer is drawn multiple times using the specified layer view.

It’s possible to specify a negative term for height, which flips the image. When using a negative height, one should also
adjust the y value to point to the lower left corner of the viewport instead of the upper left corner.

Operator

See holoviz_views.py.

Module

Use viz::LayerAddView() to add a view to a layer.

15.4 Using a display in exclusive mode

Usually Holoviz opens a normal window on the Linux desktop. In that case the desktop compositor is combining the
Holoviz image with all other elements on the desktop. To avoid this extra compositing step, Holoviz can render to a
display directly.

15.4.1 Configure a display for exclusive use

Single display

SSH into the machine and stop the X server:

sudo systemctl stop display-manager

To resume the display manager, run:

sudo systemctl start display-manager

152 Chapter 15. Visualization

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/modules/holoviz/examples/depth_map
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python/holoviz_views.py

Holoscan SDK User Guide, Release 0.6.0

Multiple displays

The display to be used in exclusive mode needs to be disabled in the NVIDIA Settings application (nvidia-settings):
open the X Server Display Configuration tab, select the display and under Configuration select Disabled.
Press Apply.

15.4.2 Enable exclusive display in Holoviz

Operator

Arguments to pass to the Holoviz operator:

auto visualizer = make_operator<ops::HolovizOp>("holoviz",
Arg("use_exclusive_display", true), // required
Arg("display_name", "DP-2"), // optional
Arg("width", 2560), // optional
Arg("height", 1440), // optional
Arg("framerate", 240) // optional
);

Module

Provide the name of the display and desired display mode properties to viz::Init().

If the name is nullptr then the first display is selected.

The name of the display can either be the EDID name as displayed in the NVIDIA Settings, or the output name used
by xrandr.

Tip: In this example output of xrandr, DP-2 would be an adequate display name to use:

Screen 0: minimum 8 x 8, current 4480 x 1440, maximum 32767 x 32767
DP-0 disconnected (normal left inverted right x axis y axis)
DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 connected primary 2560x1440+1920+0 (normal left inverted right x axis y axis) 600mm␣
→˓x 340mm

2560x1440 59.98 + 239.97* 199.99 144.00 120.00 99.95
1024x768 60.00
800x600 60.32
640x480 59.94

USB-C-0 disconnected (normal left inverted right x axis y axis)

15.4. Using a display in exclusive mode 153

Holoscan SDK User Guide, Release 0.6.0

15.5 CUDA streams

By default Holoviz is using CUDA stream 0 for all CUDA operations. Using the default stream can affect concurrency
of CUDA operations, see stream synchronization behavior for more information.

Operator

The operator is using a holoscan::CudaStreamPool instance if provided by the cuda_stream_pool argument. The
stream pool is used to create a CUDA stream used by all Holoviz operations.

const std::shared_ptr<holoscan::CudaStreamPool> cuda_stream_pool =
make_resource<holoscan::CudaStreamPool>("cuda_stream", 0, 0, 0, 1, 5);

auto visualizer =
make_operator<holoscan::ops::HolovizOp>("visualizer",

Arg("cuda_stream_pool") = cuda_stream_pool);

Module

When providing CUDA resources to Holoviz through e.g. viz::ImageCudaDevice() Holoviz is using CUDA opera-
tions to use that memory. The CUDA stream used by these operations can be set by calling viz::SetCudaStream().
The stream can be changed at any time.

15.6 Reading the framebuffer

The rendered frame buffer can be read back. This is useful when when doing offscreen rendering or running Holoviz
in a headless environment.

Note: Reading the depth buffer is not supported when using the Holoviz operator.

Operator

To read back the color framebuffer set the enable_render_buffer_output parameter to true and provide an allo-
cator to the operator.

The framebuffer is emitted on the render_buffer_output port.

std::shared_ptr<holoscan::ops::HolovizOp> visualizer =
make_operator<ops::HolovizOp>("visualizer",

Arg("enable_render_buffer_output", true),
Arg("allocator") = make_resource<holoscan::UnboundedAllocator>("allocator"),
Arg("cuda_stream_pool") = cuda_stream_pool);

add_flow(visualizer, destination, {{"render_buffer_output", "input"}});

154 Chapter 15. Visualization

https://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__default-stream

Holoscan SDK User Guide, Release 0.6.0

Module

The rendered color or depth buffer can be read back using viz::ReadFramebuffer().

15.7 Holoviz operator

15.7.1 Class documentation

C++

Python.

15.7.2 Examples

There are multiple examples both in Python and C++ showing how to use various features of the Holoviz operator.

15.8 Holoviz module

15.8.1 Concepts

The Holoviz module uses the concept of the immediate mode design pattern for its API, inspired by the Dear ImGui
library. The difference to the retained mode, for which most APIs are designed for, is, that there are no objects created
and stored by the application. This makes it fast and easy to make visualization changes in a Holoscan application.

15.8.2 Getting started

The code below creates a window and displays an image.

First the Holoviz module needs to be initialized. This is done by calling viz::Init().

The elements to display are defined in the render loop, termination of the loop is checked with
viz::WindowShouldClose().

The definition of the displayed content starts with viz::Begin() and ends with viz::End(). viz::End() starts the
rendering and displays the rendered result.

Finally the Holoviz module is shutdown with viz::Shutdown().

#include "holoviz/holoviz.hpp"

namespace viz = holoscan::viz;

viz::Init("Holoviz Example");

while (!viz::WindowShouldClose()) {
viz::Begin();
viz::BeginImageLayer();
viz::ImageHost(width, height, viz::ImageFormat::R8G8B8A8_UNORM, image_data);
viz::EndLayer();
viz::End();

(continues on next page)

15.7. Holoviz operator 155

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/holoviz
https://github.com/ocornut/imgui

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

}

viz::Shutdown();

Result:

Fig. 15.1: Holoviz example app

15.8.3 API

Holoviz module API

15.8.4 Examples

There are multiple examples showing how to use various features of the Holoviz module.

156 Chapter 15. Visualization

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/modules/holoviz/examples

CHAPTER

SIXTEEN

INFERENCE

16.1 Overview

A Holoscan application that needs to run inference will use an inference operator. The built-in Inference operator
(InferenceOp) can be used, and several related use cases are documented in the Inference operator section below. The
use cases are created using the parameter set that must be defined in the configuration file of the holoscan application.
If the built-in InferenceOp doesn’t cover a specific use case, users can create their own custom inference operator as
documented in Creating an Inference operator section.

The core inference functionality in the Holoscan SDK is provided by the Inference Module which is a framework that
facilitates designing and executing inference and processing applications through its APIs. It is used by the built-in
InferenceOp which supports the same parameters as the Inference Module. All parameters required by the Holoscan
Inference Module are passed through a parameter set in the configuration file of an application.

16.2 Parameters and related Features

Required parameters and related features available with the Holoscan Inference Module are listed below.

• Data Buffer Parameters: Parameters are provided in the inference settings to enable data buffer locations at several
stages of the inference. As shown in the figure below, three parameters input_on_cuda, output_on_cuda and
transmit_on_cuda can be set by the user.

– input_on_cuda refers to the location of the data going into the inference.

∗ If value is true, it means the input data is on the device

∗ If value is false, it means the input data is on the host

∗ Default value: true

– output_on_cuda refers to the data location of the inferred data.

∗ If value is true, it means the inferred data is on the device

∗ If value is false, it means the inferred data is on the host

∗ Default value: true

– transmit_on_cuda refers to the data transmission.

∗ If value is true, it means the data transmission from the inference extension will be on Device

∗ If value is false, it means the data transmission from the inference extension will be on Host

∗ Default value: true

• Inference Parameters

157

Holoscan SDK User Guide, Release 0.6.0

– backend parameter is set to either trt for TensorRT, onnxrt for Onnx runtime, or torch for libtorch. If
there are multiple models in the inference application, all models will use the same backend. If it is desired
to use different backends for different models, specify the backend_map parameter instead.

∗ TensorRT:

· CUDA-based inference supported both on x86_64 and aarch64

· End-to-end CUDA-based data buffer parameters supported. input_on_cuda, output_on_cuda
and transmit_on_cuda will all be true for end-to-end CUDA-based data movement.

· input_on_cuda, output_on_cuda and transmit_on_cuda can be either true or false.

· TensorRT backend expects input models to be in tensorrt engine file format or onnx format.

· if models are in tensorrt engine file format, parameter is_engine_path must be set to
true.

· if models are in onnx format, it will be automatically converted into tensorrt engine file
by the Holoscan inference module.

∗ Torch:

· CUDA and CPU based inference supported on x86_64 and aarch64 with discrete GPU (dGPU).

· Not supported on aarch64 with integrated GPU (iGPU/Tegra) as of now.

· End-to-end CUDA-based data buffer parameters supported. input_on_cuda, output_on_cuda
and transmit_on_cuda will all be true for end-to-end CUDA-based data movement.

· input_on_cuda, output_on_cuda and transmit_on_cuda can be either true or false.

· Tested with Libtorch version 1.12.0 (with CUDA 11.6) and TorchVision 0.14.1. These are included
in the Holoscan NGC container, otherwise:

· x86_64: binaries available from the official pytorch release.

· aarch64: binaries available from holoscan’s third-party repository or within the holoscan NGC
container (in /opt). Extracted from the arm64 version of the PyTorch container on NGC
(v22.04).

· Torch backend expects input models to be in torchscript format.

· It is recommended to use the same version of torch for torchscript model generation, as used
in the HOLOSCAN SDK on the respective architectures.

· Additionally, it is recommended to generate the torchscript model on the same architecture
on which it will be executed. For example, torchscript model must be generated on x86_64
to be executed in an application running on x86_64 only.

∗ Onnx runtime:

· Data flow via host only. input_on_cuda, output_on_cuda and transmit_on_cuda must be
false.

· CUDA based inference (supported on x86_64)

· CPU based inference (supported on x86_64 and aarch64)

– infer_on_cpu parameter is set to true if CPU based inference is desired.

The tables below demonstrate the supported features related to the data buffer and the inference with trt
and onnxrt based backend, on x86 and aarch64 system respectively.

158 Chapter 16. Inference

https://pytorch.org/get-started/locally/
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

Holoscan SDK User Guide, Release 0.6.0

x86 input_on_cuda output_on_cuda transmit_on_cuda infer_on_cpu
Supported values for trt true or false true or false true or false false
Supported values for
torch

true or false true or false true or false true or
false

Supported values for
onnxrt

false false true or false true or
false

Aarch64 input_on_cuda output_on_cuda transmit_on_cuda infer_on_cpu
Supported values for trt true or false true or false true or false false
Supported values for
torch

true or false true or false true or false true or
false

Supported values for
onnxrt

false false true or false true

– model_path_map: User can design single or multi AI inference pipeline by populating model_path_map
in the config file.

∗ With a single entry it is single inference and with more than one entry, multi AI inference is enabled.

∗ Each entry in model_path_map has a unique keyword as key (used as an identifier by the Holoscan
Inference Module), and the path to the model as value.

∗ All model entries must have the models either in onnx or tensorrt engine file or torchscript format.

– pre_processor_map: input tensor to the respective model is specified in pre_processor_map in the
config file.

∗ The Holoscan Inference Module supports same input for multiple models or unique input per model.

∗ Each entry in pre_processor_map has a unique keyword representing the model (same as used in
model_path_map), and a vector of tensor names as the value.

∗ The Holoscan Inference Module supports multiple input tensors per model.

– inference_map: output tensors per model after inference is specified in inference_map in the config
file.

∗ Each entry in inference_map has a unique keyword representing the model (same as used in
model_path_map and pre_processor_map), and a vector of the output tensor names as the value.

∗ The Holoscan Inference Module supports multiple output tensors per model.

– parallel_inference: Parallel or Sequential execution of inferences.

∗ If multiple models are input, then user can execute models in parallel.

∗ Parameter parallel_inference can be either true or false. Default value is true.

∗ Inferences are launched in parallel without any check of the available GPU resources, user must make
sure that there is enough memory and compute available to run all the inferences in parallel.

– enable_fp16: Generation of the TensorRT engine files with FP16 option

∗ If backend is set to trt, and if the input models are in onnx format, then users can generate the engine
file with fp16 option to accelerate inferencing.

∗ It takes few mintues to generate the engine files for the first time.

∗ It can be either true or false. Default value is false.

16.2. Parameters and related Features 159

Holoscan SDK User Guide, Release 0.6.0

– is_engine_path: if the input models are specified in trt engine format in model_path_map, this flag
must be set to true. Default value is false.

– in_tensor_names: Input tensor names to be used by pre_processor_map. This parameter is optional.
If absent in the parameter map, values are derived from pre_processor_map.

– out_tensor_names: Output tensor names to be used by inference_map. This parameter is optional. If
absent in the parameter map, values are derived from inference_map.

– device_map: Multi-GPU inferencing is enabled if device_map is populated in the parameter set.

∗ Each entry in device_map has a unique keyword representing the model (same as used in
model_path_map and pre_processor_map), and GPU identifier as the value. This GPU ID is used
to execute the inference for the specified model.

∗ GPUs specified in the device_map must have P2P (peer to peer) access and they must be connected
to the same PCIE configuration. If P2P access is not possible among GPUs, the host (CPU memory)
will be used to transfer the data.

∗ Multi-GPU inferencing is supported for all backends.

– backend_map: Multiple backends can be used in the same application with this parameter.

∗ Each entry in backend_map has a unique keyword representing the model (same as used in
model_path_map), and the backend as the value.

∗ A sample backend_map is shown below. In the example, model_1 uses the tensorRT backend, and
model 2 and model 3 uses the torch backend for inference.

backend_map:
"model_1_unique_identifier": "trt"
"model_2_unique_identifier": "torch"
"model_3_unique_identifier": "torch"

• Other features: Table below illustrates other features and supported values in the current release.

Feature Supported values
Data type float32, int32, int8
Inference Back-
end

trt, torch, onnxrt

Inputs per model Multiple
Outputs per
model

Multiple

GPU(s) sup-
ported

Multi-GPU on same PCIE network

Tensor data
dimension

2, 3, 4

Model Type All onnx or all torchscript or all trt engine type or a combination of
torch and trt engine

• Multi Receiver and Single Transmitter support

– The Holoscan Inference Module provides an API to extract the data from multiple receivers.

– The Holoscan Inference Module provides an API to transmit multiple tensors via a single transmitter.

160 Chapter 16. Inference

Holoscan SDK User Guide, Release 0.6.0

16.2.1 Parameter Specification

All required inference parameters of the inference application must be specified. Below is a sample parameter set for
an application that uses three models for inferencing. User must populate all required fields with appropriate values.

inference:
backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3"

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

parallel_inference: true
infer_on_cpu: false
enable_fp16: false
input_on_cuda: true
output_on_cuda: true
transmit_on_cuda: true
is_engine_path: false

16.3 Inference Operator

In Holoscan SDK, the built-in Inference operator (InferenceOp) is designed using the Holoscan Inference Module
APIs. The Inference operator ingests the inference parameter set (from the configuration file) and the data receivers
(from previous connected operators in the application), executes the inference and transmits the inferred results to the
next connected operators in the application.

InferenceOp is a generic operator that serves multiple use cases via the parameter set. Parameter sets for some key
use cases are listed below:

Note: Some parameters have default values set for them in the InferenceOp. For any parameters not mentioned in the
example parameter sets below, their default is used by the InferenceOp. These parameters are used to enable several
use cases.

• Single model inference using TensorRT backend.

backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]

Value of backend can be modified for other supported backends, and other parameters related to each backend.
User must ensure correct model type and model path is provided into the parameter set, along with supported
values of all parameters for the respective backend.

16.3. Inference Operator 161

Holoscan SDK User Guide, Release 0.6.0

In this example, path_to_model_1 must be an onnx file, which will be converted to a tensorRT engine file
at first execution. During subsequent executions, the Holoscan inference module will automatically find the
tensorRT engine file (if path_to_model_1 has not changed). Additionally, if user has a pre-built tensorRT
engine file, path_to_model_1 must be path to the engine file and the parameter is_engine_path must be set
to true in the parameter set.

• Single model inference using TensorRT backend with multiple outputs.

backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier",
"output_tensor_2_model_1_unique_identifier",
"output_tensor_3_model_1_unique_identifier"]

As shown in example above, Holoscan Inference module automatically maps the model outputs to the named
tensors in the parameter set. Users must ensure to use the named tensors in the same sequence in which the
model generates the output. Similar logic holds for multiple inputs.

• Single model inference using fp16 precision.

backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier",
"output_tensor_2_model_1_unique_identifier",
"output_tensor_3_model_1_unique_identifier"]

enable_fp16: true

If a tensorRT engine file is not available for fp16 precision, it will be automatically generated by the Holoscan
Inference module on the first execution. The file is cached for future executions.

• Single model inference on CPU.

backend: "onnxrt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
infer_on_cpu: true

Note that the backend can only be onnxrt or torch for CPU based inference.

• Single model inference with input/output data on Host.

backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
(continues on next page)

162 Chapter 16. Inference

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]

input_on_cuda: false
output_on_cuda: false

Data in the core inference engine is passed through the host and is received on the host. Inference can happen
on the GPU. Parameters input_on_cuda and output_on_cuda define the location of the data before and after
inference respectively.

• Single model inference with data transmission via Host.

backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
transmit_on_host: true

Data from inference operator to the next connected operator in the application is transmitted via the host.

• Multi model inference with a single backend.

backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3"

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

By default multiple model inferences are launched in parallel. The backend specified via parameter backend is
used for all models in the application.

• Multi model inference with sequential inference.

backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3"

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]

(continues on next page)

16.3. Inference Operator 163

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

parallel_inference: false

parallel_inference is set to true by default. To launch model inferences in sequence,
parallel_inference must be set to false.

• Multi model inference with multiple backends.

backend_map:
"model_1_unique_identifier": "trt"
"model_2_unique_identifier": "torch"
"model_3_unique_identifier": "torch"

model_path_map:
"model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3"

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

In the above sample parameter set, the first model will do inference using the tensorRT backend, and model 2
and 3 will do inference using the torch backend.

Note: the combination of backends in backend_map must support all other parameters that will be used during
the inference. For. e.g. onnxrt and tensorRT combination with CPU based inference will not be supported.

• Multi model inference with a single backend on multi-GPU.

backend: "trt"
device_map:

"model_1_unique_identifier": "1"
"model_2_unique_identifier": "0"
"model_3_unique_identifier": "1"

model_path_map:
"model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3"

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

In the sample above, model 1 and model 3 will do inference on the GPU with ID 1 and model 2 will do inferene

164 Chapter 16. Inference

Holoscan SDK User Guide, Release 0.6.0

on the GPU with ID 0. GPUs must have P2P (peer to peer) access among them. If it is not enabled, the Holoscan
inference module enables it by default. If P2P access is not possible between GPUs, then the data transfer will
happen via the Host.

• Multi model inference with multiple backends on multiple GPUs.

backend_map:
"model_1_unique_identifier": "trt"
"model_2_unique_identifier": "torch"
"model_3_unique_identifier": "torch"

device_map:
"model_1_unique_identifier": "1"
"model_2_unique_identifier": "0"
"model_3_unique_identifier": "1"

model_path_map:
"model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3"

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

In the sample above, three models are used during the inference. Model 1 uses the trt backend and runs on the
GPU with ID 1, model 2 uses the torch backend and runs on the GPU with ID 0, and model 3 uses the torch
backend and runs on the GPU with ID 1.

16.4 Creating an Inference operator

The Inference operator is the core inference unit in an inference application. The built-in Inference operator
(InferenceOp) can be used for inference, or users can create their own custom inference operator as explained in
this section. In Holoscan SDK, the inference operator can be designed using the Holoscan Inference Module APIs.

Arguments in the code sections below are referred to as

• Parameter Validity Check: Input inference parameters via the configuration (from step 1) are verified for correct-
ness.

auto status = HoloInfer::inference_validity_check(...);

• Inference specification creation: For a single AI, only one entry is passed into the required entries in the parameter
set. There is no change in the API calls below. Single AI or multi AI is enabled based on the number of entries
in the parameter specifications from the configuration (in step 1).

// Declaration of inference specifications
std::shared_ptr<HoloInfer::InferenceSpecs> inference_specs_;

// Creation of inference specification structure
inference_specs_ = std::make_shared<HoloInfer::InferenceSpecs>(...);

16.4. Creating an Inference operator 165

Holoscan SDK User Guide, Release 0.6.0

• Inference context creation.

// Pointer to inference context.
std::unique_ptr<HoloInfer::InferContext> holoscan_infer_context_;
// Create holoscan inference context
holoscan_infer_context_ = std::make_unique<HoloInfer::InferContext>();

• Parameter setup with inference context: All required parameters of the Holoscan Inference Module are transferred
in this step, and relevant memory allocations are initiated in the inference specification.

// Set and transfer inference specification to inference context
auto status = holoscan_infer_context_->set_inference_params(inference_specs_);

• Data extraction and allocation: The following API is used from the Holoinfer utility to extract and allocate data
for the specified tensor.

// Extract relevant data from input, and update inference specifications
gxf_result_t stat = HoloInfer::get_data_per_model(...);

• Inference execution

// Execute inference and populate output buffer in inference specifications
auto status = holoscan_infer_context_->execute_inference(inference_specs_->data_per_
→˓model_,

inference_specs_->output_
→˓per_model_);

• Transmit inferred data:

// Transmit output buffers
auto status = HoloInfer::transmit_data_per_model(...);

Figure below demonstrates the Inference operator in the Holoscan SDK. All blocks with blue color are the API calls
from the Holoscan Inference Module.

166 Chapter 16. Inference

CHAPTER

SEVENTEEN

SCHEDULERS

The Scheduler component is a critical part of the system responsible for governing the execution of operators in a graph
by enforcing conditions associated with each operator. Its primary responsibility includes orchestrating the execution
of all operators defined in the graph while keeping track of their execution states.

The Holoscan SDK offers multiple schedulers that can cater to various use cases. These schedulers are:

1. Greedy Scheduler: This basic single-threaded scheduler tests conditions in a greedy manner. It is suitable for
simple use cases and provides predictable execution. However, it may not be ideal for large-scale applications as
it may incur significant overhead in condition execution.

2. MultiThread Scheduler: The MultiThread Scheduler is designed to handle complex execution patterns in large-
scale applications. This scheduler consists of a dispatcher thread that monitors the status of each operator and
dispatches it to a thread pool of worker threads responsible for executing them. Once execution is complete,
worker threads enqueue the operator back on the dispatch queue. The MultiThread Scheduler offers superior
performance and scalability over the Greedy Scheduler.

It is essential to select the appropriate scheduler for the use case at hand to ensure optimal performance and efficient
resource utilization.

Note: Detailed APIs can be found here: C++/Python).

17.1 Greedy Scheduler

The greedy scheduler has a few parameters that the user can configure.

• The clock used by the scheduler can be set to either a realtime or manual clock.

– The realtime clock is what should be used for applications as it pauses execution as needed to respect user
specified conditions (e.g. operators with periodic conditions will wait the requested period before executing
again).

– The manual clock is of benefit mainly for testing purposes as it causes operators to run in a time-compressed
fashion (e.g. periodic conditions are not respected and operators run in immediate succession).

• The user can specify a max_duration_ms that will cause execution of the application to terminate after a speci-
fied maximum duration. The default value of -1 (or any other negative value) will result in no maximum duration
being applied.

• This scheduler also has a boolean parameter, stop_on_deadlock that controls whether the application will
terminate if a deadlock occurs. A deadlock occurs when all operators are in a WAIT state, but there is no periodic
condition pending to break out of this state. This parameter is true by default.

167

Holoscan SDK User Guide, Release 0.6.0

• When setting the stop_on_deadlock_timeout parameter, the scheduler will wait this amount of time (in ms)
before determining that it is in deadlock and should stop. It will reset if a job comes in during the wait. A negative
value means no stop on deadlock. This parameter only applies when stop_on_deadlock=true.

17.2 MultiThreadScheduler

The multithread scheduler has several parameters that the user can configure. These are a superset of the parameters
available for the GreedyScheduler (described in the section above). Only the parameters unique to the multithread
scheduler are described here.

• The number of worker threads used by the scheduler can be set via worker_thread_number, which defaults to
1. This should be set based on a consideration of both the workflow and the available hardware. For example,
the topology of the computation graph will determine how many operators it may be possible to run in parallel.
Some operators may potentially launch multiple threads internally, so some amount of performance profiling
may be required to determine optimal parameters for a given workflow.

• The value of check_recession_period_ms controls how long the scheduler will sleep before checking a given
condition again. In other words, this is the polling interval for operators that are in a WAIT state. The default
value for this parameter is 5 ms.

168 Chapter 17. Schedulers

CHAPTER

EIGHTEEN

CONDITIONS

The following table shows various states of the scheduling status of an operator:

Scheduling Status Description
NEVER Operator will never execute again
READY Operator is ready for execution
WAIT Operator may execute in the future
WAIT_TIME Operator will be ready for execution after specified duration
WAIT_EVENT Operator is waiting on an asynchronous event with unknown time interval

Note:

• A failure in execution of any single operator stops the execution of all the operators.

• Operators are naturally unscheduled from execution when their scheduling status reaches NEVER state.

By default, operators are always READY, meaning they are scheduled to continuously execute their compute() method.
To change that behavior, some condition classes can be passed to the constructor of an operator. There are various
conditions currently supported in the Holoscan SDK:

• MessageAvailableCondition

• DownstreamMessageAffordableCondition

• CountCondition

• BooleanCondition

• PeriodicCondition

• AsynchronousCondition

Note: Detailed APIs can be found here: C++/Python).

Conditions are AND-combined

An Operator can be associated with multiple conditions which define it’s execution behavior. Conditions are AND
combined to describe the current state of an operator. For an operator to be executed by the scheduler, all the conditions
must be in READY state and conversely, the operator is unscheduled from execution whenever any one of the scheduling
term reaches NEVER state. The priority of various states during AND combine follows the order NEVER, WAIT_EVENT,
WAIT, WAIT_TIME, and READY.

169

Holoscan SDK User Guide, Release 0.6.0

18.1 MessageAvailableCondition

An operator associated with MessageAvailableCondition is executed when the associated queue of the input port
has at least a certain number of elements. This condition is associated with a specific input port of an operator through
the condition() method on the return value (IOSpec) of the OperatorSpec’s input() method.

The minimum number of messages that permits the execution of the operator is specified by min_size parameter
(default: 1). An optional parameter for this condition is front_stage_max_size, the maximum front stage message
count. If this parameter is set, the condition will only allow execution if the number of messages in the queue does not
exceed this count. It can be used for operators which do not consume all messages from the queue.

18.2 DownstreamMessageAffordableCondition

This condition specifies that an operator shall be executed if the input port of the downstream operator for a given
output port can accept new messages. This condition is associated with a specific output port of an operator through
the condition() method on the return value (IOSpec) of the OperatorSpec’s output() method. The minimum
number of messages that permits the execution of the operator is specified by min_size parameter (default: 1).

18.3 CountCondition

An operator associated with CountCondition is executed for a specific number of times specified using its count
parameter. The scheduling status of the operator associated with this condition can either be in READY or NEVER state.
The scheduling status reaches the NEVER state when the operator has been executed count number of times.

18.4 BooleanCondition

An operator associated with BooleanCondition is executed when the associated boolean variable is set to true.
The boolean variable is set to true/false by calling the enable_tick()/disable_tick() methods on the
BooleanCondition object. The check_tick_enabled() method can be used to check if the boolean variable is
set to true/false. The scheduling status of the operator associated with this condition can either be in READY or
NEVER state. If the boolean variable is set to true, the scheduling status of the operator associated with this condi-
tion is set to READY. If the boolean variable is set to false, the scheduling status of the operator associated with this
condition is set to NEVER. The enable_tick()/disable_tick() methods can be called from any operator in the
workflow.

C++

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
// ...
if (<condition expression>) { // e.g. if (index_ >= 10)
auto my_bool_condition = condition<BooleanCondition>("my_bool_condition");
if (my_bool_condition) { // if condition exists (not true or false)
my_bool_condition->disable_tick(); // this will stop the operator

}
}
// ...

}

170 Chapter 18. Conditions

Holoscan SDK User Guide, Release 0.6.0

PYTHON

def compute(self, op_input, op_output, context):
...
if <condition expression>: # e.g, self.index >= 10

my_bool_condition = self.conditions.get("my_bool_condition")
if my_bool_condition: # if condition exists (not true or false)
my_bool_condition.disable_tick() # this will stop the operator

...

18.5 PeriodicCondition

An operator associated with PeriodicCondition is executed after periodic time intervals specified using its
recess_period parameter. The scheduling status of the operator associated with this condition can either be in READY
or WAIT_TIME state. For the first time or after periodic time intervals, the scheduling status of the operator associated
with this condition is set to READY and the operator is executed. After the operator is executed, the scheduling status is
set to WAIT_TIME and the operator is not executed until the recess_period time interval.

18.6 AsynchronousCondition

AsynchronousCondition is primarily associated with operators which are working with asynchronous events happening
outside of their regular execution performed by the scheduler. Since these events are non-periodic in nature, Asyn-
chronousCondition prevents the scheduler from polling the operator for its status regularly and reduces CPU utiliza-
tion. The scheduling status of the operator associated with this condition can either be in READY, WAIT, WAIT_EVENT
or NEVER states based on the asynchronous event it’s waiting on.

The state of an asynchronous event is described using AsynchronousEventState and is updated using the
event_state() API.

AsynchronousEventState Description
READY Init state, first execution of compute() method is pending
WAIT Request to async service yet to be sent, nothing to do but wait
EVENT_WAITING Request sent to an async service, pending event done notification
EVENT_DONE Event done notification received, operator ready to be ticked
EVENT_NEVER Operator does not want to be executed again, end of execution

Operators associated with this scheduling term most likely have an asynchronous thread which can update the state of
the condition outside of it’s regular execution cycle performed by the scheduler. When the asynchronous event state is
in WAIT state, the scheduler regularly polls for the scheduling state of the operator. When the asynchronous event state
is in EVENT_WAITING state, schedulers will not check the scheduling status of the operator again until they receive an
event notification. Setting the state of the asynchronous event to EVENT_DONE automatically sends the event notification
to the scheduler. Operators can use the EVENT_NEVER state to indicate the end of its execution cycle.

18.5. PeriodicCondition 171

Holoscan SDK User Guide, Release 0.6.0

172 Chapter 18. Conditions

CHAPTER

NINETEEN

RESOURCES

Resource classes represent resources such as a allocators, clocks, transmitters or receivers that may be used as a pa-
rameter for operators or schedulers. The resource classes that are likely to be directly used by application authors are
documented here.

Note: There are a number of other resources classes used internally which are not documented here, but appear in the
API Documentation (C++/Python).

19.1 Allocator

19.1.1 UnboundedAllocator

An allocator that uses dynamic host or device memory allocation without an upper bound. This allocator does not take
any user-specified parameters.

19.1.2 BlockMemoryPool

This is a memory pool which provides a user-specified number of equally sized blocks of memory.

• The storage_type parameter can be set to determine the memory storage type used by the operator. This
can be 0 for page-locked host memory (allocated with cudaMallocHost), 1 for device memory (allocated with
cudaMalloc) or 2 for system memory (allocated with C++ new).

• The block_size parameter determines the size of a single block in the memory pool in bytes. Any allocation
requests made of this allocator must fit into this block size.

• The num_blocks parameter controls the total number of blocks that are allocated in the memory pool.

19.1.3 CudaStreamPool

This allocator creates a pool of CUDA streams.

• The stream_flags parameter specifies the flags sent to cudaStreamCreateWithPriority when creating the
streams in the pool.

• The stream_priority parameter specifies the priority sent to cudaStreamCreateWithPriority when creating
the streams in the pool. Lower values have a higher priority.

• The reserved_size parameter specifies the initial number of CUDA streams created in the pool upon initial-
ization.

173

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html

Holoscan SDK User Guide, Release 0.6.0

• The max_size parameter is an optional parameter that can be used to specify a maximum number of CUDA
streams that can be present in the pool. The default value of 0 means that the size of the pool is unlimited.

19.2 Clock

Clock classes can be provided via a clock parameter to the Scheduler classes to manage the flow of time.

All clock classes provide a common set of methods that can be used at runtime in user applications.

• The time() method returns the current time in seconds (floating point).

• The timestamp() method returns the current time as an integer number of nanoseconds.

• The sleep_for() method sleeps for a specified duration in ns. An overloaded version of this method al-
lows specifying the duration using a std::chrono::duration<Rep, Period> from the C++ API or a date-
time.timedelta from the Python API.

• The sleep_until() method sleeps until a specified target time in ns.

19.2.1 Realtime Clock

The RealtimeClock respects the true duration of conditions such as PeriodicCondition. It is the default clock
type and the one that would likely be used in user applications.

In addition to the general clock methods documented above:

• this class has a set_time_scale() method which can be used to dynamically change the time scale used by
the clock.

• the parameter initial_time_offset can be used to set an initial offset in the time at initialization.

• the parameter initial_time_scale can be used to modify the scale of time. For instance, a scale of 2.0 would
cause time to run twice as fast.

• the parameter use_time_since_epoch makes times relative to the POSIX epoch (initial_time_offset
becomes an offset from epoch).

19.2.2 Manual Clock

The ManualClock compresses time intervals (e.g. PeriodicCondition proceeds immediately rather than waiting
for the specified period). It is provided mainly for use during testing/development.

The parameter initial_timestamp controls the initial timestamp on the clock in ns.

19.3 Transmitter (advanced)

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec ports of Holoscan SDK
operators. For connections between operators a DoubleBufferTransmitter will automatically be used, while for
connections between fragments in a distributed application, a UcxTransmitter will be used. When data frame flow
tracking is enabled any DoubleBufferTransmitterwill be replaced by an AnnotatedDoubleBufferTransmitter
which also records the timestamps needed for that feature.

174 Chapter 19. Resources

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://en.wikipedia.org/wiki/Epoch_(computing)

Holoscan SDK User Guide, Release 0.6.0

19.3.1 DoubleBufferTransmitter

This is the transmitter class used by output ports of operators within a fragment.

19.3.2 UcxTransmitter

This is the transmitter class used by output ports of opreators that connect fragments in a distributed applications. It
takes care of sending UCX active messages and serializing their contents.

19.4 Receiver (advanced)

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec ports of Holoscan SDK
operators. For connections between operators a DoubleBufferReceiver will be used, while for connections between
fragments in a distributed application, the UcxReceiver will be used. When data frame flow tracking is enabled
any DoubleBufferReceiver will be replaced by an AnnotatedDoubleBufferReceiver which also records the
timestamps needed for that feature.

19.4.1 DoubleBufferReceiver

This is the receiver class used by input ports of operators within a fragment.

19.4.2 UcxReceiver

This is the receiver class used by input ports of operators that connect fragments in a distributed applications. It takes
care of receiving UCX active messages and deserializing their contents.

19.4. Receiver (advanced) 175

Holoscan SDK User Guide, Release 0.6.0

176 Chapter 19. Resources

CHAPTER

TWENTY

HOLOSCAN APPLICATION PACKAGE SPECIFICATION (HAP)

20.1 Introduction

The Holoscan Application Package specification extends the MONAI Deploy Application Package specification to
provide the streaming capabilities, multi-fragment and other features of the Holoscan SDK.

20.2 Overview

This document includes the specification of the Holoscan Application Package (HAP). A HAP is a containerized ap-
plication or service which is self-descriptive, as defined by this document.

20.2.1 Goal

This document aims to define the structure and purpose of a HAP, including which parts are optional and which are
required so that developers can easily create conformant HAPs.

20.2.2 Assumptions, Constraints, Dependencies

The following assumptions relate to HAP execution, inspection and general usage:

• Containerized applications will be based on Linux x64 (AMD64) and/or ARM64 (aarch64).

• Containerized applications’ host environment will be based on Linux x64 (AMD64) and/or ARM64 (aarch64)
with container support.

• Developers expect the local execution of their applications to behave identically to the execution of the container-
ized version.

• Developers expect the local execution of their containerized applications to behave identically to the execution
in deployment.

• Developers and operations engineers want the application packages to be self-describing.

• Applications may be created using tool other than that provided in the Holoscan SDK or the MONAI Deploy
App SDK.

• Holoscan Application Package may be created using a tool other than that provided in the Holoscan SDK or the
MONAI Deploy App SDK.

• Pre-existing, containerized applications must be “converted” into Holoscan Application Packages.

177

Holoscan SDK User Guide, Release 0.6.0

• A Holoscan Application Package may contain a classical application (non-fragment based), a single-fragment
application, or a multi-fragment application. (Please see the definition of fragment in Definitions, Acronyms,
Abbreviations)

• The scalability of a multi-fragment application based on Holoscan SDK is outside the scope of this document.

• Application packages are expected to be deployed in one of the supported environments. For additional infor-
mation, see Holoscan Operating Environments.

20.3 Definitions, Acronyms, Abbreviations

Term Definition
ARM64 Or, AARCH64. See Wikipedia for details.
Con-
tainer

See What’s a container?

Fragment A fragment is a building block of the Application. It is a Directed Acyclic Graph (DAG) of operators.
For details, please refer to the MONAI Deploy App SDK or Holoscan App SDK.

Gigibytes
(GiB)

A gibibyte (GiB) is a unit of measurement used in computer data storage that equals to 1,073,741,824
bytes.

HAP Holoscan Application Package. A containerized application or service which is self-descriptive.
Hosting
Service

A service that hosts and orchestrates HAP containers.

MAP MONAI Application Package. A containerized application or service which is self-descriptive.
Mebibytes
(MiB)

A mebibyte (MiB) is a unit of measurement used in computer data storage that equals to 1,048,576
bytes.

MONAI Medical Open Network for Artificial Intelligence.
SDK Software Development Kit.
Semantic
Version

See Semantic Versioning 2.0.

x64 Or, x86-64 or AMD64. See Wikipedia for details.

20.4 Requirements

The following requirements MUST be met by the HAP specification to be considered complete and approved. All
requirements marked as MUST or SHALL MUST be implemented in order to be supported by a HAP-ready hosting
service.

20.4.1 Single Artifact

• A HAP SHALL comprise a single container, meeting the minimum requirements set forth by this document.

• A HAP SHALL be a containerized application to maximize the portability of its application.

178 Chapter 20. Holoscan Application Package Specification (HAP)

https://en.wikipedia.org/wiki/AArch64
https://www.docker.com/resources/what-container/
https://semver.org/
https://en.wikipedia.org/wiki/X86-64

Holoscan SDK User Guide, Release 0.6.0

20.4.2 Self-Describing

• A HAP MUST be self-describing and provide a mechanism for extracting its description.

– A HAP SHALL provide a method to print the metadata files to the console.

– A HAP SHALL provide a method to copy the metadata files to a user-specified directory.

• The method of description SHALL be in a machine-readable and writable format.

• The method of description SHALL be in a human-readable format.

• The method of description SHOULD be a human writable format.

• The method of description SHALL be declarative and immutable.

• The method of description SHALL provide the following information about the HAP:

– Execution requirements such as dependencies and restrictions.

– Resource requirements include CPU cores, system memory, shared memory, GPU, and GPU memory.

20.4.3 Runtime Characteristics of the HAP

• A HAP SHALL start the packaged Application when it is executed by the users when arguments are specified.

• A HAP SHALL describe the packaged Application as a long-running service or an application so an external
agent can manage its lifecycle.

20.4.4 IO Specification

• A HAP SHALL provide information about its expected inputs such that an external agent can determine if the
HAP can receive a workload.

• A HAP SHALL provide sufficient information about its outputs so that an external agent knows how to handle
the results.

20.4.5 Local Execution

A HAP MUST be in a format that supports local execution in a development environment.

[Note] See Holoscan Operating Environments for additional information about supported environments.

20.4.6 Compatible with Kubernetes

• A HAP SHALL support deployment using Kubernetes.

20.4. Requirements 179

Holoscan SDK User Guide, Release 0.6.0

20.4.7 OCI Compliance

The containerized portion of a HAP SHALL comply with Open Container Initiative format standards.

Image Annotations

All annotations for the containerized portion of a HAP MUST adhere to the specifications laid out by The OpenCon-
tainers Annotations Spec

• org.opencontainers.image.title: A HAP container image SHALL provide a human-readable title
(string).

• org.opencontainers.image.version: A HAP container image SHALL provide a version of the packaged
application using the semantic versioning format. This value is the same as the value defined in /etc/holoscan/
app.json#version in the Table of Application Manifest Fields.

• All other OpenContainers predefined keys SHOULD be provided when available.

20.4.8 Hosting Environment

The HAP Hosting Environment executes the HAP and provides the application with a customized set of environment
variables and command line options as part of the invocation.

• The Hosting Service MUST, by default, execute the application as defined by /etc/holoscan/app.
json#command and then exit when the application or the service completes.

• The Hosting Service MUST provide any environment variables specified by /etc/holoscan/app.
json#environment.

• The Hosting Service SHOULD monitor the Application process and record its CPU, system memory, and GPU
utilization metrics.

• The Hosting Service SHOULD monitor the Application process and enforce any timeout value specified in /
etc/holoscan/app.json#timeout.

180 Chapter 20. Holoscan Application Package Specification (HAP)

https://opencontainers.org/
https://specs.opencontainers.org/image-spec/annotations/?v=v1.0.1
https://specs.opencontainers.org/image-spec/annotations/?v=v1.0.1

Holoscan SDK User Guide, Release 0.6.0

Table of Environment Variables

A HAP SHALL contain the following environment variables and their default values, if not specified by the user, in
the Application Manifest /etc/holoscan/app.json#environment.

Variable Default Format Description
HOLOSCAN_INPUT_PATH /var/holoscan/

input/
Folder
Path

Path to the input folder for the Application.

HOLOSCAN_OUTPUT_PATH /var/holoscan/
output/

Folder
Path

Path to the output folder for the Application.

HOLOSCAN_WORKDIR /var/holoscan/ Folder
Path

Path to the Application’s working directory.

HOLOSCAN_MODEL_PATH /opt/holoscan/
models/

Folder
Path

Path to the Application’s models directory.

HOLOSCAN_CONFIG_PATH /var/holoscan/
app.yaml

File
Path

Path to the Application’s configuration file.

HOLOSCAN_APP_MANIFEST_PATH/etc/holoscan/
app.config

File
Path

Path to the Application’s configuration file.

HOLOSCAN_PKG_MANIFEST_PATH/etc/holoscan/
pkg.config

File
Path

Path to the Application’s configuration file.

HOLOSCAN_DOCS /opt/holoscan/
docs

Folder
Path

Path to the folder containing application documen-
tation and licenses.

HOLOSCAN_LOGS /var/holoscan/
logs

Folder
Path

Path to the Application’s logs.

20.5 Architecture & Design

20.5.1 Description

The Holoscan Application Package (HAP) is a functional package designed to act on datasets of a prescribed format.
A HAP is a container image that adheres to the specification provided in this document.

20.5.2 Application

The primary component of a HAP is the application. The application is provided by an application developer and
incorporated into the HAP using the Holoscan Application Packager.

All application code and binaries SHALL be in the /opt/holoscan/app/ folder, except for any dependencies installed
by the Holoscan Application Packager during the creation of the HAP.

All AI models (PyTorch, TensorFlow, TensorRT, etc.) SHOULD be in separate sub-folders of the /opt/holoscan/
models/ folder. In specific use cases where the app package developer is prevented from enclosing the model files in
the package/container due to intellectual property concerns, the models can be supplied from the host system when the
app package is run, e.g., via the volume mount mappings and the use of container env variables.

20.5. Architecture & Design 181

Holoscan SDK User Guide, Release 0.6.0

20.5.3 Manifests

A HAP SHALL contain two manifests: the Application Manifest and the Package Manifest. The Package Manifest shall
be stored in /etc/holoscan/pkg.json, and the Application Manifest shall be stored in /etc/holoscan/app.json.
Once a HAP is created, its manifests are expected to be immutable.

Application Manifest

Table of Application Manifest Fields

Name Required Default Type Format Description
apiVersion No 0.0.0 string semantic version Version of the manifest file schema.
command Yes N/A string shell command Shell command used to run the Application.
environment No N/A object object w/ name-value pairs An object of name-value pairs that will be passed to the application during execution.
input Yes N/A object object Data structure which provides information about Application inputs.
input.formats Yes N/A array array of objects List of input data formats accepted by the Application.
input.path No input/ string relative file-system path Folder path relative to the working directory from which the application will read inputs.
readiness No N/A object object An object of name-value pairs that defines the readiness probe.
readiness.type Yes N/A string string Type of the probe: tcp, grpc, http-get or command.
readiness.command Yes (when type is command) N/A array shell command Shell command and arguments in string array form.
readiness.port Yes (when type is tcp, grpc, or http-get) N/A integer number The port number of readiness probe.
readiness.path Yes (when type is http-get) N/A string string HTTP path and query to access the readiness probe.
readiness.initialDelaySeconds No 1 integer number Number of seconds after the container has started before the readiness probe is initialized and performed.
readiness.periodSeconds No 10 integer number Number of seconds between performing the readiness probe.
readiness.timeoutSeconds No 1 integer number Number of seconds after which the probe times out.
readiness.failureThreshold No 3 integer number Number of retries to be performed before considering the application is unhealthy.
liveness No N/A object object An object of name-value pairs that defines the liveness probe. Recommended for service applications.
liveness.type Yes N/A string string Type of the probe: tcp, grpc, http-get or command.
liveness.command Yes (when type is command) N/A array shell command Shell command and arguments in string array form.
liveness.port Yes (when type is tcp, grpc, or http-get) N/A integer number The port number of the liveness probe.
liveness.path Yes (when type is http-get) N/A string string HTTP path and query to access the liveness probe.
liveness.initialDelaySeconds No 1 integer number Number of seconds after the container has started before the liveness probe is initialized and performed.
liveness.periodSeconds No 10 integer number Number of seconds between performing the liveness probe.
liveness.timeoutSeconds No 1 integer number Number of seconds after which the probe times out.
liveness.failureThreshold No 3 integer number Number of retries to be performed before considering the application is unhealthy.
output Yes N/A object object Data structure which provides information about Application output.
output.format Yes N/A object object Details about the format of the outputs produced by the application.
output.path No output/ string relative file-system path Folder path relative to the working directory to which the application will write outputs.
sdk No N/A string string SDK used for the Application.
sdkVersion No 0.0.0 string semantic version Version of the SDK used the Application.
timeout No 0 integer number The maximum number of seconds the application should execute before being timed out and terminated. Recommended for a single batch/execution type of applications.
version No 0.0.0 string semantic version Version of the Application.
workingDirectory No /var/holoscan/ string absolute file-system path Folder, or directory, in which the application will be executed.

The Application Manifest file provides information about the HAP’s Application.

• The Application Manifest MUST define the type of the containerized application (/etc/holoscan/app.
json#type).

– Type SHALL have the value of either service or application.

• The Application Manifest MUST define the command used to run the Application (/etc/holoscan/app.

182 Chapter 20. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 0.6.0

json#command).

• The Application Manifest SHOULD define the version of the manifest file schema (/etc/holoscan/app.
json#apiVersion).

– The Manifest schema version SHALL be provided as a semantic version string.

– When not provided, the default value 0.0.0 SHALL be assumed.

• The Application Manifest SHOULD define the SDK used to create the Application (/etc/holoscan/app.
json#sdk).

• The Application Manifest SHOULD define the version of the SDK used to create the Application (/etc/
holoscan/app.json#sdkVersion).

– SDK version SHALL be provided as a semantic version string.

– When not provided, the default value 0.0.0 SHALL be assumed.

• The Application Manifest SHOULD define the version of the application itself (/etc/holoscan/app.
json#version).

– The Application version SHALL be provided as a semantic version string.

– When not provided, the default value 0.0.0 SHALL be assumed.

• The Application Manifest SHOULD define the application’s working directory (/etc/holoscan/app.
json#workingDirectory).

– The Application will execute with its current directory set to this value.

– The value provided must be an absolute path (the first character is /).

– The default path /var/holoscan/ SHALL be assumed when not provided.

• The Application Manifest SHOULD define the data input path, relative to the working directory, used by the
Application (/etc/holoscan/app.json#input.path).

– The input path SHOULD be a relative to the working directory or an absolute file-system path to a directory.

∗ When the value is a relative file-system path (the first character is not /), it is relative to the application’s
working directory.

∗ When the value is an absolute file-system path (the first character is /), the file-system path is used
as-is.

– When not provided, the default value input/ SHALL be assumed.

• The Application Manifest SHOULD define input data formats supported by the Application (/etc/holoscan/
app.json#input.formats).

– Possible values include, but are not limited to, none, network, file.

• The Application Manifest SHOULD define the output path relative to the working directory used by the Appli-
cation (/etc/holoscan/app.json#output.path).

– The output path SHOULD be relative to the working directory or an absolute file-system path to a directory.

∗ When the value is a relative file-system path (the first character is not /), it is relative to the application’s
working directory.

∗ When the value is an absolute file-system path (the first character is /), the file-system path is used
as-is.

– When not provided, the default value output/ SHALL be assumed.

20.5. Architecture & Design 183

https://semver.org/
https://semver.org/
https://semver.org/

Holoscan SDK User Guide, Release 0.6.0

• The Application Manifest SHOULD define the output data format produced by the Application (/etc/
holoscan/app.json#output.format).

– Possible values include, but are not limited to, none, screen, file, network.

• The Application Manifest SHOULD configure a check to determine whether or not the application is “ready.”

– The Application Manifest SHALL define the probe type to be performed (/etc/holoscan/app.
json#readiness.type).

∗ Possible values include tcp, grpc, http-get, and command.

– The Application Manifest SHALL define the probe commands to execute when the type is command (/
etc/holoscan/app.json#readiness.command).

∗ The data structure is expected to be an array of strings.

– The Application Manifest SHALL define the port to perform the readiness probe when the type is grpc,
tcp, or http-get. (/etc/holoscan/app.json#readiness.port)

∗ The value provided must be a valid port number ranging from 1 through 65535. (Please note that port
numbers below 1024 are root-only privileged ports.)

– The Application Manifest SHALL define the path to perform the readiness probe when the type is http-get
(/etc/holoscan/app.json#readiness.path).

∗ The value provided must be an absolute path (the first character is /).

– The Application Manifest SHALL define the number of seconds after the container has started before the
readiness probe is initiated. (/etc/holoscan/app.json#readiness.initialDelaySeconds).

∗ The default value 0 SHALL be assumed when not provided.

– The Application Manifest SHALL define how often to perform the readiness probe (/etc/holoscan/
app.json#readiness.periodSeconds).

∗ When not provided, the default value 10 SHALL be assumed.

– The Application Manifest SHALL define the number of seconds after which the probe times out (/etc/
holoscan/app.json#readiness.timeoutSeconds)

∗ When not provided, the default value 1 SHALL be assumed.

– The Application Manifest SHALL define the number of times to perform the probe before considering the
service is not ready (/etc/holoscan/app.json#readiness.failureThreshold)

∗ The default value 3 SHALL be assumed when not provided.

• The Application Manifest SHOULD configure a check to determine whether or not the application is “live” or
not.

– The Application Manifest SHALL define the type of probe to be performed (/etc/holoscan/app.
json#liveness.type).

∗ Possible values include tcp, grpc, http-get, and command.

– The Application Manifest SHALL define the probe commands to execute when the type is command (/
etc/holoscan/app.json#liveness.command).

∗ The data structure is expected to be an array of strings.

– The Application Manifest SHALL define the port to perform the liveness probe when the type is grpc,
tcp, or http-get. (/etc/holoscan/app.json#liveness.port)

∗ The value provided must be a valid port number ranging from 1 through 65535. (Please note that port
numbers below 1024 are root-only privileged ports.)

184 Chapter 20. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 0.6.0

– The Application Manifest SHALL define the path to perform the liveness probe when the type is http-get
(/etc/holoscan/app.json#liveness.path).

∗ The value provided must be an absolute path (the first character is /).

– The Application Manifest SHALL define the number of seconds after the container has started before the
liveness probe is initiated. (/etc/holoscan/app.json#liveness.initialDelaySeconds).

∗ The default value 0 SHALL be assumed when not provided.

– The Application Manifest SHALL define how often to perform the liveness probe (/etc/holoscan/app.
json#liveness.periodSeconds).

∗ When not provided, the default value 10 SHALL be assumed.

– The Application Manifest SHALL define the number of seconds after which the probe times out (/etc/
holoscan/app.json#liveness.timeoutSeconds)

∗ The default value 1 SHALL be assumed when not provided.

– The Application Manifest SHALL define the number of times to perform the probe before considering the
service is not alive (/etc/holoscan/app.json#liveness.failureThreshold)

∗ When not provided, the default value 3 SHALL be assumed.

• The Application Manifest SHOULD define any timeout applied to the Application (/etc/holoscan/app.
json#timeout).

– When the value is 0, timeout SHALL be disabled.

– When not provided, the default value 0 SHALL be assumed.

• The Application Manifest MUST enable the specification of environment variables for the Application (/etc/
holoscan/app.json#environment)

– The data structure is expected to be in "name": "value" members of the object.

– The field’s name will be the name of the environment variable verbatim and must conform to all require-
ments for environment variables and JSON field names.

– The field’s value will be the value of the environment variable and must conform to all requirements for
environment variables.

20.5. Architecture & Design 185

Holoscan SDK User Guide, Release 0.6.0

Package Manifest

186 Chapter 20. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 0.6.0

Table of Package Manifest Fields

Name Re-
quired

Default Type Format Description

apiVersion No 0.0.0 string semantic
version

Version of the manifest file schema.

applicationRoot Yes /opt/
holoscan/
app/

string absolute
file-
system
path

Absolute file-system path to the folder
which contains the Application

modelRoot No /opt/
holoscan/
models/

string absolute
file-
system
path

Absolute file-system path to the folder
which contains the model(s).

models No N/A ar-
ray

array of
objects

Array of objects which describe models in
the package.

models[*].name Yes N/A string string Name of the model.
models[*].path No N/A string Relative

file-
system
path

File-system path to the folder which con-
tains the model that is relative to the value
defined in modelRoot.

resources No N/A ob-
ject

object Object describing resource requirements
for the Application.

resources.cpu No 1 dec-
imal
(2)

number Number of CPU cores required by the Ap-
plication or the Fragment.

resources.cpuLimit No N/A dec-
imal
(2)

number The CPU core limit for the Application or
the Fragment. (1)

resources.gpu No 0 dec-
imal
(2)

number Number of GPU devices required by the
Application or the Fragment.

resources.gpuLimit No N/A dec-
imal
(2)

number The GPU device limit for the Application
or the Fragment. (1)

resources.memory No 1Gi string memory
size

The memory required by the Application or
the Fragment.

resources.
memoryLimit

No N/A string memory
size

The memory limit for the Application or
the Fragment. (1)

resources.gpuMemory No N/A string memory
size

The GPU memory required by the Appli-
cation or the Fragment.

resources.
gpuMemoryLimit

No N/A string memory
size

The GPU memory limit for the Application
or the Fragment. (1)

resources.
sharedMemory

No 64Mi string memory
size

The shared memory required by the Appli-
cation or the Fragment.

resources.fragments No N/A ob-
ject

objects Nested objects which describe resources
for a Multi-Fragment Application.

resources.fragments.
<fragment-name>

Yes N/A string string Name of the fragment.

resources.fragments.
<fragment-name>.cpu

No 1 dec-
imal
(2)

number Number of CPU cores required by the Frag-
ment.

resources.fragments.
<fragment-name>.
cpuLimit

No N/A dec-
imal
(2)

number The CPU core limit for the Fragment. (1)

resources.fragments.
<fragment-name>.gpu

No 0 dec-
imal
(2)

number Number of GPU devices required by the
Fragment.

resources.fragments.
<fragment-name>.
gpuLimit

No N/A dec-
imal
(2)

number The GPU device limit for the Fragment. (1)

resources.fragments.
<fragment-name>.
memory

No 1Gi string memory
size

The memory required by the Fragment.

resources.fragments.
<fragment-name>.
memoryLimit

No N/A string memory
size

The memory limit for the Fragment. (1)

resources.fragments.
<fragment-name>.
gpuMemory

No N/A string memory
size

The GPU memory required by the Frag-
ment.

resources.fragments.
<fragment-name>.
gpuMemoryLimit

No N/A string memory
size

The GPU memory limit for the Fragment.
(1)

resources.fragments.
<fragment-name>.
sharedMemory

No 64Mi string memory
size

The shared memory required by the Frag-
ment.

version No 0.0.0 string semantic
version

Version of the package.

20.5. Architecture & Design 187

Holoscan SDK User Guide, Release 0.6.0

[Notes] (1) Use of resource limits depend on the orchestration service or the hosting environement’s con-
figuration and implementation. (2) Consider rounding up to a whole number as decimal values may not
be supported by all orchestration/hosting services.

The Package Manifest file provides information about the HAP’s package layout. It is not intended as a mechanism for
controlling how the HAP is used or how the HAP’s Application is executed.

• The Package Manifest MUST be UTF-8 encoded and use the JavaScript Object Notation (JSON) format.

• The Package Manifest SHOULD support either CRLF or LF style line endings.

• The Package Manifest SHOULD specify the folder which contains the application (/etc/holoscan/pkg.
json#applicationRoot).

– When not provided, the default path /opt/holoscan/app/ will be assumed.

• The Package Manifest SHOULD provide the version of the package file manifest schema (/etc/holoscan/
pkg.json#apiVersion).

– The Manifest schema version SHALL be provided as a semantic version string.

• The Package Manifest SHOULD provide the package version of itself (/etc/holoscan/pkg.json#version).

– The Package version SHALL be provided as a semantic version string.

• The Package Manifest SHOULD provide the directory path to the user-provided models. (/etc/holoscan/
pkg.json#modelRoot).

– The value provided must be an absolute path (the first character is /).

– When not provided, the default path /opt/holoscan/models/ SHALL be assumed.

• The Package Manifest SHOULD list the models used by the application (/etc/holoscan/pkg.json#models).

– Models SHALL be defined by name (/etc/holoscan/pkg.json#models[*].name).

∗ Model names SHALL NOT contain any Unicode whitespace or control characters.

∗ Model names SHALL NOT exceed 128 bytes in length.

– Models SHOULD provide a file-system path if they’re included in the HAP itself (/etc/holoscan/pkg.
json#models[*].path).

∗ When the value is a relative file-system path (the first character is not /), it is relative to the model root
directory defined in /etc/holoscan/pkg.json#modelRoot.

∗ When the value is an absolute file-system path (the first character is /), the file-system path is used
as-is.

∗ When no value is provided, the name is assumed as the name of the directory relative to the model
root directory defined in /etc/holoscan/pkg.json#modelRoot.

• The Package Manifest SHOULD specify the resources required to execute the Application and the fragments for
a Multi-Fragment Application.

This information is used to provision resources when running the containerized application using a compatible
application deployment service.

• A classic Application or a single Fragment Application SHALL define its resources in the /etc/holoscan/
pkg.json#resource object.

– The /etc/holoscan/pkg.json#resource object is for the whole application. It CAN also be used as a
catchall for all fragments in a multi-fragment application where applicable.

– CPU requirements SHALL be denoted using the decimal count of CPU cores (/etc/holoscan/pkg.
json#resources.cpu).

188 Chapter 20. Holoscan Application Package Specification (HAP)

https://semver.org/
https://semver.org/

Holoscan SDK User Guide, Release 0.6.0

– Optional CPU limits SHALL be denoted using the decimal count of CPU cores (/etc/holoscan/pkg.
json#resources.cpuLimit)

– GPU requirements SHALL be denoted using the decimal count of GPUs (/etc/holoscan/pkg.
json#resources.gpu).

– Optional GPU limits SHALL be denoted using the decimal count of GPUs (/etc/holoscan/pkg.
json#resources.gpuLimit)

– Memory requirements SHALL be denoted using decimal values followed by units (/etc/holoscan/pkg.
json#resources.memory).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Optional memory limits SHALL be denoted using decimal values followed by units (/etc/holoscan/
pkg.json#resources.memoryLimit).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– GPU memory requirements SHALL be denoted using decimal values followed by units (/etc/holoscan/
pkg.json#resources.gpuMemory).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Optional GPU memory limits SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg.json#resources.gpuMemoryLimit).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Shared memory requirements SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg.json#resources.sharedMemory).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Optional shared memory limits SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg.json#resources.sharedMemoryLimit).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Integer values MUST be positive and not contain any position separators.

∗ Example legal values: 1, 42, 2048

∗ Example illegal values: -1, 1.5, 2,048

– Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.) character to separate whole
and fractional values, and not contain any positional separators.

∗ Example legal values: 1, 1.0, 0.5, 2.5, 1024

∗ Example illegal values: 1,024, -1.0, 3.14

– When not provided, the default values of cpu=1, gpu=0, memory="1Gi", and sharedMemory="64Mi"
will be assumed.

20.5. Architecture & Design 189

Holoscan SDK User Guide, Release 0.6.0

• A Multi-Fragment Application SHOULD define its resources in the /etc/holoscan/pkg.json#resource.
fragments.<fragment-name> object.

– When a matching fragment-name cannot be found, the /etc/holoscan/pkg.json#resource defini-
tion is used.

– Fragment names (fragment-name) SHALL NOT contain any Unicode whitespace or control characters.

– Fragment names (fragment-name) SHALL NOT exceed 128 bytes in length.

– CPU requirements for fragments SHALL be denoted using the decimal count of CPU cores (/etc/
holoscan/pkg.json#resources.fragments.<fragment-name>.cpu).

– Optional CPU limits for fragments SHALL be denoted using the decimal count of CPU cores (/etc/
holoscan/pkg.json#resources.fragments.<fragment-name>.cpuLimit).

– GPU requirements for fragments SHALL be denoted using the decimal count of GPUs (/etc/holoscan/
pkg.json#resources.fragments.<fragment-name>.gpu).

– Optional GPU limits for fragments SHALL be denoted using the decimal count of GPUs (/etc/holoscan/
pkg.json#resources.fragments.<fragment-name>.gpuLimit).

– Memory requirements for fragments SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg.json#resources.fragments.<fragment-name>.memory).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Optional memory limits for fragments SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg.json#resources.fragments.<fragment-name>.memoryLimit).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– GPU memory requirements for fragments SHALL be denoted using decimal values followed by units (/
etc/holoscan/pkg.json#resources.fragments.<fragment-name>.gpuMemory).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Optional GPU memory limits for fragments SHALL be denoted using decimal values followed by units
(/etc/holoscan/pkg.json#resources.fragments.<fragment-name>.gpuMemoryLimit).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Shared memory requirements for fragments SHALL be denoted using decimal values followed by units
(/etc/holoscan/pkg.json#resources.fragments.<fragment-name>.sharedMemory).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Optional shared memory limits for fragments SHALL be denoted using decimal values followed by units
(/etc/holoscan/pkg.json#resources.fragments.<fragment-name>.sharedMemoryLimit).

∗ Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

· Example: 1.5Gi, 2048Mi

– Integer values MUST be positive and not contain any position separators.

∗ Example legal values: 1, 42, 2048

190 Chapter 20. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 0.6.0

∗ Example illegal values: -1, 1.5, 2,048

– Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.) character to separate whole
and fractional values, and not contain any positional separators.

∗ Example legal values: 1, 1.0, 0.5, 2.5, 1024

∗ Example illegal values: 1,024, -1.0, 3.14

– When not provided, the default values of cpu=1, gpu=0, memory="1Gi", and sharedMemory="64Mi"
will be assumed.

20.6 Supplemental Application Files

• A HAP SHOULD package supplemental application files provided by the user.

– Supplemental files SHOULD be in sub-folders of the /opt/holoscan/docs/ folder.

– Supplemental files include, but are not limited to, the following:

∗ README.md

∗ License.txt

∗ Changelog.txt

∗ EULA

∗ Documentation

∗ Third-party licenses

20.6.1 Container Behavior and Interaction

A HAP is a single container supporting the following defined behaviors when started.

Default Behavior

When a HAP is started from the CLI or other means without any parameters, the HAP shall execute the contained
application. The HAP internally may use Entrypoint, CMD, or a combination of both.

Manifest Export

A HAP SHOULD provide at least one method to access the embedded application, models, licenses, README, or
manifest files, namely, app.json and package.json.

• The Method SHOULD provide a container command, show, to print one or more manifest files to the console.

• The Method SHOULD provide a container command, export, to copy one or more manifest files to a mounted
volume path, as described below

– /var/run/holoscan/export/app/: when detected, the Method copies the contents of /opt/
holoscan/app/ to the folder.

– /var/run/holoscan/export/config/: when detected, the Method copies /var/holoscan/app.
yaml, /etc/holoscan/app.json and /etc/holoscan/pkg.json to the folder.

– /var/run/holoscan/export/models/: when detected, the Method copies the contents of /opt/
holoscan/models/ to the folder.

20.6. Supplemental Application Files 191

Holoscan SDK User Guide, Release 0.6.0

– /var/run/holoscan/export/docs/: when detected, the Method copies the contents of /opt/
holoscan/docs/ to the folder.

– /var/run/holoscan/export/: when detected without any of the above being detected, the Method
SHALL copy all of the above.

Since a HAP is an OCI compliant container, a user can also run a HAP and log in to an interactive shell, using a
method supported by the container engine and its command line interface, e.g. Docker supports this by setting the
entrypoint option. The files in the HAP can then be opened or copied to the mapped volumes with shell commands or
scripts. A specific implementation of a HAP may choose to streamline such a process with scripts and applicable user
documentation.

20.6.2 Table of Important Paths

Path Purpose
/etc/holoscan/ HAP manifests and immutable configuration files.
/etc/holoscan/app.
json

Application Manifest file.

/etc/holoscan/pkg.
json

Package Manifest file.

/opt/holoscan/app/ Application code, scripts, and other files.
/opt/holoscan/models/ AI models. Each model should be in a separate sub-folder.
/opt/holoscan/docs/ Documentation, licenses, EULA, changelog, etc. . .
/var/holoscan/ Default working directory.
/var/holoscan/input/ Default input directory.
/var/holoscan/output/ Default output directory.
/var/run/holoscan/
export/

Special case folder, causes the Script to export contents related to the app. (see:
Manifest Export)

/var/run/holoscan/
export/app/

Special case folder, causes the Script to export the contents of /opt/holoscan/
app/ to the folder.

/var/run/holoscan/
export/config/

Special case folder, causes the Script to export /etc/holoscan/app.json and
/etc/holoscan/pkg.json to the folder.

/var/run/holoscan/
export/models/

Special case folder, causes the Script to export the contents of /opt/holoscan/
models/ to the folder.

20.7 Operating Environments

Holoscan SDK supports the following operating environments.

Operating Environment Name Characteristics
AGX Devkit Clara AGX devkit with RTX 6000 dGPU only
IGX Orin Devkit Clara Holoscan devkit with A6000 dGPU only
IGX Orin Devkit - integrated GPU only IGX Orin Devkit, iGPU only
IGX Orin Devkit with discrete GPU IGX Orin Devkit, with RTX A6000 dGPU
Jetson AGX Orin Devkit Jetson Orin Devkit, iGPU only
Jetson Orin Nano Devkit Jetson Orin Nano Devkit, iGPU only
X86_64 dGPU only on Ubuntu 18.04 and 20.04

192 Chapter 20. Holoscan Application Package Specification (HAP)

CHAPTER

TWENTYONE

HOLOSCAN CLI

holoscan - a command-line interface for packaging and running your Holoscan applications into HAP-compliant
containers.

21.1 Synopsis

holoscan [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}] {package,run,version}

21.2 Positional Arguments

21.2.1 Holoscan CLI - Package Command

holoscan package - generate HAP-compliant container for your application.

Synopsis

holoscan package [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}] --config|-c CONFIG [--
docs|-d DOCS] [--models|-m MODELS] --platform PLATFORM [--timeout TIMEOUT] [--version VERSION] [-
-no-cache|-n] [--sdk SDK] [--monai-deploy-sdk-file MONAI_DEPLOY_SDK_FILE] [--output|-o OUTPUT] --tag|-t
TAG [--username USERNAME] [--uid UID] [--gid GID] application

Examples

The code below package a python application for x86_64 systems:

Using a Python directory as input
Required: a `__main__.py` file in the application directory to execute
Optional: a `requirements.txt` file in the application directory to install dependencies
holoscan package --platform x64-workstation --tag my-awesome-app --config /path/to/my/
→˓awesome/application/config.yaml /path/to/my/awesome/application/

Using a Python file as input
holoscan package --platform x64-workstation --tag my-awesome-app --config /path/to/my/
→˓awesome/application/config.yaml /path/to/my/awesome/application/my-app.py

The code below package a C++ application for the IGX Orin DevKit (aarch64) with a discrete GPU:

193

Holoscan SDK User Guide, Release 0.6.0

Using a C++ source directory as input
Required: a `CMakeLists.txt` file in the application directory
holoscan package --platform igx-orin-devkit --platform-config dgpu --tag my-awesome-app -
→˓-config /path/to/my/awesome/application/config.yaml /path/to/my/awesome/application/

Using a C++ pre-compiled executable as input
holoscan package --platform igx-orin-devkit --platform-config dgpu --tag my-awesome-app -
→˓-config /path/to/my/awesome/application/config.yaml /path/to/my/awesome/bin/
→˓application-executable

Note: The commands above load the generated image onto Docker to make the image accessible with docker
images.

If you need to package for a different platform or want to transfer the generated image to another system, use the
--output /path/to/output flag so the generated package can be saved to the specified location.

Positional Arguments

application

Path to the application to be packaged. The following inputs are supported:

• C++ source code: you may pass a directory path with your C++ source code with a CMakeLists.txt file in it,
and the Packager will attempt to build your application using CMake and include the compiled application in
the final package.

• C++ pre-compiled executable: A pre-built executable binary file may be directly provided to the Packager.

• Python application: you may pass either:

– a directory which includes a __main__.py file to execute (required) and an optional requirements.txt
file that defined dependencies for your Python application, or

– the path to a single python file to execute

Flags

--config|-c CONFIG

Path to the application’s configuration file. The configuration file must be in YAML format with a .yaml file extension.

[--docs|-d DOCS]

An optional directory path of documentation, README, licenses that shall be included in the package.

194 Chapter 21. Holoscan CLI

Holoscan SDK User Guide, Release 0.6.0

[--models|-m MODELS]

An optional directory path to a model file, a directory with a single model, or a directory with multiple models.

Single model example:

my-model/
surgical_video.gxf_entities
surgical_video.gxf_index

my-model/
model

surgical_video.gxf_entities
surgical_video.gxf_index

Multi-model example:

my-models/
model-1

my-first-model.gxf_entities
my-first-model.gxf_index

model-2
my-other-model.ts

--platform PLATFORM

A comma-separated list of platform types to generate. Each platform value specified generates a standalone container
image. If you are running the Packager on the same architecture, the generated image is automatically loaded onto
Docker and is available with docker images. Otherwise, use --output flag to save the generated image onto the
disk.

PLATFORM must be one of: clara-agx-devkit, igx-orin-devkit, jetson-agx-orin-devkit,
x64-workstation.

• clara-agx-devkit: Clara AGX DevKit

• igx-orin-devkit: IGX Orin DevKit

• jetson-agx-orin-devkit: Orin AGX DevKit

• x64-workstation: systems with a x86-64 processor(s)

[--platform-config PLATFORM_CONFIG]

Specifies the platform configuration to generate. PLATFORM_CONFIG must be one of: igpu, igpu-assist, dgpu.

• igpu: Supports integrated GPU

• igpu-assist: Supports compute-only tasks on iGPU in presence of a dGPU

• dgpu: Supports dedicated GPU

Note: --platform-config is required when --platform is not x64-workstation (which uses dgpu).

21.2. Positional Arguments 195

https://en.wikipedia.org/wiki/X86-64

Holoscan SDK User Guide, Release 0.6.0

[--timeout TIMEOUT]

An optional timeout value of the application for the supported orchestrators to maange the application’s lifecycle.
Defaults to 0.

[--version VERSION]

An optional version number of the application. When specified, it overrides the value specified in the configuration
file.

[--base-image BASE_IMAGE]

Optionally specifies the base container image for building packaged application. It must be a valid Docker image tag
either accessible online or via `docker images. By default, the Packager picks a base image to use from NGC.

[--build-image BUILD_IMAGE]

Optionally specifies the build container image for building C++ applications. It must be a valid Docker image tag either
accessible online or via `docker images. By default, the Packager picks a build image to use from NGC.

[--build-cache BUILD_CACHE]

Specifies a directory path for storing Docker cache. Defaults to ~/.holoscan_build_cache.

[--cmake-args CMAKE_ARGS]

A comma-separated list of cmake arguments to be used when building C++ applications.

For example:

holoscan package --cmake-args "-DCMAKE_BUILD_TYPE=DEBUG -DCMAKE_ARG=VALUE"

[--no-cache|-n]

Do not use cache when building image.

[--sdk SDK]

SDK for building the application: Holoscan or MONAI-Deploy. SDK must be one of: holoscan, monai-deploy.

196 Chapter 21. Holoscan CLI

Holoscan SDK User Guide, Release 0.6.0

[--sdk-version SDK_VERSION]

Set the version of the SDK that is used to build and package the Application. If not specified, the packager attempts to
detect the installed version.

[--holoscan-sdk-file HOLOSCAN_SDK_FILE]

Path to the Holoscan SDK Debian or PyPI package. If not specified, the packager downloads the SDK file from the
internet depending on the SDK version detected/specified. The HOLOSCAN_SDK_FILE filename must have .deb or
.whl file extension for Debian package or PyPI wheel package, respectively.

[--monai-deploy-sdk-file MONAI_DEPLOY_SDK_FILE]

Path to the MONAI Deploy App SDK Debian or PyPI package. If not specified, the packager downloads the SDK file
from the internet based on the SDK version. The MONAI_DEPLOY_SDK_FILE package filename must have .whl or .gz
file extension.

[--output|-o OUTPUT]

Output directory where result images will be written.

Note: If this flag isn’t present, the packager will load the generated image onto Docker to make the image accessi-
ble with docker images. The --output flag is therefore required when building a packaging for a different target
architecture than the host system that runs the packaer.

--tag|-t TAG

Name and optionally a tag (format: name:tag).

For example:

my-company/my-application:latest
my-company/my-application:1.0.0
my-application:1.0.1
my-application

[--username USERNAME]

Optional username to be created in the container execution context. Defaults to holoscan.

21.2. Positional Arguments 197

Holoscan SDK User Guide, Release 0.6.0

[--uid UID]

Optional user ID to be associated with the user created with --username.

[--gid GID]

Optional group ID to be associated with the user created with --username.

21.2.2 Holoscan CLI - Run Command

holoscan run - simplifies running a packaged Holoscan application by reducing the number of arguments required
compared to docker run. In addition, it follows the guidelines of HAP specification when launching your packaged
Holoscan application.

Synopsis

holoscan run [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}] [--address ADDRESS] [--
driver] [--input|-i INPUT] [--output|-o OUTPUT] [--fragments|-f FRAGMENTS] [--worker] [--config CON-
FIG] [--network|-n NETWORK] [--nic NETWORK_INTERFACE] [--render|-r] [--quiet|-q] [--uid UID] [--gid
GID]image:[tag]

Examples

To run a packaged Holoscan application:

holoscan run -i /path/to/my/input -o /path/to/application/generated/output my-
→˓application:1.0.1

Positional Arguments

image:[tag]

Name and tag of the Docker container image to execute.

Flags

[--address ADDRESS]

Address ([<IP or hostname>][:<port>]) of the App Driver. If not specified, the App Driver uses the default host
address (0.0.0.0) with the default port number (8765).

For example:

--address my_app_network
--address my_app_network:8765

198 Chapter 21. Holoscan CLI

Holoscan SDK User Guide, Release 0.6.0

[--driver]

Run the App Driver on the current machine. Can be used together with the option to run both the App Driver and
the App Worker on the same machine.

[--input|-i INPUT]

Specifies a directory path with input data for the application to process. When specified, a directory mount is set up to
the value defined in the environment variable HOLOSCAN_INPUT_PATH.

[--output|-o OUTPUT]

Specifies a directory path to store application-generated artifacts. When specified, a directory mount is set up to the
value defined in the environment variable HOLOSCAN_OUTPUT_PATH.

[--fragments|-f FRAGMENTS]

A Comma-separated names of the fragments to be executed by the App Worker. If not specified, only one fragment
(selected by the App Driver) will be executed. all can be used to run all the fragments.

[--worker]

Run the App Worker.

[--worker-address WORKER_ADDRESS]

The address ([<IP or hostname>][:<port>]) of the App Worker. If not specified, the App Worker uses the
default host address (0.0.0.0) with the default port number randomly chosen from unused ports (between 10000 and
32767).

For example:

--worker-address my_app_network
--worker-address my_app_network:10000

[--config CONFIG]

Path to the application configuration file. If specified, it overrides the embedded configuration file found in the envi-
ronment variable HOLOSCAN_CONFIG_PATH.

21.2. Positional Arguments 199

Holoscan SDK User Guide, Release 0.6.0

[--network|-n NETWORK]

The Docker network that the application connects to for communicating with other containers. The Runner use the
host network by default if not specified. Otherwise, the specified value is used to create a network with the bridge
driver.

For advanced usages, first create a network using docker network create and pass the name of the network to the
--network option. Refer to Docker Networking documentation for additional details.

[--nic NETWORK_INTERFACE]

Name of the network interface to use with a distributed multi-fragment application. This option sets UCX_NET_DEVICES
environment variable with the value specified and is required when running a distributed multi-fragment application
across multiple nodes. See UCX Network Interface Selection for details.

[--render|-r]

Enable graphic rendering from your application. Defaults to False.

[--quiet|-q]

Suppress the STDOUT and print only STDERR from the application. Defaults to False.

[--uid UID]

Run the application with the specified user ID (UID). Defaults to the current user’s UID.

[--gid GID]

Run the application with the specified group ID (GID). Defaults to the current user’s GID.

21.2.3 Holoscan CLI - Version Command

holoscan version - print version information for the Holoscan SDK

Synopsis

holoscan version [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}]

package

Package a Holoscan application

run

Run a packaged Holoscan application

version

Print version information for the Holoscan SDK

200 Chapter 21. Holoscan CLI

https://docs.docker.com/network/

Holoscan SDK User Guide, Release 0.6.0

21.3 CLI-Wide Flags

21.3.1 [--help|-h]

Display detailed help.

21.3.2 [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}]

Override the default logging verbosity. Defaults to INFO.

21.3. CLI-Wide Flags 201

Holoscan SDK User Guide, Release 0.6.0

202 Chapter 21. Holoscan CLI

CHAPTER

TWENTYTWO

APPLICATION RUNNER CONFIGURATION

The Holoscan runner requires a YAML configuration file to define some properties necessary to deploy an application.

Note: That file is the same configuration file commonly used to configure other aspects of an application, documented
here.

22.1 Configuration

The configuration file can be defined in two ways:

• At package time, with the --config flag of the holoscan package command (Required/Default)

• At runtime, with the --config flag of the holoscan run command (Optional/Override)

22.2 Properties

The holoscan run command parses two specific YAML nodes from the configuration file:

• A required application parameter group to generate a HAP-compliant` container image for the application,
including:

– the title (name) and version of the application.

– optionally, inputFormats and outputFormats if the application expects any inputs or outputs respec-
tively.

• An optional resources parameter group that defines the system resources required to run the application, such
as the number of CPUs, GPUs and amount of memory required. If the application contains multiple fragments
for distributed workloads, resource definitions can be assigned to each fragment.

203

Holoscan SDK User Guide, Release 0.6.0

22.3 Example

Below is an example configuration file with the application and optional resources parameter groups, for an
application with two-fragments (first-fragment and second-fragment):

application:
title: My Application Title
version: 1.0.1
inputFormats: ["files"] # optional
outputFormats: ["screen"] # optional

resources: # optional
non-distributed app
cpu: 1 # optional
cpuLimit: 5 # optional
gpu: 1 # optional
gpuLimit: 5 # optional
memory: 1Mi # optional
memoryLimit: 2Gi # optional
gpuMemory: 1Gi # optional
gpuMemoryLimit: 1.5Gi # optional
sharedMemory: 1Gi # optional

distributed app
fragments: # optional
first-fragment: # optional
cpu: 1 # optional
cpuLimit: 5 # optional
gpu: 1 # optional
gpuLimit: 5 # optional
memory: 100Mi # optional
memoryLimit: 1Gi # optional
gpuMemory: 1Gi # optional
gpuMemoryLimit: 10Gi # optional
sharedMemory: 1Gi # optional

second-fragment: # optional
cpu: 1 # optional
cpuLimit: 2 # optional
gpu: 1 # optional
gpuLimit: 2 # optional
memory: 1Gi # optional
memoryLimit: 2Gi # optional
gpuMemory: 1Gi # optional
gpuMemoryLimit: 5Gi # optional
sharedMemory: 10Mi # optional

For details, please refer to the HAP specification.

204 Chapter 22. Application Runner Configuration

CHAPTER

TWENTYTHREE

GXF CORE CONCEPTS

Here is a list of the key GXF terms used in this section:

• Applications are built as compute graphs.

• Entities are nodes of the graph. They are nothing more than a unique identifier.

• Components are parts of an entity and provide their functionality.

• Codelets are special components which allow the execution of custom code. They can be derived by overriding
the C++ functions initialize, start, tick, stop, deinitialize, and registerInterface (for defining
configuration parameters).

• Connections are edges of the graph, which connect components.

• Scheduler and Scheduling Terms: components that determine how and when the tick() of a Codelet executes.
This can be single or multithreaded, support conditional execution, asynchronous scheduling, and other custom
behavior.

• Memory Allocator: provides a system for allocating a large contiguous memory pool up-front and then reusing
regions as needed. Memory can be pinned to the device (enabling zero-copy between Codelets when messages
are not modified) or host, or customized for other potential behavior.

• Receivers, Transmitters, and Message Router: a message passing system between Codelets that supports
zero-copy.

• Tensor: the common message type is a tensor. It provides a simple abstraction for numeric data that can be
allocated, serialized, sent between Codelets, etc. Tensors can be rank 1 to 7 supporting a variety of common data
types like arrays, vectors, matrices, multi-channel images, video, regularly sampled time-series data, and higher
dimensional constructs popular with deep learning flows.

• Parameters: configuration variables used by the Codelet. In GXF applications, they are loaded from the appli-
cation YAML file and are modifiable without recompiling.

In comparison, the core concepts of the Holoscan SDK can be found here.

205

Holoscan SDK User Guide, Release 0.6.0

206 Chapter 23. GXF Core concepts

CHAPTER

TWENTYFOUR

HOLOSCAN AND GXF

24.1 Design differences

There are 2 main elements at the core of Holoscan and GXF designs:

1. How to define and execute application graphs

2. How to define nodes’ functionality

How Holoscan SDK interfaces with GXF on those topics varies as Holoscan SDK evolves, as described below:

24.1.1 Holoscan SDK v0.2

Holoscan SDK was tightly coupled with GXF’s existing interface:

1. GXF application graphs are defined in YAML configuration files. GXE (Graph Execution Engine) is used to
execute AI application graphs. Its inputs are the YAML configuration file, and a list of GXF Extensions to load as
plugins (manifest yaml file). This design allows entities to be swapped or updated without needing to recompile
an application.

2. Components are made available by registering them within a GXF extension, each of which maps to a shared
library and header(s).

Those concepts are illustrated in the GXF by example section.

The only additions that Holoscan provided on top of GXF were:

• domain specific reference applications

• new extensions

• CMake configurations for building extensions and applications

24.1.2 Holoscan SDK v0.3

The Holoscan SDK shifted to provide a more developer-friendly interface with C++:

1. GXF application graphs, memory allocation, scheduling, and message routing can be defined using a C++ API,
with the ability to read parameters and required GXF extension names from a YAML configuration file. The
backend used is still GXF as Holoscan uses the GXF C API, but this bypasses GXE and the full YAML definition.

2. The C++ Operator class was added to wrap and expose GXF extensions to that new application interface (See
dev guide).

207

Holoscan SDK User Guide, Release 0.6.0

24.1.3 Holoscan SDK v0.4

The Holoscan SDK added Python wrapping and native operators to further increase ease of use:

1. The C++ API is also wrapped in Python. GXF is still used as the backend.

2. The Operator class supports native operators, i.e. operators that do not require to implement and register a GXF
Extension. An important feature is the ability to support messaging between native and GXF operators without
any performance loss (i.e. zero-copy communication of tensors).

24.1.4 Holoscan SDK v0.5

1. The built-in Holoscan GXF extensions are loaded automatically and don’t need to be listed in the YAML con-
figuration file of Holoscan applications. This allows Holoscan applications to be defined without requiring a
YAML configuration file.

2. No significant changes to build operators. However, most built-in operators were switched to native implemen-
tations, with the ability to convert native operators to GXF codelets for GXF application developers.

24.2 Current limitations

Here is a list of GXF capabilities not yet available in the Holoscan SDK which are planned to be supported in future
releases:

• Job Statistics

The GXF capabilities below are not available in the Holoscan SDK either. There is no plan to support them at this
time:

• Graph Composer

• Behavior Trees

• Epoch Scheduler

• Target Time Scheduling Term

• Multi-Message Available Scheduling Term

• Expiring Message Available Scheduling Term

208 Chapter 24. Holoscan and GXF

CHAPTER

TWENTYFIVE

GXF BY EXAMPLE

Warning: This section is legacy (0.2) as we recommend developing extensions and applications using the C++ or
Python APIs. Refer to the developer guide for up-to-date recommendations.

25.1 Innerworkings of a GXF Entity

Let us look at an example of a GXF entity to try to understand its general anatomy. As an example let’s start with the
entity definition for an image format converter entity named format_converter_entity as shown below.

Listing 25.1: An example GXF Application YAML snippet

1 %YAML 1.2
2 ---
3 # other entities declared
4 ---
5 name: format_converter_entity
6 components:
7 - name: in_tensor
8 type: nvidia::gxf::DoubleBufferReceiver
9 - type: nvidia::gxf::MessageAvailableSchedulingTerm

10 parameters:
11 receiver: in_tensor
12 min_size: 1
13 - name: out_tensor
14 type: nvidia::gxf::DoubleBufferTransmitter
15 - type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
16 parameters:
17 transmitter: out_tensor
18 min_size: 1
19 - name: pool
20 type: nvidia::gxf::BlockMemoryPool
21 parameters:
22 storage_type: 1
23 block_size: 4919040 # 854 * 480 * 3 (channel) * 4 (bytes per pixel)
24 num_blocks: 2
25 - name: format_converter_component
26 type: nvidia::holoscan::formatconverter::FormatConverter
27 parameters:
28 in: in_tensor

(continues on next page)

209

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

29 out: out_tensor
30 out_tensor_name: source_video
31 out_dtype: "float32"
32 scale_min: 0.0
33 scale_max: 255.0
34 pool: pool
35 ---
36 # other entities declared
37 ---
38 components:
39 - name: input_connection
40 type: nvidia::gxf::Connection
41 parameters:
42 source: upstream_entity/output
43 target: format_converter/in_tensor
44 ---
45 components:
46 - name: output_connection
47 type: nvidia::gxf::Connection
48 parameters:
49 source: format_converter/out_tensor
50 target: downstream_entity/input
51 ---
52 name: scheduler
53 components:
54 - type: nvidia::gxf::GreedyScheduler

Above:

1. The entity format_converter_entity receives a message in its in_tensor message from an upstream entity
upstream_entity as declared in the input_connection.

2. The received message is passed to the format_converter_component component to convert the tensor element
precision from uint8 to float32 and scale any input in the [0, 255] intensity range.

3. The format_converter_component component finally places the result in the out_tensor message so that
its result is made available to a downstream entity (downstream_ent as declared in output_connection).

4. The Connection components tie the inputs and outputs of various components together, in
the above case upstream_entity/output -> format_converter_entity/in_tensor and
format_converter_entity/out_tensor -> downstream_entity/input.

5. The scheduler entity declares a GreedyScheduler “system component” which orchestrates the execution
of the entities declared in the graph. In the specific case of GreedyScheduler entities are scheduled to run
exclusively, where no more than one entity can run at any given time.

The YAML snippet above can be visually represented as follows.

In the image, as in the YAML, you will notice the use of MessageAvailableSchedulingTerm,
DownstreamReceptiveSchedulingTerm, and BlockMemoryPool. These are components that play a “supporting”
role to in_tensor, out_tensor, and format_converter_component components respectively. Specifically:

• MessageAvailableSchedulingTerm is a component that takes a Receiver`` (in this case Double-
BufferReceivernamedin_tensor) and alerts the graph Executorthat a message is available.
This alert triggersformat_converter_component`.

• DownstreamReceptiveSchedulingTerm is a component that takes a Transmitter (in this case

210 Chapter 25. GXF by Example

Holoscan SDK User Guide, Release 0.6.0

Fig. 25.1: Arrangement of components and entities in a Holoscan application

DoubleBufferTransmitter named out_tensor) and alerts the graph Executor that a message has been
placed on the output.

• BlockMemoryPool provides two blocks of almost 5MB allocated on the GPU device and is used by
format_converted_ent to allocate the output tensor where the converted data will be placed within the format
converted component.

Together these components allow the entity to perform a specific function and coordinate communication with other
entities in the graph via the declared scheduler.

More generally, an entity can be thought of as a collection of components where components can be passed to one
another to perform specific subtasks (e.g. event triggering or message notification, format conversion, memory alloca-
tion), and an application as a graph of entities.

The scheduler is a component of type nvidia::gxf::System which orchestrates the execution components in each
entity at application runtime based on triggering rules.

25.2 Data Flow and Triggering Rules

Entities communicate with one another via messages which may contain one or more payloads. Messages are
passed and received via a component of type nvidia::gxf::Queue from which both nvidia::gxf::Receiver
and nvidia::gxf::Transmitter are derived. Every entity that receives and transmits messages has at least one
receiver and one transmitter queue.

Holoscan uses the nvidia::gxf::SchedulingTerm component to coordinate data access and component orchestra-
tion for a Scheduler which invokes execution through the tick() function in each Codelet.

Tip: A SchedulingTerm defines a specific condition that is used by an entity to let the scheduler know when it’s
ready for execution.

In the above example, we used a MessageAvailableSchedulingTerm to trigger the execution of the components
waiting for data from in_tensor receiver queue, namely format_converter_component.

Listing 25.2: MessageAvailableSchedulingTerm

1 - type: nvidia::gxf::MessageAvailableSchedulingTerm
2 parameters:

(continues on next page)

25.2. Data Flow and Triggering Rules 211

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

3 receiver: in_tensor
4 min_size: 1

Similarly, DownStreamReceptiveSchedulingTerm checks whether the out_tensor transmitter queue has at least
one outgoing message in it. If there are one or more outgoing messages, DownStreamReceptiveSchedulingTerm
will notify the scheduler which in turn attempts to place the message in the receiver queue of a downstream entity. If,
however, the downstream entity has a full receiver queue, the message is held in the out_tensor queue as a means to
handle back-pressure.

Listing 25.3: DownstreamReceptiveSchedulingTerm

1 - type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
2 parameters:
3 transmitter: out_tensor
4 min_size: 1

If we were to draw the entity in Fig. 25.1 in greater detail it would look something like the following.

Fig. 25.2: Receive and transmit Queues and SchedulingTerms in entities.

Up to this point, we have covered the “entity component system” at a high level and showed the functional parts of an
entity, namely, the messaging queues and the scheduling terms that support the execution of components in the entity.
To complete the picture, the next section covers the anatomy and lifecycle of a component, and how to handle events
within it.

212 Chapter 25. GXF by Example

Holoscan SDK User Guide, Release 0.6.0

25.3 Creating a GXF Extension

GXF components in Holoscan can perform a multitude of sub-tasks ranging from data transformations, to memory
management, to entity scheduling. In this section, we will explore an nvidia::gxf::Codelet component which in
Holoscan is known as a “GXF extension”. Holoscan (GXF) extensions are typically concerned with application-specific
sub-tasks such as data transformations, AI model inference, and the like.

25.3.1 Extension Lifecycle

The lifecycle of a Codelet is composed of the following five stages.

1. initialize - called only once when the codelet is created for the first time, and use of light-weight initialization.

2. deinitialize - called only once before the codelet is destroyed, and used for light-weight deinitialization.

3. start - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy initialization tasks such as allocating memory resources.

4. stop - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy deinitialization tasks such as deallocation of all resources previously assigned in start.

5. tick - called when the codelet is triggered, and is called multiple times over the codelet lifecycle; even multiple
times between start and stop.

The flow between these stages is detailed in Fig. 25.3.

Fig. 25.3: Sequence of method calls in the lifecycle of a Holoscan extension

25.3. Creating a GXF Extension 213

Holoscan SDK User Guide, Release 0.6.0

25.3.2 Implementing an Extension

In this section, we will implement a simple recorder that will highlight the actions we would perform in the lifecycle
methods. The recorder receives data in the input queue and records the data to a configured location on the disk. The
output format of the recorder files is the GXF-formatted index/binary replayer files (the format is also used for the
data in the sample applications), where the gxf_index file contains timing and sequence metadata that refer to the
binary/tensor data held in the gxf_entities file.

Declare the Class That Will Implement the Extension Functionality

The developer can create their Holoscan extension by extending the Codelet class, implementing the extension func-
tionality by overriding the lifecycle methods, and defining the parameters the extension exposes at the application level
via the registerInterface method. To define our recorder component we would need to implement some of the
methods in the Codelet.

First, clone the Holoscan project from here and create a folder to develop our extension such as under
gxf_extensions/my_recorder.

Tip: Using Bash we create a Holoscan extension folder as follows.

git clone https://github.com/nvidia-holoscan/holoscan-sdk.git
cd clara-holoscan-embedded-sdk
mkdir -p gxf_extensions/my_recorder

In our extension folder, we create a header file my_recorder.hpp with a declaration of our Holoscan component.

Listing 25.4: gxf_extensions/my_recorder/my_recorder.hpp

1 #include <string>
2

3 #include "gxf/core/handle.hpp"
4 #include "gxf/std/codelet.hpp"
5 #include "gxf/std/receiver.hpp"
6 #include "gxf/std/transmitter.hpp"
7 #include "gxf/serialization/file_stream.hpp"
8 #include "gxf/serialization/entity_serializer.hpp"
9

10

11 class MyRecorder : public nvidia::gxf::Codelet {
12 public:
13 gxf_result_t registerInterface(nvidia::gxf::Registrar* registrar) override;
14 gxf_result_t initialize() override;
15 gxf_result_t deinitialize() override;
16

17 gxf_result_t start() override;
18 gxf_result_t tick() override;
19 gxf_result_t stop() override;
20

21 private:
22 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
23 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>> my_

→˓serializer_;
(continues on next page)

214 Chapter 25. GXF by Example

https://github.com/nvidia-holoscan/holoscan-sdk

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

24 nvidia::gxf::Parameter<std::string> directory_;
25 nvidia::gxf::Parameter<std::string> basename_;
26 nvidia::gxf::Parameter<bool> flush_on_tick_;
27

28 // File stream for data index
29 nvidia::gxf::FileStream index_file_stream_;
30 // File stream for binary data
31 nvidia::gxf::FileStream binary_file_stream_;
32 // Offset into binary file
33 size_t binary_file_offset_;
34 };

Declare the Parameters to Expose at the Application Level

Next, we can start implementing our lifecycle methods in the my_recorder.cpp file, which we also create in
gxf_extensions/my_recorder path.

Our recorder will need to expose the nvidia::gxf::Parameter variables to the application so the parameters can
be modified by configuration.

Listing 25.5: registerInterface in gxf_extensions/my_recorder/my_recorder.cpp

1 #include "my_recorder.hpp"
2

3 gxf_result_t MyRecorder::registerInterface(nvidia::gxf::Registrar* registrar) {
4 nvidia::gxf::Expected<void> result;
5 result &= registrar->parameter(
6 receiver_, "receiver", "Entity receiver",
7 "Receiver channel to log");
8 result &= registrar->parameter(
9 my_serializer_, "serializer", "Entity serializer",

10 "Serializer for serializing input data");
11 result &= registrar->parameter(
12 directory_, "out_directory", "Output directory path",
13 "Directory path to store received output");
14 result &= registrar->parameter(
15 basename_, "basename", "File base name",
16 "User specified file name without extension",
17 nvidia::gxf::Registrar::NoDefaultParameter(), GXF_PARAMETER_FLAGS_OPTIONAL);
18 result &= registrar->parameter(
19 flush_on_tick_, "flush_on_tick", "Boolean to flush on tick",
20 "Flushes output buffer on every `tick` when true", false); // default value `false`
21 return nvidia::gxf::ToResultCode(result);
22 }

For pure GXF applications, our component’s parameters can be specified in the following format in the YAML file:

Listing 25.6: Example parameters for MyRecorder component

1 name: my_recorder_entity
2 components:
3 - name: my_recorder_component

(continues on next page)

25.3. Creating a GXF Extension 215

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

4 type: MyRecorder
5 parameters:
6 receiver: receiver
7 serializer: my_serializer
8 out_directory: /home/user/out_path
9 basename: my_output_file # optional

10 # flush_on_tick: false # optional

Note that all the parameters exposed at the application level are mandatory except for flush_on_tick, which defaults
to false, and basename, whose default is handled at initialize() below.

Implement the Lifecycle Methods

This extension does not need to perform any heavy-weight initialization tasks, so we will concentrate on
initialize(), tick(), and deinitialize() methods which define the core functionality of our component. At
initialization, we will create a file stream and keep track of the bytes we write on tick() via binary_file_offset.

Listing 25.7: initialize in gxf_extensions/my_recorder/my_recorder.cpp

24 gxf_result_t MyRecorder::initialize() {
25 // Create path by appending receiver name to directory path if basename is not provided
26 std::string path = directory_.get() + '/';
27 if (const auto& basename = basename_.try_get()) {
28 path += basename.value();
29 } else {
30 path += receiver_->name();
31 }
32

33 // Initialize index file stream as write-only
34 index_file_stream_ = nvidia::gxf::FileStream("", path +␣

→˓nvidia::gxf::FileStream::kIndexFileExtension);
35

36 // Initialize binary file stream as write-only
37 binary_file_stream_ = nvidia::gxf::FileStream("", path +␣

→˓nvidia::gxf::FileStream::kBinaryFileExtension);
38

39 // Open index file stream
40 nvidia::gxf::Expected<void> result = index_file_stream_.open();
41 if (!result) {
42 return nvidia::gxf::ToResultCode(result);
43 }
44

45 // Open binary file stream
46 result = binary_file_stream_.open();
47 if (!result) {
48 return nvidia::gxf::ToResultCode(result);
49 }
50 binary_file_offset_ = 0;
51

52 return GXF_SUCCESS;
53 }

216 Chapter 25. GXF by Example

Holoscan SDK User Guide, Release 0.6.0

When de-initializing, our component will take care of closing the file streams that were created at initialization.

Listing 25.8: deinitialize in gxf_extensions/my_recorder/my_recorder.cpp

55 gxf_result_t MyRecorder::deinitialize() {
56 // Close binary file stream
57 nvidia::gxf::Expected<void> result = binary_file_stream_.close();
58 if (!result) {
59 return nvidia::gxf::ToResultCode(result);
60 }
61

62 // Close index file stream
63 result = index_file_stream_.close();
64 if (!result) {
65 return nvidia::gxf::ToResultCode(result);
66 }
67

68 return GXF_SUCCESS;
69 }

In our recorder, no heavy-weight initialization tasks are required so we implement the following, however, we would
use start() and stop() methods for heavy-weight tasks such as memory allocation and deallocation.

Listing 25.9: start/stop in gxf_extensions/my_recorder/my_recorder.cpp

71 gxf_result_t MyRecorder::start() {
72 return GXF_SUCCESS;
73 }
74

75 gxf_result_t MyRecorder::stop() {
76 return GXF_SUCCESS;
77 }

Tip: For a detailed implementation of start() and stop(), and how memory management can be handled therein,
please refer to the implementation of the AJA Video source extension.

Finally, we write the component-specific functionality of our extension by implementing tick().

Listing 25.10: tick in gxf_extensions/my_recorder/my_recorder.cpp

79 gxf_result_t MyRecorder::tick() {
80 // Receive entity
81 nvidia::gxf::Expected<nvidia::gxf::Entity> entity = receiver_->receive();
82 if (!entity) {
83 return nvidia::gxf::ToResultCode(entity);
84 }
85

86 // Write entity to binary file
87 nvidia::gxf::Expected<size_t> size = my_serializer_->serializeEntity(entity.value(), &

→˓binary_file_stream_);
88 if (!size) {
89 return nvidia::gxf::ToResultCode(size);
90 }

(continues on next page)

25.3. Creating a GXF Extension 217

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/gxf_extensions/aja

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

91

92 // Create entity index
93 nvidia::gxf::EntityIndex index;
94 index.log_time = std::chrono::system_clock::now().time_since_epoch().count();
95 index.data_size = size.value();
96 index.data_offset = binary_file_offset_;
97

98 // Write entity index to index file
99 nvidia::gxf::Expected<size_t> result = index_file_stream_.writeTrivialType(&index);

100 if (!result) {
101 return nvidia::gxf::ToResultCode(result);
102 }
103 binary_file_offset_ += size.value();
104

105 if (flush_on_tick_) {
106 // Flush binary file output stream
107 nvidia::gxf::Expected<void> result = binary_file_stream_.flush();
108 if (!result) {
109 return nvidia::gxf::ToResultCode(result);
110 }
111

112 // Flush index file output stream
113 result = index_file_stream_.flush();
114 if (!result) {
115 return nvidia::gxf::ToResultCode(result);
116 }
117 }
118

119 return GXF_SUCCESS;
120 }

Register the Extension as a Holoscan Component

As a final step, we must register our extension so it is recognized as a component and loaded by the application executor.
For this we create a simple declaration in my_recorder_ext.cpp as follows.

Listing 25.11: gxf_extensions/my_recorder/my_recorder_ext.cpp

1 #include "gxf/std/extension_factory_helper.hpp"
2

3 #include "my_recorder.hpp"
4

5 GXF_EXT_FACTORY_BEGIN()
6 GXF_EXT_FACTORY_SET_INFO(0xb891cef3ce754825, 0x9dd3dcac9bbd8483, "MyRecorderExtension",
7 "My example recorder extension", "NVIDIA", "0.1.0", "LICENSE");
8 GXF_EXT_FACTORY_ADD(0x2464fabf91b34ccf, 0xb554977fa22096bd, MyRecorder,
9 nvidia::gxf::Codelet, "My example recorder codelet.");

10 GXF_EXT_FACTORY_END()

GXF_EXT_FACTORY_SET_INFO configures the extension with the following information in order:

• UUID which can be generated using scripts/generate_extension_uuids.py which defines the extension

218 Chapter 25. GXF by Example

Holoscan SDK User Guide, Release 0.6.0

id

• extension name

• extension description

• author

• extension version

• license text

GXF_EXT_FACTORY_ADD registers the newly built extension as a valid Codelet component with the following infor-
mation in order:

• UUID which can be generated using scripts/generate_extension_uuids.py which defines the compo-
nent id (this must be different from the extension id),

• fully qualified extension class,

• fully qualifies base class,

• component description

To build a shared library for our new extension which can be loaded by a Holoscan application at runtime we use a
CMake file under gxf_extensions/my_recorder/CMakeLists.txt with the following content.

Listing 25.12: gxf_extensions/my_recorder/CMakeLists.txt

1 # Create library
2 add_library(my_recorder_lib SHARED
3 my_recorder.cpp
4 my_recorder.hpp
5)
6 target_link_libraries(my_recorder_lib
7 PUBLIC
8 GXF::std
9 GXF::serialization

10 yaml-cpp
11)
12

13 # Create extension
14 add_library(my_recorder SHARED
15 my_recorder_ext.cpp
16)
17 target_link_libraries(my_recorder
18 PUBLIC my_recorder_lib
19)
20

21 # Install GXF extension as a component 'holoscan-gxf_extensions'
22 install_gxf_extension(my_recorder) # this will also install my_recorder_lib
23 # install_gxf_extension(my_recorder_lib) # this statement is not necessary because this␣

→˓library follows `<extension library name>_lib` convention.

Here, we create a library my_recorder_lib with the implementation of the lifecycle methods, and the extension
my_recorder which exposes the C API necessary for the application runtime to interact with our component.

To make our extension discoverable from the project root we add the line

25.3. Creating a GXF Extension 219

Holoscan SDK User Guide, Release 0.6.0

add_subdirectory(my_recorder)

to the CMake file gxf_extensions/CMakeLists.txt.

Tip: To build our extension, we can follow the steps in the README.

At this point, we have a complete extension that records data coming into its receiver queue to the specified location
on the disk using the GXF-formatted binary/index files.

25.4 Creating a GXF Application

For our application, we create the directory apps/my_recorder_app_gxf with the application definition file
my_recorder_gxf.yaml. The my_recorder_gxf.yaml application is as follows:

Listing 25.13: apps/my_recorder_app_gxf/my_recorder_gxf.yaml

1 %YAML 1.2
2 ---
3 name: replayer
4 components:
5 - name: output
6 type: nvidia::gxf::DoubleBufferTransmitter
7 - name: allocator
8 type: nvidia::gxf::UnboundedAllocator
9 - name: component_serializer

10 type: nvidia::gxf::StdComponentSerializer
11 parameters:
12 allocator: allocator
13 - name: entity_serializer
14 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
15 parameters:
16 component_serializers: [component_serializer]
17 - type: nvidia::holoscan::stream_playback::VideoStreamReplayer
18 parameters:
19 transmitter: output
20 entity_serializer: entity_serializer
21 boolean_scheduling_term: boolean_scheduling
22 directory: "/workspace/data/endoscopy/video"
23 basename: "surgical_video"
24 frame_rate: 0 # as specified in timestamps
25 repeat: false # default: false
26 realtime: true # default: true
27 count: 0 # default: 0 (no frame count restriction)
28 - name: boolean_scheduling
29 type: nvidia::gxf::BooleanSchedulingTerm
30 - type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
31 parameters:
32 transmitter: output
33 min_size: 1

(continues on next page)

220 Chapter 25. GXF by Example

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

34 ---
35 name: recorder
36 components:
37 - name: input
38 type: nvidia::gxf::DoubleBufferReceiver
39 - name: allocator
40 type: nvidia::gxf::UnboundedAllocator
41 - name: component_serializer
42 type: nvidia::gxf::StdComponentSerializer
43 parameters:
44 allocator: allocator
45 - name: entity_serializer
46 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
47 parameters:
48 component_serializers: [component_serializer]
49 - type: MyRecorder
50 parameters:
51 receiver: input
52 serializer: entity_serializer
53 out_directory: "/tmp"
54 basename: "tensor_out"
55 - type: nvidia::gxf::MessageAvailableSchedulingTerm
56 parameters:
57 receiver: input
58 min_size: 1
59 ---
60 components:
61 - name: input_connection
62 type: nvidia::gxf::Connection
63 parameters:
64 source: replayer/output
65 target: recorder/input
66 ---
67 name: scheduler
68 components:
69 - name: clock
70 type: nvidia::gxf::RealtimeClock
71 - name: greedy_scheduler
72 type: nvidia::gxf::GreedyScheduler
73 parameters:
74 clock: clock

Above:

• The replayer reads data from /workspace/data/endoscopy/video/surgical_video.
gxf_[index|entities] files, deserializes the binary data to a nvidia::gxf::Tensor using
VideoStreamSerializer, and puts the data on an output message in the replayer/output transmit-
ter queue.

• The input_connection component connects the replayer/output transmitter queue to the recorder/
input receiver queue.

• The recorder reads the data in the input receiver queue, uses StdEntitySerializer to convert the received

25.4. Creating a GXF Application 221

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::Tensor to a binary stream, and outputs to the /tmp/tensor_out.gxf_[index|entities]
location specified in the parameters.

• The scheduler component, while not explicitly connected to the application-specific entities, performs the
orchestration of the components discussed in the Data Flow and Triggering Rules.

Note the use of the component_serializer in our newly built recorder. This component is declared separately in the
entity

- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]

and passed into MyRecorder via the serializer parameter which we exposed in the extension development section
(Declare the Parameters to Expose at the Application Level).

- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
directory: "/tmp"
basename: "tensor_out"

For our app to be able to load (and also compile where necessary) the extensions required at runtime, we need to declare
a CMake file apps/my_recorder_app_gxf/CMakeLists.txt as follows.

Listing 25.14: apps/my_recorder_app_gxf/CMakeLists.txt

1 create_gxe_application(
2 NAME my_recorder_gxf
3 YAML my_recorder_gxf.yaml
4 EXTENSIONS
5 GXF::std
6 GXF::cuda
7 GXF::multimedia
8 GXF::serialization
9 my_recorder

10 stream_playback
11)
12

13 # Download the associated dataset if needed
14 if(HOLOSCAN_DOWNLOAD_DATASETS)
15 add_dependencies(my_recorder_gxf endoscopy_data)
16 endif()

In the declaration of create_gxe_application we list:

• my_recorder component declared in the CMake file of the extension development section under the
EXTENSIONS argument

• the existing stream_playback Holoscan extension which reads data from disk

To make our newly built application discoverable by the build, in the root of the repository, we add the following line
to apps/CMakeLists.txt:

222 Chapter 25. GXF by Example

Holoscan SDK User Guide, Release 0.6.0

add_subdirectory(my_recorder_app_gxf)

We now have a minimal working application to test the integration of our newly built MyRecorder extension.

25.5 Running the GXF Recorder Application

To run our application in a local development container:

1. Follow the instructions under the Using a Development Container section steps 1-5 (try clearing the CMake
cache by removing the build folder before compiling).

You can execute the following commands to build

./run build
./run clear_cache # if you want to clear build/install/cache folders

2. Our test application can now be run in the development container using the command

./apps/my_recorder_app_gxf/my_recorder_gxf

from inside the development container.

(You can execute ./run launch to run the development container.)

@LINUX:/workspace/holoscan-sdk/build$./apps/my_recorder_app_gxf/my_recorder_gxf
2022-08-24 04:46:47.333 INFO gxf/gxe/gxe.cpp@230: Creating context
2022-08-24 04:46:47.339 INFO gxf/gxe/gxe.cpp@107: Loading app: 'apps/my_recorder_
→˓app_gxf/my_recorder_gxf.yaml'
2022-08-24 04:46:47.339 INFO gxf/std/yaml_file_loader.cpp@117: Loading GXF␣
→˓entities from YAML file 'apps/my_recorder_app_gxf/my_recorder_gxf.yaml'...
2022-08-24 04:46:47.340 INFO gxf/gxe/gxe.cpp@291: Initializing...
2022-08-24 04:46:47.437 INFO gxf/gxe/gxe.cpp@298: Running...
2022-08-24 04:46:47.437 INFO gxf/std/greedy_scheduler.cpp@170: Scheduling 2␣
→˓entities
2022-08-24 04:47:14.829 INFO /workspace/holoscan-sdk/gxf_extensions/stream_
→˓playback/video_stream_replayer.cpp@144: Reach end of file or playback count␣
→˓reaches to the limit. Stop ticking.
2022-08-24 04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:␣
→˓Some entities are waiting for execution, but there are no periodic or async␣
→˓entities to get out of the deadlock.
2022-08-24 04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@353: Scheduler finished.
2022-08-24 04:47:14.829 INFO gxf/gxe/gxe.cpp@320: Deinitializing...
2022-08-24 04:47:14.863 INFO gxf/gxe/gxe.cpp@327: Destroying context
2022-08-24 04:47:14.863 INFO gxf/gxe/gxe.cpp@333: Context destroyed.

A successful run (it takes about 30 secs) will result in output files (tensor_out.gxf_index and tensor_out.
gxf_entities in /tmp) that match the original input files (surgical_video.gxf_index and surgical_video.
gxf_entities under data/endoscopy/video) exactly.

@LINUX:/workspace/holoscan-sdk/build$ ls -al /tmp/
total 821384
drwxrwxrwt 1 root root 4096 Aug 24 04:37 .
drwxr-xr-x 1 root root 4096 Aug 24 04:36 ..

(continues on next page)

25.5. Running the GXF Recorder Application 223

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

drwxrwxrwt 2 root root 4096 Aug 11 21:42 .X11-unix
-rw-r--r-- 1 1000 1000 729309 Aug 24 04:47 gxf_log
-rw-r--r-- 1 1000 1000 840054484 Aug 24 04:47 tensor_out.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Aug 24 04:47 tensor_out.gxf_index

@LINUX:/workspace/holoscan-sdk/build$ ls -al ../data/endoscopy/video/
total 839116
drwxr-xr-x 2 1000 1000 4096 Aug 24 02:08 .
drwxr-xr-x 4 1000 1000 4096 Aug 24 02:07 ..
-rw-r--r-- 1 1000 1000 19164125 Jun 17 16:31 raw.mp4
-rw-r--r-- 1 1000 1000 840054484 Jun 17 16:31 surgical_video.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Jun 17 16:31 surgical_video.gxf_index

224 Chapter 25. GXF by Example

CHAPTER

TWENTYSIX

USING HOLOSCAN OPERATORS IN GXF APPLICATIONS

For users who are familiar with the GXF development ecosystem (used in Holoscan SDK 0.2), we provide an export
feature to leverage native Holoscan operators as GXF codelets to execute in GXF applications and GraphComposer.

We demonstrate how to wrap a native C++ holoscan operator as a GXF codelet in the
wrap_operator_as_gxf_extension example on GitHub, as described below.

26.1 1. Creating compatible Holoscan Operators

Note: This section assumes you are already familiar with how to create a native C++ operator.

To be compatible with GXF codelets, inputs and outputs specified in Operator::setup(OperatorSpec& spec)
must be of type holoscan::gxf::Entity, as shown in the PingTxNativeOp and the PingRxNativeOp implementa-
tions of this example, in contrast to the PingTxOp and PingRxOp built-in operators of the SDK.

For more details regarding the use of holoscan::gxf::Entity, follow the documentation on Interoperability be-
tween GXF and native C++ operators.

26.2 2. Creating the GXF extension that wraps the operator

To wrap the native operator as a GXF codelet in a GXF extension, we provide the CMake
wrap_operator_as_gxf_extension function in the SDK. An example of how it wraps PingTxNativeOp
and PingRxNativeOp can be found here.

• It leverages the CMake target names of the operators defined in their respective CMakeLists.txt
(ping_tx_native_op, ping_rx_native_op)

• The function parameters are documented at the top of the WrapOperatorAsGXFExtension.cmake file (ignore
implementation below).

Warning:

• A unique GXF extension is currently needed for each native operator to export (operators cannot be bundled
in a single extension at this time).

• Wrapping other GXF entities than operators (as codelets) is not currently supported.

225

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/ping_tx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/ping_rx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_tx/ping_tx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_rx/ping_rx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_extension/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/cmake/modules/WrapOperatorAsGXFExtension.cmake#L18-42

Holoscan SDK User Guide, Release 0.6.0

26.3 3. Using your wrapped operator in a GXF application

Note: This section assumes you are familiar with how to create a GXF application.

As shown in the gxf_app/CMakeLists.txt here, you need to list the following extensions in
create_gxe_application() to use your wrapped codelets:

• GXF::std

• gxf_holoscan_wrapper

• the name of the CMake target for the created extension, defined by the EXTENSION_TARGET_NAME argument
passed to wrap_operator_as_gxf_extension in the previous section

The codelet class name (defined by the CODELET_NAMESPACE::CODELET_NAME arguments passed to
wrap_operator_as_gxf_extension in the previous section) can then be used as a component type in a
GXF app node, as shown in the YAML app definition of the example, connecting the two ping operators.

226 Chapter 26. Using Holoscan Operators in GXF Applications

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/CMakeLists.min.txt#L30-33
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/ping.yaml

CHAPTER

TWENTYSEVEN

GXF USER GUIDE

27.1 Graph Specification

Graph Specification is a format to describe high-performance AI applications in a modular and extensible way. It
allows writing applications in a standard format and sharing components across multiple applications without code
modification. Graph Specification is based on entity-composition pattern. Every object in graph is represented with
entity (aka Node) and components. Developers implement custom components which can be added to entity to achieve
the required functionality.

27.1.1 Concepts

The graph contains nodes which follow an entity-component design pattern implementing the “composition over in-
heritance” paradigm. A node itself is just a light-weight object which owns components. Components define how a
node interacts with the rest of the applications. For example, nodes be connected to pass data between each other. A
special component, called compute component, is used to execute the code based on certain rules. Typically a compute
component would receive data, execute some computation and publish data.

Graph

A graph is a data-driven representation of an AI application. Implementing an application by using programming
code to create and link objects results in a monolithic and hard to maintain program. Instead a graph object is used to
structure an application. The graph can be created using specialized tools and it can be analyzed to identify potential
problems or performance bottlenecks. The graph is loaded by the graph runtime to be executed.

The functional blocks of a graph are defined by the set of nodes which the graph owns. Nodes can be queried via the
graph using certain query functions. For example, it is possible to search for a node by its name.

SubGraph

A subgraph is a graph with additional node for interfaces. It points to the components which are accessible outside
this graph. In order to use a subgraph in an existing graph or subgraph, the developer needs to create an entity where
a component of the type nvidia::gxf::Subgraph is contained. Inside the Subgraph component a corresponding
subgraph can be loaded from the yaml file indicated by location property and instantiated in the parent graph.

System makes the components from interface available to the parent graph when a sub-graph is loaded in the parent
graph. It allows users to link sub-graphs in parent with defined interface.

A subgraph interface can be defined as follows:

227

Holoscan SDK User Guide, Release 0.6.0

interfaces:
- name: iname # the name of the interface for the access from the parent graph
target: n_entity/n_component # the true component in the subgraph that is represented␣

→˓by the interface

Node

Graph Specification uses an entity-component design principle for nodes. This means that a node is a light-weight
object whose main purpose is to own components. A node is a composition of components. Every component is in
exactly one node. In order to customize a node a developer does not derive from node as a base class, but instead
composes objects out of components. Components can be used to provide a rich set of functionality to a node and thus
to an application.

Components

Components are the main functional blocks of an application. Graph runtime provides a couple of components which
implement features like properties, code execution, rules and message passing. It also allows a developer to extend the
runtime by injecting her own custom components with custom features to fit a specific use case.

The most common component is a codelet or compute component which is used for data processing and code execution.
To implement a custom codelet you’ll need to implement a certain set of functions like start and stop. A special system
- the scheduler - will call these functions at the specified time. Typical examples of triggering code execution are:
receiving a new message from another node, or performing work on a regular schedule based on a time trigger.

Edges

Nodes can receive data from other nodes by connecting them with an edge. This essential feature allows a graph to
represent a compute pipeline or a complicated AI application. An input to a node is called sink while an output is called
source. There can be zero, one or multiple inputs and outputs. A source can be connected to multiple sinks and a sink
can be connected to multiple sources.

Extension

An extension is a compiled shared library of a logical group of component type definitions and their implementations
along with any other asset files that are required for execution of the components. Some examples of asset files are
model files, shared libraries that the extension library links to and hence required to run, header and development files
that enable development of additional components and extensions that use components from the extension.

An extension library is a runtime loadable module compiled with component information in a standard format that
allows the graph runtime to load the extension and retrieve further information from it to:

• Allow the runtime to create components using the component types in the extension.

• Query information regarding the component types in the extension:

– The component type name

– The base type of the component

– A string description of the component

– Information of parameters of the component – parameter name, type, description etc.,

228 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

• Query information regarding the extension itself - Name of the extension, version, license, author and a string
description of the extension.

The section :doc: GraphComposer_Dev_Workflow talks more about this with a focus on developing extensions and
components.

27.1.2 Graph File Format

Graph file stores list of entities. Each entity has a unique name and list of components. Each component has a name, a
type and properties. Properties are stored as key-value pairs.

%YAML 1.2

name: source
components:
- name: signal
type: sample::test::ping

- type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 10

components:
- type: nvidia::gxf::GreedyScheduler
parameters:
realtime: false
max_duration_ms: 1000000

27.2 Graph Execution Engine

Graph Execution Engine is used to execute AI application graphs. It accepts multiple graph files as input, and all graphs
are executed in same process context. It also needs manifest files as input which includes list of extensions to load. It
must list all extensions required for the graph.

gxe --help
Flags from gxf/gxe/gxe.cpp:
-app (GXF app file to execute. Multiple files can be comma-separated)
type: string default: ""

-graph_directory (Path to a directory for searching graph files.)
type: string default: ""

-log_file_path (Path to a file for logging.) type: string default: ""
-manifest (GXF manifest file with extensions. Multiple files can be
comma-separated) type: string default: ""

-severity (Set log severity levels: 0=None, 1=Error, 2=Warning, 3=Info,
4=Debug. Default: Info) type: int32 default: 3

27.2. Graph Execution Engine 229

Holoscan SDK User Guide, Release 0.6.0

27.3 Graph Specification TimeStamping

27.3.1 Message Passing

Once the graph is built, the communication between various entities occur by passing around messages (messages
are entities themselves). Specifically, one component/codelet can publish a message entity and another can receive it.
When publishing, a message should always have an associated Timestamp component with the name “timestamp”.
A Timestamp component contains two different time values (See the gxf/std/timestamp.hpp header file for more
information.):

1. acqtime - This is the time when the message entity is acquired, for instance, this would generally be the driver time
of the camera when it captures an image. You must provide this timestamp if you are publishing a message in a codelet.

2. pubtime - This is the time when the message entity is published by a node in the graph. This will automatically get
updated using the clock of the scheduler.

In a codelet, when publishing message entities using a Transmitter (tx), there are two ways to add the required
Timestamp:

1. tx.publish(Entity message): You can manually add a component of type Timestamp with the name “times-
tamp” and set the acqtime. The pubtime in this case should be set to 0. The message is published using the
publish(Entity message). This will be deprecated in the next release.

2. tx.publish(Entity message, int64_t acqtime): You can simply call publish(Entity message,
int64_t acqtime) with the acqtime. Timestamp will be added automatically.

27.4 The GXF Scheduler

The execution of entities in a graph is governed by the scheduler and the scheduling terms associated with every
entity. A scheduler is a component responsible for orchestrating the execution of all the entities defined in a graph.
A scheduler typically keeps track of the graph entities and their current execution states and passes them on to a
nvidia::gxf::EntityExecutor component when ready for execution. The following diagram depicts the flow for an entity
execution.

Figure: Entity execution sequence

As shown in the sequence diagram, the schedulers begin executing the graph entities via the
nvidia::gxf::System::runAsync_abi() interface and continue this process until it meets the certain ending crite-
ria. A single entity can have multiple codelets. These codelets are executed in the same order in which they were
defined in the entity. A failure in execution of any single codelet stops the execution of all the entities. Entities are
naturally unscheduled from execution when any one of their scheduling term reaches NEVER state.

Scheduling terms are components used to define the execution readiness of an entity. An entity can have multiple
scheduling terms associated with it and each scheduling term represents the state of an entity using SchedulingCondi-
tion.

The table below shows various states of nvidia::gxf::SchedulingConditionType described us-
ing nvidia::gxf::SchedulingCondition.

230 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

SchedulingConditionType Description
NEVER Entity will never execute again
READY Entity is ready for execution
WAIT Entity may execute in the future
WAIT_TIME Entity will be ready for execution after specified duration
WAIT_EVENT Entity is waiting on an asynchronous event with unknown time interval

Schedulers define deadlock as a condition when there are no entities which are
in READY, WAIT_TIME or WAIT_EVENT state which guarantee execution at a future point in time. This
implies all the entities are in WAIT state for which the scheduler does not know if they ever will reach the READY state
in the future. The scheduler can be configured to stop when it reaches such a state using the stop_on_deadlock pa-
rameter, else the entities are polled to check if any of them have reached READY state. max_duration configuration
parameter can be used to stop execution of all entities regardless of their state after a specified amount of time has
elapsed.

There are two types of schedulers currently supported by GXF

1. Greedy Scheduler

2. Multithread Scheduler

27.4.1 Greedy Scheduler

This is a basic single threaded scheduler which tests scheduling term greedily. It is great for simple use cases and
predictable execution but may incur a large overhead of scheduling term execution, making it unsuitable for large
applications. The scheduler requires a clock to keep track of time. Based on the choice of clock the scheduler will
execute differently. If a Realtime clock is used the scheduler will execute in real-time. This means pausing execution
- sleeping the thread, until periodic scheduling terms are due again. If a ManualClock is used scheduling will happen
“time-compressed”. This means flow of time is altered to execute codelets in immediate succession.

The GreedyScheduler maintains a running count of entities which are in READY, WAIT_TIME and WAIT_EVENT states.
The following activity diagram depicts the gist of the decision making for scheduling an entity by the greedy scheduler
-

Figure: Greedy Scheduler Activity Diagram

Greedy Scheduler Configuration

The greedy scheduler takes in the following parameters from the configuration file

27.4. The GXF Scheduler 231

Holoscan SDK User Guide, Release 0.6.0

Parameter name Description
clock The clock used by the scheduler to define the flow of time. Typical choices are

RealtimeClock or ManualClock
max_duration_ms The maximum duration for which the scheduler will execute (in ms). If not

specified, the scheduler will run until all work is done. If periodic terms are
present this means the application will run indefinitely

stop_on_deadlock If stop_on_deadlock is disabled, the GreedyScheduler constantly polls for the
status of all the waiting entities to check if any of them are ready for execution.

Example usage - The following code snippet configures a Greedy scheduler with a ManualClock option specified.

name: scheduler
components:
- type: nvidia::gxf::GreedyScheduler
parameters:
max_duration_ms: 3000
clock: misc/clock
stop_on_deadlock: true

name: misc
components:
- name: clock
type: nvidia::gxf::ManualClock

27.4.2 Multithread Scheduler

The MultiThread scheduler is more suitable for large applications with complex execution patterns. The scheduler
consists of a dispatcher thread which checks the status of an entity and dispatches it to a thread pool of worker threads
responsible for executing them. Worker threads enqueue the entity back on to the dispatch queue upon completion of
execution. The number of worker threads can be configured using worker_thread_number parameter. The MultiThread
scheduler also manages a dedicated queue and thread to handle asynchronous events. The following activity diagram
demonstrates the gist of the multithread scheduler implementation.

Figure: MultiThread Scheduler Activity Diagram

As depicted in the diagram, when an entity reaches WAIT_EVENT state, it’s moved to a queue where they wait to
receive event done notification. The asynchronous event handler thread is responsible for moving entities to the dis-
patcher upon receiving event done notification. The dispatcher thread also maintains a running count of the number
of entities in READY, WAIT_EVENT and WAIT_TIME states and uses these statistics to check if the scheduler has

232 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

reached a deadlock. The scheduler also needs a clock component to keep track of time and it is configured using
the clock parameter.

MultiThread scheduler is more resource efficient compared to the Greedy Scheduler and does not incur any additional
overhead for constantly polling the states of scheduling terms. The check_recession_period_ms parameter can be used
to configure the time interval the scheduler must wait to poll the state of entities which are in WAIT state.

Multithread Scheduler Configuration

The multithread scheduler takes in the following parameters from the configuration file

Parameter name Description
clock The clock used by the scheduler to define the flow of time. Typical choices are

RealtimeClock or ManualClock.
max_duration_ms The maximum duration for which the scheduler will execute (in ms). If not

specified, the scheduler will run until all work is done. If periodic terms are
present this means the application will run indefinitely.

check_recess_period_ms Duration to sleep before checking the condition of an entity again [ms]. This is
the maximum duration for which the scheduler would wait when an entity is not
yet ready to run.

stop_on_deadlock If enabled the scheduler will stop when all entities are in a waiting state, but no
periodic entity exists to break the dead end. Should be disabled when scheduling
conditions can be changed by external actors, for example by clearing queues
manually.

worker_thread_number Number of threads.

Example usage - The following code snippet configures a Multithread scheduler with the number of worked threads
and max duration specified -

name: scheduler
components:
- type: nvidia::gxf::MultiThreadScheduler
parameters:
max_duration_ms: 5000
clock: misc/clock
worker_thread_number: 5
check_recession_period_ms: 3
stop_on_deadlock: false

name: misc
components:
- name: clock
type: nvidia::gxf::RealtimeClock

27.4. The GXF Scheduler 233

Holoscan SDK User Guide, Release 0.6.0

27.4.3 Epoch Scheduler

The Epoch scheduler is used for running loads in externally managed threads. Each run is called an Epoch. The
scheduler goes over all entities that are known to be active and executes them one by one. If the epoch budget is
provided (in ms), it would keep running all codelets until the budget is consumed or no codelet is ready. It might run
over budget since it guarantees to cover all codelets in epoch. In case the budget is not provided, it would go over all
the codelets once and execute them only once.

The epoch scheduler takes in the following parameters from the configuration file -

Parameter name Description
clock The clock used by the scheduler to define the flow of time. Typical choice is a

RealtimeClock.

Example usage - The following code snippet configures an Epoch scheduler -

name: scheduler
components:
- name: clock
type: nvidia::gxf::RealtimeClock

- name: epoch
type: nvidia::gxf::EpochScheduler
parameters:
clock: clock

Note that the epoch scheduler is intended to run from an external thread. The runEpoch(float budget_ms); can
be used to set the budget_ms and run the scheduler from the external thread. If the specified budget is not positive, all
the nodes are executed once.

27.4.4 SchedulingTerms

A SchedulingTerm defines a specific condition that is used by an entity to let the scheduler know when it’s ready for
execution. There are various scheduling terms currently supported by GXF.

PeriodicSchedulingTerm

An entity associated with nvidia::gxf::PeriodicSchedulingTerm is ready for execution after periodic time intervals spec-
ified using its recess_period parameter. The PeriodicSchedulingTerm can either be in READY or WAIT_TIME state.

Example usage -

- name: scheduling_term
type: nvidia::gxf::PeriodicSchedulingTerm
parameters:
recess_period: 50000000

234 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

CountSchedulingTerm

An entity associated with nvidia::gxf::CountSchedulingTerm is executed for a specific number of times specified using
its count parameter. The CountSchedulingTerm can either be in READY or NEVER state. The scheduling term reaches
the NEVER state when the entity has been executed count number of times.

Example usage -

- name: scheduling_term
type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 42

MessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MessageAvailableSchedulingTerm is executed when the associated
receiver queue has at least a certain number of elements. The receiver is specified using the receiver parameter
of the scheduling term. The minimum number of messages that permits the execution of the entity is specified by
min_size. An optional parameter for this scheduling term is front_stage_max_size, the maximum front stage
message count. If this parameter is set, the scheduling term will only allow execution if the number of messages in the
queue does not exceed this count. It can be used for codelets which do not consume all messages from the queue.

In the example shown below, the minimum size of the queue is configured to be 4. This means the entity will not be
executed until there are at least 4 messages in the queue.

- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: tensors
min_size: 4

MultiMessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MultiMessageAvailableSchedulingTerm is executed when a list of
provided input receivers combined have at least a given number of messages. The receivers parameter is used to
specify a list of the input channels/receivers. The minimum number of messages needed to permit the entity execution
is set by min_size parameter.

Consider the example shown below. The associated entity will be executed when the number of messages combined
for all the three receivers is at least the min_size, i.e. 5.

- name: input_1
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10

- name: input_2
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10

- name: input_3
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10

- type: nvidia::gxf::MultiMessageAvailableSchedulingTerm
(continues on next page)

27.4. The GXF Scheduler 235

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

parameters:
receivers: [input_1, input_2, input_3]
min_size: 5

BooleanSchedulingTerm

An entity associated with nvidia::gxf::BooleanSchedulingTerm is executed when its internal state is set to
tick. The parameter enable_tick is used to control the entity execution. The scheduling term also has two APIs
enable_tick() and disable_tick() to toggle its internal state. The entity execution can be controlled by call-
ing these APIs. If enable_tick is set to false, the entity is not executed (Scheduling condition is set to NEVER). If
enable_tick is set to true, the entity will be executed (Scheduling condition is set to READY). Entities can toggle the
state of the scheduling term by maintaining a handle to it.

Example usage -

- type: nvidia::gxf::BooleanSchedulingTerm
parameters:
enable_tick: true

AsynchronousSchedulingTerm

AsynchronousSchedulingTerm is primarily associated with entities which are working with asynchronous events hap-
pening outside of their regular execution performed by the scheduler. Since these events are non-periodic in na-
ture, AsynchronousSchedulingTerm prevents the scheduler from polling the entity for its status regularly and reduces
CPU utilization. AsynchronousSchedulingTerm can either be in READY, WAIT, WAIT_EVENT or NEVER states
based on asynchronous event it’s waiting on.

The state of an asynchronous event is described using nvidia::gxf::AsynchronousEventState and is updated using
the setEventState API.

AsynchronousEventState Description
READY Init state, first tick is pending
WAIT Request to async service yet to be sent, nothing to do but wait
EVENT_WAITING Request sent to an async service, pending event done notification
EVENT_DONE Event done notification received, entity ready to be ticked
EVENT_NEVER Entity does not want to be ticked again, end of execution

Entities associated with this scheduling term most likely have an asynchronous thread which can update the state
of the scheduling term outside of it’s regular execution cycle performed by the gxf scheduler. When the schedul-
ing term is in WAIT state, the scheduler regularly polls for the state of the entity. When the scheduling term is
in EVENT_WAITING state, schedulers will not check the status of the entity again until they receive an event
notification which can be triggered using the GxfEntityEventNotify api. Setting the state of the scheduling term
to EVENT_DONE automatically sends this notification to the scheduler. Entities can use the EVENT_NEVER state
to indicate the end of its execution cycle.

Example usage -

- name: async_scheduling_term
type: nvidia::gxf::AsynchronousSchedulingTerm

236 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

DownsteamReceptiveSchedulingTerm

This scheduling term specifies that an entity shall be executed if the receiver for a given transmitter can accept new
messages.

Example usage -

- name: downstream_st
type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: output
min_size: 1

TargetTimeSchedulingTerm

This scheduling term permits execution at a user-specified timestamp. The timestamp is specified on the clock provided.

Example usage -

- name: target_st
type: nvidia::gxf::TargetTimeSchedulingTerm
parameters:
clock: clock/manual_clock

ExpiringMessageAvailableSchedulingTerm

This scheduling waits for a specified number of messages in the receiver. The entity is executed when the first message
received in the queue is expiring or when there are enough messages in the queue. The receiver parameter is used
to set the receiver to watch on. The parameters max_batch_size and max_delay_ns dictate the maximum number
of messages to be batched together and the maximum delay from first message to wait before executing the entity
respectively.

In the example shown below, the associated entity will be executed when the number of messages in the queue is greater
than max_batch_size, i.e 5, or when the delay from the first message to current time is greater than max_delay_ns,
i.e 10000000.

- name: target_st
type: nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
parameters:
receiver: signal
max_batch_size: 5
max_delay_ns: 10000000
clock: misc/clock

27.4. The GXF Scheduler 237

Holoscan SDK User Guide, Release 0.6.0

AND Combined

An entity can be associated with multiple scheduling terms which define it’s execution behavior. Scheduling terms
are AND combined to describe the current state of an entity. For an entity to be executed by the scheduler, all the
scheduling terms must be in READY state and conversely, the entity is unscheduled from execution whenever any
one of the scheduling term reaches NEVER state. The priority of various states during AND combine follows the
order NEVER, WAIT_EVENT, WAIT, WAIT_TIME, and READY.

Example usage -

components:
- name: integers
type: nvidia::gxf::DoubleBufferTransmitter

- name: fibonacci
type: nvidia::gxf::DoubleBufferTransmitter

- type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 100

- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: integers
min_size: 1

BTSchedulingTerm

A BT (Behavior Tree) scheduling term is used to schedule a behavior tree entity itself and its child entities (if any) in
a Behavior tree.

Example usage -

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true

- name: root_codelet
type: nvidia::gxf::SequenceBehavior
parameters:
children: [child1/child1_st]
s_term: root_st
controller: root_controller

238 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

27.5 Behavior Trees

Behavior tree codelets are one of the mechanisms to control the flow of tasks in GXF. They follow the same gen-
eral behavior as classical behavior trees, with some useful additions for robotics applications. This document gives
an overview of the general concept, the available behavior tree node types, and some examples of how to use them
individually or in conjunction with each other.

27.5.1 General Concept

Behavior trees consist of n-ary trees of entities that can have zero or more children. The conditional execution of parent
entity is based on the status of execution of the children. A behavior tree is graphically represented as a directed tree
in which the nodes are classified as root, control flow nodes, or execution nodes (tasks). For each pair of connected
nodes, the outgoing node is called parent and the incoming node is called child.

The execution of a behavior tree starts from the root which sends ticks with a certain frequency to its child. When
the execution of a node in the behavior tree is allowed, it returns to the parent a status running if its execution has
not finished yet, success if it has achieved its goal, or failure otherwise. The behavior tree also uses a controller
component for controlling the entity’s termination policy and the execution status. One of the controller behaviors
currently implemented for Behavior Tree is EntityCountFailureRepeatController, which repeats the entity on
failure up to repeat_count times before deactivating it.

GXF supports several behavior tree codelets which are explained in the following section.

27.5.2 Behavior Tree Codelets

Each behavior tree codelet can have a set of parameters defining how it should behave. Note that in all
the examples given below, the naming convention for configuring the children parameter for root codelets is
[child_codelet_name\child_codelet_scheduling_term].

Constant Behavior

After each tick period, switches its own status to the configured desired constant status.

Parameter Description
s_term scheduling term used for scheduling the entity itself
constant_status The desired status to switch to during each tick time.

An example diagram depicting Constant behavior used in conjunction with a Sequence behavior defined for root entity
is shown below

27.5. Behavior Trees 239

Holoscan SDK User Guide, Release 0.6.0

Here, the child1 is configured to return a constant status of success (GXF_BEHAVIOR_SUCCESS) and child2 returns
failure (GXF_BEHAVIOR_FAILURE), resulting into the root node (configured to exhibit sequence behavior) returning
GXF_BEHAVIOR_FAILURE.

The controller for each child can be configured to repeat the execution on failure. A code snippet of configuring the
example described is shown below.

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true

- name: root_codelet
type: nvidia::gxf::SequenceBehavior
parameters:
children: [child1/child1_st, child2/child2_st]
s_term: root_st

name: child2
components:
- name: child2_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 3
return_behavior_running_if_failure_repeat: true

- name: child2_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: false

- name: child2_codelet
type: nvidia::gxf::ConstantBehavior
parameters:
s_term: child2_st
constant_status: 1

240 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

Parallel Behavior

Runs its child nodes in parallel. By default, succeeds when all child nodes succeed, and fails when all child nodes fail.
This behavior can be customized using the parameters below.

Parameter Description
s_term scheduling term used for scheduling the entity itself
children Child entities
suc-
cess_threshold

Number of successful children required for success. A value of -1 means all children must succeed
for this node to succeed.

fail-
ure_threshold

Number of failed children required for failure. A value of -1 means all children must fail for this
node to fail.

The diagram below shows a graphical representation of a parallel behavior configured with failure_threshold configured
as -1. Hence, the root node returns GXF_BEHAVIOR_SUCCESS even if one child returns a failure status.

A code snippet to configure the example described is shown below.

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true

- name: root_codelet
type: nvidia::gxf::ParallelBehavior
parameters:
children: [child1/child1_st, child2/child2_st]
s_term: root_st
success_threshold: 1
failure_threshold: -1

27.5. Behavior Trees 241

Holoscan SDK User Guide, Release 0.6.0

Repeat Behavior

Repeats its only child entity. By default, won’t repeat when the child entity fails. This can be customized using the
parameters below.

Parameter Description
s_term scheduling term used for scheduling the entity itself
repeat_after_failure Denotes whether to repeat the child after it has failed.

The diagram below shows a graphical representation of a repeat behavior. The root entity can be configured to repeat
the only child to repeat after failure. It succeeds when the child entity succeeds.

A code snippet to configure a repeat behavior is as shown below -

name: repeat_knock
components:
- name: repeat_knock_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: repeat_knock_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: false

- name: repeat_codelet
type: nvidia::gxf::RepeatBehavior
parameters:
s_term: repeat_knock_st
children: [knock_on_door/knock_on_door_st]
repeat_after_failure: true

(continues on next page)

242 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

Selector Behavior

Runs all child entities in sequence until one succeeds, then reports success. If all child entities fail (or no child entities
are present), this codelet fails.

Parameter Description
s_term scheduling term used for scheduling the entity itself
children Child entities

The diagram below shows a graphical representation of a Selector behavior. The root entity starts child_1, child_2
and child_3 in a sequence. Although child_1 and child_2 fail, the root entity will return success since child_3 returns
successfully.

A code snippet to configure a selector behavior is as shown below -

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true

- name: root_sel_codelet
type: nvidia::gxf::SelectorBehavior
parameters:
children: [door_distance/door_distance_st, door_detected/door_detected_st, knock/

→˓knock_st]
(continues on next page)

27.5. Behavior Trees 243

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

s_term: root_st

name: door_distance
components:
- name: door_distance_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: door_distance_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: false

- name: door_dist
type: nvidia::gxf::SequenceBehavior
parameters:
children: []
s_term: door_distance_st

Sequence Behavior

Runs its child entities in sequence, in the order in which they are defined. Succeeds when all child entities succeed or
fails as soon as one child entity fails.

Parameter Description
s_term scheduling term used for scheduling the entity itself
children Child entities

The diagram below shows a graphical representation of a Sequence behavior. The root entity starts child_1, child_2
and child_3 in a sequence. Although child_1 and child_2 pass, the root entity will return failure since child_3 returns
failure.

244 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

A code snippet to configure a sequence behavior is as shown below -

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true

- name: root_codelet
type: nvidia::gxf::SequenceBehavior
parameters:
children: [child1/child1_st, child2/child2_st]
s_term: root_st

Switch Behavior

Runs the child entity with the index defined as desired_behavior.

Parameter Description
s_term scheduling term used for scheduling the entity itself
children Child entities
desired_behavior The index of child entity to switch to when this entity runs

In the code snippet shown below, the desired behavior of the root entity is designated to be the the child at index 1.
(scene). Hence, that is the entity that is run.

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0

- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true

- name: root_switch_codelet
type: nvidia::gxf::SwitchBehavior
parameters:
children: [scene/scene_st, ref/ref_st]
s_term: root_st
desired_behavior: 0

name: scene
components:
- name: scene_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:

(continues on next page)

27.5. Behavior Trees 245

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

max_repeat_count: 0
- name: scene_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: false

- name: scene_seq
type: nvidia::gxf::SequenceBehavior
parameters:
children: [pose/pose_st, det/det_st, seg/seg_st]
s_term: scene_st

Timer Behavior

Waits for a specified amount of time delay and switches to the configured result switch_status afterwards.

Parameter Description
s_term scheduling term used for scheduling the entity itself
clock Clock
switch_status Configured result to switch to after the specified delay
delay Configured delay

In the diagram shown below, the child entity switches to failure after a configured delay period. The root entity hence
returns failure.

A code snippet for the same shown below -

name: knock_on_door
components:
- name: knock_on_door_controller

(continues on next page)

246 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 10

- name: knock_on_door_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: false

- name: knock
type: nvidia::gxf::TimerBehavior
parameters:
switch_status: 1
clock: sched/clock
delay: 1
s_term: knock_on_door_st

27.6 GXF Core C APIs

27.6.1 Context

Create context

gxf_result_t GxfContextCreate(gxf_context_t* context);

Creates a new GXF context

A GXF context is required for all almost all GXF operations. The context must be destroyed with ‘GxfContextDestroy’.
Multiple contexts can be created in the same process, however they can not communicate with each other.

parameter: context The new GXF context is written to the given pointer.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Create a context from a shared context

gxf_result_t GxfContextCreate1(gxf_context_t shared, gxf_context_t* context);

Creates a new runtime context from shared context.

A shared runtime context is used for sharing entities between graphs running within the same process.

parameter: shared A valid GXF shared context.

parameter: context The new GXF context is written to the given pointer

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6. GXF Core C APIs 247

Holoscan SDK User Guide, Release 0.6.0

Destroy context

gxf_result_t GxfContextDestroy(gxf_context_t context);

Destroys a GXF context

Every GXF context must be destroyed by calling this function. The context must have been previously created with
‘GxfContextCreate’. This will also destroy all entities and components which were created as part of the context.

parameter: context A valid GXF context.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6.2 Extensions

Maximum number of extensions in a context can be 1024.

Load Extensions from a file

gxf_result_t GxfLoadExtension(gxf_context_t context, const char* filename);

Loads extension in the given context from file.

parameter: context A valid GXF context

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

This function will be deprecated.

Load Extension libraries

gxf_result_t GxfLoadExtensions(gxf_context_t context, const GxfLoadExtensionsInfo* info);

Loads GXF extension libraries

Loads one or more extensions either directly by their filename or indirectly by loading manifest files. Before a com-
ponent can be added to a GXF entity the GXF extension shared library providing the component must be loaded. An
extensions must only be loaded once.

To simplify loading multiple extensions at once the developer can create a manifest file which lists all extensions he
needs. This function will then load all extensions listed in the manifest file. Multiple manifest may be loaded, however
each extensions may still be loaded only a single time.

A manifest file is a YAML file with a single top-level entry ‘extensions’ followed by a list of filenames of GXF extension
shared libraries.

Example: —– START OF FILE —– extensions: - gxf/std/libgxf_std.so - gxf/npp/libgxf_npp.so —– END OF FILE
—–

parameter: context A valid GXF context

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

gxf_result_t GxfLoadExtensionManifest(gxf_context_t context, const char*
manifest_filename);

Loads extensions from manifest file.

248 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

parameter: context A valid GXF context.

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

This function will be deprecated.

Load Metadata files

gxf_result_t GxfLoadExtensionMetadataFiles(gxf_context_t context, const char* const*
filenames, uint32_t count);

Loads an extension registration metadata file

Reads a metadata file of the contents of an extension used for registration. These metadata files can be used to resolve
typename and TID’s of components for other extensions which depend on them. Metadata files do not contain the
actual implementation of the extension and must be loaded only to run the extension query API’s on extension libraries
which have the actual implementation and only depend on the metadata for type resolution.

If some components of extension B depend on some components in extension A: - Load metadata file for extension A
- Load extension library for extension B using ‘GxfLoadExtensions’ - Run extension query api’s on extension B and
it’s components.

parameter: context A valid GXF context.

parameter: filenames absolute paths of metadata files.

parameter: count The number of metadata files to be loaded

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Register component

gxf_result_t GxfRegisterComponent(gxf_context_t context, gxf_tid_t tid, const char* name,
const char* base_name);

Registers a component with a GXF extension

A GXF extension need to register all of its components in the extension factory function. For convenience the helper
macros in gxf/std/extension_factory_helper.hpp can be used.

The developer must choose a unique GXF tid with two random 64-bit integers. The developer must ensure that every
GXF component has a unique tid. The name of the component must be the fully qualified C++ type name of the
component. A component may only have a single base class and that base class must be specified with its fully qualified
C++ type name as the parameter ‘base_name’.

ref: gxf/std/extension_factory_helper.hpp ref: core/type_name.hpp

parameter: context A valid GXF context

parameter: tid The chosen GXF tid

parameter: name The type name of the component

parameter: base_name The type name of the base class of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6. GXF Core C APIs 249

Holoscan SDK User Guide, Release 0.6.0

27.6.3 Graph Execution

Loads a list of entities from YAML file

gxf_result_t GxfGraphLoadFile(gxf_context_t context, const char* filename, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context

parameter: filename A valid YAML filename.

parameter: params_override An optional array of strings used for override parameters in yaml file.

parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Set the root folder for searching YAML files during loading

gxf_result_t GxfGraphSetRootPath(gxf_context_t context, const char* path);

parameter: context A valid GXF context

parameter: path Path to root folder for searching YAML files during loading

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Loads a list of entities from YAML text

gxf_result_t GxfGraphParseString(gxf_context_t context, const char* tex, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context

parameter: text A valid YAML text.

parameter: params_override An optional array of strings used for override parameters in yaml file.

parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Activate all system components

gxf_result_t GxfGraphActivate(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

250 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

Deactivate all System components

gxf_result_t GxfGraphDeactivate(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Starts the execution of the graph asynchronously

gxf_result_t GxfGraphRunAsync(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Interrupt the execution of the graph

gxf_result_t GxfGraphInterrupt(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Waits for the graph to complete execution

gxf_result_t GxfGraphWait(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.`

Runs all System components and waits for their completion

gxf_result_t GxfGraphRun(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6.4 Entities

Create an entity

gxf_result_t GxfEntityCreate(gxf_context_t context, gxf_uid_t* eid);

Creates a new entity and updates the eid to the unique identifier of the newly created entity.

This method will be deprecated.

gxf_result_t GxfCreateEntity((gxf_context_t context, const GxfEntityCreateInfo* info,
gxf_uid_t* eid);

Create a new GXF entity.

Entities are light-weight containers to hold components and form the basic building blocks of a GXF application.
Entities are created when a GXF file is loaded, or they can be created manually using this function. Entities created
with this function must be destroyed using ‘GxfEntityDestroy’. After the entity was created components can be added

27.6. GXF Core C APIs 251

Holoscan SDK User Guide, Release 0.6.0

to it with ‘GxfComponentAdd’. To start execution of codelets on an entity the entity needs to be activated first. This
can happen automatically using ‘GXF_ENTITY_CREATE_PROGRAM_BIT’ or manually using ‘GxfEntityActivate’.

parameter context: GXF context that creates the entity. parameter info: pointer to a GxfEntityCre-
ateInfo structure containing parameters affecting the creation of the entity. parameter eid: pointer to a
gxf_uid_t handle in which the resulting entity is returned. returns: GXF_SUCCESS if the operation was
successful, or otherwise one of the GXF error codes.

Activate an entity

gxf_result_t GxfEntityActivate(gxf_context_t context, gxf_uid_t eid);

Activates a previously created and inactive entity

Activating an entity generally marks the official start of its lifetime and has multiple implications: - If mandatory
parameters, i.e. parameter which do not have the flag “optional”, are not set the operation will fail.

• All components on the entity are initialized.

• All codelets on the entity are scheduled for execution. The scheduler will start calling start, tick and stop functions
as specified by scheduling terms.

• After activation trying to change a dynamic parameters will result in a failure.

• Adding or removing components of an entity after activation will result in a failure.

parameter: context A valid GXF context

parameter: eid UID of a valid entity

returns: GXF error code

Deactivate an entity

gxf_result_t GxfEntityDeactivate(gxf_context_t context, gxf_uid_t eid);

Deactivates a previously activated entity

Deactivating an entity generally marks the official end of its lifetime and has multiple implications:

• All codelets are removed from the schedule. Already running entities are run to completion.

• All components on the entity are deinitialized.

• Components can be added or removed again once the entity was deactivated.

• Mandatory and non-dynamic parameters can be changed again.

Note: In case that the entity is currently executing this function will wait and block until

the current execution is finished.

parameter: context A valid GXF context

parameter: eid UID of a valid entity

returns: GXF error code

252 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

Destroy an entity

gxf_result_t GxfEntityDestroy(gxf_context_t context, gxf_uid_t eid);

Destroys a previously created entity

Destroys an entity immediately. The entity is destroyed even if the reference count has not yet reached 0. If the entity
is active it is deactivated first.

Note: This function can block for the same reasons as ‘GxfEntityDeactivate’.

parameter: context A valid GXF context

parameter: eid The returned UID of the created entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find an entity

gxf_result_t GxfEntityFind(gxf_context_t context, const char* name, gxf_uid_t* eid);

Finds an entity by its name

parameter: context A valid GXF context

parameter: name A C string with the name of the entity. Ownership is not transferred.

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find all entities

gxf_result_t GxfEntityFindAll(gxf_context_t context, uint64_t* num_entities, gxf_uid_t*
entities);

Finds all entities in the current application

Finds and returns all entity ids for the current application. If more than max_entities exist only max_entities will be
returned. The order and selection of entities returned is arbitrary.

parameter: context A valid GXF context

parameter: num_entities In/Out: the max number of entities that can fit in the buffer/the number of
entities that exist in the application

parameter: entities A buffer allocated by the caller for returned UIDs of all entities, with capacity for
num_entities.

returns: GXF_SUCCESS if the operation was successful, GXF_QUERY_NOT_ENOUGH_CAPACITY
if more entities exist in the application than max_entities, or otherwise one of the GXF error codes.

27.6. GXF Core C APIs 253

Holoscan SDK User Guide, Release 0.6.0

Increase reference count of an entity

gxf_result_t GxfEntityRefCountInc(gxf_context_t context, gxf_uid_t eid);

Increases the reference count for an entity by 1.

By default reference counting is disabled for an entity. This means that entities created with ‘GxfEntityCreate’ are
not automatically destroyed. If this function is called for an entity with disabled reference count, reference counting is
enabled and the reference count is set to 1. Once reference counting is enabled an entity will be automatically destroyed
if the reference count reaches zero, or if ‘GxfEntityCreate’ is called explicitly.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Decrease reference count of an entity

gxf_result_t GxfEntityRefCountDec(gxf_context_t context, gxf_uid_t eid);

Decreases the reference count for an entity by 1.

See ‘GxfEntityRefCountInc’ for more details on reference counting.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get status of an entity

gxf_result_t GxfEntityGetStatus(gxf_context_t context, gxf_uid_t eid,
gxf_entity_status_t* entity_status);

Gets the status of the entity.

See ‘gxf_entity_status_t’ for the various status.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

parameter: entity_status output; status of an entity eid

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get state of an entity

gxf_result_t GxfEntityGetState(gxf_context_t context, gxf_uid_t eid, entity_state_t*
entity_state);

Gets the state of the entity.

See ‘gxf_entity_status_t’ for the various status.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

parameter: entity_state output; behavior status of an entity eid used by the behavior tree parent codelet

254 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Notify entity of an event

gxf_result_t GxfEntityEventNotify(gxf_context_t context, gxf_uid_t eid);

Notifies the occurrence of an event and inform the scheduler to check the status of the entity

The entity must have an ‘AsynchronousSchedulingTerm’ scheduling term component and it must be in
“EVENT_WAITING” state for the notification to be acknowledged.

See ‘AsynchronousEventState’ for various states

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6.5 Components

Maximum number of components in an entity or an extension can be up to 1024.

Get component type identifier

gxf_result_t GxfComponentTypeId(gxf_context_t context, const char* name, gxf_tid_t* tid);

Gets the GXF unique type ID (TID) of a component

Get the unique type ID which was used to register the component with GXF. The function expects the fully qualified
C++ type name of the component including namespaces.

Example of a valid component type name: “nvidia::gxf::test::PingTx”

parameter: context A valid GXF context

parameter: name The fully qualified C++ type name of the component

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get component type name

gxf_result_t GxfComponentTypeName(gxf_context_t context, gxf_tid_t tid, const char**
name);

Gets the fully qualified C++ type name GXF component typename

Get the unique typename of the component with which it was registered using one of the
GXF_EXT_FACTORY_ADD*() macros

parameter: context A valid GXF context

parameter: tid The unique type ID (TID) of the component with which the component was registered

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6. GXF Core C APIs 255

Holoscan SDK User Guide, Release 0.6.0

Get component name

gxf_result_t GxfComponentName(gxf_context_t context, gxf_uid_t cid, const char** name);

Gets the name of a component

Each component has a user-defined name which was used in the call to ‘GxfComponentAdd’. Usually the name is
specified in the GXF application file.

parameter: context A valid GXF context

parameter: cid The unique object ID (UID) of the component

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get unique identifier of the entity of given component

gxf_result_t GxfComponentEntity(gxf_context_t context, gxf_uid_t cid, gxf_uid_t* eid);

Gets the unique object ID of the entity of a component

Each component has a unique ID with respect to the context and is stored in one entity. This function can be used to
retrieve the ID of the entity to which a given component belongs.

parameter: context A valid GXF context

parameter: cid The unique object ID (UID) of the component

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Add a new component

gxf_result_t GxfComponentAdd(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, gxf_uid_t* cid);

Adds a new component to an entity

An entity can contain multiple components and this function can be used to add a new component to an entity. A
component must be added before an entity is activated, or after it was deactivated. Components must not be added
to active entities. The order of components is stable and identical to the order in which components are added (see
‘GxfComponentFind’).

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is added.

parameter: tid The unique type ID (TID) of the component to be added to the entity.

parameter: name The name of the new component. Ownership is not transferred.

parameter: cid The returned UID of the created component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

256 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

Add component to entity interface

gxf_result_t GxfComponentAddToInterface(gxf_context_t context, gxf_uid_t eid, gxf_uid_t
cid, const char* name);

Adds an existing component to the interface of an entity

An entity can holds references to other components in its interface, so that when finding a component in an entity, both
the component this entity holds and those it refers to will be returned. This supports the case when an entity contains
a subgraph, then those components that has been declared in the subgraph interface will be put to the interface of the
parent entity.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is added.

parameter: cid The unique object ID of the component.

parameter: name The name of the new component. Ownership is not transferred.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find a component in an entity

gxf_result_t GxfComponentFind(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, int32_t* offset, gxf_uid_t* cid);

Finds a component in an entity

Searches components in an entity which satisfy certain criteria: component type, component name, and component
min index. All three criteria are optional; in case no criteria is given the first component is returned. The main use case
for “component min index” is a repeated search which continues at the index which was returned by a previous search.

In case no entity with the given criteria was found GXF_ENTITY_NOT_FOUND is returned.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity which is searched.

parameter: tid The component type ID (TID) of the component to find (optional)

parameter: name The component name of the component to find (optional). Ownership not transferred.

parameter: offset The index of the first component in the entity to search. Also contains the index of the
component which was found.

parameter: cid The returned UID of the searched component

returns: GXF_SUCCESS if a component matching the criteria was found, GXF_ENTITY_NOT_FOUND
if no component matching the criteria was found, or otherwise one of the GXF error codes.

Get type identifier for a component

gxf_result_t GxfComponentType(gxf_context_t context, gxf_uid_t cid, gxf_tid_t* tid);

Gets the component type ID (TID) of a component

parameter: context A valid GXF context

parameter: cid The component object ID (UID) for which the component type is requested.

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6. GXF Core C APIs 257

Holoscan SDK User Guide, Release 0.6.0

Gets pointer to component

gxf_result_t GxfComponentPointer(gxf_context_t context, gxf_uid_t uid, gxf_tid_t tid,
void** pointer);

Verifies that a component exists, has the given type, gets a pointer to it.

parameter: context A valid GXF context

parameter: uid The component object ID (UID).

parameter: tid The expected component type ID (TID) of the component

parameter: pointer The returned pointer to the component object.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6.6 Primitive Parameters

64-bit floating point

Set

gxf_result_t GxfParameterSetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value a double value

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the double value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

258 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

64-bit signed integer

Set

gxf_result_t GxfParameterSetInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
int64_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
int64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

64-bit unsigned integer

Set

gxf_result_t GxfParameterSetUInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
uint64_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value unsigned 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6. GXF Core C APIs 259

Holoscan SDK User Guide, Release 0.6.0

Get

gxf_result_t GxfParameterGetUInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
uint64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the unsigned 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

32-bit signed integer

Set

gxf_result_t GxfParameterSetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value 32-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the 32-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

String parameter

Set

gxf_result_t GxfParameterSetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

260 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

parameter: value A char array containing value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char** value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to a char* array to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Boolean

Set

gxf_result_t GxfParameterSetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value A boolean value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the boolean value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6. GXF Core C APIs 261

Holoscan SDK User Guide, Release 0.6.0

Handle

Set

gxf_result_t GxfParameterSetHandle(gxf_context_t context, gxf_uid_t uid, const char* key,
gxf_uid_t cid);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: cid Unique identifier to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetHandle(gxf_context_t context, gxf_uid_t uid, const char* key,
gxf_uid_t* cid);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value Pointer to a unique identifier to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6.7 Vector Parameters

To set or get the vector parameters of a component, users can use the following C-APIs for various data types:

Set 1-D Vector Parameters

Users can call gxf_result_t GxfParameterSet1D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type* value, uint64_t length)

value should point to an array of the data to be set of the corresponding type. The size of the stored array should
match the length argument passed.

See the table below for all the supported data types and their corresponding function signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: length The length of the vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

262 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

Table 27.1: Supported Data Types to Set 1D Vector Parameters
Function Name data_type
GxfParameterSet1DFloat64Vector(...) double
GxfParameterSet1DInt64Vector(...) int64_t
GxfParameterSet1DUInt64Vector(...) uint64_t
GxfParameterSet1DInt32Vector(...) int32_t

Set 2-D Vector Parameters

Users can call gxf_result_t GxfParameterSet2D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type** value, uint64_t height, uint64_t width)

value should point to an array of array (and not to the address of a contiguous array of data) of the data to be set of
the corresponding type. The length of the first dimension of the array should match the height argument passed and
similarly the length of the second dimension of the array should match the width passed.

See the table below for all the supported data types and their corresponding function signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: height The height of the 2-D vector parameter

parameter: width The width of the 2-D vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Table 27.2: Supported Data Types to Set 2D Vector Parameters
Function Name data_type
GxfParameterSet2DFloat64Vector(...) double
GxfParameterSet2DInt64Vector(...) int64_t
GxfParameterSet2DUInt64Vector(...) uint64_t
GxfParameterSet2DInt32Vector(...) int32_t

Get 1-D Vector Parameters

Users can call gxf_result_t GxfParameterGet1D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type** value, uint64_t* length) to get the value of a 1-D vector.

Before calling this method, users should call GxfParameterGet1D"DataType"VectorInfo(gxf_context_t
context, gxf_uid_t uid, const char* key, uint64_t* length) to obtain the length of the vector param-
eter and then allocate at least that much memory to retrieve the value.

value should point to an array of size greater than or equal to length allocated by user of the corresponding type to
retrieve the data. If the length doesn’t match the size of stored vector then it will be updated with the expected size.

See the table below for all the supported data types and their corresponding function signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: length The length of the 1-D vector parameter obtained by calling
GxfParameterGet1D"DataType"VectorInfo(...)

27.6. GXF Core C APIs 263

Holoscan SDK User Guide, Release 0.6.0

Table 27.3: Supported Data Types to Get the Value of 1D Vector Param-
eters

Function Name data_type
GxfParameterGet1DFloat64Vector(...) double
GxfParameterGet1DInt64Vector(...) int64_t
GxfParameterGet1DUInt64Vector(...) uint64_t
GxfParameterGet1DInt32Vector(...) int32_t

Get 2-D Vector Parameters

Users can call gxf_result_t GxfParameterGet2D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type** value, uint64_t* height, uint64_t* width) to get the value of
a -2D vector.

Before calling this method, users should call GxfParameterGet1D"DataType"VectorInfo(gxf_context_t
context, gxf_uid_t uid, const char* key, uint64_t* height, uint64_t* width) to obtain the
height and width of the 2D-vector parameter and then allocate at least that much memory to retrieve the value.

value should point to an array of array of height (size of first dimension) greater than or equal to height and width
(size of the second dimension) greater than or equal to width allocated by user of the corresponding type to get the
data. If the height or width don’t match the height and width of the stored vector then they will be updated with the
expected values.

See the table below for all the supported data types and their corresponding function signatures.

parameter”: key The name of the parameter

parameter”: value Allocated array to get the value of the parameter

parameter”: height The height of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

parameter”: width The width of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

Table 27.4: Supported Data Types to Get the Value of 2D Vector Param-
eters

Function Name data_type
GxfParameterGet2DFloat64Vector(...) double
GxfParameterGet2DInt64Vector(...) int64_t
GxfParameterGet2DUInt64Vector(...) uint64_t
GxfParameterGet2DInt32Vector(...) int32_t

27.6.8 Information Queries

Get Meta Data about the GXF Runtime

gxf_result_t GxfRuntimeInfo(gxf_context_t context, gxf_runtime_info* info);

parameter: context A valid GXF context.

parameter: info pointer to gxf_runtime_info object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

264 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

Get description and list of components in loaded Extension

gxf_result_t GxfExtensionInfo(gxf_context_t context, gxf_tid_t tid, gxf_extension_info_t*
info);

parameter: context A valid GXF context.

parameter: tid The unique identifier of the extension.

parameter: info pointer to gxf_extension_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get description and list of parameters of Component

gxf_result_t GxfComponentInfo(gxf_context_t context, gxf_tid_t tid, gxf_component_info_t*
info);

Note: Parameters are only available after at least one instance is created for the Component.

parameter: context A valid GXF context.

parameter: tid The unique identifier of the component.

parameter: info pointer to gxf_component_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get parameter type description

Gets a string describing the parameter type

const char* GxfParameterTypeStr(gxf_parameter_type_t param_type);

parameter: param_type Type of parameter to get info about.

returns: C-style string description of the parameter type.

Get flag type description

Gets a string describing the flag type

const char* GxfParameterFlagTypeStr(gxf_parameter_flags_t_ flag_type);

parameter: flag_type Type of flag to get info about.

returns: C-style string description of the flag type.

Get parameter description

Gets description of specific parameter. Fails if the component is not instantiated yet.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, gxf_tid_t cid, const char* key,
gxf_parameter_info_t* info);

parameter: context A valid GXF context.

parameter: cid The unique identifier of the component.

parameter: key The name of the parameter.

27.6. GXF Core C APIs 265

Holoscan SDK User Guide, Release 0.6.0

parameter: info Pointer to a gxf_parameter_info_t object to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Redirect logs to a file

Redirect console logs to the provided file.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, FILE* fp);

parameter: context A valid GXF context.

parameter: fp File path for the redirected logs.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

27.6.9 Miscellaneous

Get string description of error

const char* GxfResultStr(gxf_result_t result);

Gets a string describing an GXF error code.

The caller does not get ownership of the return C string and must not delete it.

parameter: result A GXF error code

returns: A pointer to a C string with the error code description.

27.7 CudaExtension

Extension for CUDA operations.

• UUID: d63a98fa-7882-11eb-a917-b38f664f399c

• Version: 2.0.0

• Author: NVIDIA

• License: LICENSE

27.7.1 Components

nvidia::gxf::CudaStream

Holds and provides access to native cudaStream_t.

nvidia::gxf::CudaStream handle must be allocated by nvidia::gxf::CudaStreamPool. Its lifecycle is
valid until explicitly recycled through nvidia::gxf::CudaStreamPool.releaseStream() or implicitly until
nvidia::gxf::CudaStreamPool is deactivated.

You may call stream() to get the native cudaStream_t handle, and to submit GPU operations. After the submis-
sion, GPU takes over the input tensors/buffers and keeps them in use. To prevent host carelessly releasing these in-use
buffers, CUDA Codelet needs to call record(event, input_entity, sync_cb) to extend input_entity’s lifecy-
cle until GPU completely consumes it. Alternatively, you may call record(event, event_destroy_cb) for native
cudaEvent_t operations and free in-use resource via event_destroy_cb.

266 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

It is required to have a nvidia::gxf::CudaStreamSync in the graph pipeline after all the CUDA operations. See
more details in nvidia::gxf::CudaStreamSync

• Component ID: 5683d692-7884-11eb-9338-c3be62d576be

• Defined in: gxf/cuda/cuda_stream.hpp

nvidia::gxf::CudaStreamId

Holds CUDA stream Id to deduce nvidia::gxf::CudaStream handle.

stream_cid should be nvidia::gxf::CudaStream component id.

• Component ID: 7982aeac-37f1-41be-ade8-6f00b4b5d47c

• Defined in: gxf/cuda/cuda_stream_id.hpp

nvidia::gxf::CudaEvent

Holds and provides access to native cudaEvent_t handle.

When a nvidia::gxf::CudaEvent is created, you’ll need to initialize a native cudaEvent_t through init(flags,
dev_id), or set third party event through initWithEvent(event, dev_id, free_fnc). The event keeps valid
until deinit is called explicitly otherwise gets recycled in destructor.

• Component ID: f5388d5c-a709-47e7-86c4-171779bc64f3

• Defined in: gxf/cuda/cuda_event.hpp

nvidia::gxf::CudaStreamPool

CudaStream allocation.

You must explicitly call allocateStream() to get a valid nvidia::gxf::CudaStream handle. This component
would hold all the its allocated nvidia::gxf::CudaStream entities until releaseStream(stream) is called ex-
plicitly or the CudaStreamPool component is deactivated.

• Component ID: 6733bf8b-ba5e-4fae-b596-af2d1269d0e7

• Base Type: nvidia::gxf::Allocator

Parameters

dev_id

GPU device id.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0

27.7. CudaExtension 267

Holoscan SDK User Guide, Release 0.6.0

stream_flags

Flag values to create CUDA streams.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0

stream_priority

Priority values to create CUDA streams.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0

reserved_size

User-specified file name without extension.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 1

max_size

Maximum Stream Size.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0, no limitation.

nvidia::gxf::CudaStreamSync

Synchronize all CUDA streams which are carried by message entities.

This codelet is required to get connected in the graph pipeline after all CUDA ops codelets. When a mes-
sage entity is received, it would find all of the nvidia::gxf::CudaStreamId in that message, and ex-
tract out each nvidia::gxf::CudaStream. With each CudaStream handle, it synchronizes all previous
nvidia::gxf::CudaStream.record() events, along with all submitted GPU operations before this point.

Note: CudaStreamSync must be set in the graph when nvidia::gxf::CudaStream.record() is used, otherwise
it may cause memory leak.

• Component ID: 0d1d8142-6648-485d-97d5-277eed00129c

268 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

• Base Type: nvidia::gxf::Codelet

Parameters

rx

Receiver to receive all messages carrying nvidia::gxf::CudaStreamId.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

tx

Transmitter to send messages to downstream.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

27.8 MultimediaExtension

Extension for multimedia related data types, interfaces and components in GXF Core.

• UUID: 6f2d1afc-1057-481a-9da6-a5f61fed178e

• Version: 2.0.0

• Author: NVIDIA

• License: LICENSE

27.8.1 Components

nvidia::gxf::AudioBuffer

AudioBuffer is similar to Tensor component in the standard extension and holds memory and metadata corresponding
to an audio buffer.

• Component ID: a914cac6-5f19-449d-9ade-8c5cdcebe7c3

AudioBufferInfo structure captures the following metadata:

27.8. MultimediaExtension 269

Holoscan SDK User Guide, Release 0.6.0

Field Description
channels Number of channels in an audio frame
samples Number of samples in an audio frame
sampling_rate sampling rate in Hz
bytes_per_sample Number of bytes required per sample
audio_format AudioFormat of an audio frame
audio_layout AudioLayout of an audio frame

Supported AudioFormat types:

AudioFormat Description
GXF_AUDIO_FORMAT_S16LE 16-bit signed PCM audio
GXF_AUDIO_FORMAT_F32LE 32-bit floating-point audio

Supported AudioLayout types:

AudioLayout Description
GXF_AUDIO_LAYOUT_INTERLEAVED Data from all the channels to be interleaved - LRLRLR
GXF_AUDIO_LAYOUT_NON_INTERLEAVED Data from all the channels not to be interleaved - LLLRRR

nvidia::gxf::VideoBuffer

VideoBuffer is similar to Tensor component in the standard extension and holds memory and metadata corresponding
to a video buffer.

• Component ID: 16ad58c8-b463-422c-b097-61a9acc5050e

VideoBufferInfo structure captures the following metadata:

Field Description
width width of a video frame
height height of a video frame
color_format VideoFormat of a video frame
color_planes ColorPlane(s) associated with the VideoFormat
surface_layout SurfaceLayout of the video frame

Supported VideoFormat types:

270 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

VideoFormat Description
GXF_VIDEO_FORMAT_YUV420 BT.601 multi planar 4:2:0 YUV
GXF_VIDEO_FORMAT_YUV420_ER BT.601 multi planar 4:2:0 YUV ER
GXF_VIDEO_FORMAT_YUV420_709 BT.709 multi planar 4:2:0 YUV
GXF_VIDEO_FORMAT_YUV420_709_ER BT.709 multi planar 4:2:0 YUV ER
GXF_VIDEO_FORMAT_NV12 BT.601 multi planar 4:2:0 YUV with interleaved UV
GXF_VIDEO_FORMAT_NV12_ER BT.601 multi planar 4:2:0 YUV ER with interleaved UV
GXF_VIDEO_FORMAT_NV12_709 BT.709 multi planar 4:2:0 YUV with interleaved UV
GXF_VIDEO_FORMAT_NV12_709_ER BT.709 multi planar 4:2:0 YUV ER with interleaved UV
GXF_VIDEO_FORMAT_RGBA RGBA-8-8-8-8 single plane
GXF_VIDEO_FORMAT_BGRA BGRA-8-8-8-8 single plane
GXF_VIDEO_FORMAT_ARGB ARGB-8-8-8-8 single plane
GXF_VIDEO_FORMAT_ABGR ABGR-8-8-8-8 single plane
GXF_VIDEO_FORMAT_RGBX RGBX-8-8-8-8 single plane
GXF_VIDEO_FORMAT_BGRX BGRX-8-8-8-8 single plane
GXF_VIDEO_FORMAT_XRGB XRGB-8-8-8-8 single plane
GXF_VIDEO_FORMAT_XBGR XBGR-8-8-8-8 single plane
GXF_VIDEO_FORMAT_RGB RGB-8-8-8 single plane
GXF_VIDEO_FORMAT_BGR BGR-8-8-8 single plane
GXF_VIDEO_FORMAT_R8_G8_B8 RGB - unsigned 8 bit multiplanar
GXF_VIDEO_FORMAT_B8_G8_R8 BGR - unsigned 8 bit multiplanar
GXF_VIDEO_FORMAT_GRAY 8 bit GRAY scale single plane

Supported SurfaceLayout types:

SurfaceLayout Description
GXF_SURFACE_LAYOUT_PITCH_LINEAR pitch linear surface memory
GXF_SURFACE_LAYOUT_BLOCK_LINEAR block linear surface memory

27.9 NetworkExtension

Extension for communications external to a computation graph.

• UUID: f50665e5-ade2-f71b-de2a-2380614b1725

• Version: 1.0.0

• Author: NVIDIA

• License: LICENSE

27.9.1 Interfaces

27.9.2 Components

nvidia::gxf::TcpClient

Codelet that functions as a client in a TCP connection.

• Component ID: 9d5955c7-8fda-22c7-f18f-ea5e2d195be9

• Base Type: nvidia::gxf::Codelet

27.9. NetworkExtension 271

Holoscan SDK User Guide, Release 0.6.0

Parameters

receivers

List of receivers to receive entities from.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Receiver>>

transmitters

List of transmitters to publish entities to.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Transmitter>>

serializers

List of component serializers to serialize and de-serialize entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

address

Address of TCP server.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

port

Port of TCP server.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

272 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

timeout_ms

Time in milliseconds to wait before retrying connection to TCP server.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

maximum_attempts

Maximum number of attempts for I/O operations before failing.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

nvidia::gxf::TcpServer

Codelet that functions as a server in a TCP connection.

• Component ID: a3e0e42d-e32e-73ab-ef83-fbb311310759

• Base Type: nvidia::gxf::Codelet

Parameters

receivers

List of receivers to receive entities from.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Receiver>>

transmitters

List of transmitters to publish entities to.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Transmitter>>

27.9. NetworkExtension 273

Holoscan SDK User Guide, Release 0.6.0

serializers

List of component serializers to serialize and de-serialize entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

address

Address of TCP server.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

port

Port of TCP server.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

timeout_ms

Time in milliseconds to wait before retrying connection to TCP client.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

maximum_attempts

Maximum number of attempts for I/O operations before failing.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

274 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

27.10 SerializationExtension

Extension for serializing messages.

• UUID: bc573c2f-89b3-d4b0-8061-2da8b11fe79a

• Version: 2.0.0

• Author: NVIDIA

• License: LICENSE

27.10.1 Interfaces

nvidia::gxf::ComponentSerializer

Interface for serializing components.

• Component ID: 8c76a828-2177-1484-f841-d39c3fa47613

• Base Type: nvidia::gxf::Component

• Defined in: gxf/serialization/component_serializer.hpp

27.10.2 Components

nvidia::gxf::EntityRecorder

Serializes incoming messages and writes them to a file.

• Component ID: 9d5955c7-8fda-22c7-f18f-ea5e2d195be9

• Base Type: nvidia::gxf::Codelet

Parameters

receiver

Receiver channel to log.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

serializers

List of component serializers to serialize entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

27.10. SerializationExtension 275

Holoscan SDK User Guide, Release 0.6.0

directory

Directory path for storing files.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

basename

User specified file name without extension.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_STRING

flush_on_tick

Flushes output buffer on every tick when true.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::EntityReplayer

De-serializes and publishes messages from a file.

• Component ID: fe827c12-d360-c63c-8094-32b9244d83b6

• Base Type: nvidia::gxf::Codelet

Parameters

transmitter

Transmitter channel for replaying entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

276 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

serializers

List of component serializers to serialize entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

directory

Directory path for storing files.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

batch_size

Number of entities to read and publish for one tick.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

ignore_corrupted_entities

If an entity could not be de-serialized, it is ignored by default; otherwise a failure is generated.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::StdComponentSerializer

Serializer for Timestamp and Tensor components.

• Component ID: c0e6b36c-39ac-50ac-ce8d-702e18d8bff7

• Base Type: nvidia::gxf::ComponentSerializer

27.10. SerializationExtension 277

Holoscan SDK User Guide, Release 0.6.0

Parameters

allocator

Memory allocator for tensor components.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Allocator

27.11 StandardExtension

Most commonly used interfaces and components in Gxf Core.

• UUID: 8ec2d5d6-b5df-48bf-8dee-0252606fdd7e

• Version: 2.1.0

• Author: NVIDIA

• License: LICENSE

27.11.1 Interfaces

nvidia::gxf::Codelet

Interface for a component which can be executed to run custom code.

• Component ID: 5c6166fa-6eed-41e7-bbf0-bd48cd6e1014

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/codelet.hpp

nvidia::gxf::Clock

Interface for clock components which provide time.

• Component ID: 779e61c2-ae70-441d-a26c-8ca64b39f8e7

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/clock.hpp

nvidia::gxf::System

Component interface for systems which are run as part of the application run cycle.

• Component ID: d1febca1-80df-454e-a3f2-715f2b3c6e69

• Base Type: nvidia::gxf::Component

278 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::Queue

Interface for storing entities in a queue.

• Component ID: 792151bf-3138-4603-a912-5ca91828dea8

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/queue.hpp

nvidia::gxf::Router

Interface for classes which are routing messages in and out of entities.

• Component ID: 8b317aad-f55c-4c07-8520-8f66db92a19e

• Defined in: gxf/std/router.hpp

nvidia::gxf::Transmitter

Interface for publishing entities.

• Component ID: c30cc60f-0db2-409d-92b6-b2db92e02cce

• Base Type: nvidia::gxf::Queue

• Defined in: gxf/std/transmitter.hpp

nvidia::gxf::Receiver

Interface for receiving entities.

• Component ID: a47d2f62-245f-40fc-90b7-5dc78ff2437e

• Base Type: nvidia::gxf::Queue

• Defined in: gxf/std/receiver.hpp

nvidia::gxf::Scheduler

A simple poll-based single-threaded scheduler which executes codelets.

• Component ID: f0103b75-d2e1-4d70-9b13-3fe5b40209be

• Base Type: nvidia::gxf::System

• Defined in: nvidia/gxf/system.hpp

27.11. StandardExtension 279

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::SchedulingTerm

Interface for terms used by a scheduler to determine if codelets in an entity are ready to step.

• Component ID: 184d8e4e-086c-475a-903a-69d723f95d19

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/scheduling_term.hpp

nvidia::gxf::Allocator

Provides allocation and deallocation of memory.

• Component ID: 3cdd82d0-2326-4867-8de2-d565dbe28e03

• Base Type: nvidia::gxf::Component

• Defined in: nvidia/gxf/allocator.hpp

nvidia::gxf::Monitor

Monitors entities during execution.

• Component ID: 9ccf9421-b35b-8c79-e1f0-97dc23bd38ea

• Base Type: nvidia::gxf::Component

• Defined in: nvidia/gxf/monitor.hpp

27.11.2 Components

nvidia::gxf::RealtimeClock

A real-time clock which runs based off a system steady clock.

• Component ID: 7b170b7b-cf1a-4f3f-997c-bfea25342381

• Base Type: nvidia::gxf::Clock

Parameters

initial_time_offset

The initial time offset used until time scale is changed manually.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_FLOAT64

initial_time_scale

The initial time scale used until time scale is changed manually.

280 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_FLOAT64

use_time_since_epoch

If true, clock time is time since epoch + initial_time_offset at initialize().Otherwise clock time is
initial_time_offset at initialize().

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::ManualClock

A manual clock which is instrumented manually.

• Component ID: 52fa1f97-eba8-472a-a8ca-4cff1a2c440f

• Base Type: nvidia::gxf::Clock

Parameters

initial_timestamp

The initial timestamp on the clock (in nanoseconds).

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::SystemGroup

A group of systems.

• Component ID: 3d23d470-0aed-41c6-ac92-685c1b5469a0

• Base Type: nvidia::gxf::System

nvidia::gxf::MessageRouter

A router which sends transmitted messages to receivers.

• Component ID: 84fd5d56-fda6-4937-0b3c-c283252553d8

• Base Type: nvidia::gxf::Router

27.11. StandardExtension 281

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::RouterGroup

A group of routers.

• Component ID: ca64ee14-2280-4099-9f10-d4b501e09117

• Base Type: nvidia::gxf::Router

nvidia::gxf::DoubleBufferTransmitter

A transmitter which uses a double-buffered queue where messages are pushed to a backstage after they are published.

• Component ID: 0c3c0ec7-77f1-4389-aef1-6bae85bddc13

• Base Type: nvidia::gxf::Transmitter

Parameters

capacity

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 1

policy

0: pop, 1: reject, 2: fault.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 2

nvidia::gxf::DoubleBufferReceiver

A receiver which uses a double-buffered queue where new messages are first pushed to a backstage.

• Component ID: ee45883d-bf84-4f99-8419-7c5e9deac6a5

• Base Type: nvidia::gxf::Receiver

282 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

Parameters

capacity

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 1

policy

0: pop, 1: reject, 2: fault

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 2

nvidia::gxf::Connection

A component which establishes a connection between two other components.

• Component ID: cc71afae-5ede-47e9-b267-60a5c750a89a

• Base Type: nvidia::gxf::Component

Parameters

source

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

target

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

27.11. StandardExtension 283

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::PeriodicSchedulingTerm

A component which specifies that an entity shall be executed periodically.

• Component ID: d392c98a-9b08-49b4-a422-d5fe6cd72e3e

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

recess_period

The recess period indicates the minimum amount of time which has to pass before the entity is permitted to execute
again. The period is specified as a string containing of a number and an (optional) unit. If no unit is given the value is
assumed to be in nanoseconds. Supported units are: Hz, s, ms. Example: 10ms, 10000000, 0.2s, 50Hz.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::CountSchedulingTerm

A component which specifies that an entity shall be executed exactly a given number of times.

• Component ID: f89da2e4-fddf-4aa2-9a80-1119ba3fde05

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

count

The total number of time this term will permit execution.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::TargetTimeSchedulingTerm

A component where the next execution time of the entity needs to be specified after every tick.

• Component ID: e4aaf5c3-2b10-4c9a-c463-ebf6084149bf

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

The clock used to define target time.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

284 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::DownstreamReceptiveSchedulingTerm

A component which specifies that an entity shall be executed if receivers for a certain transmitter can accept new
messages.

• Component ID: 9de75119-8d0f-4819-9a71-2aeaefd23f71

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The term permits execution if the receiver connected to the transmitter has at least the specified number of free slots in
its back buffer.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

transmitter

The term permits execution if this transmitter can publish a message, i.e. if the receiver which is connected to this
transmitter can receive messages.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::MessageAvailableSchedulingTerm

A scheduling term which specifies that an entity can be executed when the total number of messages over a set of input
channels is at least a given number of messages.

• Component ID: fe799e65-f78b-48eb-beb6-e73083a12d5b

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

front_stage_max_size

If set the scheduling term will only allow execution if the number of messages in the front stage does not exceed this
count. It can for example be used in combination with codelets which do not clear the front stage in every tick.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_UINT64

27.11. StandardExtension 285

Holoscan SDK User Guide, Release 0.6.0

min_size

The scheduling term permits execution if the given receiver has at least the given number of messages available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

receiver

The scheduling term permits execution if this channel has at least a given number of messages available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

nvidia::gxf::MultiMessageAvailableSchedulingTerm

A component which specifies that an entity shall be executed when a queue has at least a certain number of elements.

• Component ID: f15dbeaa-afd6-47a6-9ffc-7afd7e1b4c52

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The scheduling term permits execution if all given receivers together have at least the given number of messages
available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

receivers

The scheduling term permits execution if the given channels have at least a given number of messages available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

286 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::ExpiringMessageAvailableSchedulingTerm

A component which tries to wait for specified number of messages in queue for at most specified time.

• Component ID: eb22280c-76ff-11eb-b341-cf6b417c95c9

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

Clock to get time from.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

max_batch_size

The maximum number of messages to be batched together.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

max_delay_ns

The maximum delay from first message to wait before submitting workload anyway.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

receiver

Receiver to watch on.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

27.11. StandardExtension 287

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::BooleanSchedulingTerm

A component which acts as a boolean AND term that can be used to control the execution of the entity.

• Component ID: e07a0dc4-3908-4df8-8134-7ce38e60fbef

• Base Type: nvidia::gxf::SchedulingTerm

nvidia::gxf::AsynchronousSchedulingTerm

A component which is used to inform of that an entity is dependent upon an async event for its execution.

• Component ID: 56be1662-ff63-4179-9200-3fcd8dc38673

• Base Type: nvidia::gxf::SchedulingTerm

nvidia::gxf::GreedyScheduler

A simple poll-based single-threaded scheduler which executes codelets.

• Component ID: 869d30ca-a443-4619-b988-7a52e657f39b

• Base Type: nvidia::gxf::Scheduler

Parameters

clock

The clock used by the scheduler to define flow of time. Typical choices are a RealtimeClock or a ManualClock.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the scheduler will run until all
work is done. If periodic terms are present this means the application will run indefinitely.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_INT64

realtime

This parameter is deprecated. Assign a clock directly.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

288 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

• Type: GXF_PARAMETER_TYPE_BOOL

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be changed by external actors, for example by clearing queues
manually.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::MultiThreadScheduler

A multi thread scheduler that executes codelets for maximum throughput.

• Component ID: de5e0646-7fa5-11eb-a5c4-330ebfa81bbf

• Base Type: nvidia::gxf::Scheduler

Parameters

check_recession_perios_ms

The maximum duration for which the scheduler would wait (in ms) when an entity is not ready to run yet.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

clock

The clock used by the scheduler to define flow of time. Typical choices are a RealtimeClock or a ManualClock.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the scheduler will run until all
work is done. If periodic terms are present this means the application will run indefinitely.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_INT64

27.11. StandardExtension 289

Holoscan SDK User Guide, Release 0.6.0

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be changed by external actors, for example by clearing queues
manually.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

worker_thread_number

Number of threads.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

• Default: 1

nvidia::gxf::BlockMemoryPool

A memory pools which provides a maximum number of equally sized blocks of memory.

• Component ID: 92b627a3-5dd3-4c3c-976c-4700e8a3b96a

• Base Type: nvidia::gxf::Allocator

Parameters

block_size

The size of one block of memory in byte. Allocation requests can only be fulfilled if they fit into one block. If less
memory is requested still a full block is issued.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of cudaMallocHost.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: True

290 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

num_blocks

The total number of blocks which are allocated by the pool. If more blocks are requested allocation requests will fail.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

storage_type

The memory storage type used by this allocator. Can be kHost (0) or kDevice (1) or kSystem (2).

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default: 0

nvidia::gxf::UnboundedAllocator

Allocator that uses dynamic memory allocation without an upper bound.

• Component ID: c3951b16-a01c-539f-d87e-1dc18d911ea0

• Base Type: nvidia::gxf::Allocator

Parameters

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of cudaMallocHost.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: True

nvidia::gxf::Tensor

A component which holds a single tensor.

• Component ID: 377501d6-9abf-447c-a617-0114d4f33ab8

• Defined in: gxf/std/tensor.hpp

27.11. StandardExtension 291

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::Timestamp

Holds message publishing and acquisition related timing information.

• Component ID: d1095b10-5c90-4bbc-bc89-601134cb4e03

• Defined in: gxf/std/timestamp.hpp

nvidia::gxf::Metric

Collects, aggregates, and evaluates metric data.

• Component ID: f7cef803-5beb-46f1-186a-05d3919842ac

• Base Type: nvidia::gxf::Component

Parameters

aggregation_policy

Aggregation policy used to aggregate individual metric samples. Choices:{mean, min, max}.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_STRING

lower_threshold

Lower threshold of the metric’s expected range.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_FLOAT64

upper_threshold

Upper threshold of the metric’s expected range.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_FLOAT64

292 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::JobStatistics

Collects runtime statistics.

• Component ID: 2093b91a-7c82-11eb-a92b-3f1304ecc959

• Base Type: nvidia::gxf::Component

Parameters

clock

The clock component instance to retrieve time from.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

codelet_statistics

If set to true, JobStatistics component will collect performance statistics related to codelets.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_BOOL

json_file_path

If provided, all the collected performance statistics data will be dumped into a json file.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::Broadcast

Messages arrived on the input channel are distributed to all transmitters.

• Component ID: 3daadb31-0bca-47e5-9924-342b9984a014

• Base Type: nvidia::gxf::Codelet

27.11. StandardExtension 293

Holoscan SDK User Guide, Release 0.6.0

Parameters

mode

The broadcast mode. Can be Broadcast or RoundRobin.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

source

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

nvidia::gxf::Gather

All messages arriving on any input channel are published on the single output channel.

• Component ID: 85f64c84-8236-4035-9b9a-3843a6a2026f

• Base Type: nvidia::gxf::Codelet

Parameters

sink

The output channel for gathered messages.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

tick_source_limit

Maximum number of messages to take from each source in one tick. 0 means no limit.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

294 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::TensorCopier

Copies tensor either from host to device or from device to host.

• Component ID: c07680f4-75b3-189b-8886-4b5e448e7bb6

• Base Type: nvidia::gxf::Codelet

Parameters

allocator

Memory allocator for tensor data

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Allocator

mode

Configuration to select what tensors to copy:

1. kCopyToDevice (0) - copies to device memory, ignores device allocation

2. kCopyToHost (1) - copies to pinned host memory, ignores host allocation

3. kCopyToSystem (2) - copies to system memory, ignores system allocation.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

receiver

Receiver for incoming entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

transmitter

Transmitter for outgoing entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

27.11. StandardExtension 295

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::TimedThrottler

Publishes the received entity respecting the timestamp within the entity.

• Component ID: ccf7729c-f62c-4250-5cf7-f4f3ec80454b

• Base Type: nvidia::gxf::Codelet

Parameters

execution_clock

Clock on which the codelet is executed by the scheduler.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

receiver

Channel to receive messages that need to be synchronized.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

scheduling_term

Scheduling term for executing the codelet.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::TargetTimeSchedulingTerm

throttling_clock

Clock which the received entity timestamps are based on.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

296 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

transmitter

Transmitter channel publishing messages at appropriate timesteps.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::Vault

Safely stores received entities for further processing.

• Component ID: 1108cb8d-85e4-4303-ba02-d27406ee9e65

• Base Type: nvidia::gxf::Codelet

Parameters

drop_waiting

If too many messages are waiting the oldest ones are dropped.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

max_waiting_count

The maximum number of waiting messages. If exceeded the codelet will stop pulling messages out of the input queue.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

source

Receiver from which messages are taken and transferred to the vault.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

27.11. StandardExtension 297

Holoscan SDK User Guide, Release 0.6.0

nvidia::gxf::Subgraph

Helper component to import a subgraph.

• Component ID: 576eedd7-7c3f-4d2f-8c38-8baa79a3d231

• Base Type: nvidia::gxf::Component

Parameters

location

Yaml source of the subgraph.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::EndOfStream

A component which represents end-of-stream notification.

• Component ID: 8c42f7bf-7041-4626-9792-9eb20ce33cce

• Defined in: gxf/std/eos.hpp

nvidia::gxf::Synchronization

Component to synchronize messages from multiple receivers based on the acq_time.

• Component ID: f1cb80d6-e5ec-4dba-9f9e-b06b0def4443

• Base Type: nvidia::gxf::Codelet

Parameters

inputs

All the inputs for synchronization. Number of inputs must match that of the outputs.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

outputs

All the outputs for synchronization. Number of outputs must match that of the inputs.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

298 Chapter 27. GXF User Guide

Holoscan SDK User Guide, Release 0.6.0

signed char

• Component ID: 83905c6a-ca34-4f40-b474-cf2cde8274de

unsigned char

• Component ID: d4299e15-0006-d0bf-8cbd-9b743575e155

short int

• Component ID: 9e1dde79-3550-307d-e81a-b864890b3685

short unsigned int

• Component ID: 958cbdef-b505-bcc7-8a43-dc4b23f8cead

int

• Component ID: b557ec7f-49a5-08f7-a35e-086e9d1ea767

unsigned int

• Component ID: d5506b68-5c86-fedb-a2a2-a7bae38ff3ef

long int

• Component ID: c611627b-6393-365f-d234-1f26bfa8d28f

long unsigned int

• Component ID: c4385f5b-6e25-01d9-d7b5-6e7cadc704e8

float

• Component ID: a81bf295-421f-49ef-f24a-f59e9ea0d5d6

double

• Component ID: d57cee59-686f-e26d-95be-659c126b02ea

27.11. StandardExtension 299

Holoscan SDK User Guide, Release 0.6.0

bool

• Component ID: c02f9e93-d01b-1d29-f523-78d2a9195128

300 Chapter 27. GXF User Guide

CHAPTER

TWENTYEIGHT

DATA FLOW TRACKING

Warning: Data Flow Tracking is currently not supported between multiple fragments in a distributed application.

The Holoscan SDK provides the Data Flow Tracking APIs as a mechanism to profile your application and analyze the
data flow between operators in the graph of a fragment.

Currently, data flow tracking is only supported between the root operators and leaf operators of a graph (support for
tracking data flow between any pair of operators in a graph is planned in the future).

• A root operator is an operator without any predecessor nodes

• A leaf operator (also known as a sink operator) is an operator without any successor nodes.

When data flow tracking is enabled, every message is tracked from the root operators to the leaf operators. Then, the
maximum (worst-case), average and minimum end-to-end latencies of one or more paths between the root and the leaf
operators can be retrieved using the Data Flow Tracking APIs.

The API also provides the ability to retrieve the number of messages sent from the root operators.

Tip:

• The Data Flow Tracking feature is also illustrated in the flow_tracker

• Look at the C++ and python API documentation for exhaustive definitions

28.1 Enabling Data Flow Tracking

Before an application (C++/python) is run with the run() method, data flow tracking can be enabled by calling the
track() method in C++ and using the Tracker class in python.

301

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/flow_tracker

Holoscan SDK User Guide, Release 0.6.0

C++

auto app = holoscan::make_application<MyPingApp>();
auto& tracker = app->track(); // Enable Data Flow Tracking
// Change tracker and application configurations
...
app->run();

Python

app = MyPingApp()
with Tracker(app) as tracker:
Change tracker and application configurations
...
app.run()

28.2 Retrieving Data Flow Tracking Results

After an application has been run, data flow tracking results can be accessed by various functions:

1. print() (C++/python)

• Prints all data flow tracking results including end-to-end latencies and the number of source messages to
the standard output.

2. get_num_paths() (C++/python)

• Returns the number of paths between the root operators and the leaf operators.

3. get_path_strings() (C++/python)

• Returns a vector of strings, where each string represents a path between the root operators and the leaf
operators. A path is a comma-separated list of operator names.

4. get_metric() (C++/python)

• Returns the value of different metrics based on the arguments.

• get_metric(std::string pathstring, holoscan::DataFlowMetric metric) returns the value
of a metric metric for a path pathstring. The metric can be one of the following:

– holoscan::DataFlowMetric::kMaxE2ELatency (python): the maximum end-to-end latency in
the path

– holoscan::DataFlowMetric::kAvgE2ELatency (python): the average end-to-end latency in the
path

– holoscan::DataFlowMetric::kMinE2ELatency (python): the minimum end-to-end latency in
the path

– holoscan::DataFlowMetric::kMaxMessageID (python): the message number or ID which re-
sulted in the maximum end-to-end latency

– holoscan::DataFlowMetric::kMinMessageID (python): the message number or ID which re-
sulted in the minimum end-to-end latency

302 Chapter 28. Data Flow Tracking

Holoscan SDK User Guide, Release 0.6.0

• get_metric(holoscan::DataFlowMetric metric = DataFlowMetric::kNumSrcMessages) re-
turns a map of source operator and its edge, and the number of messages sent from the source operator
to the edge.

In the above example, the data flow tracking results can be printed to the standard output like the following:

C++

auto app = holoscan::make_application<MyPingApp>();
auto& tracker = app->track(); // Enable Data Flow Tracking
// Change application configurations
...
app->run();
tracker.print();

Python

app = MyPingApp()
with Tracker(app) as tracker:
Change tracker and application configurations
...
app.run()
tracker.print()

28.3 Customizing Data Flow Tracking

Data flow tracking can be customized using a few, optional configuration parameters. The track() method
(C++/Tracker class in python) can be configured to skip a few messages at the beginning of an application’s
execution as a warm-up period. It is also possible to discard a few messages at the end of an application’s run as a
wrap-up period. Additionally, outlier end-to-end latencies can be ignored by setting a latency threshold value which is
the minimum latency below which the observed latencies are ignored.

Tip: For effective benchmarking, it is common practice to include warm-up and cool-down periods by skipping the
initial and final messages.

C++

Listing 28.1: Optional parameters to track()

Fragment::track(uint64_t num_start_messages_to_skip = kDefaultNumStartMessagesToSkip,
uint64_t num_last_messages_to_discard =␣

→˓kDefaultNumLastMessagesToDiscard,
int latency_threshold = kDefaultLatencyThreshold);

28.3. Customizing Data Flow Tracking 303

Holoscan SDK User Guide, Release 0.6.0

Python

Listing 28.2: Optional parameters to Tracker

Tracker(num_start_messages_to_skip=num_start_messages_to_skip,
num_last_messages_to_discard=num_last_messages_to_discard,
latency_threshold=latency_threshold)

The default values of these parameters of track() are as follows:

• kDefaultNumStartMessagesToSkip: 10

• kDefaultNumLastMessagesToDiscard: 10

• kDefaultLatencyThreshold: 0 (do not filter out any latency values)

These parameters can also be configured using the helper functions: set_skip_starting_messages,
set_discard_last_messages and set_skip_latencies.

28.4 Logging

The Data Flow Tracking API provides the ability to log every message’s graph-traversal information to a file. This
enables developers to analyze the data flow at a granular level. When logging is enabled, every message’s received and
sent timestamps at every operator between the root and the leaf operators are logged after a message has been processed
at the leaf operator.

The logging is enabled by calling the enable_logging method in C++ and by providing the filename parameter to
Tracker in python.

C++

auto app = holoscan::make_application<MyPingApp>();
auto& tracker = app->track(); // Enable Data Flow Tracking
tracker.enable_logging("logging_file_name.log");
...
app->run();

Python

app = MyPingApp()
with Tracker(app, filename="logger.log") as tracker:

...
app.run()

The logger file logs the paths of the messages after a leaf operator has finished its compute method. Every path in the
logfile includes an array of tuples of the form:

“(root operator name, message receive timestamp, message publish timestamp) -> . . . -> (leaf operator
name, message receive timestamp, message publish timestamp)”.

This log file can further be analyzed to understand latency distributions, bottlenecks, data flow and other characteristics
of an application.

304 Chapter 28. Data Flow Tracking

CHAPTER

TWENTYNINE

VIDEO PIPELINE LATENCY TOOL

The Holoscan Developer Kits excel as a high-performance computing platform by combining high-bandwidth video
I/O components and the compute capabilities of an NVIDIA GPU to meet the needs of the most demanding video
processing and inference applications.

For many video processing applications located at the edge–especially those designed to augment medical instruments
and aid live medical procedures–minimizing the latency added between image capture and display, often referred to as
the end-to-end latency, is of the utmost importance.

While it is generally easy to measure the individual processing time of an isolated compute or inference algorithm by
simply measuring the time that it takes for a single frame (or a sequence of frames) to be processed, it is not always
so easy to measure the complete end-to-end latency when the video capture and display is incorporated as this usually
involves external capture hardware (e.g. cameras and other sensors) and displays.

In order to establish a baseline measurement of the minimal end-to-end latency that can be achieved with the Holoscan
Developer Kits and various video I/O hardware and software components, the Holoscan SDK includes a sample latency
measurement tool.

29.1 Requirements

29.1.1 Hardware

The latency measurement tool requires the use of a Holoscan Developer Kit in dGPU mode, and operates by having
an output component generate a sequence of known video frames that are then transferred back to an input component
using a physical loopback cable.

Testing the latency of any of the HDMI modes that output from the GPU requires a DisplayPort to HDMI adapter
or cable (see Example Configurations, below). Note that this cable must support the mode that is being tested — for
example, the UHD mode will only be available if the cable is advertised to support “4K Ultra HD (3840 x 2160) at 60
Hz”.

Testing the latency of an optional AJA Video Systems device requires a supported AJA SDI or HDMI capture device
(see AJA Video Systems for the list of supported devices), along with the HDMI or SDI cable that is required for the
configuration that is being tested (see Example Configurations, below).

305

Holoscan SDK User Guide, Release 0.6.0

29.1.2 Software

The following additional software components are required and are installed either by the Holoscan SDK installation
or in the Installation steps below:

• CUDA 11.1 or newer (https://developer.nvidia.com/cuda-toolkit)

• CMake 3.10 or newer (https://cmake.org/)

• GLFW 3.2 or newer (https://www.glfw.org/)

• GStreamer 1.14 or newer (https://gstreamer.freedesktop.org/)

• GTK 3.22 or newer (https://www.gtk.org/)

• pkg-config 0.29 or newer (https://www.freedesktop.org/wiki/Software/pkg-config/)

The following is optional to enable DeepStream support (for RDMA support from the GStreamer Producer):

• DeepStream 5.1 or newer (https://developer.nvidia.com/deepstream-sdk)

The following is optional to enable AJA Video Systems support:

• AJA NTV2 SDK 16.1 or newer (See AJA Video Systems for details on installing the AJA NTV2 SDK and drivers).

29.2 Installation

29.2.1 Downloading the Source

The Video Pipeline Latency Tool can be found in the loopback-latency folder of the Holoscan Performance Tools
GitHub repository, which is cloned with the following:

$ git clone https://github.com/nvidia-holoscan/holoscan-perf-tools.git

29.2.2 Installing Software Requirements

CUDA is installed automatically during the dGPU setup. The rest of the software requirements are installed with the
following:

$ sudo apt-get update && sudo apt-get install -y \
cmake \
libglfw3-dev \
libgstreamer1.0-dev \
libgstreamer-plugins-base1.0-dev \
libgtk-3-dev \
pkg-config

306 Chapter 29. Video Pipeline Latency Tool

https://developer.nvidia.com/cuda-toolkit
https://cmake.org/
https://www.glfw.org/
https://gstreamer.freedesktop.org/
https://www.gtk.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://developer.nvidia.com/deepstream-sdk
https://github.com/nvidia-holoscan/holoscan-perf-tools

Holoscan SDK User Guide, Release 0.6.0

29.2.3 Building

Start by creating a build folder within the loopback-latency directory:

$ cd clara-holoscan-perf-tools/loopback-latency
$ mkdir build
$ cd build

CMake is then used to build the tool and output the loopback-latency binary to the current directory:

$ cmake ..
$ make -j

Note: If the error No CMAKE_CUDA_COMPILER could be found is encountered, make sure that the nvcc executable
can be found by adding the CUDA runtime location to your PATH variable:

$ export PATH=$PATH:/usr/local/cuda/bin

Enabling DeepStream Support

DeepStream support enables RDMA when using the GStreamer Producer. To enable DeepStream support, the
DEEPSTREAM_SDK path must be appended to the cmake command with the location of the DeepStream SDK. For
example, when building against DeepStream 5.1, replace the cmake command above with the following:

$ cmake -DDEEPSTREAM_SDK=/opt/nvidia/deepstream/deepstream-5.1 ..

Enabling AJA Support

To enable AJA support, the NTV2_SDK path must be appended to the cmake command with the location of the NTV2
SDK in which both the headers and compiled libraries (i.e. libajantv2) exist. For example, if the NTV2 SDK is in
/home/nvidia/ntv2, replace the cmake command above with the following:

$ cmake -DNTV2_SDK=/home/nvidia/ntv2 ..

29.3 Example Configurations

Note: When testing a configuration that outputs from the GPU, the tool currently only supports a display-less environ-
ment in which the loopback cable is the only cable attached to the GPU. Because of this, any tests that output from the
GPU must be performed using a remote connection such as SSH from another machine. When this is the case, make
sure that the DISPLAY environment variable is set to the ID of the X11 display you are using (e.g. in ~/.bashrc):

export DISPLAY=:0

It is also required that the system is logged into the desktop and that the system does not sleep or lock when the latency
tool is being used. This can be done by temporarily attaching a display to the system to do the following:

1. Open the Ubuntu System Settings

29.3. Example Configurations 307

Holoscan SDK User Guide, Release 0.6.0

2. Open User Accounts, click Unlock at the top right, and enable Automatic Login:

3. Return to All Settings (top left), open Brightness & Lock, and disable sleep and lock as pictured:

Make sure that the display is detached again after making these changes.

See the Producers section for more details about GPU-based producers (i.e. OpenGL and GStreamer).

308 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

29.3.1 GPU To Onboard HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to the onboard HDMI capture card.
This configuration supports the OpenGL and GStreamer producers, and the V4L2 and GStreamer consumers.

Fig. 29.1: DP-to-HDMI Cable Between GPU and Onboard HDMI Capture Card

For example, an OpenGL producer to V4L2 consumer can be measured using this configuration and the following
command:

$./loopback-latency -p gl -c v4l2

29.3. Example Configurations 309

Holoscan SDK User Guide, Release 0.6.0

29.3.2 GPU to AJA HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to an HDMI input channel on an AJA
capture card. This configuration supports the OpenGL and GStreamer producers, and the AJA consumer using an AJA
HDMI capture card.

Fig. 29.2: DP-to-HDMI Cable Between GPU and AJA KONA HDMI Capture Card (Channel 1)

For example, an OpenGL producer to AJA consumer can be measured using this configuration and the following
command:

$./loopback-latency -p gl -c aja -c.device 0 -c.channel 1

29.3.3 AJA SDI to AJA SDI

In this configuration, an SDI cable is attached between either two channels on the same device or between two separate
devices (pictured is a loopback between two channels of a single device). This configuration must use the AJA producer
and AJA consumer.

For example, the following can be used to measure the pictured configuration using a single device with a loopback
between channels 1 and 2. Note that the tool defaults to use channel 1 for the producer and channel 2 for the consumer,
so the channel parameters can be omitted.

$./loopback-latency -p aja -c aja

If instead there are two AJA devices being connected, the following can be used to measure a configuration in which
they are both connected to channel 1:

310 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

Fig. 29.3: SDI Cable Between Channel 1 and 2 of a Single AJA Corvid 44 Capture Card

$./loopback-latency -p aja -p.device 0 -p.channel 1 -c aja -c.device 1 -c.
channel 1

29.4 Operation Overview

The latency measurement tool operates by having a producer component generate a sequence of known video frames
that are output and then transferred back to an input consumer component using a physical loopback cable. Timestamps
are compared throughout the life of the frame to measure the overall latency that the frame sees during this process,
and these results are summarized when all of the frames have been received and the measurement completes. See
Producers, Consumers, and Example Configurations for more details.

29.4.1 Frame Measurements

Each frame that is generated by the tool goes through the following steps in order, each of which has its time measured
and then reported when all frames complete.

1. CUDA Processing

In order to simulate a real-world GPU workload, the tool first runs a CUDA kernel for a user-specified amount
of loops (defaults to zero). This step is described below in Simulating GPU Workload.

2. Render on GPU

After optionally simulating a GPU workload, every producer then generates its frames using the GPU, either
by a common CUDA kernel or by another method that is available to the producer’s API (such as the OpenGL

29.4. Operation Overview 311

Holoscan SDK User Guide, Release 0.6.0

Fig. 29.4: Latency Tool Frame Lifespan (RDMA Disabled)

producer).

This step is expected to be very fast (<100us), but higher times may be seen if overall system load is high.

3. Copy To Host

Once the frame has been generated on the GPU, it may be necessary to copy the frame to host memory in order
for the frame to be output by the producer component (for example, an AJA producer with RDMA disabled).

If a host copy is not required (i.e. RDMA is enabled for the producer), this time should be zero.

4. Write to HW

Some producer components require frames to be copied to peripheral memory before they can be output (for
example, an AJA producer requires frames to be copied to the external frame stores on the AJA device). This
copy may originate from host memory if RDMA is disabled for the producer, or from GPU memory if RDMA
is enabled.

If this copy is not required, e.g. the producer outputs directly from the GPU, this time should be zero.

5. VSync Wait

Once the frame is ready to be output, the producer hardware must wait for the next VSync interval before the
frame can be output.

The sum of this VSync wait and all of the preceding steps is expected to be near a multiple of the frame interval.
For example, if the frame rate is 60Hz then the sum of the times for steps 1 through 5 should be near a multiple
of 16666us.

6. Wire Time

The wire time is the amount of time that it takes for the frame to transfer across the physical loopback cable. This
should be near the time for a single frame interval.

7. Read From HW

Once the frame has been transferred across the wire and is available to the consumer, some consumer compo-
nents require frames to be copied from peripheral memory into host (RDMA disabled) or GPU (RDMA enable)
memory. For example, an AJA consumer requires frames to be copied from the external frame store of the AJA
device.

If this copy is not required, e.g. the consumer component writes received frames directly to host/GPU memory,
this time should be zero.

312 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

8. Copy to GPU

If the consumer received the frame into host memory, the final step required for processing the frame with the
GPU is to copy the frame into GPU memory.

If RDMA is enabled for the consumer and the frame was previously written directly to GPU memory, this time
should be zero.

Note that if RDMA is enabled on the producer and consumer sides then the GPU/host copy steps above, 3 and 8
respectively, are effectively removed since RDMA will copy directly between the video HW and the GPU. The following
shows the same diagram as above but with RDMA enabled for both the producer and consumer.

Fig. 29.5: Latency Tool Frame Lifespan (RDMA Enabled)

29.4.2 Interpreting The Results

The following shows example output of the above measurements from the tool when testing a 4K stream at 60Hz from
an AJA producer to an AJA consumer, both with RDMA disabled, and no GPU/CUDA workload simulation. Note that
all time values are given in microseconds.

$./loopback-latency -p aja -p.rdma 0 -c aja -c.rdma 0 -f 4k

29.4. Operation Overview 313

Holoscan SDK User Guide, Release 0.6.0

While this tool measures the producer times followed by the consumer times, the expectation for real-world video
processing applications is that this order would be reversed. That is to say, the expectation for a real-world application
is that it would capture, process, and output frames in the following order (with the component responsible for measuring
that time within this tool given in parentheses):

1. Read from HW (consumer)

2. Copy to GPU (consumer)

3. Process Frame (producer)

4. Render Results to GPU (producer)

5. Copy to Host (producer)

6. Write to HW (producer)

Fig. 29.6: Real Application Frame Lifespan

To illustrate this, the tool sums and displays the total producer and consumer times, then provides the Estimated
Application Times as the total sum of all of these steps (i.e. steps 1 through 6, above).

(continued from above)

314 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

Once a real-world application captures, processes, and outputs a frame, it would still be required that this final output
waits for the next VSync interval before it is actually sent across the physical wire to the display hardware. Using this
assumption, the tool then estimates one final value for the Final Estimated Latencies by doing the following:

1. Take the Estimated Application Time (from above)

2. Round it up to the next VSync interval

3. Add the physical wire time (i.e. a frame interval)

Fig. 29.7: Final Estimated Latency with VSync and Physical Wire Time

Continuing this example using a frame interval of 16666us (60Hz), this means that the average Final Estimated La-
tency is determined by:

1. Average application time = 26772

2. Round up to next VSync interval = 33332

3. Add physical wire time (+16666) = 49998

These times are also reported as a multiple of frame intervals.

(continued from above)

29.4. Operation Overview 315

Holoscan SDK User Guide, Release 0.6.0

Using this example, we should then expect that the total end-to-end latency that is seen by running this pipeline using
these components and configuration is 3 frame intervals (49998us).

29.4.3 Reducing Latency With RMDA

The previous example uses an AJA producer and consumer for a 4K @ 60Hz stream, however RDMA was disabled
for both components. Because of this, the additional copies between the GPU and host memory added more than
10000us of latency to the pipeline, causing the application to exceed one frame interval of processing time per frame
and therefore a total frame latency of 3 frames. If RDMA is enabled, these GPU and host copies can be avoided so the
processing latency is reduced by more than 10000us. More importantly, however, this also allows the total processing
time to fit within a single frame interval so that the total end-to-end latency can be reduced to just 2 frames.

Fig. 29.8: Reducing Latency With RDMA

The following shows the above example repeated with RDMA enabled.

$./loopback-latency -p aja -p.rdma 1 -c aja -c.rdma 1 -f 4k

316 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

29.4. Operation Overview 317

Holoscan SDK User Guide, Release 0.6.0

29.4.4 Simulating GPU Workload

By default the tool measures what is essentially a pass-through video pipeline; that is, no processing of the video frames
is performed by the system. While this is useful for measuring the minimum latency that can be achieved by the video
input and output components, it’s not very indicative of a real-world use case in which the GPU is used for compute-
intensive processing operations on the video frames between the input and output — for example, an object detection
algorithm that applies an overlay to the output frames.

While it may be relatively simple to measure the runtime latency of the processing algorithms that are to be applied
to the video frames — by simply measuring the runtime of running the algorithm on a single or stream of frames —
this may not be indicative of the effects that such processing might have on the overall system load, which may further
increase the latency of the video input and output components.

In order to estimate the total latency when an additional GPU workload is added to the system, the latency tool has an
-s {count} option that can be used to run an arbitrary CUDA loop the specified number of times before the producer
actually generates a frame. The expected usage for this option is as follows:

1. The per-frame runtime of the actual GPU processing algorithm is measured outside of the latency measurement
tool.

2. The latency tool is repeatedly run with just the -s {count} option, adjusting the {count} parameter until the
time that it takes to run the simulated loop approximately matches the actual processing time that was measured
in the previous step.

$./loopback-latency -s 2000

3. The latency tool is run with the full producer (-p) and consumer (-c) options used for the video I/O, along with
the -s {count} option using the loop count that was determined in the previous step.

Note: The following example shows that approximately half of the frames received by the consumer
were duplicate/repeated frames. This is due to the fact that the additional processing latency of the
producer causes it to exceed a single frame interval, and so the producer is only able to output a new
frame every second frame interval.

$./loopback-latency -p aja -c aja -s 2000

318 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

29.4. Operation Overview 319

Holoscan SDK User Guide, Release 0.6.0

Tip: To get the most accurate estimation of the latency that would be seen by a real world application, the best thing
to do would be to run the actual frame processing algorithm used by the application during the latency measurement.
This could be done by modifying the SimulateProcessing function in the latency tool source code.

29.5 Graphing Results

The latency tool includes a -o {file} option that can be used to output a CSV file with all of the measured times for
every frame. This file can then be used with the graph_results.py script that is included with the tool in order to
generate a graph of the measurements.

For example, if the latencies are measured using:

$./loopback-latency -p aja -c aja -o latencies.csv

The graph can then be generated using the following, which will open a window on the desktop to display the graph:

$./graph_results.py --file latencies.csv

The graph can also be output to a PNG image file instead of opening a window on the desktop by providing the --png
{file} option to the script. The following shows an example graph for an AJA to AJA measurement of a 4K @ 60Hz
stream with RDMA disabled (as shown as an example in Interpreting The Results, above).

320 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

Note that this is showing the times for 600 frames, from left to right, with the life of each frame beginning at the bottom
and ending at the top. The dotted black lines represent frame VSync intervals (every 16666us).

The above example graphs the times directly as measured by the tool. To instead generate a graph for the Final Esti-
mated Latencies as described above in Interpreting The Results, the --estimate flag can be provided to the script.
As is done by the latency tool when it reports the estimated latencies, this reorders the producer and consumer steps
then adds a VSync interval followed by the physical wire latency.

The following graphs the Final Estimated Latencies using the same data file as the graph above. Note that this shows
a total of 3 frames of expected latency.

29.5. Graphing Results 321

Holoscan SDK User Guide, Release 0.6.0

For the sake of comparison, the following graph shows the same test but with RDMA enabled. Note that the Copy To
GPU and Copy To SYS times are now zero due to the use of RDMA, and this now shows just 2 frames of expected
latency.

322 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

As a final example, the following graph duplicates the above test with RDMA enabled, but adds roughly 34ms of
additional GPU processing time (-s 1000) to the pipeline to produce a final estimated latency of 4 frames.

29.5. Graphing Results 323

Holoscan SDK User Guide, Release 0.6.0

29.6 Producers

There are currently 3 producer types supported by the Holoscan latency tool. See the following sections for a description
of each supported producer.

324 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

29.6.1 OpenGL GPU Direct Rendering (HDMI)

This producer (gl) uses OpenGL to render frames directly on the GPU for output via the HDMI connectors on the
GPU. This is currently expected to be the lowest latency path for GPU video output.

OpenGL Producer Notes:

• The video generated by this producer is rendered full-screen to the primary display. As of this version, this
component has only been tested in a display-less environment in which the loop-back HDMI cable is the only
cable attached to the GPU (and thus is the primary display). It may also be required to use the xrandr tool to
configure the HDMI output — the tool will provide the xrandr commands needed if this is the case.

• Since OpenGL renders directly to the GPU, the p.rdma flag is not supported and RDMA is always considered
to be enabled for this producer.

29.6.2 GStreamer GPU Rendering (HDMI)

This producer (gst) uses the nveglglessink GStreamer component that is included with Holopack in order to render
frames that originate from a GStreamer pipeline to the HDMI connectors on the GPU.

GStreamer Producer Notes:

• The tool must be built with DeepStream support in order for this producer to support RDMA (see Enabling
DeepStream Support for details).

• The video generated by this producer is rendered full-screen to the primary display. As of this version, this
component has only been tested in a display-less environment in which the loop-back HDMI cable is the only
cable attached to the GPU (and thus is the primary display). It may also be required to use the xrandr tool to
configure the HDMI output — the tool will provide the xrandr commands needed if this is the case.

• Since the output of the generated frames is handled internally by the nveglglessink plugin, the timing of
when the frames are output from the GPU are not known. Because of this, the Wire Time that is reported by this
producer includes all of the time that the frame spends between being passed to the nveglglessink and when
it is finally received by the consumer.

29.6.3 AJA Video Systems (SDI)

This producer (aja) outputs video frames from an AJA Video Systems device that supports video playback.

AJA Producer Notes:

• The latency tool must be built with AJA Video Systems support in order for this producer to be available (see
Building for details).

• The following parameters can be used to configure the AJA device and channel that are used to output the frames:

-p.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-p.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies NTV2_CHANNEL_1). Defaults
to 1.

• The p.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the producer. If RDMA is to be
used, the AJA drivers loaded on the system must also support RDMA.

• The only AJA device that have currently been verified to work with this producer is the Corvid 44 12G BNC
(SDI).

29.6. Producers 325

https://www.aja.com/products/corvid-44-12g-bnc

Holoscan SDK User Guide, Release 0.6.0

29.7 Consumers

There are currently 3 consumer types supported by the Holoscan latency tool. See the following sections for a descrip-
tion of each supported consumer.

29.7.1 V4L2 (Onboard HDMI Capture Card)

This consumer (v4l2) uses the V4L2 API directly in order to capture frames using the HDMI capture card that is
onboard the Holoscan Developer Kits.

V4L2 Consumer Notes:

• The onboard HDMI capture card is locked to a specific frame resolution and and frame rate (1080p @ 60Hz),
and so 1080 is the only supported format when using this consumer.

• The -c.device {device} parameter can be used to specify the path to the device that is being used to capture
the frames (defaults to /dev/video0).

• The V4L2 API does not support RDMA, and so the c.rdma option is ignored.

29.7.2 GStreamer (Onboard HDMI Capture Card)

This consumer (gst) also captures frames from the onboard HDMI capture card, but uses the v4l2src GStreamer
plugin that wraps the V4L2 API to support capturing frames for using within a GStreamer pipeline.

GStreamer Consumer Notes:

• The onboard HDMI capture card is locked to a specific frame resolution and and frame rate (1080p @ 60Hz),
and so 1080 is the only supported format when using this consumer.

• The -c.device {device} parameter can be used to specify the path to the device that is being used to capture
the frames (defaults to /dev/video0).

• The v4l2src GStreamer plugin does not support RDMA, and so the c.rdma option is ignored.

29.7.3 AJA Video Systems (SDI and HDMI)

This consumer (aja) captures video frames from an AJA Video Systems device that supports video capture. This can
be either an SDI or an HDMI video capture card.

AJA Consumer Notes:

• The latency tool must be built with AJA Video Systems support in order for this producer to be available (see
Building for details).

• The following parameters can be used to configure the AJA device and channel that are used to capture the
frames:

-c.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-c.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies NTV2_CHANNEL_1). Defaults
to 2.

• The c.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the consumer. If RDMA is to
be used, the AJA drivers loaded on the system must also support RDMA.

326 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

• The only AJA devices that have currently been verified to work with this consumer are the KONA HDMI (for
HDMI) and Corvid 44 12G BNC (for SDI).

29.8 Troubleshooting

If any of the loopback-latency commands described above fail with errors, the following steps may help resolve the
issue.

1. Problem: The following error is output:

ERROR: Failed to get a handle to the display (is the DISPLAY environment variable␣
→˓set?)

Solution: Ensure that the DISPLAY environment variable is set with the ID of the X11 display you are using;
e.g. for display ID 0:

$ export DISPLAY=:0

If the error persists, try changing the display ID; e.g. replacing 0 with 1:

$ export DISPLAY=:1

It might also be convenient to set this variable in your ~/.bashrc file so that it is set automatically whenever
you login.

2. Problem: An error like the following is output:

ERROR: The requested format (1920x1080 @ 60Hz) does not match
the current display mode (1024x768 @ 60Hz)
Please set the display mode with the xrandr tool using
the following command:

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60

But using the xrandr command provided produces an error:

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60
xrandr: cannot find mode 1920x1080

Solution: Try the following:

1. Ensure that no other displays are connected to the GPU.

2. Check the output of an xrandr command to see that the requested format is supported. The following shows
an example of what the onboard HDMI capture card should support. Note that each row of the supported
modes shows the resolution on the left followed by all of the supported frame rates for that resolution to the
right.

$ xrandr
Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x 32767
DP-0 disconnected (normal left inverted right x axis y axis)
DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 disconnected (normal left inverted right x axis y axis)
DP-3 disconnected (normal left inverted right x axis y axis)
DP-4 disconnected (normal left inverted right x axis y axis)

(continues on next page)

29.8. Troubleshooting 327

https://www.aja.com/products/kona-hdmi
https://www.aja.com/products/corvid-44-12g-bnc

Holoscan SDK User Guide, Release 0.6.0

(continued from previous page)

DP-5 connected primary 1920x1080+0+0 (normal left inverted right x axis y axis)␣
→˓1872mm x 1053mm

1920x1080 60.00*+ 59.94 50.00 29.97 25.00 23.98
1680x1050 59.95
1600x900 60.00
1440x900 59.89
1366x768 59.79
1280x1024 75.02 60.02
1280x800 59.81
1280x720 60.00 59.94 50.00
1152x864 75.00
1024x768 75.03 70.07 60.00
800x600 75.00 72.19 60.32
720x576 50.00
720x480 59.94
640x480 75.00 72.81 59.94

DP-6 disconnected (normal left inverted right x axis y axis)
DP-7 disconnected (normal left inverted right x axis y axis)
USB-C-0 disconnected (normal left inverted right x axis y axis)

3. If a UHD or 4K mode is being requested, ensure that the DisplayPort to HDMI cable that is being used
supports that mode.

4. If the xrandr output still does not show the mode that is being requested but it should be supported by the
cable and capture device, try rebooting the device.

3. Problem: One of the following errors is output:

ERROR: Select timeout on /dev/video0

ERROR: Failed to get the monitor mode (is the display cable attached?)

ERROR: Could not find frame color (0,0,0) in producer records.

These errors mean that either the capture device is not receiving frames, or the frames are empty (the producer
will never output black frames, (0,0,0)).

Solution: Check the output of xrandr to ensure that the loopback cable is connected and the capture device
is recognized as a display. If the following is output, showing no displays attached, this could mean that the
loopback cable is either not connected properly or is faulty. Try connecting the cable again and/or replacing the
cable.

$ xrandr
Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x 32767
DP-0 disconnected (normal left inverted right x axis y axis)
DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 disconnected (normal left inverted right x axis y axis)
DP-3 disconnected (normal left inverted right x axis y axis)
DP-4 disconnected (normal left inverted right x axis y axis)
DP-5 disconnected primary 1920x1080+0+0 (normal left inverted right x axis y axis)␣
→˓0mm x 0mm
DP-6 disconnected (normal left inverted right x axis y axis)
DP-7 disconnected (normal left inverted right x axis y axis)

328 Chapter 29. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.6.0

4. Problem: An error like the following is output:

ERROR: Could not find frame color (27,28,26) in producer records.

Colors near this particular value (27,28,26) are displayed on the Ubuntu lock screen, which prevents the latency
tool from rendering frames properly. Note that the color value may differ slightly from (27,28,26).

Solution:

Follow the steps provided in the note at the top of the Example Configurations section to enable automatic login
and disable the Ubuntu lock screen.

29.8. Troubleshooting 329

	Overview
	Relevant Technologies
	Rivermax and GPUDirect RDMA
	Graph Execution Framework
	TensorRT Optimized Inference
	Interoperability between CUDA and rendering frameworks
	Accelerated Image Transformations
	Unified Communications X

	Getting Started with Holoscan
	1. Choose your platform
	2. Setup the SDK and your platform
	3. Learn the framework
	4. Understand the reusable capabilities of the SDK
	5. Write and Run your own application
	6. Master the details

	SDK Installation
	Prerequisites
	Install the SDK
	Not sure what to choose?
	Need more control over the SDK?

	Additional Setup
	Setting-up GPUDirect RDMA
	Testing with Rivermax

	Enabling G-SYNC
	Disabling Variable Backlight
	Enabling Exclusive Display Mode
	Use both Integrated and Discrete GPUs on Holoscan developer kits
	Deployment Software Stack

	Third Party Hardware Setup
	AJA Video Systems
	Installing the AJA Hardware
	Installing the AJA Software
	Downloading the AJA NTV2 SDK Source
	Building the AJA NTV2 Drivers
	Loading the NVIDIA P2P RDMA Drivers (iGPU Only)
	Loading the AJA NTV2 Drivers
	Building and Installing the AJA NTV2 SDK
	Testing the AJA Device

	Using AJA Devices in Containers
	Troubleshooting

	Emergent Vision Technologies (EVT)
	Installing EVT Hardware
	Installing EVT Software
	Post EVT Software Installation Steps
	Testing the EVT Camera
	Troubleshooting

	Holoscan Core Concepts
	Holoscan by Example
	Hello World
	Defining the HelloWorldApp class
	Defining the HelloWorldApp workflow
	Running the Application

	Ping Simple
	Operators and Workflow
	Connecting Operators
	Running the Application

	Ping Custom Op
	Operators and Workflow
	Configuring Operator Input and Output Ports
	Configuring Operator Parameters
	Message Data Types
	Running the Application

	Ping Multi Port
	Operators and Workflow
	User Defined Data Types
	Defining an Explicit Number of Inputs and Outputs
	Receiving Any Number of Inputs
	Running the Application

	Video Replayer
	Operators and Workflow
	Video Stream Replayer Operator
	Holoviz Operator
	Application Configuration File (YAML)
	Running the Application

	Video Replayer (Distributed)
	Operators and Workflow
	Defining and Connecting Fragments
	Running the Application

	Bring Your Own Model (BYOM)
	Operators and Workflow
	Prerequisites
	Input video
	Input model

	Understanding the Application Code
	Modifying the Application for Ultrasound Segmentation
	Running the Application
	Customizing the Inference Operator
	Common Pitfalls Deploying New Models
	Color Channel Order
	Normalizing Your Data
	Network Output Type

	Creating an Application
	Defining an Application Class
	Configuring an Application
	YAML Configuration support
	Loading GXF extensions
	Configuring operators
	Configuring operator parameters
	Configuring operator conditions
	Configuring operator resources

	Configuring the scheduler
	Configuring runtime properties

	Application Workflows
	One-operator Workflow
	Linear Workflow
	Complex Workflow (Multiple Inputs and Outputs)

	Building and running your Application

	Creating a Distributed Application
	Defining a Distributed Application Class
	Serialization of Custom Data Types for Distributed Applications

	Building and running a Distributed Application
	Environment Variables for Distributed Applications
	Holoscan SDK environment variables.
	UCX-specific environment variables

	Serialization
	Python
	C++

	Packaging Holoscan Applications
	Prerequisites
	Dependencies
	CLI Installation

	Package an application
	Run a packaged application

	Creating Operators
	C++ Operators
	Native C++ Operators
	Operator Lifecycle (C++)
	Creating a custom operator (C++)
	Specifying operator parameters (C++)
	Specifying operator inputs and outputs (C++)
	Receiving any number of inputs (C++)
	Building your C++ operator
	Using your C++ Operator in an Application

	GXF Operators
	Operator definition
	Setting up parameter specifications
	Initializing the operator
	Building your GXF operator
	Using your GXF Operator in an Application

	Interoperability between GXF and native C++ operators

	Python Operators
	Native Python Operator
	Operator Lifecycle (Python)
	Creating a custom operator (Python)
	Specifying operator parameters (Python)
	Specifying operator inputs and outputs (Python)
	Receiving any number of inputs (Python)

	Python wrapping of a C++ operator
	Trampoline classes for handling Python kwargs
	Documentation strings
	Writing glue code
	Configuring with CMake
	Importing the class in Python

	Interoperability between wrapped and native Python operators

	Logging
	Overview
	Logger Level
	Precedence

	Logger Format
	Calling the Logger in Your Application

	Built-in Operators and Extensions
	Operators
	Extensions
	Bayer Demosaic
	GXF Holoscan Wrapper
	OpenGL
	Stream Playback
	UCX (Holoscan)
	HoloHub

	Visualization
	Overview
	Layers
	Image Layers
	Geometry Layers
	ImGui Layers
	Depth Map Layers

	Views
	Using a display in exclusive mode
	Configure a display for exclusive use
	Enable exclusive display in Holoviz

	CUDA streams
	Reading the framebuffer
	Holoviz operator
	Class documentation
	Examples

	Holoviz module
	Concepts
	Getting started
	API
	Examples

	Inference
	Overview
	Parameters and related Features
	Parameter Specification

	Inference Operator
	Creating an Inference operator

	Schedulers
	Greedy Scheduler
	MultiThreadScheduler

	Conditions
	MessageAvailableCondition
	DownstreamMessageAffordableCondition
	CountCondition
	BooleanCondition
	PeriodicCondition
	AsynchronousCondition

	Resources
	Allocator
	UnboundedAllocator
	BlockMemoryPool
	CudaStreamPool

	Clock
	Realtime Clock
	Manual Clock

	Transmitter (advanced)
	DoubleBufferTransmitter
	UcxTransmitter

	Receiver (advanced)
	DoubleBufferReceiver
	UcxReceiver

	Holoscan Application Package Specification (HAP)
	Introduction
	Overview
	Goal
	Assumptions, Constraints, Dependencies

	Definitions, Acronyms, Abbreviations
	Requirements
	Single Artifact
	Self-Describing
	Runtime Characteristics of the HAP
	IO Specification
	Local Execution
	Compatible with Kubernetes
	OCI Compliance
	Image Annotations

	Hosting Environment
	Table of Environment Variables

	Architecture & Design
	Description
	Application
	Manifests
	Application Manifest
	Table of Application Manifest Fields

	Package Manifest
	Table of Package Manifest Fields

	Supplemental Application Files
	Container Behavior and Interaction
	Default Behavior
	Manifest Export

	Table of Important Paths

	Operating Environments

	Holoscan CLI
	Synopsis
	Positional Arguments
	Holoscan CLI - Package Command
	Synopsis
	Examples
	Positional Arguments
	application

	Flags
	--config|-c CONFIG
	[--docs|-d DOCS]
	[--models|-m MODELS]
	--platform PLATFORM
	[--platform-config PLATFORM_CONFIG]
	[--timeout TIMEOUT]
	[--version VERSION]
	[--base-image BASE_IMAGE]
	[--build-image BUILD_IMAGE]
	[--build-cache BUILD_CACHE]
	[--cmake-args CMAKE_ARGS]
	[--no-cache|-n]
	[--sdk SDK]
	[--sdk-version SDK_VERSION]
	[--holoscan-sdk-file HOLOSCAN_SDK_FILE]
	[--monai-deploy-sdk-file MONAI_DEPLOY_SDK_FILE]
	[--output|-o OUTPUT]
	--tag|-t TAG
	[--username USERNAME]
	[--uid UID]
	[--gid GID]

	Holoscan CLI - Run Command
	Synopsis
	Examples
	Positional Arguments
	image:[tag]

	Flags
	[--address ADDRESS]
	[--driver]
	[--input|-i INPUT]
	[--output|-o OUTPUT]
	[--fragments|-f FRAGMENTS]
	[--worker]
	[--worker-address WORKER_ADDRESS]
	[--config CONFIG]
	[--network|-n NETWORK]
	[--nic NETWORK_INTERFACE]
	[--render|-r]
	[--quiet|-q]
	[--uid UID]
	[--gid GID]

	Holoscan CLI - Version Command
	Synopsis

	CLI-Wide Flags
	[--help|-h]
	[--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}]

	Application Runner Configuration
	Configuration
	Properties
	Example

	GXF Core concepts
	Holoscan and GXF
	Design differences
	Holoscan SDK v0.2
	Holoscan SDK v0.3
	Holoscan SDK v0.4
	Holoscan SDK v0.5

	Current limitations

	GXF by Example
	Innerworkings of a GXF Entity
	Data Flow and Triggering Rules
	Creating a GXF Extension
	Extension Lifecycle
	Implementing an Extension
	Declare the Class That Will Implement the Extension Functionality
	Declare the Parameters to Expose at the Application Level
	Implement the Lifecycle Methods
	Register the Extension as a Holoscan Component

	Creating a GXF Application
	Running the GXF Recorder Application

	Using Holoscan Operators in GXF Applications
	1. Creating compatible Holoscan Operators
	2. Creating the GXF extension that wraps the operator
	3. Using your wrapped operator in a GXF application

	GXF User Guide
	Graph Specification
	Concepts
	Graph
	SubGraph
	Node
	Components
	Edges
	Extension

	Graph File Format

	Graph Execution Engine
	Graph Specification TimeStamping
	Message Passing

	The GXF Scheduler
	Greedy Scheduler
	Greedy Scheduler Configuration

	Multithread Scheduler
	Multithread Scheduler Configuration

	Epoch Scheduler
	SchedulingTerms
	PeriodicSchedulingTerm
	CountSchedulingTerm
	MessageAvailableSchedulingTerm
	MultiMessageAvailableSchedulingTerm
	BooleanSchedulingTerm
	AsynchronousSchedulingTerm
	DownsteamReceptiveSchedulingTerm
	TargetTimeSchedulingTerm
	ExpiringMessageAvailableSchedulingTerm
	AND Combined
	BTSchedulingTerm

	Behavior Trees
	General Concept
	Behavior Tree Codelets
	Constant Behavior
	Parallel Behavior
	Repeat Behavior
	Selector Behavior
	Sequence Behavior
	Switch Behavior
	Timer Behavior

	GXF Core C APIs
	Context
	Create context
	Create a context from a shared context
	Destroy context

	Extensions
	Load Extensions from a file
	Load Extension libraries
	Load Metadata files
	Register component

	Graph Execution
	Loads a list of entities from YAML file
	Set the root folder for searching YAML files during loading
	Loads a list of entities from YAML text
	Activate all system components
	Deactivate all System components
	Starts the execution of the graph asynchronously
	Interrupt the execution of the graph
	Waits for the graph to complete execution
	Runs all System components and waits for their completion

	Entities
	Create an entity
	Activate an entity
	Deactivate an entity
	Destroy an entity
	Find an entity
	Find all entities
	Increase reference count of an entity
	Decrease reference count of an entity
	Get status of an entity
	Get state of an entity
	Notify entity of an event

	Components
	Get component type identifier
	Get component type name
	Get component name
	Get unique identifier of the entity of given component
	Add a new component
	Add component to entity interface
	Find a component in an entity
	Get type identifier for a component
	Gets pointer to component

	Primitive Parameters
	64-bit floating point
	Set
	Get

	64-bit signed integer
	Set
	Get

	64-bit unsigned integer
	Set
	Get

	32-bit signed integer
	Set
	Get

	String parameter
	Set
	Get

	Boolean
	Set
	Get

	Handle
	Set
	Get

	Vector Parameters
	Set 1-D Vector Parameters
	Set 2-D Vector Parameters
	Get 1-D Vector Parameters
	Get 2-D Vector Parameters

	Information Queries
	Get Meta Data about the GXF Runtime
	Get description and list of components in loaded Extension
	Get description and list of parameters of Component
	Get parameter type description
	Get flag type description
	Get parameter description
	Redirect logs to a file

	Miscellaneous
	Get string description of error

	CudaExtension
	Components
	nvidia::gxf::CudaStream
	nvidia::gxf::CudaStreamId
	nvidia::gxf::CudaEvent
	nvidia::gxf::CudaStreamPool
	Parameters

	nvidia::gxf::CudaStreamSync
	Parameters

	MultimediaExtension
	Components
	nvidia::gxf::AudioBuffer
	nvidia::gxf::VideoBuffer

	NetworkExtension
	Interfaces
	Components
	nvidia::gxf::TcpClient
	Parameters

	nvidia::gxf::TcpServer
	Parameters

	SerializationExtension
	Interfaces
	nvidia::gxf::ComponentSerializer

	Components
	nvidia::gxf::EntityRecorder
	Parameters

	nvidia::gxf::EntityReplayer
	Parameters

	nvidia::gxf::StdComponentSerializer
	Parameters

	StandardExtension
	Interfaces
	nvidia::gxf::Codelet
	nvidia::gxf::Clock
	nvidia::gxf::System
	nvidia::gxf::Queue
	nvidia::gxf::Router
	nvidia::gxf::Transmitter
	nvidia::gxf::Receiver
	nvidia::gxf::Scheduler
	nvidia::gxf::SchedulingTerm
	nvidia::gxf::Allocator
	nvidia::gxf::Monitor

	Components
	nvidia::gxf::RealtimeClock
	Parameters

	nvidia::gxf::ManualClock
	Parameters

	nvidia::gxf::SystemGroup
	nvidia::gxf::MessageRouter
	nvidia::gxf::RouterGroup
	nvidia::gxf::DoubleBufferTransmitter
	Parameters

	nvidia::gxf::DoubleBufferReceiver
	Parameters

	nvidia::gxf::Connection
	Parameters

	nvidia::gxf::PeriodicSchedulingTerm
	Parameters

	nvidia::gxf::CountSchedulingTerm
	Parameters

	nvidia::gxf::TargetTimeSchedulingTerm
	Parameters

	nvidia::gxf::DownstreamReceptiveSchedulingTerm
	Parameters

	nvidia::gxf::MessageAvailableSchedulingTerm
	Parameters

	nvidia::gxf::MultiMessageAvailableSchedulingTerm
	Parameters

	nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
	Parameters

	nvidia::gxf::BooleanSchedulingTerm
	nvidia::gxf::AsynchronousSchedulingTerm
	nvidia::gxf::GreedyScheduler
	Parameters

	nvidia::gxf::MultiThreadScheduler
	Parameters

	nvidia::gxf::BlockMemoryPool
	Parameters

	nvidia::gxf::UnboundedAllocator
	Parameters

	nvidia::gxf::Tensor
	nvidia::gxf::Timestamp
	nvidia::gxf::Metric
	Parameters

	nvidia::gxf::JobStatistics
	Parameters

	nvidia::gxf::Broadcast
	Parameters

	nvidia::gxf::Gather
	Parameters

	nvidia::gxf::TensorCopier
	Parameters

	nvidia::gxf::TimedThrottler
	Parameters

	nvidia::gxf::Vault
	Parameters

	nvidia::gxf::Subgraph
	Parameters

	nvidia::gxf::EndOfStream
	nvidia::gxf::Synchronization
	Parameters

	signed char
	unsigned char
	short int
	short unsigned int
	int
	unsigned int
	long int
	long unsigned int
	float
	double
	bool

	Data Flow Tracking
	Enabling Data Flow Tracking
	Retrieving Data Flow Tracking Results
	Customizing Data Flow Tracking
	Logging

	Video Pipeline Latency Tool
	Requirements
	Hardware
	Software

	Installation
	Downloading the Source
	Installing Software Requirements
	Building
	Enabling DeepStream Support
	Enabling AJA Support

	Example Configurations
	GPU To Onboard HDMI Capture Card
	GPU to AJA HDMI Capture Card
	AJA SDI to AJA SDI

	Operation Overview
	Frame Measurements
	Interpreting The Results
	Reducing Latency With RMDA
	Simulating GPU Workload

	Graphing Results
	Producers
	OpenGL GPU Direct Rendering (HDMI)
	GStreamer GPU Rendering (HDMI)
	AJA Video Systems (SDI)

	Consumers
	V4L2 (Onboard HDMI Capture Card)
	GStreamer (Onboard HDMI Capture Card)
	AJA Video Systems (SDI and HDMI)

	Troubleshooting

