NVIDIA.

Holoscan SDK User Guide
Release 2.2.0

NVIDIA Corporation

Jul 16, 2024

10

11

12

13

14

15

16

17

18

19

20

21

22

Overview

Relevant Technologies

Getting Started with Holoscan
SDK Installation

Additional Setup

Third Party Hardware Setup
Holoscan Core Concepts

Holoscan by Example

Creating an Application

Creating a Distributed Application
Packaging Holoscan Applications
Creating Operators

Logging

Debugging

Writing Python bindings for a C++ Operator
Simplified Python operator creation via the create_op decorator
Built-in Operators and Extensions
Visualization

Inference

Schedulers

Conditions

Resources

INTRODUCTION

13

27

35

37

79
101
119
127
159
163
177
191
199
203
217
229
231

235

23

24

25

26

27

28

29

30

31

32

33

34

Analytics

Holoscan Application Package Specification (HAP)
Holoscan CLI

Application Runner Configuration

GXF Core concepts

Holoscan and GXF

GXF by Example

Using Holoscan Operators in GXF Applications
GXF User Guide

Data Flow Tracking

GXEF job statistics

Video Pipeline Latency Tool

239

241

257

269

271

273

275

291

293

367

373

375

CHAPTER
ONE

OVERVIEW

NVIDIA Holoscan is the Al sensor processing platform that combines hardware systems for low-latency sensor and
network connectivity, optimized libraries for data processing and Al, and core microservices to run streaming, imaging,
and other applications, from embedded to edge to cloud. It can be used to build streaming Al pipelines for a variety of
domains, including Medical Devices, High Performance Computing at the Edge, Industrial Inspection and more.

The Holoscan SDK assists developers by providing:
1. Various installation strategies

From containers, to python wheels, to source, from development to deployment environments, the Holoscan SDK
comes in many packaging flavors to adapt to different needs. Find more information in the sdk installation section.

2. C++ and Python APIs

These APIs are now the recommended interface for the creation of application pipelines in the Holoscan SDK. See
the Using the SDK section to learn how to leverage those APIs, or the Doxygen pages (C++/Python) for specific API
documentation.

3. Built-in Operators

The units of work of Holoscan applications are implemented within Operators, as described in the core concepts of
the SDK. The operators included in the SDK provide domain-agnostic functionalities such as IO, machine learning
inference, processing, and visualization, optimized for Al streaming pipelines, relying on a set of Core Technologies.
This guide provides more information on the operators provided within the SDK #ere.

4. Minimal Examples

The Holoscan SDK provides a list of examples to illustrate specific capabilities of the SDK. Their source code can
be found in the GitHub repository. The Holoscan by Example section provides step-by-step analysis of some of these
examples to illustrate the innerworkings of the Holoscan SDK.

5. Repository of Operators and Applications

HoloHub is a central repository for users and developers to share reusable operators and sample applications with the
Holoscan community. Being open-source, these operators and applications can also be used as reference implementa-
tions to complete the built-in operators and examples available in the SDK.

6. Tooling to Package and Deploy Applications

Packaging and deploying applications is a complex problem that can require large amount of efforts. The Holoscan CLI
is a command-line interface included in the Holoscan SDK that provides commands to package and run applications
in OCI-compliant containers that could be used for production.

7. Performance tools

As highlighted in the relevant technologies section, the soul of the Holoscan project is to achieve peak performance
by leveraging hardware and software developed at NVIDIA or provided by third-parties. To validate this, Holoscan
provides performance tools to help users and developers track their application performance. They currently include:

https://developer.nvidia.com/holoscan-sdk
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples#readme
https://nvidia-holoscan.github.io/holohub

Holoscan SDK User Guide, Release 2.2.0

* a Video Pipeline Latency Measurement Tool to measure and estimate the total end-to-end latency of a video
streaming application including the video capture, processing, and output using various hardware and software
components that are supported by the NVIDIA Developer Kits.

e the Data Flow Tracking feature to profile your application and analyze the data flow between operators in its
graph.

8. Documentation
The Holoscan SDK documentation is composed of:
* This user guide, in a webpage or PDF format
* Build and run instructions specific to each installation strategy

¢ Release notes on Github

Note: In previous releases, the prefix Clara was used to define Holoscan as a platform designed initially for medical
devices. Starting with version 0.4.0, the Holoscan SDK is built to be domain-agnostic and can be used to build sensor
Al applications in multiple domains. Domain specific content will be hosted on the HoloHub repository.

2 Chapter 1. Overview

https://docs.nvidia.com/holoscan/sdk-user-guide/
https://developer.nvidia.com/downloads/holoscan-sdk-user-guide
https://github.com/nvidia-holoscan/holoscan-sdk/releases
https://developer.nvidia.com/industries/healthcare
https://www.nvidia.com/en-us/clara/developer-kits/
https://www.nvidia.com/en-us/clara/developer-kits/
https://nvidia-holoscan.github.io/holohub

CHAPTER
TWO

RELEVANT TECHNOLOGIES

Holoscan accelerates streaming Al applications by leveraging both hardware and software. The Holoscan SDK relies
on multiple core technologies to achieve low latency and high throughput:

* Rivermax and GPUDirect RDMA

* Graph Execution Framework

o TensorRT Optimized Inference

e [Interoperability between CUDA and rendering frameworks
* Accelerated Image Transformations

e Unified Communications X

2.1 Rivermax and GPUDirect RDMA

The NVIDIA Developer Kits equipped with a ConnectX network adapter can be used along with the NVIDIA River-
max SDK to provide an extremely efficient network connection that is further optimized for GPU workloads by using
GPUDirect for RDMA. This technology avoids unnecessary memory copies and CPU overhead by copying data directly
to or from pinned GPU memory, and supports both the integrated GPU or the discrete GPU.

Note: NVIDIA is also committed to supporting hardware vendors enable RDMA within their own drivers, an example
of which is provided by the AJA Video Systems as part of a partnership with NVIDIA for the Holoscan SDK. The
AJASource operator is an example of how the SDK can leverage RDMA.

For more information about GPUDirect RDMA, see the following:
* GPUDirect RDMA Documentation

e Minimal GPUDirect RDMA Demonstration source code, which provides a real hardware example of using
RDMA and includes both kernel drivers and userspace applications for the RHS Research PicoEVB and HiTech
Global HTG-K800 FPGA boards.

https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://developer.nvidia.com/networking/rivermax
https://developer.nvidia.com/networking/rivermax
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/NVIDIA/jetson-rdma-picoevb

Holoscan SDK User Guide, Release 2.2.0

2.2 Graph Execution Framework

The Graph Execution Framework (GXF) is a core component of the Holoscan SDK that provides features to execute
pipelines of various independent tasks with high performance by minimizing or removing the need to copy data across
each block of work, and providing ways to optimize memory allocation.

GXF will be mentioned in many places across this user guide, including a dedicated section which provides more
details.

2.3 TensorRT Optimized Inference

NVIDIA TensorRT is a deep learning inference framework based on CUDA that provided the highest optimizations to
run on NVIDIA GPUs, including the NVIDIA Developer Kits.

The inference module leverages TensorRT among other backends, and provides the ability to execute multiple inferences
in parallel.

2.4 Interoperability between CUDA and rendering frameworks

Vulkan is commonly used for realtime visualization and, like CUDA, is executed on the GPU. This provides an oppor-
tunity for efficient sharing of resources between CUDA and this rendering framework.

The Holoviz module uses the external resource interoperability functions of the low-level CUDA driver application
programming interface, the Vulkan external memory and external semaphore extensions.

2.5 Accelerated Image Transformations

Streaming image processing often requires common 2D operations like resizing, converting bit widths, and changing
color formats. NVIDIA has built the CUDA accelerated NVIDIA Performance Primitive Library (NPP) that can help
with many of these common transformations. NPP is extensively showcased in the Format Converter operator of the
Holoscan SDK.

2.6 Unified Communications X

The Unified Communications X (UCX) framework is an open-source communication framework developed as a collab-
oration between industry and academia. It provides high performance point-to-point communication for data-centric
applications. Holoscan SDK uses UCX to send data between fragments in distributed applications. UCX’s high level
protocols attempt to automatically select an optimal transport layer depending on the hardware available. For example
technologies such as TCP, CUDA memory copy, CUDA IPC and GPUDirect RDMA are supported.

4 Chapter 2. Relevant Technologies

https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXTRES__INTEROP.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_memory_fd.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_semaphore.html
https://docs.nvidia.com/cuda/npp/index.html
https://openucx.org/
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

CHAPTER
THREE

GETTING STARTED WITH HOLOSCAN

As described in the Overview, the SDK provides many components and capabilities. The goal of this section is to
provide a recommended path to getting started with the SDK.

3.1 1. Choose your platform

The Holoscan SDK is optimized and compatible with multiple hardware platforms, including NVIDIA Developer Kits
(aarch64) and x86_64 workstations. Learn more on the developer page to help you decide what hardware you should
target.

3.2 2. Setup the SDK and your platform

Start with installing the SDK . If you have a need for it, you can go through additional recommended setups to achieve
peak performance, or setup additional sensors from NVIDIA’s partners.

3.3 3. Learn the framework

1. Start with the Core Concepts to understand the technical terms used in this guide, and the overall behavior of the
framework.

2. Learn how to use the SDK in one of two ways (or both) based on your preference:

1. Going through the Holoscan by Example tutorial which will build your knowledge step-by-step by going
over concrete minimal examples in the SDK. You can refer to each example source code and run instructions
to inspect them and run them as you go.

2. Going through the condensed documentations that should cover all capabilities of the SDK using minimal
mock code snippets, including creating an application, creating a distributed application, and creating
operators.

https://developer.nvidia.com/holoscan-sdk

Holoscan SDK User Guide, Release 2.2.0

3.4 4. Understand the reusable capabilities of the SDK

The Holoscan SDK does not only provide a framework to build and run applications, but also a set of reusable operators
to facilitate implementing applications for streaming, Al, and other general domains.

The list of existing operators is available /ere, which points to the C++ or Python API documentation for more details.
Specific documentation is available for the visualization (codename: HoloViz) and inference (codename: HoloInfer)
operators.

Additionally, HoloHub is a central repository for users and developers to share reusable operators and sample applica-
tions with the Holoscan community, extending the capabilities of the SDK:

¢ Just like the SDK operators, the HoloHub operators can be used in your own Holoscan applications.

» The HoloHub sample applications can be used as reference implementations to complete the examples available
in the SDK.

Take a glance at HoloHub to find components you might want to leverage in your application, improve upon existing
work, or contribute your own additions to the Holoscan platform.

3.5 5. Write and Run your own application

The steps above cover what is required to write your own application and run it. For facilitating packaging and distribut-
ing, the Holoscan SDK includes utilities to package and run your Holoscan application in a OCI-compliant container
image.

3.6 6. Master the details

» Expand your understanding of the framework with details on the logging utility or the data flow tracking bench-
marking tool and job statistics measurements.

» Learn more details on the configurable components that control the execution of your application, like [Sched-
ulers], [Conditions], and [Resources]. (Advanced) These components are part on the GXF execution backend,
hence the Graph Execution Framework section at the bottom of this guide if deep understanding of the appli-
cation execution is needed.

6 Chapter 3. Getting Started with Holoscan

https://nvidia-holoscan.github.io/holohub

CHAPTER
FOUR

SDK INSTALLATION

The section below refers to the installation of the Holoscan SDK referred to as the development stack, designed for
NVIDIA Developer Kits (arm64), and for x86_64 Linux compute platforms, ideal for development and testing of the
SDK.

Note: An alternative for the IGX Orin Developer Kit is the deployment stack, based on OpenEmbedded (Yocto build
system) instead of Ubuntu. This is recommended to limit your stack to the software components strictly required to
run your Holoscan application. The runtime Board Support Package (BSP) can be optimized with respect to memory
usage, speed, security and power requirements.

4.1 Prerequisites

NVIDIA Developer Kits

Set up your developer kit:

Developer Kit User oS GPU Mode
Guide
NVIDIA IGX Orin Guide IGX Software 1.0 Production | iGPU or*
Release dGPU
NVIDIA Jetson AGX Orin and Orin Nano Guide JetPack 6.0 iGPU
NVIDIA Clara AGXOnly supporting the NGC | Guide HoloPack 1.2 iGPU or*
container dGPU

*iGPU and dGPU can be used concurrently on a single developer kit in dGPU mode. See details here.

NVIDIA SuperChips

This version of the Holoscan SDK was tested on the Grace-Hopper SuperChip (GH200) with Ubuntu 22.04. Follow
setup instructions here.

Attention: Display is not supported on SBSA/superchips. You can however do headless rendering with HoloViz
for example.

https://www.nvidia.com/en-us/edge-computing/products/igx/
https://www.openembedded.org/wiki/Main_Page
https://www.yoctoproject.org/
https://www.nvidia.com/en-us/edge-computing/products/igx/
https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://developer.nvidia.com/igx-downloads
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-guide/index.html
https://developer.nvidia.com/embedded/jetpack
https://www.nvidia.com/en-gb/clara/intelligent-medical-instruments
https://github.com/nvidia-holoscan/holoscan-docs/blob/main/devkits/clara-agx/clara_agx_user_guide.md
https://developer.nvidia.com/drive/sdk-manager
https://docs.nvidia.com/grace-ubuntu-install-guide.pdf

Holoscan SDK User Guide, Release 2.2.0

x86_64 Workstations

Supported x86_64 distributions:

0S NGC Container | Debian/RPM package | Python wheel | Build from source
Ubuntu 22.04 Yes Yes Yes Yes
RHEL 9.x Yes No No No!
Other Linux distros | No? No No® No!

! Not formally tested or supported, but expected to work if building bare metal with the adequate dependencies. > Not
formally tested or supported, but expected to work if supported by the NVIDIA container-toolkit. 3 Not formally tested
or supported, but expected to work if the glibc version of the distribution is 2.35 or above.

NVIDIA discrete GPU (dGPU) requirements:
* Ampere or above recommended for best performance
* Quadro/NVIDIA RTX necessary for GPUDirect RDMA support
* Tested with NVIDIA Quadro RTX 6000 and NVIDIA RTX A6000
* NVIDIA dGPU drivers: 535 or above
» For RDMA Support, follow the instructions in the Enabling RDMA section.

* Additional software dependencies might be needed based on how you choose to install the SDK (see section
below).

* Refer to the Additional Setup and Third-Party Hardware Setup sections for additional prerequisites.

4.2 Install the SDK

We provide multiple ways to install and run the Holoscan SDK:

4.2.1 Instructions

NGC Container

* dGPU (x86_64, IGX Orin dGPU, Clara AGX dGPU, GH200)

docker pull nvcr.io/nvidia/clara-holoscan/holoscan:v2.2.0-dgpu

iGPU (Jetson, IGX Orin iGPU, Clara AGX iGPU)

docker pull nvcr.io/nvidia/clara-holoscan/holoscan:v2.2.0-igpu

See details and usage instructions on NGC.

8 Chapter 4. SDK Installation

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/supported-platforms.html
https://www.nvidia.com/en-gb/design-visualization/desktop-graphics/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-6000-us-nvidia-704093-r4-web.pdf
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan

Holoscan SDK User Guide, Release 2.2.0

Debian package

Try the following to install the holoscan SDK:

sudo apt update
sudo apt install holoscan

If holoscan is not found, try the following before repeating the steps above:

¢ IGX Orin: Ensure the compute stack is properly installed which should configure the L4T repository source. If
you still cannot install the Holoscan SDK, use the arm64-sbsa installer from the CUDA repository.

 Jetson: Ensure JetPack is properly installed which should configure the L4T repository source. If you still cannot
install the Holoscan SDK, use the aarch64-jetson installer from the CUDA repository.

* GH200: Use the arm64-sbsa installer from the CUDA repository.
* x86_64: Use the x86_64 installer from the CUDA repository.

Note: To leverage the python module included in the debian package (instead of installing the python wheel), include
the path below to your python path. For example:

export PYTHONPATH="/opt/nvidia/holoscan/python/1lib"

Python wheel

pip install holoscan

See details and troubleshooting on PyPI.

Note: For x86_64, ensure that the CUDA Runtime is installed.

4.2.2 Not sure what to choose?

The Holoscan container image on NGC it the safest way to ensure all the dependencies are present with the
expected versions (including Torch and ONNX Runtime), and should work on most Linux distributions. It is
the simplest way to run the embedded examples, while still allowing you to create your own C++ and Python
Holoscan application on top of it. These benefits come at a cost:

— large image size from the numerous (some of them optional) dependencies. If you need a lean runtime
image, see section below.

— standard inconvenience that exist when using Docker, such as more complex run instructions for proper
configuration.

If you are confident in your ability to manage dependencies on your own in your host environment, the Holoscan
Debian package should provide all the capabilities needed to use the Holoscan SDK, assuming you are on
Ubuntu 22.04.

If you are not interested in the C++ API but just need to work in Python, or want to use a different version than
Python 3.10, you can use the Holoscan python wheels on PyPI. While they are the easiest solution to install the
SDK, it might require the most work to setup your environment with extra dependencies based on your needs.

4.2. Install the SDK 9

https://docs.nvidia.com/igx-orin/user-guide/latest/base-os.html#installing-the-compute-stack
https://developer.nvidia.com/holoscan-downloads?target_os=Linux&target_arch=arm64-sbsa&Compilation=Native&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/holoscan-downloads?target_os=Linux&target_arch=aarch64-jetson&Compilation=Native&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
https://developer.nvidia.com/holoscan-downloads?target_os=Linux&target_arch=arm64-sbsa&Compilation=Native&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
https://developer.nvidia.com/holoscan-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
https://pypi.org/project/holoscan
https://developer.nvidia.com/cuda-12-2-2-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan
https://pypi.org/project/holoscan

Holoscan SDK User Guide, Release 2.2.0

Finally, they are only formally supported on Ubuntu 22.04, though should support other linux distributions with
glibc 2.35 or above.

NGC dev Container Debian Package Python Wheels

Runtime libraries Included Included Included

Python module 3.10 3.10 3.8to 3.11

C++ headers andC- | Included Included N/A

Make config

Examples (+ source) Included Included retrieve fromGitHub

Sample datasets Included retrieve fromNGC retrieve fromNGC

CUDA runtime' Included automati- require manualinstal-
cally’installed lation

NPP support’ Included automati- require manualinstal-
cally’installed lation

TensorRT support” Included automati- require manualinstal-
cally’installed lation

Vulkan support® Included automati- require manualinstal-
cally’installed lation

V41.2 support® Included automati- require manualinstal-
cally’installed lation

Torch support’ Included require man- | require man-
ual®installation ual®installation

ONNX Runtime sup- | Included require man- | require man-

port’ ual'%installation ual'%installation

MOFED support'’ User space included Install kernel | require manualinstal- | require manual instal-

drivers on the host lation lation

CLI support Included needs docker | needs docker

w/buildx plugin w/buildx plugin

I CUDA 12 is required. Already installed on NVIDIA developer kits with IGX Software and JetPack.
2 Debian installation on x86_64 requires the latest cuda-keyring package to automatically install all dependencies.
3 NPP 12 needed for the FormatConverter and BayerDemosaic operators. Already installed on NVIDIA developer kits with IGX Software and
JetPack.
4 TensorRT 8.6.1+ and cuDNN needed for the Inference operator. Already installed on NVIDIA developer kits with IGX Software and JetPack.
5 Vulkan 1.3.204+ loader needed for the HoloViz operator (+ libegll for headless rendering). Already installed on NVIDIA developer kits with
IGX Software and JetPack.
6 V412 1.22+ needed for the V4L2 operator. Already installed on NVIDIA developer kits with IGX Software and JetPack. V4L2 also requires
libjpeg.
7 Torch support requires LibTorch 2.1+, TorchVision 0.16+, OpenBLAS 0.3.20+, OpenMPI (aarch64 only), MKL 2021.1.1 (x86_64 only), libpng
and libjpeg.
8 To install LibTorch and TorchVision, either build them from source, download our pre-built packages, or copy them from the holoscan container
(in /opt).
9 ONNXRuntime 1.15.1+ needed for the Inference operator. Note that ONNX models are also supported through the TensoRT backend of the
Inference Operator.
10 To install ONNXRuntime, either build it from source, download our pre-built package with CUDA 12 and TensoRT execution provider support,
or copy it from the holoscan container (in /opt/onnxruntime).
11 Tested with MOFED 23.10

10 Chapter 4. SDK Installation

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#readme
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://developer.nvidia.com/npp
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/vulkan
https://en.wikipedia.org/wiki/Video4Linux
https://pytorch.org/
https://onnxruntime.ai/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://docs.nvidia.com/cuda/archive/12.1.1/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#network-repo-installation-for-ubuntu
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/

Holoscan SDK User Guide, Release 2.2.0

4.2.3 Need more control over the SDK?

The Holoscan SDK source repository is open-source and provides reference implementations as well as infrastructure
for building the SDK yourself.

Attention: We only recommend building the SDK from source if you need to build it with debug symbols or other
options not used as part of the published packages. If you want to write your own operator or application, you can
use the SDK as a dependency (and contribute to HoloHub). If you need to make other modifications to the SDK,
file a feature or bug request.

4.2.4 Looking for a light runtime container image?

The current Holoscan container on NGC has a large size due to including all the dependencies for each of the built-in
operators, but also because of the development tools and libraries that are included. Follow the instructions on GitHub
to build a runtime container without these development packages. This page also includes detailed documentation to
assist you in only including runtime dependencies your Holoscan application might need.

4.2. Install the SDK 11

https://github.com/nvidia-holoscan/holoscan-sdk
https://github.com/nvidia-holoscan/holohub
https://forums.developer.nvidia.com/c/healthcare/holoscan-sdk/320/all
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/DEVELOP.md#runtime-container

Holoscan SDK User Guide, Release 2.2.0

12 Chapter 4. SDK Installation

CHAPTER
FIVE

ADDITIONAL SETUP

In addition to the required steps to install the Holoscan SDK, the steps below will help you achieve peak performance:

5.1 Enabling RDMA

Note: Learn more about RDMA in the technology overview section.

There are two parts to enabling RDMA for Holoscan:
* Enabling RDMA on the ConnectX SmartNIC
* Enabling GPUDirect RDMA

5.1.1 Enabling RDMA on the ConnectX SmartNIC

Skip to the next section if you do not plan to leverage a ConnectX SmartNIC.

The NVIDIA IGX Orin developer kit comes with an embedded ConnectX Ethernet adapter to offer advanced hardware
offloads and accelerations. You can also purchase an individual ConnectX adapter and install it on other systems such
as x86_64 workstations.

The following steps are required to ensure your ConnectX can be used for RDMA over Converged Ethernet (RoCE):

1. Install MOFED drivers

Ensure the Mellanox OFED drivers version 23.10 or above are installed:

cat /sys/module/mlx5_core/version

If not installed, or an older version, install the appropriate version from the MLNX_OFED download page, or use the
script below:

You can choose different versions/0S or download directly from the

Download Center in the webpage linked above

MOFED_VERSION="23.10-2.1.3.1"

0S="ubuntu22.04"

MOFED_PACKAGE="MLNX_OFED_LINUX- ${MOFED_VERSION }-${0S}-$(uname -m)"

wget --progress=dot:giga https://www.mellanox.com/downloads/ofed/MLNX_OFED-${MOFED_
VERSION}/${MOFED_PACKAGE}.tgz

(continues on next page)

13

https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://docs.nvidia.com/networking/display/mlnxofedv23070512/rdma+over+converged+ethernet+(roce)
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

tar xf ${MOFED_PACKAGE}.tgz

sudo ./${MOFED_PACKAGE}/mlnxofedinstall

add the --force flag to force uninstallation if necessary:
sudo ./${MOFED_PACKAGE}/mlnxofedinstall --force

rm -r MOFED_PACKAGE }*

2. Load MOFED drivers

Ensure the drivers are loaded:

sudo lsmod | grep ib_core

If nothing appears, run the following command:

sudo /etc/init.d/openibd restart

3. Switch the board Link Layer to Ethernet

The ConnectX SmartNIC can function in two separate modes (called link layer):
¢ Ethernet (ETH)
e Infiniband (IB)
Holoscan does not support IB at this time (not tested), so the ConnectX will need to use the ETH link layer.

To identify the current mode, run ibstat or ibv_devinfo and look for the Link Layer value. In the example below,
the m1x5_0 interface is in Ethernet mode, while the m1x5_1 interface is in Infiniband mode. Do not pay attention to
the transport value which is always InfiniBand.

$ ibstat
CA 'mlx5_0'
CA type: MT4129
Number of ports: 1
Firmware version: 28.37.0190
Hardware version: 0
Node GUID: 0x48b02d0300ee7al4
System image GUID: 0x48b02d0300ee7a®4
Port 1:
State: Down
Physical state: Disabled
Rate: 40
Base lid: 0
LMC: ©
SM lid: ©
Capability mask: 0x00010000
Port GUID: Ox4ab02dfffeee7a®4
Link layer: Ethernet
CA 'mlx5_1"
CA type: MT4129
Number of ports: 1
Firmware version: 28.37.0190

(continues on next page)

14 Chapter 5. Additional Setup

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Hardware version: 0
Node GUID: 0x48b02d0300ee7ald5
System image GUID: 0x48b02d0300ee7a04
Port 1:
State: Active
Physical state: LinkUp
Rate: 100
Base lid: ©
LMC: ©
SM 1lid: ©
Capability mask: 0x00010000
Port GUID: Ox4ab02dfffeee7a®5
Link layer: InfiniBand

If no results appear after ibstat and sudo lsmod | grep ib_core returns a result like this:

ib_core 425984 1 ib_uverbs

Consider running the following command or rebooting:

sudo /etc/init.d/openibd restart

To switch the link layer mode, there are two possible options:
1. On IGX Orin developer kits, you can switch that setting through the BIOS: see IGX Orin documentation.

2. On any system with a ConnectX (including IGX Orin devkits), you can run the command below from a terminal
(requires a reboot). sudo ibdev2netdev -v is used to identify the PCI address of the ConnectX (any of the
two interfaces is fine to use), and mlxconfig is used to apply the changes.

mlx_pci=$(sudo ibdev2netdev -v | awk '{print $1}' | head -nl)
sudo mlxconfig -d $mlx_pci set LINK_TYPE_P1=ETH LINK_TYPE_P2=ETH

Note: LINK_TYPE_P1 and LINK_TYPE_P2 are for m1x5_0 and m1x5_1 respectively. You can choose to only set
one of them. You can pass ETH or 2 for Ethernet mode, and IB or 1 for InfiniBand.

This is the output of the command above:

Device #1:

Device type: ConnectX7

Name: P3740-BO-QSFP_Ax

Description: NVIDIA Prometheus P3740 ConnectX-7 VPI PCIe Switch Motherboard;..

—400Gb/s; dual-port QSFP; PCIe switch5.0 X8 SLOT® ;X16 SLOT2; secure boot;

Device: 0005:03:00.0

Configurations: Next Boot New
LINK_TYPE_P1 ETH(2) ETH(2)
LINK_TYPE_P2 IB(1) ETH(2)

Apply new Configuration? (y/n) [n]

Next Boot is actually the current value that was expected to be used at the next reboot, while New is the value
you're about to set to override Next Boot.

5.1. Enabling RDMA 15

https://docs.nvidia.com/igx-orin/user-guide/latest/switch-network-link.html

Holoscan SDK User Guide, Release 2.2.0

Apply with y and reboot afterwards:

Applying... Done!
-I- Please reboot machine to load new configurations.

4. Configure the IP addresses of the ethernet interfaces

First, identify the logical names of your ConnectX interfaces. Connecting a cable in just one of the interfaces on the
ConnectX will help you identify which port is which (in the example below, only m1x5_1 i.e. eth3 is connected):

$ sudo ibdev2netdev
mlx5_0 port 1 ==> eth2 (Down)
mlx5_1 port 1 ==> eth3 (Up)

Tip: For IGX Orin Developer Kits with no live source to connect to the ConnectX QSFP ports, adding -v can show
you which logical name is mapped to each specific port:

* 0005:03.00.0 is the QSFP port closer to the PCI slots
* 0005:03.00.1 is the QSFP closer to the RJ45 ethernet ports

$ sudo ibdev2netdev -v

0005:03:00.0 mlx5_0 (MT4129 - P3740-0002) NVIDIA IGX, P3740-0002, 2-port QSFP up to.
—400G, InfiniBand and Ethernet, PCIe5 o
. fw 28.37.0190 port 1 (DOWN) ==>
— eth2 (Down)

0005:03:00.1 mlx5_1 (MT4129 - P3740-0002) NVIDIA IGX, P3740-0002, 2-port QSFP up to.
400G, InfiniBand and Ethernet, PCIe5 o
. fw 28.37.0190 port 1 (DOWN) ==>
— eth2 (Down)

If you have a cable connected but it does not show Up/Down in the output of ibdev2netdev, you can try to parse
the output of dmesg instead. The example below shows that 0005:03:00. 1 is plugged, and that it is associated with
eth3:

$ sudo dmesg | grep -w mlx5_core

[11.512808] mlx5_core 0005:03:00.0 eth2: Link down
[11.640670] mlx5_core 0005:03:00.1 eth3: Link down

[3712.267103] mlx5_core 0005:03:00.1: Port module event: module 1, Cable plugged

The next step is to set a static IP on the interface you’d like to use so you can refer to it in your Holoscan applications
(ex: Emergent cameras, distributed applications...).

First, check if you already have an address setup. We’ll use the eth3 interface in this example for m1x5_1:

ip -f inet addr show eth3

If nothing appears or you'd like to change the address, you can set an IP and MTU (Maximum Transmission Unit)
through the Network Manager user interface, CLI (nmcli), or other IP configuration tools. In the example below, we

16 Chapter 5. Additional Setup

Holoscan SDK User Guide, Release 2.2.0

use ip (ifconfigis legacy) to configure the eth3 interface with an address of 192.168.1.1/24 and a MTU of 9000
(i.e. “jumbo frame”) to send Ethernet frames with a payload greater than the standard size of 1500 bytes:

sudo ip link set dev eth3 down

sudo ip addr add 192.168.1.1/24 dev eth3
sudo ip link set dev eth3 mtu 9000

sudo ip link set dev eth3 up

Note: If you are connecting the ConnectX to another ConnectX with a LinkX interconnect, do the same on the other
system with an IP address on the same network segment.

For example, to communicate with 192.168.1.1/24 above (/24 -> 255.255.255.0 submask), setup your other
system with an IP between 192.168.1.2 and 192.168.1.254, and the same /24 submask.

5.1.2 Enabling GPUDirect RDMA

Note: Only supported on NVIDIA’s Quadro/workstation GPUs (not GeForce).

Follow the instructions below to enable GPUDirect RDMA:

dGPU

On dGPU, the GPUDirect RDMA drivers are named nvidia-peermem, and are installed with the rest of the NVIDIA
dGPU drivers.

Attention: To enable the use of GPUDirect RDMA with a ConnectX SmartNIC (section above), the following
steps are required if the MOFED drivers were installed after the peermem drivers:

nv_driver_version=$(modinfo nvidia | awk '/Aversion:/ {print $2}' | cut -d. -f1)
sudo dpkg-reconfigure nvidia-dkms-$nv_driver_version # or nvidia-dkms-${nv_driver_
—version}-server

Load the peermem kernel module manually:

sudo modprobe nvidia-peermem

Run the following to load it automatically during boot:

echo nvidia-peermem | sudo tee -a /etc/modules

5.1. Enabling RDMA 17

https://www.nvidia.com/en-us/networking/interconnect/
https://developer.nvidia.com/gpudirect

Holoscan SDK User Guide, Release 2.2.0

iGPU

Warning: At this time the IGX SW 1.0 DP and JetPack 6.0 DP are missing the nvidia-p2p kernel for support
for GPU Direct RDMA support. They re planned in the respective GA releases. The instructions below are to load
the kernel module once it is packaged in the GA releases.

On iGPU, the GPUDirect RDMA drivers are named nvidia-p2p. Run the following to load the kernel module man-
ually:

sudo modprobe nvidia-p2p

Run the following to load it automatically during boot:

echo nvidia-p2p | sudo tee -a /etc/modules

5.1.3 Testing with Rivermax

The instructions below describe the steps to test GPUDirect using the Rivermax SDK. The test applications used by
these instructions, generic_sender and generic_receiver, can then be used as samples in order to develop custom
applications that use the Rivermax SDK to optimize data transfers.

Note: The Linux default path where Rivermax expects to find the license file is /opt/mellanox/rivermax/
rivermax.lic, or you can specify the full path and file name for the environment variable RIVERMAX_LICENSE_PATH.

Note: If manually installing the Rivermax SDK from the link above, please note there is no need to follow the steps
for installing MLNX_OFED/MLNX_EN in the Rivermax documentation.

Running the Rivermax sample applications requires two systems, a sender and a receiver, connected via ConnectX
network adapters. If two Developer Kits are used then the onboard ConnectX can be used on each system, but if
only one Developer Kit is available then it is expected that another system with an add-in ConnectX network adapter
will need to be used. Rivermax supports a wide array of platforms, including both Linux and Windows, but these
instructions assume that another Linux based platform will be used as the sender device while the Developer Kit is
used as the receiver.

Note: The $rivermax_sdk variable referenced below corresponds to the path where the Rivermax SDK package was
installed. If the Rivermax SDK was installed via SDK Manager, this path will be:

rivermax_sdk=$HOME/Documents/Rivermax/1.31.10

If the Rivermax SDK was installed via a manual download, make sure to export your path to the SDK:

rivermax_sdk=$DOWNLOAD_PATH/1.31.10

Install path might differ in future versions of Rivermasx.

1. Determine the logical name for the ConnectX devices that are used by each system. This can be done by using
the 1shw -class network command, finding the product: entry for the ConnectX device, and making note
of the logical name: that corresponds to that device. For example, this output on a Developer Kit shows

18 Chapter 5. Additional Setup

https://developer.nvidia.com/networking/rivermax

Holoscan SDK User Guide, Release 2.2.0

the onboard ConnectX device using the enp9s0£01 logical name (1shw output shortened for demonstration
purposes).

$ sudo 1lshw -class network
*-network:0
description: Ethernet interface
product: MT28908 Family [ConnectX-6]
vendor: Mellanox Technologies
physical id: ©
bus info: pci@®000:09:00.0
logical name: enp9s0f®
version: 00
serial: 48:b0:2d:13:9b:6b
capacity: 10Gbit/s
width: 64 bits
clock: 33MHz
capabilities: pciexpress vpd msix pm bus_master cap_list ethernet physical.
—1000bt-fd 10000bt-fd autonegotiation
configuration: autonegotiation=on broadcast=yes driver=mlx5_core.
wdriverversion=5.4-1.0.3 duplex=full firmware=20.27.4006 (NVDOOOOOOOOO1) ip=10.0.0.
—2 latency=0 link=yes multicast=yes
resources: iomemory:180-17f irqg:33 memory:1818000000-1819ffffff

The instructions that follow will use the enp9s0£0 logical name for ifconfig commands, but these names
should be replaced with the corresponding logical names as determined by this step.

2. Run the generic_sender application on the sending system.

a. Bring up the network:

$ sudo ifconfig enp9s0f® up 10.0.0.1

b. Build the sample apps:

$ cd ${rivermax_sdk}/apps
$ make

e. Launch the generic_sender application:

$ sudo ./generic_sender -1 10.0.0.1 -d 10.0.0.2 -p 5001 -y 1462 -k 8192 -z 500 -v

+HBHBHB AR A HHBHBH BB AL AR BHBH BB AR AR AR RHR
| Sender index: 0

| Thread ID: 0x7falffblcO®

| CPU core affinity: -1

| Number of streams in this thread: 1

| Memory address: 0x7f986e3010

| Memory length: 59883520[B]

| Memory key: 40308
+HBHBHBHBHBHHHH R AR AR AR AR A HHH R AR AR AR AR AR R R
| Stream index: ®

| Source IP: 10.0.0.1

| Destination IP: 10.0.0.2

| Destination port: 5001

| Number of flows: 1

(continues on next page)

5.1. Enabling RDMA 19

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

| Rate limit bps: ®

| Rate limit max burst in packets: 0
| Memory address: 0x7£986e3010

| Memory length: 59883520[B]

| Memory key: 40308

| Number of user requested chunks: 1
| Number of application chunks: 5

| Number of packets in chunk: 8192

| Packet's payload size: 1462

+

FhAAhhhhNNN NN RN NN RN fddddded

3. Run the generic_receiver application on the receiving system.

a. Bring up the network:

$ sudo ifconfig enp9s0£f0® up 10.0.0.2

b. Build the generic_receiver app with GPUDirect support from the Rivermax GitHub Repo. Before fol-
lowing the instructions to build with CUDA-Toolkit support, apply the changes to file generic_receiver/
generic_receiver.cpp in this PR, this was tested on the IGX Orin Developer Kit with Rivermax 1.31.10.

c. Launch the generic_receiver application from the build directory:

$ sudo ./generic_receiver -i 10.0.0.2 -m 10.0.0.2 -s 10.0.0.1 -p 5001 -g O

Attached flow 1 to stream.
Running main receive loop...

Got 5877704 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
Got 5877704 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec

With both the generic_sender and generic_receiver processes active, the receiver will continue to print out
received packet statistics every second. Both processes can then be terminated with <ctrl-c>.

5.2 Enabling G-SYNC

For better performance and to keep up with the high refresh rate of Holoscan applications, we recommend the use of a
G-SYNC display.

Tip: Holoscan has been tested with these two G-SYNC displays:
¢ Asus ROG Swift PG279QM
¢ Asus ROG Swift 360 Hz PG259QNR

Follow these steps to ensure G-SYNC is enabled on your display:
1. Open the “NVIDIA Settings” Graphical application (nvidia-settings in Terminal).

2. Click on X Server Display Configuration then the Advanced button. This will show the A1llow G-SYNC
on monitor not validated as G-SYNC compatible option. Enable the option and click Apply:

20 Chapter 5. Additional Setup

https://github.com/NVIDIA/Rivermax
https://github.com/NVIDIA/Rivermax/blob/master/generic_receiver/README.md#how-to-build
https://github.com/NVIDIA/Rivermax/pull/3/files
https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/specs/
https://rog.asus.com/us/monitors/27-to-31-5-inches/rog-swift-pg279qm-model/
https://rog.asus.com/us/monitors/23-to-24-5-inches/rog-swift-360hz-pg259qnr-model/

Holoscan SDK User Guide, Release 2.2.0

3. To show the refresh rate and G-SYNC label on the display window, click on OpenGL Settings for the se-
lected display. Now click Allow G-SYNC/G-SYNC Compatible and Enable G-SYNC/G-SYNC Compatible
Visual Indicator options and click Quit. This step is shown in below image. The Gsync indicator will be
at the top right screen once the application is running.

5.3 Disabling Variable Backlight

Various monitors have a Variable Backlight feature. That setting can add up to a frame of latency when enabled. Refer
to your monitor’s manufacturer instructions to disable it.

Tip: To disable variable backlight on the Asus ROG Swift monitors mentioned above, use the joystick button at the
back of the display, go to the image tag, select variable backlight, then switch that setting to OFF.

5.4 Enabling Exclusive Display Mode

By default, applications use a borderless fullscreen window managed by the window manager. Because the window
manager also manages other applications, applications may suffer a performance hit. To improve performance, exclu-
sive display mode can be used with Holoscan’s new visualization module (Holoviz), allowing the application to bypass
the window manager and render directly to the display. Refer to the Holoviz documentation for details.

5.5 Use both Integrated and Discrete GPUs on NVIDIA Developer Kits

NVIDIA Developer Kits like the NVIDIA IGX Orin or the NVIDIA Clara AGX have both a discrete GPU (dGPU -
optional on IGX Orin) and an integrated GPU (iGPU - Tegra SoC).

As of this release, when these developer kits are flashed to leverage the dGPU, there are two limiting factors preventing
the use of the iGPU:

1. Conflict between the dGPU kernel mode driver and the iGPU display kernel driver (both named nvidia.ko).
This conflict is not addressable at this time, meaning that the iGPU cannot be used for display while the dGPU
is enabled.

2. Conflicts between the user mode driver libraries (ex: 1ibcuda. so) and the compute stack (ex: libcuda_rt.so)
for dGPU and iGPU.

We provide utilities to work around the second conflict:

IGX SW 1.0
Refer to the IGX user guide to learn how to leverage the iGPU in containers while the IGX developer kit is flashed in
dGPU mode.

To leverage both GPUs in Holoscan, you can create separate applications running concurrently per the IGX documen-
tation above, where the iGPU application must run in the Holoscan iGPU container, and the dGPU application can run
bare metal or in the Holoscan dGPU container.

You can also create a single distributed application that leverages both the iGPU and dGPU by executing separate
fragments on the iGPU and on the dGPU.

The example below shows the ping distributed application between the iGPU and dGPU using Holoscan containers:

5.3. Disabling Variable Backlight 21

https://www.nvidia.com/en-us/edge-computing/products/igx/
https://www.nvidia.com/en-gb/clara/intelligent-medical-instruments/
https://docs.nvidia.com/igx-orin/user-guide/latest/igpu-dgpu.html

Holoscan SDK User Guide, Release 2.2.0

System Information
X Server Display Configuration

w XScreen0

X Server XVideo Settings
OpenGL Settings
Graphics Information
Antialiasing Settings
WVDPAU Information

~ GPU 0-(Quadro RTX 6000)

Thermal Settings

PowerMizer

ECC Settings

DP-2 - (AUS ROG PG279QM)
Application Profiles
nvidia-settings Configuration

NVIDIA Settings - O

AUS ROG PG279QM

2560x1440
Selection: AUS ROG PG279QM (DP-2 on GPU-0) -
Configuration: Xscreen0 -
Resolution: 2560x1440 - 240 Hz -
Mode Name: 2560x1440_240
Orientation: No Rotation = No Reflection -
ViewPortlIn: 2560x1440
ViewPortOut: 2560x14404040
Panning: 2560x1440

Force Composition Pipeline Force Full Composition Pipeline

Allow G-SYNC on monitor not validated as G-SYNC Compatible

Apply Detect Displays Basic... Reset

Save to X Configuration File

Help Quit

Fig. 5.1: Enable G-SYNC for the current display

22

Chapter 5. Additional Setup

Holoscan SDK User Guide, Release 2.2.0

NVIDIA Settings

System Information
X Server Display Configuration

nyvinDA

v AScreen0
X Server XVideo Settings Performance
OpenGL Settings Sync to VBlank
Graphics Information 3 Allow Flipping
Antialiasing Settings Allow G-SYNC/G-SYNC Compatible

VDPAU Information Enable G-SYNC/G-SYNC Compatible Visual Indicator

~ GPU 0 - (Quadro RTX 6000) Image Settings: | High Quality v
Thermal Settings Miscellaneous
PowerMizer
ECC Settings
DP-2 - (AUS ROG PG279QM)
DP-7 - (AUS ROG PG259QN)
Application Profiles Use Conformant Texture Clamping
Enable Graphics API Visual Indicator

Enable gamma correction For antialiased lines

Gamma correction

nvidia-settings Configuration

Help Quit

Fig. 5.2: Enable Visual Indicator for the current display

5.5. Use both Integrated and Discrete GPUs on NVIDIA Developer Kits 23

Holoscan SDK User Guide, Release 2.2.0

COMMON_DOCKER_FLAGS="--rm -i --init --net=host

--runtime=nvidia -e NVIDIA_DRIVER_CAPABILITIES=all

--cap-add CAP_SYS_PTRACE --ipc=host --ulimit memlock=-1 --ulimit stack=67108864
HOLOSCAN_VERSION=2.2.0
HOLOSCAN_IMG="nvcr.io/nvidia/clara-holoscan/holoscan:v$HOLOSCAN_VERSION"
HOLOSCAN_DGPU_IMG="$HOLOSCAN_IMG-dgpu"

HOLOSCAN_IGPU_IMG="$HOLOSCAN_IMG-igpu"

Pull images
docker pull $HOLOSCAN_DGPU_ING
docker pull $HOLOSCAN_IGPU_INMG

Run ping distributed (python) in dGPU container
- Making this one the ‘driver’, but could be igpu too
- Using & to not block the terminal to run igpu afterwards. Could run igpu in separate.
—terminal instead.
docker run \

$COMMON_DOCKER_FLAGS \

$HOLOSCAN_DGPU_INMG \

bash -c "python3 ./examples/ping_distributed/python/ping_distributed.py --gpu --worker.,
—--driver" &

Run ping distributed (c++) in iGPU container
docker run \
$COMMON_DOCKER_FLAGS \
-e NVIDIA_VISIBLE_DEVICES=nvidia.com/igpu=0 \
$HOLOSCAN_TMG-igpu \
bash -c "./examples/ping_distributed/cpp/ping_distributed --gpu --worker"

HoloPack 1.2+

The LAT Compute Assist is a container on NGC which isolates the iGPU stack in order to enable iGPU compute on
the developer kits configured for dGPU. Other applications can run concurrently on the dGPU, natively or in another
container.

Attention: These utilities enable using the iGPU for capabilities other than display only, since they do not address
the first conflict listed above.

5.6 Deployment Software Stack

NVIDIA Holoscan accelerates deployment of production-quality applications by providing a set of OpenEmbed-
ded build recipes and reference configurations that can be leveraged to customize and build Holoscan-compatible
Linux4Tegra (L4T) embedded board support packages (BSP) on the NVIDIA IGX Developer Kits.

Holoscan OpenEmbedded/Yocto recipes add OpenEmbedded recipes and sample build configurations to build BSPs
for the NVIDIA IGX Developer Kit that feature support for discrete GPUs (dGPU), AJA Video Systems I/O boards,
and the Holoscan SDK. These BSPs are built on a developer’s host machine and are then flashed onto the NVIDIA
IGX Developer Kit using provided scripts.

24 Chapter 5. Additional Setup

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/l4t-compute-assist
https://github.com/nvidia-holoscan/meta-tegra-holoscan

Holoscan SDK User Guide, Release 2.2.0

There are two options available to set up a build environment and start building Holoscan BSP images using OpenEm-
bedded.

* The first sets up a local build environment in which all dependencies are fetched and installed manually by the
developer directly on their host machine. Please refer to the Holoscan OpenEmbedded/Yocto recipes README
for more information on how to use the local build environment.

* The second uses a Holoscan OpenEmbedded/Yocto Build Container that is provided by NVIDIA on NGC which
contains all of the dependencies and configuration scripts such that the entire process of building and flashing a
BSP can be done with just a few simple commands.

5.6. Deployment Software Stack 25

https://github.com/nvidia-holoscan/meta-tegra-holoscan/blob/main/README.md
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan-oe-builder

Holoscan SDK User Guide, Release 2.2.0

26

Chapter 5. Additional Setup

CHAPTER
SIX

THIRD PARTY HARDWARE SETUP

GPU compute performance is a key component of the Holoscan hardware platforms, and to optimize GPU based
video processing applications and provide lowest possible latency the Holoscan SDK now supports AJA Video Sys-
tems capture cards and Emergent Vision Technologies high-speed cameras. The following sections will provide more
information on how to setup the system with these technologies.

6.1 AJA Video Systems

AJA provides a wide range of proven, professional video I/O devices, and thanks to a partnership between NVIDIA
and AJA, Holoscan provides ongoing support for the AJA NTV2 SDK and device drivers.

The AJA drivers and SDK offer RDMA support for NVIDIA GPUs. This feature allows video data to be captured
directly from the AJA card to GPU memory, which significantly reduces latency and system PCI bandwidth for GPU
video processing applications as sysmem to GPU copies are eliminated from the processing pipeline.

The following instructions describe the steps required to setup and use an AJA device with RDMA support on NVIDIA
Developer Kits with a PCle slot. Note that the AJA NTV2 SDK support for Holoscan includes all of the AJA Developer
Products, though the following instructions have only been verified for the Corvid 44 12G BNC, KONA XM, and KONA
HDMI products, specifically.

Note: The addition of an AJA device to a NVIDIA Developer Kit is optional. The Holoscan SDK has elements that
can be run with an AJA device with the additional features mentioned above, but those elements can also run without
AJA. For example, there are Holoscan sample applications that have an AJA live input component, however they can
also take in video replay as input. Similarly, the latency measurement tool can measure the latency of the video I/O
subsystem with or without an AJA device available.

6.1.1 Installing the AJA Hardware

This section describes how to install the AJA hardware on the Clara AGX Developer Kit. Note that the AJA Hardware
is also compatible with the NVIDIA IGX Orin Developer Kit.

To install an AJA Video Systems device into the Clara AGX Developer Kit, remove the side access panel by removing
two screws on the back of the Clara AGX. This provides access to the two available PCle slots, labelled 13 and 14 in
the Clara AGX Developer Kit User Guide:

While these slots are physically identical PCle x16 slots, they are connected to the Clara AGX via different PCle
bridges. Only slot 14 shares the same PCle bridge as the RTX6000 dGPU, and so the AJA device must be installed
into slot 14 for RDMA support to be available. The following image shows a Corvid 44 12G BNC card installed into
slot 14 as needed to enable RDMA support.

27

https://www.aja.com/
https://www.aja.com/family/developer
https://www.aja.com/family/developer
https://www.aja.com/products/corvid-44-12g-bnc
https://www.aja.com/products/kona-hdmi
https://www.aja.com/products/kona-hdmi
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://www.aja.com/products/corvid-44-12g-bnc

Holoscan SDK User Guide, Release 2.2.0

28

Chapter 6. Third Party Hardware Setup

Holoscan SDK User Guide, Release 2.2.0

6.1.2 Installing the AJA Software

The AJA NTV2 SDK includes both the drivers (kernel module) that are required in order to enable an AJA device, as
well as the SDK (headers and libraries) that are used to access an AJA device from an application.

The drivers must be loaded every time the system is rebooted, and they must be loaded natively on the host system (i.e.
not inside a container). The drivers must be loaded regardless of whether applications will be run natively or inside a
container (see Using AJA Devices in Containers).

The SDK only needs to be installed on the native host and/or container that will be used to compile applications
with AJA support. The Holoscan SDK containers already have the NTV2 SDK installed, and so no additional steps
are required to build AJA-enabled applications (such as the reference Holoscan applications) within these containers.
However, installing the NTV2 SDK and utilities natively on the host is useful for the initial setup and testing of the
AJA device, so the following instructions cover this native installation.

Note: To summarize, the steps in this section must be performed on the native host, outside of a container, with the
following steps required once:

* Downloading the AJA NTV2 SDK Source
* Building the AJA NTV2 Drivers
The following steps required after every reboot:
* Loading the AJA NTV?2 Drivers
And the following steps are optional (but recommended during the initial setup):
* Building and Installing the AJA NTV2 SDK
e Testing the AJA Device

Downloading the AJA NTV2 SDK Source

Navigate to a directory where you would like the source code to be downloaded, then perform the following to clone
the NTV2 SDK source code.

$ git clone https://github.com/nvidia-holoscan/libajantv2.git
$ export NTV2=$(pwd)/libajantv2

Note: These instructions use a fork of the official AJA NTV2 Repository that is maintained by NVIDIA and may
contain additional changes that are required for Holoscan SDK support. These changes will be pushed to the official AJA
NTV2 repository whenever possible with the goal to minimize or eliminate divergence between the two repositories.

Installing the NVIDIA Open Kernel Modules for RDMA Support

If the AJA NTV2 drivers are going to be built with RDMA support, the open-source NVIDIA kernel modules must
be installed instead of the default proprietary drivers. If the drivers were installed from an NVIDIA driver installer
package then follow the directions on the NVIDIA Open GPU Kernel Module Source GitHub page. If the NVIDIA
drivers were installed using an Ubuntu package via apt, then replace the installed nvidia-kernel-source package with the
corresponding nvidia-kernel-open package. For example, the following shows that the 545 version drivers are installed:

6.1. AJA Video Systems 29

https://github.com/aja-video/libajantv2
https://github.com/NVIDIA/open-gpu-kernel-modules

Holoscan SDK User Guide, Release 2.2.0

S dpkg --list | grep nvidia-kernel-source
ii nvidia-kernel-source-545 545.23.08-0ubuntul amd64 NVIDIA kernel.
—,source package

And the following will replace those with the corresponding nvidia-kernel-open drivers:

S sudo apt install -y nvidia-kernel-open-545
$ sudo dpkg-reconfigure nvidia-dkms-545

The system must then be rebooted to load the new open kernel modules.

Building the AJA NTV2 Drivers

The following will build the AJA NTV2 drivers with RDMA support enabled. Once built, the kernel module
(ajantv2.ko) and load/unload scripts (load_ajantv2 and unload_ajantv2) will be output to the ${NTV2}/driver/
bin directory.

$ export AJA_RDMA=1 # Or unset AJA_RDMA to disable RDMA support

$ unset AJA_IGPU # Or export AJA_IGPU=1 to run on the integrated GPU of the.
—IGX Orin Devkit (L4T >= 35.4)

$ make -j --directory NTV2}/driver/linux

Loading the AJA NTV2 Drivers

Running any application that uses an AJA device requires the AJA kernel drivers to be loaded, even if the application
is being run from within a container.

Note: To enable RDMA with AJA, ensure the NVIDIA GPUDirect RDMA kernel module is loaded before the AJA
NTV2 drivers.

The AJA drivers must be manually loaded every time the machine is rebooted using the load_ajantv2 script:

$ sudo sh ${NTV2}/driver/bin/load_ajantv2
loaded ajantv2 driver module

Note: The NTV2 environment variable must point to the NTV2 SDK path where the drivers were previ-
ously built as described in Building the AJA NTV2 Drivers.

Secure boot must be disabled in order to load unsigned module. If any errors occur while loading the
module refer to the Troubleshooting section, below.

30 Chapter 6. Third Party Hardware Setup

Holoscan SDK User Guide, Release 2.2.0

Building and Installing the AJA NTV2 SDK

Since the AJA NTV2 SDK is already loaded into the Holoscan containers, this step is not strictly required in order to
build or run any Holoscan applications. However, this builds and installs various tools that can be useful for testing
the operation of the AJA hardware outside of Holoscan containers, and is required for the steps provided in 7esting the
AJA Device.

$ sudo apt-get install -y cmake

$ mkdir $/NTV2}/cmake-build

$ cd ${NTV2}/cmake-build

$ export PATH=/usr/local/cuda/bin: ${PATH
$ cmake ..

$ make -j

$ sudo make install

Testing the AJA Device

The following steps depend on tools that were built and installed by the previous step, Building and Installing the AJA
NTV2 SDK. If any errors occur, see the Troubleshooting section, below.

1.

To ensure that an AJA device has been installed correctly, the ntv2enumerateboards utility can be used:

$ ntv2enumerateboards

AJA NTV2 SDK version 16.2.0 build 3 built on Wed Feb 02 21:58:01 UTC 2022
1 AJA device(s) found:

AJA device 0 is called 'KonaHDMI - O

deviceID of 0x10767400
SDI Input(s)

SDI Output(s)

HDMI Input(s)

HDMI Output(s)

Analog Input(s)

Analog Output(s)

This device has
This device has
This device has
This device has
This device has
This device has
This device has

@ DS bW

47 video format(s):
1080i50, 1080i59.94, 1080i60, 720p59.94, 720p60, 1080p29.97, 1080p30,
1080p25, 1080p23.98, 1080p24, 2Kp23.98, 2Kp24, 720p50, 1080p50b,
1080p59.94b, 1080p60b, 1080p50a, 1080p59.94a, 1080p60®a, 2Kp25, 525i59.94,
625150, UHDp23.98, UHDp24, UHDp25, 4Kp23.98, 4Kp24, 4Kp25, UHDp29.97,
UHDp30, 4Kp29.97, 4Kp30, UHDp5®, UHDp59.94, UHDp6®, 4Kp50, 4Kp59.94,
4Kp60, 4Kp47.95, 4Kp48, 2Kp60®a, 2Kp59.94a, 2Kp29.97, 2Kp30, 2KpS50a,
2Kp47.95a, 2Kp48a

. To ensure that RDMA support has been compiled into the AJA driver and is functioning correctly, the

rdmawhacker utility can be used (use <ctrl-c> to terminate):

$ rdmawhacker

DMA engine 1 WRITE 8388608 bytes rate: 3975.63 MB/sec 496.95 xfers/sec
Max rate: 4010.03 MB/sec
Min rate: 3301.69 MB/sec
Avg rate: 3923.94 MB/sec

6.1.

AJA Video Systems 31

Holoscan SDK User Guide, Release 2.2.0

6.1.3 Using AJA Devices in Containers

Accessing an AJA device from a container requires the drivers to be loaded natively on the host (see Loading the AJA
NTV?2 Drivers), then the device that is created by the load_ajantv2 script must be shared with the container using the
--device docker argument, such as —device /dev/ajantv20:/dev/ajantv20.

6.1.4 Troubleshooting

1. Problem: The sudo sh ${NTV2}/driver/bin/load_ajantv2 command returns an error.

Solutions:

a.

b.

Make sure the AJA card is properly installed and powered (see 2.a below)

Check if SecureBoot validation is disabled:

$ sudo mokutil --sb-state
SecureBoot enabled
SecureBoot validation is disabled in shim

If SecureBoot validation is enabled, disable it with the following procedure:

$ sudo mokutil --disable-validation

* Enter a temporary password and reboot the system.

» Upon reboot press any key when you see the blue screen MOK Management
 Select Change Secure Boot state

* Enter the password your selected

* Select Yes to disable Secure Book in shim-signed

 After reboot you can verify again that SecureBoot validation is disabled in shim.

2. Problem: The ntv2enumerateboards command does not find any devices.

Solutions:

a.

Make sure that the AJA device is installed properly and detected by the system (see Installing the AJA
Hardware):

$ 1spci

0000:00:00.0 PCI bridge: NVIDIA Corporation Device lad® (rev al)

0000:05:00.0 Multimedia video controller: AJA Video Device eb25 (rev 01)
0000:06:00.0 PCI bridge: Mellanox Technologies Device 1976

0000:07:00.0 PCI bridge: Mellanox Technologies Device 1976

0000:08:00.0 VGA compatible controller: NVIDIA Corporation Device 1e30 (rev al)

. Make sure that the AJA drivers are loaded properly (see Loading the AJA NTV2 Drivers):

$ lsmod

Module Size Used by
ajantv2 610066 O

nvidia_drm 54950 4

mlx5_ib 170091 ©
nvidia_modeset 1250361 8 nvidia_drm

(continues on next page)

32

Chapter 6. Third Party Hardware Setup

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

ib_core 211721 1 mlx5_ib
nvidia 34655210 315 nvidia_modeset

3. Problem: The rdmawhacker command outputs the following error:

ERROR: GPU buffer lock failed

Solution: The AJA drivers need to be compiled with RDMA support enabled. Follow the instructions in Building
the AJA NTV2 Drivers, making sure not to skip the export AJA_RDMA=1 when building the drivers.

6.2 Emergent Vision Technologies (EVT)

Thanks to a collaboration with Emergent Vision Technologies, the Holoscan SDK now supports EVT high-speed cam-
eras on NVIDIA Developer Kits equipped with a ConnectX NIC using the Rivermax SDK.

6.2.1 Installing EVT Hardware

The EVT cameras can be connected to NVIDIA Developer Kits through a Mellanox ConnectX SmartNIC, with the
most simple connection method being a single cable between a camera and the devkit. For 25 GigE cameras that use
the SFP28 interface, this can be achieved by using SFP28 cable with QSFP28 to SFP28 adaptor.

Note: The Holoscan SDK application has been tested using a SFP28 copper cable of 2M or less. Longer copper cables
or optical cables and optical modules can be used but these have not been tested as a part of this development.

Refer to the NVIDIA IGX Orin Developer Kit User Guide for the location of the QSFP28 connector on the device.

For EVT camera setup, refer to Hardware Installation in EVT Camera User’s Manual. Users need to log in to find be
able to download Camera User’s Manual.

Tip: The EVT cameras require the user to buy the lens. Based on the application of camera, the lens can be bought
from any online store.

6.2.2 Installing EVT Software

The Emergent SDK needs to be installed in order to compile and run the Clara Holoscan applications with EVT camera.
The latest tested version of the Emergent SDK is eSDK 2.37.05 Linux Ubuntu 20.04.04 Kernel 5.10.65 JP
5.0 HP and can be downloaded from here. The Emergent SDK comes with headers, libraries and examples. To install
the SDK refer to the Software Installation section of EVT Camera User’s Manual. Users need to log in to find be able
to download Camera User’s Manual.

Note: The Emergent SDK depends on Rivermax SDK and the Mellanox OFED Network Drivers. If they’re already
installed on your system, use the following command when installing the Emergent SDK to avoid duplicate installation:

sudo ./install_eSdk.sh no_mellanox

Ensure the ConnectX is properly configured to use it with the Emergent SDK.

6.2. Emergent Vision Technologies (EVT) 33

https://emergentvisiontec.com/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://developer.nvidia.com/networking/rivermax
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://store.nvidia.com/en-us/networking/store/product/MCP2M00-A001E30N/NVIDIAMCP2M00A001E30NDACCableEthernet25GbESFP281m/
https://store.nvidia.com/en-us/networking/store/product/MAM1Q00A-QSA28/NVIDIAMAM1Q00AQSA28CableAdapter100Gbsto25GbsQSFP28toSFP28/
https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://emergentvisiontec.com/resources/?tab=umg
https://www.bhphotovideo.com/c/search?Ntt=c%20mount%20lens&N=0&InitialSearch=yes&sts=ps
https://emergentvisiontec.com/resources/?tab=ss
https://emergentvisiontec.com/resources/?tab=umg

Holoscan SDK User Guide, Release 2.2.0

6.2.3 Testing the EVT Camera

To test if the EVT camera and SDK was installed correctly, run the eCapture application with sudo privileges. First,
ensure that a valid Rivermax license file is under /opt/mellanox/rivermax/rivermax.1lic, then follow the in-
structions under the eCapture section of EVT Camera User’s Manual.

6.2.4 Troubleshooting

1. Problem: The application fails to find the EVT camera.
Solution:

* Make sure that the MLNX ConnectX SmartNIC is configured with the correct IP address. Follow
section Configure the ConnectX SmartNIC

2. Problem: The application fails to open the EVT camera.
Solutions:
* Make sure that the application was run with sudo privileges.
¢ Make sure a valid Rivermax license file is located at /opt/mellanox/rivermax/rivermax.lic.
3. Problem: Fail to find eCapture application in the home window.
Solution:

* Open the terminal and find it under /opt/EVT/eCapture. The applications needs to be run with
sudo privileges.

4. Problem: The eCapture application fails to connect to the EVT camera with error message “GVCP ack error”.

Solutions: It could be an issue with the HR12 power connection to the camera. Disconnect the HR12
power connector from the camera and try reconnecting it.

5. Problem: The IP address of the Emergent camera is reset even after setting up with the above steps.

Solutions: Check whether the NIC settings in Ubuntu is set to “Connect automatically”. Go to Settings-
>Network->NIC for the Camera and then unselect “Connect automatically” and in the IPv6 tab, select
Disable.

34 Chapter 6. Third Party Hardware Setup

https://emergentvisiontec.com/resources/?tab=umg

CHAPTER
SEVEN

HOLOSCAN CORE CONCEPTS

Note: In its early days, the Holoscan SDK was tightly linked to the GXF core concepts. While the Holoscan SDK
still relies on GXF as a backend to execute applications, it now offers its own interface, including a C++ API (0.3), a
Python API (0.4), and the ability to write native operators (0.4) without requiring to wrap a GXF extension. Read the
Holoscan and GXF section for additional details.

An Application is composed of Fragments, each of which runs a graph of Operators. The implementation of that
graph is sometimes referred to as a pipeline, or workflow, which can be visualized below:

Application

Fragment 1 Fragment 2

- —

Fig. 7.1: Core concepts: Application

Input Port

: Output Port
Input Port

Fig. 7.2: Core concepts: Port

35

Holoscan SDK User Guide, Release 2.2.0

The core concepts of the Holoscan API are:

Application: An application acquires and processes streaming data. An application is a collection of fragments
where each fragment can be allocated to execute on a physical node of a Holoscan cluster.

Fragment: A fragment is a building block of the Application. It is a directed graph of operators. A fragment
can be assigned to a physical node of a Holoscan cluster during execution. The run-time execution manages
communication across fragments. In a Fragment, Operators (Graph Nodes) are connected to each other by flows
(Graph Edges).

Operator: An operator is the most basic unit of work in this framework. An Operator receives streaming data
at an input port, processes it, and publishes it to one of its output ports. A Codelet in GXF would be replaced
by an Operator in the Holoscan SDK. An Operator encapsulates Receivers and Transmitters of a GXF
Entity as Input/Output Ports of the Operator.

(Operator) Resource: Resources such as system memory or a GPU memory pool that an Operator needs to
perform its job. Resources are allocated during the initialization phase of the application. This matches the
semantics of GXF’s Memory Allocator or any other components derived from the Component class in GXF.

Condition: A condition is a predicate that can be evaluated at runtime to determine if an operator should execute.
This matches the semantics of GXF’s Scheduling Term.

Port: An interaction point between two operators. Operators ingest data at Input ports and publish data at
Output ports. Receiver, Transmitter, and MessageRouter in GXF would be replaced with the concept of
Input/Output Port of the Operator and the Flow (Edge) of the Application Workflow (DAG) in the Framework.

Message: A generic data object used by operators to communicate information.

Executor: An Executor that manages the execution of a Fragment on a physical node. The framework provides
a default Executor that uses a GXF Scheduler to execute an Application.

36

Chapter 7. Holoscan Core Concepts

CHAPTER
EIGHT

HOLOSCAN BY EXAMPLE

In this section, we demonstrate how to use the Holoscan SDK to build applications through a series of examples. The
concepts needed to build your own Holoscan applications will be covered as we go through each example.

Note: Examples source code and run instructions can be found in the examples directory on GitHub, or under /opt/
nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.1 Hello World

For our first example, we look at how to create a Hello World example using the Holoscan SDK.
In this example we’ll cover:

* how to define your application class

¢ how to define a one-operator workflow

* how to use a CountCondition to limit the number of times an operator is executed

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.1.1 Defining the HelloWorldApp class

For more details, see the Defining an Application Class section.

We define the HelloWorldApp class that inherits from holoscan’s Application base class. An instance of the appli-
cation is created in main. The run() method will then start the application.

37

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

26

27

28

29

39

40

41

42

43

44

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 2.2.0

C++

class HellolWorldApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

// Define the operators, allowing the hello operator to execute once
auto hello = make_operator<ops: :HelloWorldOp>("hello", make_condition<CountCondition>

=(1));

// Define the workflow by adding operator into the graph
add_operator(hello);
}
3

int main(int argc, char** argv) {
auto app = holoscan: :make_application<HelloWorldApp>Q);
app->runQ);

return 0;

}

Python

class HelloWorldApp(Application):
def compose(self):
Define the operators
hello = HelloWorldOp(self, CountCondition(self, 1), name="hello")

Define the one-operator workflow
self.add_operator (hello)

def main(Q:
app = HelloWorldApp()
app.run()

if name_ == "__main__":
main()

8.1.2 Defining the HelloWorldApp workflow

For more details, see the Application Workflows section.

When defining your application class, the primary task is to define the operators used in your application and the
interconnectivity between them to define the application workflow. The HelloWorldApp uses the simplest form of a
workflow which consists of a single operator: HelloWorldOp.

For the sake of this first example, we will ignore the details of defining a custom operator to focus on the highlighted
information below: when this operator runs (compute), it will print out Hello World! to the standard output:

38 Chapter 8. Holoscan by Example

26

27

28

29

30

Holoscan SDK User Guide, Release 2.2.0

C++

class HelloWorldOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (HelloWorldOp)

HelloWorldOp() = default;

void setup(OperatorSpec& spec) override {

}

void compute(InputContext& op_input, OutputContext& op_output,
ExecutionContext& context) override {
std: :cout << std::endl;
std::cout << "Hello World!" << std::endl;
std::cout << std::endl;
}
1

Python

class HelloWorldOp(Operator):
"""Simple hello world operator.

This operator has no ports.

On each tick, this operator prints out hello world.

e

def setup(self, spec: OperatorSpec):
pass

def compute(self, op_input, op_output, context):

print (")
print("Hello World!")
print(" n)

Defining the application workflow occurs within the application’s compose () method. In there, we first create an
instance of the HelloWorldOp operator defined above, then add it to our simple workflow using add_operator().

C++

class HellolWorldApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

// Define the operators, allowing the hello operator to execute once
auto hello = make_operator<ops: :HelloWorldOp>("hello", make_condition<CountCondition>

=(1));

(continues on next page)

8.1. Hello World 39

21

23

24

25

26

27

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

// Define the workflow by adding operator into the graph
add_operator (hello);
}
};

Python

class HelloWorldApp(Application):
def compose(self):
Define the operators
hello = HelloWorldOp(self, CountCondition(self, 1), name="hello")

Define the one-operator workflow
self.add_operatorChello)

Holoscan applications deal with streaming data, so an operator’s compute () method will be called continuously until
some situation arises that causes the operator to stop. For our Hello World example, we want to execute the operator
only once. We can impose such a condition by passing a CountCondition object as an argument to the operator’s
constructor.

For more details, see the Configuring operator conditions section.

8.1.3 Running the Application

Running the application should give you the following output in your terminal:

Hello World!

Congratulations! You have successfully run your first Holoscan SDK application!

8.2 Ping Simple

Most applications will require more than one operator. In this example, we will create two operators where one operator
will produce and send data while the other operator will receive and print the data. The code in this example makes
use of the built-in PingTxOp and PingRxOp operators that are defined in the holoscan: : ops namespace.

In this example we’ll cover:
* how to use built-in operators

* how to use add_flow() to connect operators together

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

40 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 2.2.0

8.2.1 Operators and Workflow

Here is a example workflow involving two operators that are connected linearly.

PingTxOp PingRxOp
out...in

p [in]in : int

out(out) : int

Fig. 8.1: A linear workflow

In this example, the source operator PingTxOp produces integers from 1 to 10 and passes it to the sink operator
PingRxOp which prints the integers to standard output.

8.2.2 Connecting Operators

We can connect two operators by calling add_flow() (C++/Python) in the application’s compose () method.

The add_flow() method (C++/Python) takes the source operator, the destination operator, and the optional port name
pairs. The port name pair is used to connect the output port of the source operator to the input port of the destination
operator. The first element of the pair is the output port name of the upstream operator and the second element is the
input port name of the downstream operator. An empty port name (‘”’) can be used for specifying a port name if the
operator has only one input/output port. If there is only one output port in the upstream operator and only one input
port in the downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose () method for our example. Note that
when an operator appears in an add_flow() statement, it doesn’t need to be added into the workflow separately using
add_operator().

C++

#include <holoscan/holoscan.hpp>
#include <holoscan/operators/ping_tx/ping_tx.hpp>
#include <holoscan/operators/ping_rx/ping_rx.hpp>

class MyPingApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;
// Create the tx and rx operators
auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto rx = make_operator<ops: :PingRxOp>("rx");

// Connect the operators into the workflow: tx -> rx

(continues on next page)

8.2. Ping Simple 41

20

21

22

23

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

add_flow(tx, rx);
}
};

int main(int argc, char** argv) {
auto app = holoscan: :make_application<MyPingApp>Q);
app->run();

return 0;

}

The header files that define PingTxOp and PingRxOp are included on lines 2 and 3 respectively.

* We create an instance of the PingTxOp using the make_operator () function (line 10) with the name “tx” and
constrain it’s compute () method to execute 10 times.

¢ We create an instance of the PingRxOp using the make_operator () function (line 11) with the name “rx”.

* The tx and rx operators are connected using add_flow() (line 14)

Python

from holoscan.conditions import CountCondition
from holoscan.core import Application
from holoscan.operators import PingRxOp, PingTxOp

class MyPingApp(Application):
def compose(self):
Create the tx and rx operators
tx = PingTxOp(self, CountCondition(self, 10), name="tx")
rx = PingRxOp(self, name="rx")

Connect the operators into the workflow: tx -> rx
self.add_flow(tx, rx)

def main(Q:
app = MyPingApp()
app.run()

if __name__ == "__main__":
main()

* The built-in holoscan operators, PingRxOp and PingTxOp, are imported on line 3.

¢ We create an instance of the PingTxOp operator with the name “tx” and constrain it’s compute () method to
execute 10 times (line 8).

¢ We create an instance of the PingRxOp operator with the name “rx” (line 9).

* The tx and rx operators are connected using add_flow() which defines this application’s workflow (line 12).

42 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 2.2.0

8.2.3 Running the Application

Running the application should give you the following output in your terminal:

Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:

O 00 NO VT i WN -

—_
(=]

8.3 Ping Custom Op

In this section, we will modify the previous ping_simple example to add a custom operator into the workflow. We’ve
already seen a custom operator defined in the hello_world example but skipped over some of the details.

In this example we will cover:
* the details of creating your own custom operator class
* how to add input and output ports to your operator
* how to add parameters to your operator

* the data type of the messages being passed between operators

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.3.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

PingTxOp PingMxOp PingRxOp
M» [in]in : int M» [in]in : int
out(out) : int out(out) : int

Fig. 8.2: A linear workflow with new custom operator

Compared to the previous example, we are adding a new PingMxOp operator between the PingTxOp and PingRxOp
operators. This new operator takes as input an integer, multiplies it by a constant factor, and then sends the new value

8.3. Ping Custom Op 43

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

20

21

22

23

24

25

26

27

Holoscan SDK User Guide, Release 2.2.0

to PingRxOp. You can think of this custom operator as doing some data processing on an input stream before sending
the result to downstream operators.

8.3.2 Configuring Operator Input and Output Ports

Our custom operator needs 1 input and 1 output port and can be added by calling spec. input () and spec.output()
methods within the operator’s setup () method. This requires providing the data type and name of the port as arguments
(for C++ API), or just the port name (for Python API). We will see an example of this in the code snippet below. For
more details, see Specifying operator inputs and outputs (C++) or Specifying operator inputs and outputs (Python).

8.3.3 Configuring Operator Parameters

Operators can be made more reusable by customizing their parameters during initialization. The custom parameters
can be provided either directly as arguments or accessed from the application’s YAML configuration file. We will
show how to use the former in this example to customize the “multiplier” factor of our PingMxOp custom operator.
Configuring operators using a YAML configuration file will be shown in a subsequent example. For more details, see
Configuring operator parameters.

The code snippet below shows how to define the PingMxOp class.

C++

#include <holoscan/holoscan.hpp>
#include <holoscan/operators/ping_tx/ping_tx.hpp>
#include <holoscan/operators/ping_rx/ping_rx.hpp>

namespace holoscan::ops {

class PingMxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingMxOp)

PingMxOp() = default;

void setup(OperatorSpec& spec) override {
spec.input<int>("in");
spec.output<int>("out");
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value
=", 2);
}

void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&).
—override {
auto value = op_input.receive<int>("in");

std::cout << "Middle message value: << value << std::endl;

// Multiply the value by the multiplier parameter
value *= multiplier_;

op_output.emit(value);

(continues on next page)

44 Chapter 8. Holoscan by Example

20

21

22

23

24

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

};

private:
Parameter<int> multiplier_;

1

} // namespace holoscan::ops

¢ The PingMxOp class inherits from the Operator base class (line 7).

¢ The HOLOSCAN_OPERATOR_FORWARD_ARGS macro (line 9) is syntactic sugar to help forward an operator’s con-
structor arguments to the Operator base class, and is a convenient shorthand to avoid having to manually define
constructors for your operator with the necessary parameters.

* Input/output ports with the names “in”/”out” are added to the operator spec on lines 14 and 15 respectively. The
port type of both ports are int as indicated by the template argument <int>.

e We add a “multiplier” parameter to the operator spec (line 16) with a default value of 2. This parameter is tied
to the private “multiplier_" data member.

* In the compute() method, we receive the integer data from the operator’s “in” port (line 20), print it’s value,
multiply it’s value by the multiplicative factor, and send the new value downstream (line 27).

On line 20, note that the data being passed between the operators has the type int.

The call to op_output.emit(value) on line 27 is equivalent to op_output.emit(value, "out™) since this
operator has only 1 output port. If the operator has more than 1 output port, then the port name is required.

Python

from holoscan.conditions import CountCondition
from holoscan.core import Application, Operator, OperatorSpec
from holoscan.operators import PingRxOp, PingTxOp

class PingMxOp(Operator):
"""Example of an operator modifying data.

This operator has 1 input and 1 output port:
input: "in"
output: "out

"

The data from the input is multiplied by the "multiplier" parameter

e

def setup(self, spec: OperatorSpec):
spec.input('in")
spec.output("out")
spec.param('multiplier", 2)

def compute(self, op_input, op_output, context):
value = op_input.receive("in")
print(f"Middle message value: {value}")

(continues on next page)

8.3. Ping Custom Op 45

26

27

28

39

40

41

42

43

44

45

46

47

48

49

50

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Multiply the values by the multiplier parameter
value *= self.multiplier

op_output.emit(value, "out")

¢ The PingMxOp class inherits from the Operator base class (line 5).
* Input/output ports with the names “in”/”out” are added to the operator spec on lines 17 and 18 respectively.
* We add a “multiplier” parameter to the operator spec with a default value of 2 (line 19).

¢ In the compute () method, we receive the integer data from the operator’s “in” port (line 22), print it’s value,
multiply it’s value by the multiplicative factor, and send the new value downstream (line 28).

Now that the custom operator has been defined, we create the application, operators, and define the workflow.

C++

class MyPingApp : public holoscan::Application {
public:
void compose() override {

using namespace holoscan;
// Define the tx, mx, rx operators, allowing tx operator to execute 10 times
auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto mx = make_operator<ops: :PingMxOp>("mx", Arg("multiplier", 3));
auto rx = make_operator<ops: :PingRxOp>("rx");

// Define the workflow: tx -> mx -> rx
add_flow(tx, mx);
add_flow(mx, rx);
}
};

int main(int argc, char** argv) {
auto app = holoscan: :make_application<MyPingApp>Q);
app->runQ);

return 0;

}

e The tx, mx, and rx operators are created in the compose () method on lines 40-42.

* The custom mx operator is created in exactly the same way with make_operator() (line 41) as the built-in
operators, and configured with a “multiplier” parameter initialized to 3 which overrides the parameter’s default
value of 2 (line 16).

* The workflow is defined by connecting tx to mx, and mx to rx using add_flow() on lines 45-46.

46 Chapter 8. Holoscan by Example

40

41

42

43

44

45

46

47

Holoscan SDK User Guide, Release 2.2.0

Python

class MyPingApp(Application):
def compose(self):
Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
tx = PingTxOp(self, CountCondition(self, 10), name="tx")
mx = PingMxOp(self, name="mx", multiplier=3)
rx = PingRxOp(self, name="rx")

Define the workflow: tx -> mx -> X
self.add_flow(tx, mx)
self.add_flow(mx, rx)

def main(Q):
app = MyPingApp()
app.run()

if __name__ == "__main__":
main()

* The tx, mx, and rx operators are created in the compose () method on lines 32-34.

¢ The custom mx operator is created in exactly the same way as the built-in operators (line 33), and configured
with a “multiplier” parameter initialized to 3 which overrides the parameter’s default value of 2 (line 19).

* The workflow is defined by connecting tx to mx, and mx to rx using add_flow() on lines 37-38.

8.3.4 Message Data Types

For the C++ API, the messages that are passed between the operators are the objects of the data type at the inputs and
outputs, so the value variable from lines 20 and 25 of the example above has the type int. For the Python API, the
messages passed between operators can be arbitrary Python objects so no special consideration is needed since it is not
restricted to the stricter parameter typing used for C++ API operators.

Let’s look at the code snippet for the built-in PingTxOp class and see if this helps to make it clearer.

C++

#include "holoscan/operators/ping_tx/ping_tx.hpp"
namespace holoscan::ops {

void PingTxOp::setup(OperatorSpec& spec) {
spec.output<int>("out");

}

void PingTxOp: :compute(InputContext&, OutputContext& op_output, ExecutionContext&) {
auto value = index_++;
op_output.emit(value, "out");

}

(continues on next page)

8.3. Ping Custom Op 47

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

} // namespace holoscan::ops

* The “out” port of the PingTxOp has the type int (line 6).
* An integer is published to the “out” port when calling emit () (line 11).

* The message received by the downstream PingMxOp operator when it calls op_input.receive<int>() has
the type int.

Python

class PingTxOp(Operator):
"""Simple transmitter operator.

This operator has a single output port:
output: "out

"

"

On each tick, it transmits an integer to the '"out" port.

e

def setup(self, spec: OperatorSpec):
spec.output("out")

def compute(self, op_input, op_output, context):
op_output.emit(self.index, "out")
self.index += 1

* No special consideration is necessary for the Python version, we simply call emit () and pass the integer object
(line 14).

Attention: For advance use cases, e.g., when writing C++ applications where you need interoperability between
C++ native and GXF operators you will need to use the holoscan: : TensorMap type instead. See Interoperability
between GXF and native C++ operators for more details. If you are writing a Python application which needs a
mixture of Python wrapped C++ operators and native Python operators, see Interoperability between wrapped and
native Python operators

8.3.5 Running the Application

Running the application should give you the following output in your terminal:

Middle message value: 1
Rx message value: 3
Middle message value: 2
Rx message value: 6
Middle message value: 3
Rx message value: 9
Middle message value: 4
Rx message value: 12
Middle message value: 5

(continues on next page)

48 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Rx message value: 15

Middle message value:

Rx message value: 18

Middle message value:

Rx message value: 21

Middle message value:

Rx message value: 24

Middle message value:

Rx message value: 27

Middle message value:

Rx message value: 30

10

8.4 Ping Multi Port

In this section, we look at how to create an application with a more complex workflow where operators may have

multiple input/output ports that send/receive a user-defined data type.

In this example we will cover:

* how to send/receive messages with a custom data type

* how to add a port that can receive any number of inputs

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.4.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

PingTxOp

outl...inl

PingMxOp

outl(out) : ValueData
out2(out) : ValueData

out2...in2

>

Fig. 8.3: A workflow with multiple inputs and outputs

[in]inl : ValueData
[in]in2 : ValueData

PingRxOp

outl.. receivers [in]receivers : ValueData

outl(out) : ValueData
out2(out) : ValueData

_out2...receivers |

In this example, PingTxOp sends a stream of odd integers to the outl port, and even integers to the out2 port.
PingMxOp receives these values using inl and in2 ports, multiplies them by a constant factor, then forwards them

to a single port - receivers - on PingRxOp.

8.4. Ping Multi Port

49

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 2.2.0

8.4.2 User Defined Data Types

In the previous ping examples, the port types for our operators were integers, but the Holoscan SDK can send any
arbitrary data type. In this example, we’ll see how to configure operators for our user-defined ValueData class.

C++

#include "holoscan/holoscan.hpp"

class ValueData {
public:
ValueData() = default;
explicit ValueData(int value) : data_(value) {
HOLOSCAN_LOG_TRACE("ValueData::ValueData(): {}", data_);

}
~ValueData() { HOLOSCAN_LOG_TRACE("ValueData::~ValueData(): {}", data_); }

void data(int value) { data_ = value; }
int data() const { return data_; }
private:

int data_;
3

The ValueData class wraps a simple integer (line 6, 16), but could have been arbitrarily complex.

Note: The HOLOSCAN_LOG_<LEVEL>() macros can be used for logging with fmtlib syntax (lines 7, 9 above) as
demonstrated across this example. See the Logging section for more details.

Python

from holoscan.conditions import CountCondition
from holoscan.core import Application, Operator, OperatorSpec

class ValueData:
"""Example of a custom Python class

i

def __init__(self, value):
self.data = value

def __repr__(self):
return f"ValueData({self.data})"

def __eq__(self, other):
return self.data == other.data

def __hash__(self):
return hash(self.data)

The ValueData class is a simple wrapper, but could have been arbitrarily complex.

50 Chapter 8. Holoscan by Example

20

21

22

23

24

25

26

27

20

21

22

24

25

Holoscan SDK User Guide, Release 2.2.0

8.4.3 Defining an Explicit Number of Inputs and Outputs

After defining our custom ValueData class, we configure our operators’ ports to send/receive messages of this type,
similarly to the previous example.

This is the first operator - PingTxOp - sending ValueData objects on two ports, outl and out2:

C++

namespace holoscan::ops {

class PingTxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingTxOp)

PingTxOp() = default;

void setup(OperatorSpec& spec) override {
spec.output<std: :shared_ptr<ValueData>>("outl");
spec.output<std: :shared_ptr<ValueData>>("out2");

}

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
auto valuel = std::make_shared<ValueData>(index_++);
op_output.emit(valuel, "outl");

auto value2 = std::make_shared<ValueData>(index_++);
op_output.emit(value2, "out2");

3
int index_ = 1;
3
e We configure the output ports with the ValueData type on lines 27 and 28 using spec.
output<std::shared_ptr<ValueData>>(). Therefore, the data type for the output ports is an object
to a shared pointer to a ValueData object.
* The values are then sent out using op_output.emit() on lines 33 and 36. The port name is required since
there is more than one port on this operator.
Note: Data types of the output ports are shared pointers (std::shared_ptr), hence the call to

std: :make_shared<ValueData>(...) on lines 32 and 35.

Python

class PingTxOp(Operator):
"""Simple transmitter operator.

This operator has:
outputs: "outl", "out2"

On each tick, it transmits a "ValueData' object at each port. The

(continues on next page)

8.4. Ping Multi Port 51

39

40

41

42

43

44

45

40

41

)

43

44

45

46

47

48

49

50

51

52

54

55

56

58

59

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

transmitted values are even on portl and odd on port2 and increment with
each call to compute.

o

def __init__(self, fragment, *args, **kwargs):
self.index = 1
super() .__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.output(outl")
spec.output(out2")

def compute(self, op_input, op_output, context):
valuel = ValueData(self.index)
self.index += 1
op_output.emit(valuel, "outl")

value2 = ValueData(self.index)
self.index += 1
op_output.emit(value2, "out2")

* We configure the output ports on lines 35 and 36 using spec.output (). There is no need to reference the type
(ValueData) in Python.

* The values are then sent out using op_output.emit () on lines 41 and 45.

‘We then configure the middle operator - PingMxOp - to receive that data on ports inl and in2:

C++

class PingMxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PinglxOp)

PingMxOp() = default;

void setup(OperatorSpec& spec) override {
spec.input<std: :shared_ptr<ValueData>>("inl");
spec.input<std: :shared_ptr<ValueData>>("in2");
spec.output<std: :shared_ptr<ValueData>>("outl");
spec.output<std: :shared_ptr<ValueData>>("out2");
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value
Sy 2);
}

void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&).
—override {
auto valuel = op_input.receive<std::shared_ptr<ValueData>>("inl").value(Q);
auto value2 = op_input.receive<std: :shared_ptr<ValueData>>("in2").value(Q);

HOLOSCAN_LOG_INFO("Middle message received (count: {})", count_++);

(continues on next page)

52 Chapter 8. Holoscan by Example

60

61

63

64

65

66

68

69

70

71

72

73

74

46

47

48

49

50

51

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

HOLOSCAN_LOG_INFO("Middle message valuel: {}", valuel->data());
HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data());

// Multiply the values by the multiplier parameter
valuel->data(valuel->data() * multiplier_);
value2->data(value2->data() * multiplier_);

op_output.emit(valuel, "outl");
op_output.emit(value2, "out2");

3
private:
int count_ = 1;
Parameter<int> multiplier_;
s
* We configure the input ports with the std: : shared_ptr<ValueData> type on lines 47 and 48 using spec.
input<std: :shared_ptr<ValueData>>()
* The values are received using op_input.receive() on lines 55 and 56 using the port names. The received
values are of type std: : shared_ptr<ValueData> as mentioned in the templated receive () method
Python

class PinglxOp(Operator):

o

Example of an operator modifying data.

This operator has:

The

e

def

def

def

inputs: "inl", "in2"
outputs: "outl", "out2"

data from each input is multiplied by a user-defined value.

__init__(self, fragment, *args, **kwargs):
self.count = 1
super().__init__(fragment, *args, **kwargs)

setup(self, spec: OperatorSpec):
spec.input("inl")
spec.input("in2")
spec.output(outl")
spec.output(out2")
spec.param("multiplier™, 2)

compute(self, op_input, op_output, context):

valuel = op_input.receive("inl")

value2 = op_input.receive('in2")

print(f"Middle message received (count: {self.count})")
self.count += 1

(continues on next page)

8.4. Ping Multi Port 53

73

74

75

76

77

78

79

75

76

77

78

79

90

91

92

93

94

95

96

97

98

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

print(f"Middle message valuel: {valuel.data}")
print(f"Middle message value2: {value2.data}")

Multiply the values by the multiplier parameter
valuel.data *= self.multiplier
value2.data *= self.multiplier

op_output.emit(valuel, "outl")
op_output.emit(value2, "out2")

Sending messages of arbitrary data types is pretty straightforward in Python. The code to define the operator input
ports (lines 61-62), and to receive them (lines 68, 69) did not change when we went from passing int to ValueData
objects.

PingMxOp processes the data, then sends it out on two ports, similarly to what is done by PingTxOp above.

8.4.4 Receiving Any Number of Inputs

In this workflow, PingRxOp has a single input port - receivers - that is connected to two upstream ports from
PingMxOp. When an input port needs to connect to multiple upstream ports, we define it with spec.param() instead
of spec.input (). The inputs are then stored in a vector, following the order they were added with add_flow().

C++

class PingRxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingRx0p)

PingRxOp() = default;

void setup(OperatorSpec& spec) override {
spec.param(receivers_, 'receivers", "Input Receivers", "List of input receivers.", {}
=)
}

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
auto value_vector =
op_input.receive<std: :vector<std: :shared_ptr<ValueData>>>("receivers").value(Q);

HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
—vector.size());

HOLOSCAN_LOG_INFO("Rx message valuel: {}", value_vector[0]->data());
HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1l]->data());
1

private:
Parameter<std: :vector<IOSpec*>> receivers_;
int count_ = 1;

1

(continues on next page)

54 Chapter 8. Holoscan by Example

99

100

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

} // namespace holoscan::ops

* In the operator’s setup() method, we define a parameter receivers (line 82) that is tied to the private data
member receivers_ (line 96) of type Parameter<std: :vector<IOSpec*>>.

* The values are retrieved using op_input.receive<std: :vector<std: :shared_ptr<ValueData>>>(...

).

* value_vector’s type is std: : vector<std: : shared_ptr<ValueData>> (lines 86-87).

Python

class PingRxOp(Operator):

mren

Simple receiver operator.

This operator has:

input: "receivers"

This is an example of a native operator that can dynamically have any
number of inputs connected to is "receivers" port.

o

def

def

def

__init__(self, fragment, *args, **kwargs):
self.count = 1

super().__init__(fragment, *args, **kwargs)
setup(self, spec: OperatorSpec):

spec.param(''receivers", kind="receivers")

compute(self, op_input, op_output, context):

values = op_input.receive(''receivers")

print (f"Rx message received (count: {self.count}, size: {len(values)})")
self.count += 1

print (£"Rx message valuel: {values[0].data}")

print (£"Rx message value2: {values[1l].data}")

¢ In Python, a port that can be connected to multiple upstream ports is created by defining a parameter and setting
the argument kind="receivers" (line 97).

e The call to receive() returns a tuple of ValueData objects (line 100).

The rest of the code creates the application, operators, and defines the workflow:

8.4. Ping Multi Port 55

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Holoscan SDK User Guide, Release 2.2.0

C++

class MyPingApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

// Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto mx = make_operator<ops: :PingMxOp>("mx", Arg("multiplier", 3));

auto rx = make_operator<ops: :PingRxOp>("rx");

// Define the workflow
add_flow(tx, mx, {{"outl", "inl1"}, {"out2", "in2"1}});
add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});
}
};

int main(int argc, char** argv) {
auto app = holoscan: :make_application<MyPingApp>Q);
app->run(Q);

return 0;

}

Python

class MyPingApp(Application):
def compose(self):
Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
tx = PingTxOp(self, CountCondition(self, 10), name="tx")
mx = PingMxOp(self, name="mx", multiplier=3)
rx = PingRxOp(self, name="rx")

Define the workflow
self.add_flow(tx, mx, {("outl"™, "inl"), (“"out2", "in2")})

self.add_flow(mx, rx, {("outl", "receivers"), ("out2", "receivers")})
def mainQ):
app = MyPingApp(O
app.run()
if __name__ == "__main__":
main()

* The operators tx, mx, and rx are created in the application’s compose () similarly to previous examples.

* Since the operators in this example have multiple input/output ports, we need to specify the third, port name pair
argument when calling add_flow():

— tx/outl is connected tomx/inl, and tx/out?2 is connected to mx/in2.

56 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 2.2.0

8.4.5 Running the Application

— mx/outl and mx/out2 are both connected to rx/receivers.

Running the application should give you output similar to the following in your terminal.

[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]

[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]

[info]
[info]
[info]
[info]
[info]

[gxf_executor.
[gxf_executor.
[gxf_executor.
[gxf_executor.
[gxf_executor.
[gxf_executor.
[greedy_scheduler
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.

[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.

Ccpp:
Ccpp:
Cpp:
Ccpp:
Ccpp:
Ccpp:

1531]
1673]
1703]
1705]
1706]

222] Creating context

Loading extensions from configs...
Activating Graph...

Running Graph...

Waiting for completion...
waiting. Fragment:

Graph execution

.cpp:195] Scheduling 3

Cpp:
cpp:
cpp:
cpp:
cpp:
cpp:
cpp:
cpp:
cpp:
cpp:
cpp:
Cpp:

cpp:
cpp:
Ccpp:
cpp:
cpp:
cpp:
cpp:
cpp:

112]
114]
115]

114]
115]

80] Middle message
82] Middle message
83] Middle message
112] Rx message received (count:
114] Rx message valuel: 3

115] Rx message value2: 6

80] Middle message received (count:
82] Middle message valuel: 3

83] Middle message value2: 4
message received (count: 2,
message valuel: 9

message value2:

entities
received (count:
valuel: 1
value2: 2
1,

12

message valuel: 51

message value2: 54

80] Middle message received (count:
82] Middle message valuel: 19
83] Middle message value2: 20
112] Rx message received (count:
114] Rx message valuel: 57

115] Rx message value2: 60

D

size:

2)

size:

10)

2)

2)

10, size: 2)

[greedy_scheduler.cpp:374] Scheduler stopped: Some entities are waiting for.
—execution, but there are no periodic or async entities to get out of the deadlock.

[greedy_scheduler.
[gxf_executor.cpp:
[gxf_executor.cpp:
[gxf_executor.cpp:
[gxf_executor.cpp:

cpp:403] Scheduler finished.
1714] Graph execution deactivating. Fragment:
1715] Deactivating Graph...
1718] Graph execution finished. Fragment:
241] Destroying context

Note: Depending on your log level you may see more or fewer messages. The output above was generated using the
default value of INFO. Refer to the Logging section for more details on how to set the log level.

8.4. Ping Multi Port

57

Holoscan SDK User Guide, Release 2.2.0

8.5 Video Replayer

So far we have been working with simple operators to demonstrate Holoscan SDK concepts. In this example, we look
at two built-in Holoscan operators that have many practical applications.

In this example we’ll cover:
* how to load a video file from disk using VideoStreamReplayerOp operator
* how to display video using HolovizOp operator

* how to configure your operator’s parameters using a YAML configuration file

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.5.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

VideoStreamReplayerOp HolovizOp
output...receivers

p [in]receivers : Tensor

output(out) : Tensor

Fig. 8.4: Workflow to load and display video from a file

We connect the “output” port of the replayer operator to the “receivers” port of the Holoviz operator.

8.5.2 Video Stream Replayer Operator

The built-in video stream replayer operator can be used to replay a video stream that has been encoded as gxf enti-
ties. You can use the convert_video_to_gxf_entities.py script (installed in /opt/nvidia/holoscan/bin or
available on GitHub) to encode a video file as gxf entities for use by this operator.

This operator processes the encoded file sequentially and supports realtime, faster than realtime, or slower than realtime
playback of prerecorded data. The input data can optionally be repeated to loop forever or only for a specified count.
For more details, see operators-video-stream-replayer.

We will use the replayer to read gxf entities from disk and send the frames downstream to the Holoviz operator.

58 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy

Holoscan SDK User Guide, Release 2.2.0

8.5.3 Holoviz Operator

The built-in Holoviz operator provides the functionality to composite real time streams of frames with multiple different
other layers like segmentation mask layers, geometry layers and GUI layers.

13

We will use Holoviz to display frames that have been sent by the replayer operator to it’s “receivers” port which can
receive any number of inputs. In more intricate workflows, this port can receive multiple streams of input data where,
for example, one stream is the original video data while other streams detect objects in the video to create bounding
boxes and/or text overlays.

8.5.4 Application Configuration File (YAML)

The SDK supports reading an optional YAML configuration file and can be used to customize the application’s work-
flow and operators. For more complex workflows, it may be helpful to use the application configuration file to help
separate operator parameter settings from your code. See Configuring an Application for additional details.

Tip: For C++ applications, the configuration file can be a nice way to set the behavior of the application at runtime
without having to recompile the code.

This example uses the following configuration file to configure the parameters for the replayer and Holoviz operators.
The full list of parameters can be found at operators-video-stream-replayer and operators-holoviz.

%YAML 1.2
replayer:
directory: "../data/racerx" # Path to gxf entity video data
basename: "racerx" # Look for <basename>.gxf {entities]|index}
frame_rate: 0 # Frame rate to replay. (default: 0O follow frame rate in.
—timestamps)
repeat: true # Loop video? (default: false)
realtime: true # Play in realtime, based on frame_rate/timestamps (default:.,
—true)
count: ® # Number of frames to read (default: ® for no frame count..
—restriction)
holoviz:
width: 854 # width of window size
height: 480 # height of window size
tensors:
- name: "" # name of tensor containing input data to display
type: color # input type e.g., color, triangles, text, depth_map
opacity: 1.0 # layer opacity
priority: O # determines render order, higher priority layers are rendered on.
—top

The code below shows our video_replayer example. Operator parameters are configured from a configuration file

using from_config() (C++) and self.**kwargs() (Python).

8.5. Video Replayer 59

20

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 2.2.0

C++

#include <holoscan/holoscan.hpp>
#include <holoscan/operators/video_stream_replayer/video_stream_replayer.hpp>
#include <holoscan/operators/holoviz/holoviz.hpp>

class VideoReplayerApp : public holoscan::Application {
public:

void compose() override {
using namespace holoscan;

// Define the replayer and holoviz operators and configure using yaml configuration
auto replayer = make_operator<ops::VideoStreamReplayerOp>("'replayer", from_config(

~"replayer"));

1

auto visualizer = make_operator<ops::HolovizOp>("holoviz", from_config("holoviz"));

// Define the workflow: replayer -> holoviz
add_flow(replayer, visualizer, {{"output", "receivers"}});

3

int main(int argc, char** argv) {

// Get the yaml configuration file
auto config_path = std::filesystem::canonical(argv[0]).parent_path(Q);
config_path /= std::filesystem::path("video_replayer.yaml");
if (argc >= 2) {
config_path = argv[1];
}

auto app = holoscan: :make_application<VideoReplayerApp>Q);
app->config(config_path);

app->run() ;

return 0;

* The built-in VideoStreamReplayerOp and HolovizOp operators are included from lines 1 and 2 respectively.

e We create an instance of VideoStreamReplayerOp named “replayer” with parameters initialized from the
YAML configuration file using the call to from_config() (line 11).

* We create an instance of HolovizOp named “holoviz” with parameters initialized from the YAML configuration
file using the call to from_config() (line 12).

* The “output” port of “replayer’” operator is connected to the “receivers” port of the “holoviz” operator and defines
the application workflow (line 34).

* The application’s YAML configuration file contains the parameters for our operators, and is loaded on line 28.
If no argument is passed to the executable, the application looks for a file with the name “video_replayer.yaml”
in the same directory as the executable (lines 21-22), otherwise it treats the argument as the path to the app’s
YAML configuration file (lines 23-25).

60 Chapter 8. Holoscan by Example

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

Holoscan SDK User Guide, Release 2.2.0

Python

import os
import sys

from holoscan.core import Application
from holoscan.operators import HolovizOp, VideoStreamReplayerOp

sample_data_path = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")

class VideoReplayerApp(Application):
"""Example of an application that uses the operators defined above.

This application has the following operators:

- VideoStreamReplayerOp
- HolovizOp

The VideoStreamReplayerOp reads a video file and sends the frames to the HolovizOp.
The HolovizOp displays the frames.

o

def compose(self):
video_dir = os.path.join(sample_data_path, "racerx™)
if not os.path.exists(video_dir):
raise ValueError(f"Could not find video data: {video_dir=}")

Define the replayer and holoviz operators
replayer = VideoStreamReplayerOp (

self, name="replayer", directory=video_dir, **self.kwargs('replayer")
)

visualizer = HolovizOp(self, name="holoviz", **self.kwargs("holoviz"))

Define the workflow
self.add_flow(replayer, visualizer, {("output", "receivers'")})

def main(config_file):

app = VideoReplayerApp()

if the --config command line argument was provided, it will override this config_
—file

app.config(config_file)

app.run()

if __name__ == "__main_

config_file = os.path.join(os.path.dirname(__file__), "video_replayer.yaml")
main(config_file=config_file)

* The built-in VideoStreamReplayerOp and HolovizOp operators are imported on line 5.

e We create an instance of VideoStreamReplayerOp named “replayer” with parameters initialized from the
YAML configuration file using **self.kwargs() (lines 28-30).

8.5. Video Replayer 61

Holoscan SDK User Guide, Release 2.2.0

* For the python script, the path to the gxf entity video data is not set in the application configuration file but
determined by the code on lines 7 and 23 and is passed directly as the “directory” argument (line 29). This
allows more flexibility for the user to run the script from any directory by setting the HOLOSCAN_INPUT_PATH
directory (line 7).

* We create an instance of HolovizOp named “holoviz” with parameters initialized from the YAML configuration
file using **self.kwargs() (line 31).

* The “output” port of “replayer’” operator is connected to the “receivers” port of the “holoviz” operator and defines
the application workflow (line 34).

* The application’s YAML configuration file contains the parameters for our operators, and is loaded on line 45. If
no argument is passed to the python script, the application looks for a file with the name “video_replayer.yaml”
in the same directory as the script (line 39), otherwise it treats the argument as the path to the app’s YAML
configuration file (lines 41-42).

8.5.5 Running the Application

Running the application should bring up video playback of the video referenced in the YAML file.

Holoviz 5 O O

62 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 2.2.0

8.6 Video Replayer (Distributed)

In this example, we extend the previous video replayer application into a multi-node distributed application. A dis-
tributed application is made up of multiple Fragments (C++/Python), each of which may run on its own node.

In the distributed case we will:
* create one fragment that loads a video file from disk using VideoStreamReplayerOp operator
« create a second fragment that will display the video using the HolovizOp operator

These two fragments will be combined into a distributed application such that the display of the video frames could
occur on a separate node from the node where the data is read.

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.6.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

VideoStreamReplayerOp HolovizOp
output...receivers

p [in]receivers : Tensor

output(out) : Tensor

Fig. 8.5: Workflow to load and display video from a file

This is the same workflow as the single fragment video replayer, each operator is assigned to a separate fragment and
there is now a network connection between the fragments.

8.6.2 Defining and Connecting Fragments
Distributed applications define Fragments explicitly to isolate the different units of work that could be distributed to
different nodes. In this example:
¢ We define two classes that inherit from Fragment:
— Fragment1 contains an instance of VideoStreamReplayerOp named “replayer”.
— Fragment2 contains an instance of HolovizOp name “holoviz”.
e We create an application, DistributedVideoReplayer App. In its compose method:
— we call make_fragment to initialize both fragments.

— we then connect the “output” port of “replayer” operator in fragmentl to the “receivers” port of the “holoviz”
operator in fragment2 to define the application workflow.

8.6. Video Replayer (Distributed) 63

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

20

21

22

23

24

25

26

27

28

29

39

40

41

42

43

44

45

46

Holoscan SDK User Guide, Release 2.2.0

* The operators instantiated in the fragments can still be configured with parameters initialized from the YAML

configuration ingested by the application using from_config() (C++) or kwargs () (Python).

C++

#include <holoscan/holoscan.hpp>
#include <holoscan/operators/holoviz/holoviz.hpp>
#include <holoscan/operators/video_stream_replayer/video_stream_replayer.hpp>

class Fragmentl : public holoscan::Fragment {
public:
void compose() override {
using namespace holoscan;

auto replayer = make_operator<ops::VideoStreamReplayerOp>('replayer", from_config(
—"replayer"));
add_operator(replayer);
}
3

class Fragment2 : public holoscan::Fragment {
public:
void compose() override {
using namespace holoscan;

auto visualizer = make_operator<ops::HolovizOp>("holoviz", from_config("holoviz"));
add_operator(visualizer);
}
};

class DistributedVideoReplayerApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

auto fragmentl = make_fragment<Fragmentl>("fragmentl");
auto fragment2 = make_fragment<Fragment2>("fragment2");

// Define the workflow: replayer -> holoviz
add_flow(fragmentl, fragment2, {{"replayer.output", "holoviz.receivers"}});
}
3

int main(int argc, char** argv) {
// Get the yaml configuration file
auto config_path = std::filesystem::canonical(argv[0]).parent_path(Q);
config_path /= std::filesystem::path("video_replayer_distributed.yaml");

auto app = holoscan: :make_application<DistributedVideoReplayerApp>Q);
app->config(config_path);
app->run(Q);

(continues on next page)

64 Chapter 8. Holoscan by Example

47

48

20

21

22

23

24

25

26

27

28

29

39

40

41

42

43

44

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

return 0;

Python

import os

from holoscan.core import Application, Fragment
from holoscan.operators import HolovizOp, VideoStreamReplayerOp

sample_data_path = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")

class Fragmentl(Fragment):
def __init__(self, app, name):
super().__init__(app, name)

def compose(self):
Set the video source
video_path = self._get_input_path()
logging.info(
f"Using video from {video_path}"
)

Define the replayer and holoviz operators
replayer = VideoStreamReplayerOp(
self, name="replayer", directory=video_path, **self.kwargs("replayer")

)
self.add_operator(replayer)

def _get_input_path(self):
path = os.environ.get(
"HOLOSCAN_INPUT_PATH", os.path.join(os.path.dirname(__file__), "data")
)

return os.path.join(path, "racerx")

class Fragment2(Fragment):
def compose(self):
visualizer = HolovizOp(self, name="holoviz", **self.kwargs("holoviz"))

self.add_operator(visualizer)
class DistributedVideoReplayerApp (Application):
"""Example of a distributed application that uses the fragments and operators.

—defined above.

This application has the following fragments:

(continues on next page)

8.6. Video Replayer (Distributed) 65

45

46

47

48

49

50

57

58

59

60

61

62

64

65

66

68

69

70

71

72

73

74

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

- Fragmentl

- holding VideoStreamReplayerOp
- Fragment2

- holding HolovizOp

The VideoStreamReplayerOp reads a video file and sends the frames to the HolovizOp.
The HolovizOp displays the frames.

o

def compose(self):
Define the fragments
fragmentl = Fragmentl(self, name="fragmentl™)
fragment2 = Fragment2(self, name="fragment2")

Define the workflow
self.add_flow(fragmentl, fragment2, {("replayer.output", "holoviz.receivers")})

def main(Q):
config_file_path = os.path.join(os.path.dirname(__file__), "video_replayer_
—distributed.yaml")

logging.info(f"Reading application configuration from {config_file_path}")
app = DistributedVideoReplayerApp()

app.config(config_file_path)
app.run()

if _name__ == "__main__":
main()

This particular distributed application only has one operator per fragment, so the operators was added via
add_operator (C++/Python). In general, each fragment may have multiple operators and connections between oper-
ators within a fragment would be made using add_flow() (C++/Python) method within the fragment’s compute ()
(C++/Python) method.

8.6.3 Running the Application

Running the application should bring up video playback of the video referenced in the YAML file.

66 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 2.2.0

Note: Instructions for running the distributed application involve calling the application from the “driver” node as
well as from any worker nodes. For details, see the application run instructions in the examples directory on GitHub, or
under /opt/nvidia/holoscan/examples/video_replayer_distributed in the NGC container and the debian
package.

Tip: Refer to UCX Network Interface Selection when running a distributed application across multiple nodes.

8.7 Bring Your Own Model (BYOM)

The Holoscan platform is optimized for performing Al inferencing workflows. This section shows how the user can
easily modify the bring_your_own_model example to create their own Al applications.

In this example we’ll cover:

* the usage of FormatConverterOp, InferenceOp, SegmentationPostprocessorOp operators to add Al in-
ference into the workflow

* how to modify the existing code in this example to create an ultrasound segmentation application to visualize the
results from a spinal scoliosis segmentation model

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

8.7. Bring Your Own Model (BYOM) 67

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/video_replayer_distributed
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 2.2.0

8.7.1 Operators and Workflow

Here is the diagram of the operators and workflow used in the byom.py example.

Format

VideoStream ConverterOp MultiAl Segmentation

ReplayerOp uint8 -> float32 InferenceOp PostprocessorOp
resize image

HolovizOp

Fig. 8.6: The BYOM inference workflow

The example code already contains the plumbing required to create the pipeline above where the video is loaded by
VideoStreamReplayer and passed to two branches. The first branch goes directly to Holoviz to display the original
video. The second branch in this workflow goes through Al inferencing and can be used to generate overlays such as
bounding boxes, segmentation masks, or text to add additional information.

This second branch has three operators we haven’t yet encountered.

* Format Converter: The input video stream goes through a preprocessing stage to convert the tensors to the
appropriate shape/format before being fed into the AI model. It is used here to convert the datatype of the image
from uint8 to float32 and resized to match the model’s expectations.

¢ Inference: This operator performs Al inferencing on the input video stream with the provided model. It supports
inferencing of multiple input video streams and models.

» Segmentation Postprocessor: this postprocessing stage takes the output of inference, either with the final softmax
layer (multiclass) or sigmoid (2-class), and emits a tensor with uint8 values that contain the highest probability
class index. The output of the segmentation postprocessor is then fed into the Holoviz visualizer to create the
overlay.

8.7.2 Prerequisites

To follow along this example, you can download the ultrasound dataset with the following commands:

$ wget --content-disposition \
https://api.ngc.nvidia.com/v2/resources/nvidia/clara-holoscan/holoscan_ultrasound_
—sample_data/versions/20220608/zip \
-0 holoscan_ultrasound_sample_data_20220608.zip
$ unzip holoscan_ultrasound_sample_data_20220608.zip -d <SDK_ROOT>/data/ultrasound_
-.segmentation

You can also follow along using your own dataset by adjusting the operator parameters based on your input video and
model, and converting your video and model to a format that is understood by Holoscan.

68 Chapter 8. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/bring_your_own_model/python/byom.py

Holoscan SDK User Guide, Release 2.2.0

Input video

The video stream replayer supports reading video files that are encoded as gxf entities. These files are provided with
the ultrasound dataset as the ultrasound_256x256.gxf_entities and ultrasound_256x256.gxf_index files.

Note: To use your own video data, you can use the convert_video_to_gxf_entities.py script (installed in /
opt/nvidia/holoscan/bin or on GitHub) to encode your video. Note that - using this script - the metadata in the
generated GXF tensor files will indicate that the data should be copied to the GPU on read.

Input model

Currently, the inference operators in Holoscan are able to load ONNX models, or TensorRT engine files built for the
GPU architecture on which you will be running the model. TensorRT engines are automatically generated from ONNX
by the operators when the applications run.

If you are converting your model from PyTorch to ONNX, chances are your input is NCHW and will need to be
converted to NHWC. We provide an example transformation script named graph_surgeon.py, installed in /opt/
nvidia/holoscan/bin or available on GitHub. You may need to modify the dimensions as needed before modifying
your model.

Tip: To get a better understanding of your model, and if this step is necessary, websites such as netron.app can be
used.

8.7.3 Understanding the Application Code

Before modifying the application, let’s look at the existing code to get a better understanding of how it works.

Python

import os
from argparse import ArgumentParser

from holoscan.core import Application

from holoscan.operators import (
FormatConverterOp,
HolovizOp,
InferenceOp,
SegmentationPostprocessorOp,
VideoStreamReplayerOp,

)

from holoscan.resources import UnboundedAllocator

class BYOMApp(Application):
def __init__(self, data):
"""Initialize the application

(continues on next page)

8.7. Bring Your Own Model (BYOM) 69

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy
https://onnx.ai/
https://developer.nvidia.com/tensorrt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#graph_surgeonpy
https://netron.app/

43

44

45

46

47

48

49

50

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Parameters

data : Location to the data

e

super().__init__Q

set name
self.name = "BYOM App"

if data == "none":
data = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")

self.sample_data_path = data

self.model_path = os.path.join(os.path.dirname(__file__), "../model")
self.model_path_map = {
"byom_model": os.path.join(self.model_path, "identity_model.onnx"),

}

self.video_dir = os.path.join(self.sample_data_path, "racerx")
if not os.path.exists(self.video_dir):
raise ValueError(f"Could not find video data: {self.video_dir=}")

The built-in FormatConvertOp, InferenceOp, and SegmentationPostprocessorOp operators are imported
on lines 7, 9, and 10. These 3 operators make up the preprocessing, inference, and postprocessing stages of our
Al pipeline respectively.

The UnboundedAllocator resource is imported on line 13. This is used by our application’s operators for
memory allocation.

The paths to the identity model are defined on lines 35-38. This model passes it’s input tensor to it’s output,
and acts as a placeholder for this example.

The directory of the video files are defined on line 40.

Next, we look at the operators and their parameters defined in the application yaml file.

Python

def compose(self):
host_allocator = UnboundedAllocator(self, name="host_allocator")

source = VideoStreamReplayerOp(
self, name="replayer", directory=self.video_dir, **self.kwargs("replayer™)

)

preprocessor = FormatConverterOp (
self, name="preprocessor", pool=host_allocator, **self.kwargs("preprocessor")

)

inference = InferenceOp/(
self,

(continues on next page)

70

Chapter 8. Holoscan by Example

56

58

59

60

61

62

64

65

66

20

21

22

23

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

name="inference",
allocator=host_allocator,
model_path_map=self.model_path_map,
**self.kwargs("inference"),

)
postprocessor = SegmentationPostprocessorOp(
self, name="postprocessor", allocator=host_allocator, **self.kwargs(
- "postprocessor")
)
viz = HolovizOp(self, name="viz", **self.kwargs('viz"))

* An instance of the UnboundedAllocator resource class is created (line 44) and used by subsequent operators
for memory allocation. This allocator allocates memory dynamically on the host as needed. For applications
where latency becomes an issue, there is the BlockMemoryPool allocator.

» The preprocessor operator (line 50) takes care of converting the input video from the source video to a format
that can be used by the Al model.

* The inference operator (line 54) feeds the output from the preprocessor to the AI model to perform inference.

 The postprocessor operator (line 62) postprocesses the output from the inference operator before passing it down-
stream to the visualizer. Here, the segmentation postprocessor checks the probabilities output from the model to
determine which class is most likely and emits this class index. This is then used by the Holoviz operator to
create a segmentation mask overlay.

YAML

%YAML 1.2
replayer: # VideoStreamReplayer
basename: "racerx"
frame_rate: 0 # as specified in timestamps
repeat: true # default: false
realtime: true # default: true
count: O # default: 0 (no frame count restriction)

preprocessor: # FormatConverter
out_tensor_name: source_video
out_dtype: "float32"
resize_width: 512
resize_height: 512

inference: # Inference
backend: "trt"
pre_processor_map:
"byom_model": ["source_video"]
inference_map:
"byom_model": ["output"]

postprocessor: # SegmentationPostprocessor
in_tensor_name: output

(continues on next page)

8.7. Bring Your Own Model (BYOM) 71

67

68

69

70

71

72

3

74

75

76

77

78

79

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

network_output_type: None
data_format: nchw

viz: # Holoviz
width: 854
height: 480
color_lut: [
[0.65, 0.81, 0.89, 0.1],
]

* The preprocessor converts the tensors to float32 values (line 11) and ensures that the image is resized to
512x512 (line 12-13).

e The pre_processor_map parameter (lines 17-18) maps the model name(s) to input tensor name(s). Here,
“source_video” matches the output tensor name of the preprocessor (line 10). The inference_map parameter
maps the model name(s) to the output tensor name(s). Here, “output”, matches the input tensor name of the
postprocessor (line 23). For more details on InferenceOp parameters, see Customizing the Inference Operator
or refer to Inference.

* The network_output_type parameter is commented out on line 24 to remind ourselves that this second
branch is currently not generating anything interesting. If not specified, this parameter defaults to “softmax”
for SegmentationPostprocessorOp.

* The color lookup table defined on lines 30-32 is used here to create a segmentation mask overlay. The values
of each entry in the table are RGBA values between 0.0 and 1.0. For the alpha value, 0.0 is fully transparent and
1.0 is fully opaque.

Finally, we define the application and workflow.

Python

Define the workflow

self.add_flow(source, viz, {("output", "receivers'")})
self.add_flow(source, preprocessor, {("output", "source_video")})
self.add_flow(preprocessor, inference, {("tensor", "receivers")})
self.add_flow(inference, postprocessor, {("transmitter", "in_tensor")})
self.add_flow(postprocessor, viz, {("out_tensor", "receivers'")})

def main(config_file, data):

app = BYOMApp(data=data)

1f the --config command line argument was provided, it will override this config_
—file

app.config(config_file)

app.run()

if _name__ == "__main__":
Parse args
parser = ArgumentParser(description="BYOM demo application.")
parser.add_argument (
n_g,
"--data",

(continues on next page)

72 Chapter 8. Holoscan by Example

90

91

92

93

94

21

22

23

24

25

26

27

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

default="none",
help=("Set the data path"),

)

args = parser.parse_args()
config_file = os.path.join(os.path.dirname(__file__), "byom.yaml")
main(config_file=config_file, data=args.data)

* The add_flow() on line 66 defines the first branch to display the original video.

e The add_£flow() commands from line 67-70 defines the second branch to display the segmentation mask over-
lay.

8.7.4 Modifying the Application for Ultrasound Segmentation

To create the ultrasound segmentation application, we need to swap out the input video and model to use the ultrasound
files, and adjust the parameters to ensure the input video is resized correctly to the model’s expectations.

We will need to modify the python and yaml files to change our application to the ultrasound segmentation application.

Python

class BYOMApp(Application):
def __init__(self, data):
"""Initialize the application

Parameters

data : Location to the data

e

super().__init__Q

set name
self.name = "BYOM App"

if data == "none":
data = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")

self.sample_data_path = data

self.model_path = os.path.join(self.sample_data_path, "ultrasound_segmentation",
—"model")
self.model_path map = {
"byom_model": os.path.join(self.model_path, "us_unet_256x256_nhwc.onnx"),

self.video_dir = os.path.join(self.sample_data_path, "ultrasound_segmentation",
—"video")
if not os.path.exists(self.video_dir):
raise ValueError(f"Could not find video data: {self.video_dir=}")

8.7. Bring Your Own Model (BYOM) 73

20

21

22

23

24

25

26

27

28

29

30

32

Holoscan SDK User Guide, Release 2.2.0

» Update self.model_path_map to the ultrasound segmentation model (lines 20-23).

e Update self.video_dir to point to the directory of the ultrasound video files (line 25).

YAML

replayer: # VideoStreamReplayer
basename: "ultrasound_256x256"
frame_rate: 0 # as specified in timestamps
repeat: true # default: false
realtime: true # default: true
count: O # default: 0 (no frame count restriction)

preprocessor: # FormatConverter
out_tensor_name: source_video
out_dtype: "float32"
resize_width: 256
resize_height: 256

inference: # Inference
backend: "trt"
pre_processor_map:
"byom_model": ["source_video"]
inference_map:
"byom_model": ["output"]

postprocessor: # SegmentationPostprocessor
in_tensor_name: output
network_output_type: softmax
data_format: nchw

viz: # Holoviz
width: 854
height: 480
color_lut: [
[0.65, 0.81, 0.89, 0.1],
[0.2, 0.63, 0.17, 0.7]
]

» Update basename to the basename of the ultrasound video files (line 2).

* The Al model expects the width and height of the images to be 256x256, update the preprocessor’s parameters
to resize the input to 256x256 (line 11-12).

* The Al model’s final output layer is a softmax, so we indicate this to the postprocessor (line 23).

* Since this model predicts between two classes, we need another entry in Holoviz’s color lookup table (line 31).
Note that the alpha value of the first color entry is 0. 1 (line 30) so the mask for the background class may not be
visible. The second entry we just added is a green color and has an alpha value of 0.7 so it will be easily visible.

The above changes are enough to update the byom example to the ultrasound segmentation application.

In general, when deploying your own Al models, you will need to consider the operators in the second branch. This
example uses a pretty typical Al workflow:

¢ Input: This could be a video on disk, an input stream from a capture device, or other data stream.

74 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 2.2.0

* Preprocessing: You may need to preprocess the input stream to convert tensors into the shape and format that is
expected by your Al model (e.g., converting datatype and resizing).

e Inference: Your model will need to be in onnx or trt format.

 Postprocessing: An operator that postprocesses the output of the model to a format that can be readily used by
downstream operators.

e Qutput: The postprocessed stream can be displayed or used by other downstream operators.

The Holoscan SDK comes with a number of built-in operators that you can use to configure your own workflow.
If needed, you can write your own custom operators or visit Holohub for additional implementations and ideas for
operators.

8.7.5 Running the Application

After modifying the application as instructed above, running the application should bring up the ultrasound video with
a segmentation mask overlay similar to the image below.

Fig. 8.7: Ultrasound Segmentation

Note: If you run the byom.py application without modification and are using the debian installation, you may run into
the following error message:

[error] Error in Inference Manager ... TRT Inference: failed to build TRT engine file.

In this case, modifying the write permissions for the model directory should help (use with caution):

sudo chmod a+w /opt/nvidia/holoscan/examples/bring_your_own_model/model

8.7. Bring Your Own Model (BYOM) 75

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators
https://nvidia-holoscan.github.io/holohub/

Holoscan SDK User Guide, Release 2.2.0

8.7.6 Customizing the Inference Operator

The builtin InferenceOp operator provides the functionality of the /nference. This operator has a receivers port
that can connect to any number of upstream ports to allow for multiai inferencing, and one transmitter port to send
results downstream. Below is a description of some of the operator’s parameters and a general guidance on how to use
them.

* backend: if the input models are in tensorrt engine file format, select trt as the backend. If the input
models are in onnx format select either trt or onnx as the backend.

e allocator: Can be passed to this operator to specify how the output tensors are allocated.

* model_path_map: contains dictionary keys with unique strings that refer to each model. The values are set to
the path to the model files on disk. All models must be either in onnx or in tensorrt engine file format.
The Holoscan Inference Module will do the onnx to tensorrt model conversion if the TensorRT engine files
do not exist.

* pre_processor_map: this dictionary should contain the same keys as model_path_map, mapping to the output
tensor name for each model.

» inference_map: this dictionary should contain the same keys as model_path_map, mapping to the output
tensor name for each model.

e enable_fp1l6: Boolean variable indicating if half-precision should be used to speed up inferencing. The default
value is False, and uses single-precision (32-bit fp) values.

e input_on_cuda: indicates whether input tensors are on device or host
* output_on_cuda: indicates whether output tensors are on device or host

e transmit_on_cuda: if True, it means the data transmission from the inference will be on Device, otherwise it
means the data transmission from the inference will be on Host

8.7.7 Common Pitfalls Deploying New Models

Color Channel Order
It is important to know what channel order your model expects. This may be indicated by the training data, pre-training
transformations performed at training, or the expected inference format used in your application.

For example, if your inference data is RGB, but your model expects BGR, you will need to add the following to your
segmentation_preprocessor in the yaml file: out_channel_order: [2,1,0].

Normalizing Your Data

Similarly, default scaling for streaming data is [0, 1], but dependent on how your model was trained, you may be
expecting [0,255].

For the above case you would add the following to your segmentation_preprocessor in the yaml file:

scale_min: 0.0 scale_max: 255.0

76 Chapter 8. Holoscan by Example

Holoscan SDK User Guide, Release 2.2.0

Network Output Type
Models often have different output types such as Sigmoid, Softmax, or perhaps something else, and you may need to
examine the last few layers of your model to determine which applies to your case.

As in the case of our ultrasound segmentation example above, we added the following in our yaml file:
network_output_type: softmax

8.7. Bring Your Own Model (BYOM) 77

Holoscan SDK User Guide, Release 2.2.0

78

Chapter 8. Holoscan by Example

CHAPTER
NINE

In this section, we’ll address:
e how to define an Application class
* how to configure an Application
* how to define different types of workflows

* how to build and run your application

CREATING AN APPLICATION

Note: This section covers basics of applications running as a single fragment. For multi-fragment applications, refer

to the distributed application documentation.

9.1 Defining an Application Class

The following code snippet shows an example Application code skeleton:

C++

* We define the App class that inherits from the Application base class.

* We create an instance of the App class in main() using the make_application() function.

e The run() method starts the application which will execute its compose () method where the custom workflow

will be defined.

#include <holoscan/holoscan.hpp>

class App : public holoscan::Application {
public:
void compose() override {
// Define Operators and workflow
//
}
};

int main() {
auto app = holoscan: :make_application<App>Q);
app->runQ);

(continues on next page)

79

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

return 0;

}

Python

¢ We define the App class that inherits from the Application base class.
¢ We create an instance of the App class in a main () function that is called from __main__.

e The run() method starts the application which will execute its compose () method where the custom workflow
will be defined.

from holoscan.core import Application
class App(Application):

def compose(self):
Define Operators and workflow

#
def main(Q:
app = AppQO
app.run()
if _name__ == "__main__":
main()

Note: It is recommended to call run() from within a separate main() function rather than calling it directly from
__main__. This will ensure that the Application’s destructor is called before the Python process exits.

Tip: This is also illustrated in the hello_world example.

It is also possible to instead launch the application asynchronously (i.e. non-blocking for the thread launching the
application), as shown below:

C++

This can be done simply by replacing the call to run() with run_async() which returns a std: : future. Calling
future.get () will block until the application has finished running and throw an exception if a runtime error occurred
during execution.

int main() {
auto app = holoscan: :make_application<App>Q);
auto future = app->run_async();
future.get(Q);
return 0;

80 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 2.2.0

Python

This can be done simply by replacing the call to run() with run_async() which returns a Python concurrent.
futures.Future. Calling future.result() will block until the application has finished running and raise an ex-
ception if a runtime error occurred during execution.

def main(Q):
app = App(Q)
future = app.run_async()
future.result()

if _name__ == "__main__":

main()

Tip: This is also illustrated in the ping_simple_run_async example.

9.2 Configuring an Application

An application can be configured at different levels:
1. providing the GXF extensions that need to be loaded (when using GXF operators)
2. configuring parameters for your application, including for:
1. the operators in the workflow
2. the scheduler of your application
3. configuring some runtime properties when deploying for production

The sections below will describe how to configure each of them, starting with a native support for YAML-based con-
figuration for convenience.

9.2.1 YAML Configuration support

Holoscan supports loading arbitrary parameters from a YAML configuration file at runtime, making it convenient to
configure each item listed above, or other custom parameters you wish to add on top of the existing API. For C++
applications, it also provides the ability to change the behavior of your application without needing to recompile it.

Note: Usage of the YAML utility is optional. Configurations can be hardcoded in your program, or done using any
parser of your choosing.

Here is an example YAML configuration:

string_param: "test"
float_param: 0.50
bool_param: true
dict_param:
key_1: value_1
key_2: value_2

9.2. Configuring an Application 81

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_simple_run_async

Holoscan SDK User Guide, Release 2.2.0

Ingesting these parameters can be done using the two methods below:

C++

The config() method takes the path to the YAML configuration file. If the input path is relative, it will be
relative to the current working directory.

e The from_config() method returns an ArgList object for a given key in the YAML file. It holds a list of Arg
objects, each of which holds a name (key) and a value.

— If the ArgList object has only one Arg (when the key is pointing to a scalar item), it can be converted to
the desired type using the as () method by passing the type as an argument.

— The key can be a dot-separated string to access nested fields.

e The config_keys () method returns an unordered set of the key names accessible via from_config().

// Pass configuration file
auto app = holoscan::make_application<App>Q);
app->config("path/to/app_config.yaml");

// Scalars

auto string_param = app->from_config("string_param").as<std::string>(Q);
auto float_param = app->from_config("float_param").as<float>(Q);

auto bool_param = app->from_config("bool_param").as<bool>(Q);

// Dict
auto dict_param = app->from_config("dict_param");
auto dict_nested_param = app->from_config('dict_param.key_1").as<std::string>Q);

// Print
std::cout << "string_param:

<< string_param << std::endl;

std::cout << "float_param: << float_param << std::endl;

std::cout << "bool_param: << bool_param << std::endl;

std::cout << "dict_param:\n" << dict_param.description() << std::endl;
std::cout << "dict_param['keyl']: " << dict_nested_param << std::endl;

// // Output

// string_param: test
// float_param: 0.5
// bool_param: 1

// dict_param:

// name: arglist

// args:

// - name: key_1

// type: YAML::Node
// value: value_1
// - name: key_2

// type: YAML::Node
// value: value_2

// dict_param['keyl']: value_1

82 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 2.2.0

Python
* The config() method takes the path to the YAML configuration file. If the input path is relative, it will be
relative to the current working directory.
* The kwargs () method return a regular python dict for a given key in the YAML file.

— Advanced: this method wraps the from_config() method similar to the C++ equivalent, which returns
an ArgList object if the key is pointing to a map item, or an Arg object if the key is pointing to a scalar
item. An Arg object can be cast to the desired type (e.g., str(app.from_config("string_param"))).

* The config_keys() method returns a set of the key names accessible via from_config().

Pass configuration file

app = AppQO
app.config("path/to/app_config.yaml")

Scalars

string_param = app.kwargs("string_param")["string_param"]
float_param = app.kwargs("float_param")["float_param"]
bool_param = app.kwargs('bool_param™)["bool_param"]

Dict
dict_param = app.kwargs('dict_param")
dict_nested_param = dict_param['key_1"]

Print

print(f"string_param: {string_param}")
print(f"float_param: {float_param}")
print(£f"bool_param: {bool_param}/")
print(f"dict_param: {dict_param/")
print(f"dict_param['key_1']: {dict_nested_param/")

Output:

string_param: test

float_param: 0.5

bool_param: True

dict_param: {'key_1': 'value_1', 'key_2': 'value_2'}
dict_param['key_1']: 'value_1'

oW KR W R W

Warning: from_config() cannot be used as inputs to the built-in operators at this time, it’s therefore
recommended to use kwargs () in Python.

Tip: This is also illustrated in the video_replayer example.

Attention: With both from_config and kwargs, the returned ArgList/dictionary will include both the key and
its associated item if that item value is a scalar. If the item is a map/dictionary itself, the input key is dropped, and
the output will only hold the key/values from that item.

9.2. Configuring an Application 83

Holoscan SDK User Guide, Release 2.2.0

9.2.2 Loading GXF extensions
If you use operators that depend on GXF extensions for their implementations (known as GXF operators), the shared
libraries (. so) of these extensions need to be dynamically loaded as plugins at runtime.

The SDK already automatically handles loading the required extensions for the built-in operators in both C++ and
Python, as well as common extensions (listed here). To load additional extensions for your own operators, you can use
one of the following approach:

YAML

extensions:
- libgxf_myextensionl.so
- /path/to/libgxf_myextension2.so

C++

auto app = holoscan: :make_application<App>Q);
auto exts = {"libgxf myextensionl.so", "/path/to/libgxf _myextension2.so"};
for (auto& ext : exts) {

app->executor() .extension_manager()->load_extension(ext);

}

PYTHON

from holoscan.gxf import load_extensions

from holoscan.core import Application

app = Application()

context = app.executor.context_uint64

exts = ["libgxf_myextensionl.so", "/path/to/libgxf_myextension2.so"]
load_extensions(context, exts)

Note: To be discoverable, paths to these shared libraries need to either be absolute, relative to your working directory,
installed in the 1ib/gxf_extensions folder of the holoscan package, or listed under the HOLOSCAN_LIB_PATH or
LD_LIBRARY_PATH environment variables.

Please see other examples in the system tests in the Holoscan SDK repository.

9.2.3 Configuring operators

Operators are defined in the compose () method of your application. They are not instantiated (with the initialize
method) until an application’s run() method is called.

Operators have three type of fields which can be configured: parameters, conditions, and resources.

84 Chapter 9. Creating an Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/tests/system/loading_gxf_extension.cpp

Holoscan SDK User Guide, Release 2.2.0

Configuring operator parameters
Operators could have parameters defined in their setup method to better control their behavior (see details when

creating your own operators). The snippet below would be the implementation of this method for a minimal operator
named MyOp, that takes a string and a boolean as parameters; we’ll ignore any extra details for the sake of this example:

C++

void setup(OperatorSpec& spec) override {
spec.param(string_param_, "string_param");
spec.param(bool_param_, "bool_param");

}

PYTHON

def setup(self, spec: OperatorSpec):
spec.param(''string_param')
spec.param('bool_param™)
Optional in python. Could define ‘self.<param_name>" instead in ‘def __init__"

Tip: Given an instance of an operator class, you can print a human-readable description of its specification to inspect
the parameter fields that can be configured on that operator class:

C++

std::cout << operator_object->spec()->description() << std::endl;

PYTHON

print (operator_object.spec)

Given this YAML configuration:

myop_param:
string_param: "test"
bool_param: true

bool_param: false # we'll use this later

We can configure an instance of the MyOp operator in the application’s compose method like this:

9.2. Configuring an Application 85

Holoscan SDK User Guide, Release 2.2.0

C++

void compose() override {
// Using YAML

auto my_opl = make_operator<MyOp>("my_opl", from_config("myop_param™));

// Same as above
auto my_op2 = make_operator<MyOp>("my_op2",

Arg("string_param", std::string("test")), // can use Arg(key, value)...

);
}

Arg("bool_param™) = true // ... or Arg(key) = value

PYTHON

def compose(self):
Using YAML
my_opl = MyOp(self, name="my_opl", **self.kwargs("myop_param™))

Same as above

my_op2 = MyOp(self,
name="my_op2",
string_param="test",
bool_param=True,

)

Tip: This is also illustrated in the ping_custom_op example.

If multiple ArgList are provided with duplicate keys, the latest one overrides them:

C++

void compose() override {
// Using YAML
auto my_opl = make_operator<MyOp>("my_opl",
from_config("myop_param"),
from_config("bool_param™)

)H

// Same as above

auto my_op2 = make_operator<MyOp>("my_op2",
Arg("string_param", "test"),
Arg('"bool_param") = true,
Arg("bool_param") = false

DN

// -> my_op ‘bool_param_" will be set to “false’

86 Chapter 9.

Creating an Application

Holoscan SDK User Guide, Release 2.2.0

PYTHON

def compose(self):
Using YAML
my_opl = MyOp(self, name="my_opl",
from_config("myop_param"),
from_config("bool_param"),
)

Note: We're using from_config above since we can't merge automatically with kwargs
as this would create duplicated keys. However, we recommend using kwargs in python
to avoid limitations with wrapped operators, so the code below is preferred.

Same as above
params = self.kwargs("myop_param™).update(self.kwargs("bool_param™))

my_op2 = MyOp(self, name="my_op2", params)

-> my_op ‘bool_param™ will be set to ‘False’

Configuring operator conditions
By default, operators with no input ports will continuously run, while operators with input ports will run as long as
they receive inputs (as they’re configured with the MessageAvailableCondition).

To change that behavior, one or more other conditions classes can be passed to the constructor of an operator to define
when it should execute.

For example, we set three conditions on this operator my_op:

C++

void compose() override {
// Limit to 10 iterations
auto cl = make_condition<CountCondition>("my_count_condition", 10);

// Wait at least 200 milliseconds between each execution
auto c2 = make_condition<PeriodicCondition>("my_periodic_condition", "200ms");

// Stop when the condition calls ‘disable_tick()"
auto c3 = make_condition<BooleanCondition>("my_bool_condition");

// Pass directly to the operator constructor
auto my_op = make_operator<MyOp>("my_op", cl, c2, c3);

9.2. Configuring an Application 87

Holoscan SDK User Guide, Release 2.2.0

PYTHON

def compose(self):
Limit to 10 iterations
cl = CountCondition(self, 10, name="my_count_condition")

Wait at least 200 milliseconds between each execution
c2 = PeriodicCondition(self, timedelta(milliseconds=200), name="my_periodic_condition")

Stop when the condition calls ‘disable_tick()"
c3 = BooleanCondition(self, name="my_bool_condition")

Pass directly to the operator constructor
my_op = MyOp(self, cl, c2, c3, name="my_op")

Tip: This is also illustrated in the conditions examples.

Note: You’ll need to specify a unique name for the conditions if there are multiple conditions applied to an operator.

Configuring operator resources

Some resources can be passed to the operator’s constructor, typically an allocator passed as a regular parameter.

For example:

C++

void compose() override {
// Allocating memory pool of specific size on the GPU
// ex: width * height * channels * channel size in bytes
auto block_size = 640 * 480 * 4 * 2;
auto pl = make_resource<BlockMemoryPool>("my_pooll™, 1, size, 1);

// Provide unbounded memory pool
auto p2 = make_condition<UnboundedAllocator>("my_pool2");

// Pass to operator as parameters (name defined in operator setup)
auto my_op = make_operator<MyOp>("my_op",

Arg("pooll"”, pl),

Arg("pool2", p2));

88 Chapter 9. Creating an Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/conditions

Holoscan SDK User Guide, Release 2.2.0

PYTHON

def compose(self):

Allocating memory pool of specific size on the GPU

ex: width * height * channels * channel size in bytes

block_size = 640 * 480 * 4 * 2;

pl = BlockMemoryPool(self, name="my_pooll", storage_type=1, block_size=block_size, num_
~blocks=1)

Provide unbounded memory pool
p2 = UnboundedAllocator(self, name="my_pool2")

Pass to operator as parameters (name defined in operator setup)
auto my_op = MyOp(self, name="my_op", pooll=pl, pool2=p2)

Native resource creation
The resources bundled with the SDK are wrapping an underlying GXF component. However, it is also possible to

define a “native” resource without any need to create and wrap an underlying GXF component. Such a resource can
also be passed conditionally to an operator in the same way as the resources created in the previous section.

For example:

C++

To create a native resource, implement a class that inherits from Resource

namespace holoscan {

class MyNativeResource : public holoscan: :Resource {
public:
HOLOSCAN_RESOURCE_FORWARD_ARGS_SUPER(MyNativeResource, Resource)

MyNativeResource() = default;

// add any desired parameters in the setup method
// (a single string parameter is shown here for illustration)
void setup(ComponentSpec& spec) override {
spec.param(message_, '"'message', "Message string", "Message String", std::string(
—"test message"));

3

// add any user-defined methods (these could be called from an Operator's compute,
—method)
std: :string message() { return message_.get(); }

private:
Parameter<std: :string> message_;
};

} // namespace: holoscan

The setup method can be used to define any parameters needed by the resource.

9.2. Configuring an Application 89

Holoscan SDK User Guide, Release 2.2.0

This resource can be used with a C++ operator, just like any other resource. For example, an operator could have a
parameter holding a shared pointer to MyNativeResource as below.

private:

class MyOperator : public holoscan::Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (MyOperator)

MyOperator() = default;

void setup(OperatorSpec& spec) override {
spec.param(message_resource_, 'message_resource", "message resource',
"resource printing a message");

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
HOLOSCAN_LOG_TRACE("MyOp: : compute()");

// get a resource based on its name (this assumes the app author named the resource
- "message_resource")
auto res = resource<MyNativeResource>("message_resource");
if (lres) {
throw std::runtime_error('resource named 'message_resource' not found!");

}

// call a method on the retrieved resource class
auto message = res->message();

};

private:
Parameter<std: :shared_ptr<holoscan: :MyNativeResource> message_resource_;

The compute method above demonstrates how the templated resource method can be used to retrieve a resource.

and the resource could be created and passed via a named argument in the usual way

// example code for within Application::compose (or Fragment::compose)

auto message_resource = make_resource<holoscan: :MyNativeResource>(
"message_resource", holoscan: :Arg("message"”, "hello world");

auto my_op = std::make_operator<holoscan::ops: :MyOperator>(
"my_op", holoscan: :Arg("message_resource'", message_resource));

As with GXF-based resources, it is also possible to pass a native resource as a positional argument to the operator
constructor.

For a concreate example of native resource use in a real application, see the volume_rendering_xr application on
Holohub. This application uses a native XrSession resource type which corresponds to a single OpenXR session. This
single “session” resource can then be shared by both the XrBeginFrameOp and XrEndFrameOp operators.

90 Chapter 9. Creating an Application

https://github.com/nvidia-holoscan/holohub/blob/main/applications/volume_rendering_xr/main.cpp
https://github.com/nvidia-holoscan/holohub/blob/main/operators/XrFrameOp/xr_session.hpp

Holoscan SDK User Guide, Release 2.2.0

Python

To create a native resource, implement a class that inherits from Resource.

class MyNativeResource(Resource):

def __init__(self, fragment, message="test message", *args, **kwargs):
self.message = message
super().__init__ (fragment, *args, **kwargs)

Could optionally define Parameter as in C++ via spec.param as below.

Here, we chose instead to pass message as an argument to __init__ above.
def setup(self, spec: ComponentSpec):

spec.param("message"”, "test message')

define a custom method
def message(self):
return self.message

The below shows how some custom operator could use such a resource in its compute method

class MyOperator(Operator):
def compute(self, op_input, op_output, context):
resource = self.resource("message_resource')
if resource is None:
raise ValueError("expected message resource not found")
assert isinstance(resource, MyNativeResource)

print(f"message = {resource.message()")

where this native resource could have been created and passed positionally to MyOperator as follows

example code within Application.compose (or Fragment.compose)

message_resource = MyNativeResource(
fragment=self, message="hello world", name="message_resource')

pass the native resource as a positional argument to MyOperator
my_op = MyOperator(fragment=self, message_resource)

There is a minimal example of native resource use in the examples/native folder.

9.2.4 Configuring the scheduler

The scheduler controls how the application schedules the execution of the operators that make up its workflow.

The default scheduler is a single-threaded GreedyScheduler. An application can be configured to use a different
scheduler Scheduler (C++/Python) or change the parameters from the default scheduler, using the scheduler ()
function (C++/Python).

For example, if an application needs to run multiple operators in parallel, the MultiThreadScheduler or
EventBasedScheduler can instead be used. The difference between the two is that the MultiThreadScheduler is
based on actively polling operators to determine if they are ready to execute, while the EventBasedScheduler will
instead wait for an event indicating that an operator is ready to execute.

The code snippet belows shows how to set and configure a non-default scheduler:

9.2. Configuring an Application 91

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/native/

Holoscan SDK User Guide, Release 2.2.0

C++

* We create an instance of a holoscan::Scheduler derived class by using the make_scheduler () function. Like
operators, parameters can come from explicit Args or ArgList, or from a YAML configuration.

* The scheduler () method assigns the scheduler to be used by the application.

auto app = holoscan: :make_application<App>Q);

auto scheduler = app->make_scheduler<holoscan: :EventBasedScheduler>(
"myscheduler",

Arg("worker_thread_number", 4),

Arg("stop_on_deadlock", true)

);
app->scheduler(scheduler);
app->run();

Python

* We create an instance of a Scheduler class in the schedulers module. Like operators, parameters can come
from an explicit Arg or ArgList, or from a YAML configuration.

* The scheduler () method assigns the scheduler to be used by the application.

app = AppQ
scheduler = holoscan.schedulers.EventBasedScheduler(
app,
name="myscheduler",
worker_thread_number=4,
stop_on_deadlock=True,
)
app . scheduler(scheduler)
app.run()

Tip: This is also illustrated in the multithread example.

92 Chapter 9. Creating an Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/multithread

Holoscan SDK User Guide, Release 2.2.0

9.2.5 Configuring runtime properties

As described below, applications can run simply by executing the C++ or Python application manually on a given
node, or by packaging it in a HAP container. With the latter, runtime properties need to be configured: refer to the
App Runner Configuration for details.

9.3 Application Workflows

Note: Operators are initialized according to the topological order of its fragment-graph. When an application runs,
the operators are executed in the same topological order. Topological ordering of the graph ensures that all the data
dependencies of an operator are satisfied before its instantiation and execution. Currently, we do not support specifying
a different and explicit instantiation and execution order of the operators.

9.3.1 One-operator Workflow

The simplest form of a workflow would be a single operator.

MyOp

Fig. 9.1: A one-operator workflow

The graph above shows an Operator (C++/Python) (named MyOp) that has neither inputs nor output ports.

 Such an operator may accept input data from the outside (e.g., from a file) and produce output data (e.g., to a
file) so that it acts as both the source and the sink operator.

* Arguments to the operator (e.g., input/output file paths) can be passed as parameters as described in the section
above.

We can add an operator to the workflow by calling add_operator (C++/Python) method in the compose () method.

The following code shows how to define a one-operator workflow in compose () method of the App class (assuming
that the operator class MyOp is declared/defined in the same file).

9.3. Application Workflows 93

https://en.wikipedia.org/wiki/Topological_sorting

Holoscan SDK User Guide, Release 2.2.0

CPP

class App : public holoscan::Application {
public:
void compose() override {
// Define Operators
auto my_op = make_operator<MyOp>("my_op");

// Define the workflow
add_operator (my_op) ;
}
3

PYTHON

class App(Application):

def compose(self):
Define Operators
my_op = MyOp(self, name="my_op")

Define the workflow
self.add_operator (my_op)

9.3.2 Linear Workflow

Here is an example workflow where the operators are connected linearly:

SourceOp ProcessOp SinkOp
output...input output...input

[in]input : Tensor [in]input : Tensor

output(out) : Tensor output(out) : Tensor

Fig. 9.2: A linear workflow

In this example, SourceOp produces a message and passes it to ProcessOp. ProcessOp produces another message
and passes it to SinkOp.

We can connect two operators by calling the add_£flow() method (C++/Python) in the compose () method.

The add_f1low() method (C++/Python) takes the source operator, the destination operator, and the optional port name
pairs. The port name pair is used to connect the output port of the source operator to the input port of the destination
operator. The first element of the pair is the output port name of the upstream operator and the second element is the
input port name of the downstream operator. An empty port name (‘”’) can be used for specifying a port name if the
operator has only one input/output port. If there is only one output port in the upstream operator and only one input
port in the downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose () method of the App class (assuming that
the operator classes SourceOp, ProcessOp, and SinkOp are declared/defined in the same file).

94 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 2.2.0

CPP

class App : public holoscan::Application {
public:
void compose() override {
// Define Operators
auto source = make_operator<SourceOp>("source");
auto process = make_operator<ProcessOp>("process");
auto sink = make_operator<SinkOp>("sink");

// Define the workflow

add_flow(source, process); // same as ‘add_flow(source, process, {{"output", "input'}
—});°
add_flow(process, sink); // same as “add_flow(process, sink, {{"", ""}});°
}
};
PYTHON

class App(Application):

def compose(self):
Define Operators
source = SourceOp(self, name="source")
process = ProcessOp(self, name="process')
sink = SinkOp(self, name="sink")

Define the workflow

self.add_flow(source, process) # same as ‘self.add_flow(source, process, {(
< "output", "input")})"

self.add_flow(process, sink) # same as ‘self.add_flow(process, sink, {("",

o)

"}

9.3.3 Complex Workflow (Multiple Inputs and Outputs)

You can design a complex workflow like below where some operators have multi-inputs and/or multi-outputs:

CPP

class App : public holoscan::Application {
public:
void compose() override {

// Define Operators
auto readerl = make_operator<Readerl>("readerl");
auto reader2 = make_operator<Reader2>("reader2");
auto processorl = make_operator<Processorl>("processorl");
auto processor2 = make_operator<Processor2>("processor2");
auto processor3 = make_operator<Processor3>(''processor3");
auto writer = make_operator<Writer>("writer");

(continues on next page)

9.3. Application Workflows

95

Holoscan SDK User Guide, Release 2.2.0

96

Readerl

image(out)
metadata(out)

image...{imagel,image2}
metadata...metadata

Processorl

[in]Jimagel
[in]Jimage?2
[inlmetadata

image(out)

Y

Reader2

roi(out)

image...ilmage [roi...roi

Processor?2

[in]Jimage
[in]roi

image(out)

image...image [image...image \image...image

Notifier Processor3

[in]Jimage [in]Jimage

seg image(out)

Writer

[in]image
[in]seg image

Seg image...seg image

Chapter 9." Creating an Application

20

21

22

23

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

auto notifier = make_operator<Notifier>("notifier");

// Define the workflow

add_flow(readerl, processorl, {{"image", "imagel"}, {"image", "image2"}, {"metadata",
— "metadata"}});

add_flow(readerl, processorl, {{"image", "image2"}});

add_flow(reader2, processor2, {{"roi", "roi"}});

add_flow(processorl, processor2, {{"image", "image"}});

add_flow(processorl, writer, {{"image", "image"}});

add_flow(processor2, notifier);
add_flow(processor2, processor3);
add_flow(processor3, writer, {{"seg_image", "seg_image"}});

}
};

PYTHON

class App(Application):

def compose(self):
Define Operators
readerl = ReaderlOp(self, name="readerl")
reader2 = Reader20p(self, name="reader2")

processorl
processor2
processor3
notifier =

Processor10p(self, name="processorl")
Processor20p(self, name="processor2")
Processor30p(self, name="processor3")

NotifierOp(self, name="notifier")
writer = WriterOp(self, name="writer")

Define the workflow

self.add_flow(readerl, processorl, {("image", "imagel"), ("image", "image2"), (
—"metadata", "metadata")})

self.add_flow(reader2, processor2, {('roi", "roi")})

self.add_flow(processorl, processor2, {("image", "image")})

self.add_flow(processorl, writer, {("image", "image")})

self.add_flow(processor2, notifier)
self.add_flow(processor2, processor3)
self.add_flow(processor3, writer, {('"seg_image", "seg_image'")})

If there is a cycle in the graph with no implicit root operator, the root operator is either the first operator in the first call
to add_flow method (C++/Python), or the operator in the first call to add_operator method (C++/Python).

9.3. Application Workflows 97

Holoscan SDK User Guide, Release 2.2.0

C++

auto opl = make_operator<...>("opl");
auto op2 = make_operator<...>("op2");
auto op3 = make_operator<...>("op3");

add_flow(opl, op2);

add_flow(op2, op3);

add_flow(op3, opl);

// There is no implicit root operator

// opl is the root operator because opl is the first operator in the first call to add_
— flow

If there is a cycle in the graph with an implicit root operator which has no input port, then the initialization and execution
orders of the operators are still topologically sorted as far as possible until the cycle needs to be explicitly broken. An
example is given below:

Operator A -~ Implicit Root Operator E

Operator B Operator C Operator D

Order of operators: Operator A, Operator B, {a combination of Operator C, D and E}

9.4 Building and running your Application

C++
You can build your C++ application using CMake, by calling find_package (holoscan) in your CMakeLists.txt
to load the SDK libraries. Your executable will need to link against:
* holoscan::core
* any operator defined outside your main.cpp which you wish to use in your app workflow, such as:
— SDK built-in operators under the holoscan: :ops namespace
— operators created separately in your project with add_library

— operators imported externally using with find_library or find_package

Listing 9.1: <src_dir>/CMakeLists.txt

Your CMake project
cmake_minimum_required(VERSION 3.20)
project(my_project CXX)

Finds the holoscan SDK
find_package(holoscan REQUIRED CONFIG PATHS "/opt/nvidia/holoscan")

Create an executable for your application

(continues on next page)

98 Chapter 9. Creating an Application

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

add_executable(my_app main.cpp)

Link your application against holoscan::core and any existing operators you'd like to.
—use
target_link libraries(my_app
PRIVATE
holoscan: :core
holoscan: :ops::<some_built_in_operator_target>
<some_other_operator_target>
<oou>

Tip: This is also illustrated in all the examples:
e in CMakeLists.txt for the SDK installation directory - /opt/nvidia/holoscan/examples

e in CMakeLists.min. txt for the SDK source directory

Once your CMakeLists. txt is ready in <src_dir>, you can build in <build_dir> with the command line below.
You can optionally pass Holoscan_ROOT if the SDK installation you’d like to use differs from the PATHS given to
find_package (holoscan) above.

Configure

cmake -S <src_dir> -B <build_dir> -D Holoscan_ROOT="/opt/nvidia/holoscan"
Build

cmake --build <build_dir> -j

You can then run your application by running <build_dir>/my_app.

Python

Python applications do not require building. Simply ensure that:

¢ The holoscan python module is installed in your dist-packages or is listed under the PYTHONPATH env vari-
able so you can import holoscan. core and any built-in operator you might need in holoscan.operators.

* Any external operators are available in modules in your dist-packages or contained in PYTHONPATH.

Note: While python applications do not need to be built, they might depend on operators that wrap C++ operators.
All python operators built-in in the SDK already ship with the python bindings pre-built. Follow this section if you are
wrapping C++ operators yourself to use in your python application.

You can then run your application by running python3 my_app.py.

Note: Given a CMake project, a pre-built executable, or a python application, you can also use the Holoscan CLI to
package and run your Holoscan application in a OCI-compliant container image.

9.4. Building and running your Application 99

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#readme

Holoscan SDK User Guide, Release 2.2.0

100 Chapter 9. Creating an Application

CHAPTER
TEN

CREATING A DISTRIBUTED APPLICATION

Distributed applications refer to those where the workflow is divided into multiple fragments that may be run on separate
nodes. For example, data might be collected via a sensor at the edge, sent to a separate workstation for processing,
and then the processed data could be sent back to the edge node for visualization. Each node would run a single
fragment consisting of a computation graph built up of operators. Thus one fragment is the equivalent of a non-
distributed application. In the distributed context, the Application initializes the different fragments and then defines
the connections between them to build up the full distributed application workflow.

In this section we’ll describe:
* how to define a distributed Application

* how to build and run a distributed application

10.1 Defining a Distributed Application Class

Tip: Defining distributed applications is also illustrated in the video_replayer_distributed and ping_distributed exam-
ples. The ping_distributed examples also illustrate how to update C++ or Python applications to parse user-defined
arguments in a way that works without disrupting support for distributed application command line arguments (e.g.
--driver, --worker).

Defining a single Fragment (C++/Python) involves adding operators using make_operator() (C++) or the operator
constructor (Python), and defining the connections between them using the add_£flow() method (C++/Python) in the
compose () method. Thus, defining a Fragment is just like defining a non-distributed Application except that the class
should inherit from Fragment instead of Application.

The application will then be defined by initializing fragments within the application’s compose() method. The
add_flow() method (C++/Python) can be used to define the connections across fragments.

C++

¢ We define the Fragment1 and Fragment2 classes that inherit from the Fragment base class.
¢ We define the App class that inherits from the Application base class.

* The App class initializes any fragments used and defines the connections between them. Here we have used
dummy port and operator names in the example add_f1low call connecting the fragments since no specific oper-
ators are shown in this example.

* We create an instance of the App class in main() using the make_application() function.

101

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed

Holoscan SDK User Guide, Release 2.2.0

e The run() method starts the application which will execute its compose () method where the custom workflow
will be defined

#include <holoscan/holoscan.hpp>

class Fragmentl : public holoscan::Fragment {
public:
void compose() override {
// Define Operators and workflow for Fragment]l
//
}
b

class Fragment2 : public holoscan::Fragment {
public:
void compose() override {
// Define Operators and workflow for Fragment2
//
}
3

class App : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

auto fragmentl = make_fragment<Fragmentl>("fragmentl");
auto fragment2 = make_fragment<Fragment2>("fragment2");

// Define the workflow: replayer -> holoviz
add_flow(fragmentl, fragment2, {{"fragmentl_operator_name.output_port_name",
"fragment2_operator_name.input_port_name"}});
}
};

int main(Q) {
auto app = holoscan: :make_application<App>Q);
app->run();
return 0;

}

Python

¢ We define the Fragment1 and Fragment2 classes that inherit from the Fragment base class.
¢ We define the App class that inherits from the Application base class.

* The App class initializes any fragments used and defines the connections between them. Here we have used
dummy port and operator names in the example add_flow call connecting the fragments since no specific oper-
ators are shown in this example.

¢ We create an instance of the App class in __main__.

102 Chapter 10. Creating a Distributed Application

Holoscan SDK User Guide, Release 2.2.0

e The run() method starts the application which will execute its compose () method where the custom workflow

will be defined.

from holoscan.core import Application, Fragment
class Fragmentl(Fragment):
def compose(self):
Define Operators and workflow
#
class Fragment2(Fragment) :
def compose(self):
Define Operators and workflow
#
class App(Application):
def compose(self):

fragmentl = Fragmentl(self, name="fragmentl")
fragment2 = Fragment2(self, name="fragment2")

self.add_flow(fragmentl, fragment2, {('fragmentl_operator_name.output_port_name",
"fragment2_operator_name.input_port_name")}

=)

def main(Q):
app = AppQO
app.run()

if __name__ == "__main__":
main()

10.1.1 Serialization of Custom Data Types for Distributed Applications

Transmission of data between fragments of a multi-fragment application is done via the Unified Communications X
(UCX) library. In order to transmit data, it must be serialized into a binary form suitable for transmission over a network.
For Tensors (C++/Python), strings and various scalar and vector numeric types, serialization is already built in. For
more details on concrete examples of how to extend the data serialization support to additional user-defined classes,

see the separate page on serialization.

10.1. Defining a Distributed Application Class

103

https://openucx.org/
https://openucx.org/

Holoscan SDK User Guide, Release 2.2.0

10.2 Building and running a Distributed Application

C++

Building a distributed application works in the same way as for a non-distributed one. See Building and running your
Application

Python

Python applications do not require building. See Building and running your Application.

Running an application in a distributed setting requires launching the application binary on all nodes involved in the
distributed application. A single node must be selected to act as the application driver. This is achieved by using
the --driver command-line option. Worker nodes are initiated by launching the application with the --worker
command-line option. It’s possible for the driver node to also serve as a worker if both options are specified.

The address of the driver node must be specified for each process (both the driver and worker(s)) to identify the ap-
propriate network interface for communication. This can be done via the --address command-line option, which
takes a value in the form of [<IPv4/IPv6 address or hostname>][:<port>] (e.g., --address 192.168.50.
68:10000):

* The driver’s IP (or hostname) MUST be set for each process (driver and worker(s)) when running distributed
applications on multiple nodes (default: 0.0.0.0). It can be set without the port (e.g., --address 192.168.
50.68).

¢ In a single-node application, the driver’s IP (or hostname) can be omitted, allowing any network interface (0.0.
0.0) to be selected by the UCX library.

* The port is always optional (default: 8765). It can be set without the IP (e.g., --address :10000).

The worker node’s address can be defined using the --worker-address command-line option ([<IPv4/IPv6
address or hostname>][:<port>]). If it’s not specified, the application worker will default to the host address
(0.0.0.0) with a randomly chosen port number between 10000 and 32767 that is not currently in use. This argu-
ment automatically sets the HOLOSCAN_UCX_SOURCE_ADDRESS environment variable if the worker address is a local
IP address. Refer to Environment Variables for Distributed Applications for details.

The --fragments command-line option is used in combination with --worker to specify a comma-separated list
of fragment names to be run by a worker. If not specified, the application driver will assign a single fragment to the
worker. To indicate that a worker should run all fragments, you can specify --fragments all.

The --config command-line option can be used to designate a path to a configuration file to be used by the application.
Below is an example launching a three fragment application named my_app on two separate nodes:

* The application driver is launched at 192.168.50.68:10000 on the first node (A), with a worker running two
fragments, “fragment1” and “fragment3”.

* On a separate node (B), the application launches a worker for “fragment2”, which will connect to the driver at
the address above.

104 Chapter 10. Creating a Distributed Application

https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use

Holoscan SDK User Guide, Release 2.2.0

C++

Node A

my_app --driver --worker --address 192.168.50.68:10000 --fragments fragmentl,fragment3
Node B

my_app --worker --address 192.168.50.68:10000 --fragments fragment2

Python

Node A

python3 my_app.py --driver --worker --address 192.168.50.68:10000 --fragments fragmentl,
- fragment3

Node B

python3 my_app.py --worker --address 192.168.50.68:10000 --fragments fragment2

Note:

UCX Network Interface Selection

UCX is used in the Holoscan SDK for communication across fragments in distributed applications. It is designed
to select the best network device based on performance characteristics (bandwidth, latency, NUMA locality, etc). In
some scenarios (under investigation) UCX cannot find the correct network interface to use, and the application fails to
run. In this case, you can manually specify the network interface to use by setting the UCX_NET_DEVICES environment
variable.

For example, if the user wants to use the network interface eth®, you can set the environment variable as follows,
before running the application:

export UCX_NET_DEVICES=eth®

Or, if you are running a packaged distributed application with the Holoscan CLI, use the --nic eth® option to man-
ually specify the network interface to use.

The available network interface names can be found by running the following command:

ucx_info -d | grep Device: | awk '{print $3}' | sort | uniq
or
ip -0 -4 addr show | awk '{print $2, $4}' # to show interface name and IP

Warning:

Known limitations

The following are known limitations of the distributed application support in the SDK, which will be addressed in
future updates:

10.2. Building and running a Distributed Application 105

https://openucx.org/
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use

Holoscan SDK User Guide, Release 2.2.0

1. A connection error message is displayed even when the distributed application is running
correctly.

The message Connection dropped with status -25 (Connection reset by remote peer) appears in
the console even when the application is functioning properly. This is a known issue and will be addressed in future
updates, ensuring that this message will only be displayed in the event of an actual connection error.

2. GPU tensors can only currently be sent/received by UCX from a single device on a given node.

By default, device ID 0 is used by the UCX extensions to send/receive data between fragments. To override this
default, the user can set environment variable HOLOSCAN_UCX_DEVICE_ID.

3. “Address already in use” errors in distributed applications due to the health check service.

In scenarios where distributed applications have both the driver and workers running on the same host, either within
a Docker container or directly on the host, there’s a possibility of encountering “Address already in use” errors. A
potential solution is to assign a different port number to the HOLOSCAN_HEALTH_CHECK_PORT environment variable
(default: 8777), for example, by using export HOLOSCAN_HEALTH_CHECK_PORT=8780.

Note:

GXF UCX Extension

Holoscan’s distributed application feature makes use of the GXF UCX Extension. Its documentation may provide
useful additional context into how data is transmitted between fragments.

Tip: Given a CMake project, a pre-built executable, or a python application, you can also use the Holoscan CLI to
package and run your Holoscan application in a OCI-compliant container image.

10.2.1 Environment Variables for Distributed Applications
Holoscan SDK environment variables.

You can set environment variables to modify the default actions of services and the scheduler when executing a dis-
tributed application.

« HOLOSCAN_ENABLE_HEALTH_CHECK : determines if the health check service should be active, even
without specifying --driver or --worker in the CLI. By default, initiating the AppDriver (--driver) or
AppWorker (--worker) service automatically triggers the GRPC Health Checking Service so grpc-health-probe
can monitor liveness/readiness. Interprets values like “true”, “1”, or “on” (case-insensitive) as true (to enable
the health check). It defaults to false if left unspecified.

¢ HOLOSCAN_HEALTH_CHECK_PORT : designates the port number on which the Health Checking Service
is launched. It must be an integer value representing a valid port number. If unspecified, it defaults to 8777.

106 Chapter 10. Creating a Distributed Application

https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-docs/docs/text/ExtensionsManual/UcxExtension.html
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://github.com/grpc-ecosystem/grpc-health-probe

Holoscan SDK User Guide, Release 2.2.0

* HOLOSCAN_DISTRIBUTED_APP_SCHEDULER : controls which scheduler is used for distributed appli-
cations. It can be set to either greedy, multi_thread or event_based. multithread is also allowed as a syn-
onym for multi_thread for backwards compatibility. If unspecified, the default scheduler is multi_thread.

« HOLOSCAN_STOP_ON_DEADLOCK : can be used in combination with
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER to control whether or not the application will automatically
stop on deadlock. Values of “True”, “1” or “ON” will be interpreted as true (enable stop on deadlock). It is
true if unspecified. This environment variable is only used when HOLOSCAN_DISTRIBUTED_APP_SCHEDULER
is explicitly set.

* HOLOSCAN_STOP_ON_DEADLOCK _TIMEOUT : controls the delay (in ms) without activity required
before an application is considered to be in deadlock. It must be an integer value (units are ms).

* HOLOSCAN_MAX_DURATION_MS : sets the application to automatically terminate after the requested
maximum duration (in ms) has elapsed. It must be an integer value (units are ms). This environment variable is
only used when HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

* HOLOSCAN_CHECK_RECESSION_PERIOD_MS : controls how long (in ms) the scheduler waits before
re-checking the status of operators in an application. It must be a floating point value (units are ms). This
environment variable is only used when HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

* HOLOSCAN_UCX_SERIALIZATION_BUFFER_SIZE : can be used to override the default 7 kB serializa-
tion buffer size. This should typically not be needed as tensor types store only a small header in this buffer to
avoid explicitly making a copy of their data. However, other data types do get directly copied to the serialization
buffer and in some cases it may be necessary to increase it.

« HOLOSCAN_UCX_DEVICE_ID : The GPU ID of the device that will be used by UCX transmitter/receivers
in distributed applications. If unspecified, it defaults to 0. A list of discrete GPUs available in a system can be
obtained via nvidia-smi -L. GPU data sent between fragments of a distributed application must be on this
device.

* HOLOSCAN_UCX_PORTS : This defines the preferred port numbers for the SDK when specific ports for UCX
communication need to be predetermined, such as in a Kubernetes environment. If the distributed application
requires three ports (UCX receivers) and the environment variable is unset, the SDK chooses three unused ports
sequentially from the range 10000~32767. Specifying a value, for example, HOLOSCAN_UCX_PORTS=10000,
results in the selection of ports 10000, 10001, and 10002. Multiple starting values can be comma-separated. The
system increments from the last provided port if more ports are needed. Any unused specified ports are ignored.

« HOLOSCAN_UCX_SOURCE_ADDRESS : This environment variable specifies the local IP address (source)
for the UCX connection. This variable is especially beneficial when a node has multiple network interfaces,
enabling the user to determine which one should be utilized for establishing a UCX client (UCXTransmitter). If
it is not explicitly specified, the default address is set to 8.0.0.0, representing any available interface.

UCX-specific environment variables

Transmission of data between fragments of a multi-fragment application is done via the Unified Communications X
(UCX) library, a point-to-point communication framework designed to utilize the best available hardware resources
(shared memory, TCP, GPUDirect RDMA, etc). UCX has many parameters that can be controlled via environment
variables. A few that are particularly relevant to Holoscan SDK distributed applications are listed below:

e The UCX_TLS environment variable can be used to control which transport layers are enabled. By default,
UCX_TLS=all and UCX will attempt to choose the optimal transport layer automatically.

e The UCX_NET_DEVICES environment variable is by default set to all meaning that UCX may choose to use
any available network interface controller (NIC). In some cases it may be necessary to restrict UCX to a specific
device or set of devices, which can be done by setting UCX_NET_DEVICES to a comma separated list of the device
names (i.e. as obtained by linux command ifconfig -aor ip link show).

10.2. Building and running a Distributed Application 107

https://openucx.readthedocs.io
https://openucx.readthedocs.io
https://openucx.readthedocs.io/en/master/faq.html#which-transports-does-ucx-use

Holoscan SDK User Guide, Release 2.2.0

e Setting UCX_TCP_CM_REUSEADDR=Y is recommended to enable ports to be reused without having to wait the full
socket TIME_WAIT period after a socket is closed.

The UCX_LOG_LEVEL environment variable can be used to control the logging level of UCX. The default is setting
is WARN, but changing to a lower level such as INFO will provide more verbose output on which transports and
devices are being used.

e By default, Holoscan SDK will automatically set UCX_PROTO_ENABLE=y upon application launch to en-
able the newer “v2” UCX protocols. If for some reason, the older vl protocols are needed, one can set
UCX_PROTO_ENABLE=n in the environment to override this setting. When the v2 protocols are enabled, one
can optionally set UCX_PROTO_INFO=y to enable detailed logging of what protocols are being used at runtime.

By default, Holoscan SDK will automatically set UCX_MEMTYPE_CACHE=n upon application launch to disable the
UCX memory type cache (See UCX documentation for more information. It can cause about 0.2 microseconds
of pointer type checking overhead with the cudacudaPointerGetAttributes() CUDA API). If for some reason, the
memory type cache is needed, one can set UCX_MEMTYPE_CACHE=y in the environment to override this setting.

* By default, the Holoscan SDK will automatically set UCX_CM_USE_ALL_DEVICES=n at application startup
to disable consideration of all devices for data transfer. If for some reason the opposite behavior is
desired, one can set UCX_CM_USE_ALL_DEVICES=y in the environment to override this setting. Setting
UCX_CM_USE_ALL_DEVICES=n can be used to workaround an issue where UCX sometimes defaults to a de-
vice that might not be the most suitable for data transfer based on the host’s available devices. On a host with
address 10.111.66.60, UCX, for instance, might opt for the br-80572179a31d (192.168.49.1) device due to
its superior bandwidth as compared to eno2 (10.111.66.60). With UCX_CM_USE_ALL_DEVICES=n, UCX will
ensure consistency by using the same device for data transfer that was initially used to establish the connection.
This ensures more predictable behavior and can avoid potential issues stemming from device mismatches during
the data transfer process.

¢ Setting UCX_TCP_PORT_RANGE=<start>-<end> can be used to define a specific range of ports that UCX should
utilize for data transfer. This is particularly useful in environments where ports need to be predetermined, such
as in a Kubernetes setup. In such contexts, Pods often have ports that need to be exposed, and these ports
must be specified ahead of time. Moreover, in scenarios where firewall configurations are stringent and only
allow specified ports, having a predetermined range ensures that the UCX communication does not get blocked.
This complements the HOLOSCAN_UCX_SOURCE_ADDRESS, which specifies the local IP address for the UCX
connection, by giving further control over which ports on that specified address should be used. By setting a port
range, users can ensure that UCX operates within the boundaries of the network and security policies of their
infrastructure.

Tip: A list of all available UCX environment variables and a brief description of each can be obtained by running
ucx_info -f from the Holoscan SDK container. Holoscan SDK uses UCX’s active message (AM) protocols, so
environment variables related to other protocols such as tag-mat

10.3 Serialization

Distributed applications must serialize any objects that are to be sent between the fragments of a multi-fragment ap-
plication. Serialization involves binary serialization to a buffer that will be sent from one fragment to another via the
Unified Communications X (UCX) library. For tensor types (e.g. holoscan::Tensor), no actual copy is made, but in-
stead transmission is done directly from the original tensor’s data and only a small amount of header information is
copied to the serialization buffer.

A table of the types that have codecs pre-registered so that they can be serialized between fragments using Holoscan
SDK is given below.

108 Chapter 10. Creating a Distributed Application

https://openucx.readthedocs.io/en/master/faq.html#how-can-i-tell-which-protocols-and-transports-are-being-used-for-communication
https://openucx.readthedocs.io/en/master/faq.html#i-m-running-ucx-with-gpu-memory-and-geting-a-segfault-why
https://github.com/openucx/ucx/wiki/NVIDIA-GPU-Support#known-issues
https://github.com/openucx/ucx/wiki/NVIDIA-GPU-Support#known-issues

Holoscan SDK User Guide, Release 2.2.0

Type Class Specific Types

integers int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, uint32_t, uint64_t

floating point float, double, complex <float>, complex<double>

boolean bool

strings std::string

std::vector<T> T is std::string or any of the boolean, integer or floating point types above

std::vector<std::vector<T>> T is std::string or any of the boolean, integer or floating point types above

std::vector<HolovizOp::InputSpec:a vector of InputSpec objects that are specific to HolovizOp

std::shared_ptr<%-> T is any of the scalar, vector or std::string types above

tensor types holoscan::Tensor, nvidia::gxf::Tensor, nvidia::gxf::VideoBuffer,
nvidia::gxf:: AudioBuffer

GXF-specific types nvidia::gxf::TimeStamp, nvidia::gxf::EndOfStream

Warning: If an operator transmitting both CPU and GPU tensors is to be used in distributed applications, the same
output port cannot mix both GPU and CPU tensors. CPU and GPU tensor outputs should be placed on separate
output ports. This is a limitation of the underlying UCX library being used for zero-copy tensor serialization
between operators.

As a concrete example, assume an operator, MyOperator with a single output port named “out” defined in it’s
setup method. If the output port is only ever going to connect to other operators within a fragment, but never across
fragments then it is okay to have a TensorMap with a mixture of host and device arrays on that single port.

C++

void MyOperator::setup(OperatorSpec& spec) {
spec.output<holoscan: :TensorMap>("out");

3
void MyOperator: :compute(OperatorSpec& spec) {

// omitted: some computation resulting in multiple holoscan: :Tensors
// (two on CPU ("cpu_coords_tensor" and "cpu_metric_tensor") and one on device (
- "gpu_tensor").

TensorMap out_message;

// insert all tensors in one TensorMap (mixing CPU and GPU tensors is okay when.
—ports only connect within a Fragment)

out_message.insert({"coordinates", cpu_coords_tensor});

out_message.insert({"metrics", cpu_metric_tensor});

out_message.insert({"mask", gpu_tensor});

op_output.emit(out_message, "out");

10.3. Serialization 109

Holoscan SDK User Guide, Release 2.2.0

Python

class MyOperator:

def setup(self, spec: OperatorSpec):
spec.output('out")

def compute(self, op_input, op_output, context):
Omitted: assume some computation resulting in three holoscan::Tensor or.
—tensor-like
objects. Two on CPU ("cpu_coords_tensor" and "cpu_metric_tensor") and one.
—on device
("gpu_tensor").

mixing CPU and GPU tensors in a single dict is okay only for within-
—Fragment connections
op_output.emit(
dict(
coordinates=cpu_coords_tensor,
metrics=cpu_metrics_tensor,
mask=gpu_tensor,

C++

void MyOperator::setup(OperatorSpec& spec) {
spec.output<holoscan: :TensorMap>("out_host");
spec.output<holoscan: :TensorMap>("out_device");

}

void MyOperator: :compute(OperatorSpec& spec) {

// some computation resulting in a pair of holoscan::Tensor, one on CPU ("cpu_tensor
—'") and one on device ("gpu_tensor'").

TensorMap out_message_host;

TensorMap out_message_device;

// put all CPU tensors on one port
out_message_host.insert({"coordinates"”, cpu_coordinates_tensor});
out_message_host.insert({"metrics", cpu_metrics_tensor});
op_output.emit(out_message_host, "out_host");

// put all GPU tensors on another
out_message_device.insert({"mask", gpu_tensor});
op_output.emit(out_message_device, "out_device");

}

110 Chapter 10. Creating a Distributed Application

Holoscan SDK User Guide, Release 2.2.0

Python

class MyOperator:

def setup(self, spec: OperatorSpec):
spec.output("out_host")
spec.output("out_device™)

def compute(self, op_input, op_output, context):
Omitted: assume some computation resulting in three holoscan::Tensor or.
—tensor-1like
objects. Two on CPU ("cpu_coords_tensor" and "cpu_metric_tensor") and one.
—on device
("gpu_tensor").

split CPU and GPU tensors across ports for compatibility with inter-
— fragment communication
op_output.emit(
dict(coordinates=cpu_coords_tensor, metrics=cpu_metrics_tensor),
"out_host"

)

op_output.emit(dict(mask=gpu_tensor), "out_device")

10.3.1 Python

For the Python API, any array-like object supporting the DLPack interface, __array_interface__ or
__cuda_array_interface__ will be transmitted using Tensor serialization. This is done to avoid data copies for
performance reasons. Objects of type list[holoscan.HolovizOp.InputSpec] will be sent using the underlying
C++ serializer for std: :vector<HolovizOp: : InputSpec>. All other Python objects will be serialized to/from a
std: :string using the cloudpickle library.

Warning: A restriction imposed by the use of cloudpickle is that all fragments in a distributed application must
be running the same Python version.

Warning: Distributed applications behave differently than single fragment applications when op_output.
emit () is called to emit a tensor-like Python object. Specifically, for array-like objects such as a PyTorch tensor, the
same Python object will not be received by any call to op_input.receive() in a downstream Python operator
(even if the upstream and downstream operators are part of the same fragment). An object of type holoscan.
Tensor will be received as a holoscan.Tensor. Any other array-like objects with data stored on device (GPU)
will be received as a CuPy tensor. Similarly, any array-like object with data stored on the host (CPU) will be re-
ceived as a NumPy array. The user must convert back to the original array-like type if needed (typically possible in
a zero-copy fashion via DLPack or array interfaces).

10.3. Serialization 111

https://dmlc.github.io/dlpack/latest/
https://numpy.org/doc/stable/reference/arrays.interface.html
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://github.com/cloudpipe/cloudpickle
https://github.com/cloudpipe/cloudpickle/blob/v2.2.1/README.md?plain=1#L17-L18
https://github.com/cloudpipe/cloudpickle/blob/v2.2.1/README.md?plain=1#L17-L18

Holoscan SDK User Guide, Release 2.2.0

10.3.2 C++

For any additional C++ classes that need to be serialized for transmission between fragments in a distributed application,
the user must create their own codec and register it with the Holoscan SDK framework. As a concrete example, suppose
that we had the following simple Coordinate class that we wish to send between fragments.

struct Coordinate {
float x;
float y;
float z;

};

To create a codec capable of serializing and deserializing this type one should define a holoscan: : codec class for it
as shown below.

#include "holoscan/core/codec_registry.hpp"
#include "holoscan/core/errors.hpp"
#include "holoscan/core/expected.hpp”

namespace holoscan {

template <>
struct codec<Coordinate> {
static expected<size_t, RuntimeError> serialize(const Coordinate& value, Endpoint*.
—endpoint) {
return serialize_trivial_type<Coordinate>(value, endpoint);
}
static expected<Coordinate, RuntimeError> deserialize(Endpoint* endpoint) {
return deserialize_trivial_type<Coordinate>(endpoint);
}
b

} // namespace holoscan

where the first argument to serialize is a const reference to the type to be serialized and the return value is an
expected containing the number of bytes that were serialized. The deserialize method returns an expected
containing the deserialized object. The Endpoint class is a base class representing the serialization endpoint (For
distributed applications, the actual endpoint class used is UcxSerializationBuffer).

The helper functions serialize_trivial_type (deserialize_trivial_type) can be used to serialize (deseri-
alize) any plain-old-data (POD) type. Specifically, POD types can be serialized by just copying sizeof (Type) bytes
to/from the endpoint. The read_trivial_type() and ~holoscan: :Endpoint::write_trivial_type methods
could be used directly instead.

template <>
struct codec<Coordinate> {
static expected<size_t, RuntimeError> serialize(const Coordinate& value, Endpoint¥®,.
—endpoint) {
return endpoint->write_trivial_type(&value);
}
static expected<Coordinate, RuntimeError> deserialize(Endpoint* endpoint) {
Coordinate encoded;
auto maybe_value = endpoint->read_trivial_type(&encoded);

(continues on next page)

112 Chapter 10. Creating a Distributed Application

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

if (!maybe_value) { return forward_error(maybe_value); }
return encoded;
}
1

In practice, one would not actually need to define codec<Coordinate> at all since Coordinate is a trivially se-
rializable type and the existing codec treats any types for which there is not a template specialization as a trivially
serializable type. It is, however, still necessary to register the codec type with the CodecRegistry as described below.

For non-trivial types, one will likely also need to use the read() and write() methods to implement the codec.
Example use of these for the built-in codecs can be found in holoscan/core/codecs. hpp.

Once such a codec has been defined, the remaining step is to register it with the static CodecRegistry class. This will
make the UCX-based classes used by distributed applications aware of the existence of a codec for serialization of this
object type. If the type is specific to a particular operator, then one can register it via the register_codec() class.

#include "holoscan/core/codec_registry.hpp"
namespace holoscan::ops {

void MyCoordinateOperator::initialize() {
register_codec<Coordinate>("Coordinate");

J/ ...
// parent class initialize() call must be after the argument additions above
Operator::initialize();

}

} // namespace holoscan::ops

Here, the argument provided to register_codec is the name the registry will use for the codec. This name will be
serialized in the message header so that the deserializer knows which deserialization function to use on the received
data. In this example, we chose a name that matches the class name, but that is not a requirement. If the name matches
one that is already present in the CodecRegistry class, then any existing codec under that name will be replaced by
the newly registered one.

It is also possible to directly register the type outside of the context of initialize() by directly retrieving the static
instance of the codec registry as follows.

namespace holoscan {
CodecRegistry::get_instance().add_codec<Coordinate>("Coordinate");

} // namespace holoscan

Tip: CLI arguments (such as --driver, --worker ,--fragments) are parsed by the Application (C++/Python)
class and the remaining arguments are available as app . argv (C++/Python).

10.3. Serialization 113

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/include/holoscan/core/codecs.hpp

Holoscan SDK User Guide, Release 2.2.0

C++
A concrete example of using app->argv() in the ping_distributed.cpp example is covered in the section on user-
defined command line arguments.

If you want to get access to the arguments before creating the C++ instance, you can access them through
holoscan: :Application() .argv().

The following example shows how to access the arguments in your application.

#include <holoscan/holoscan.hpp>

class MyPingApp : public holoscan::Application {
Y/
3

int main(int argc, char** argv) {
auto my_argv =

holoscan: :Application({"myapp", "--driver", "my_argl", "--address=10.0.0.1"1}).
—argvQ;
HOLOSCAN_LOG_INFO(" my_argv: {}", fmt::join(my_argv, " "));

HOLOSCAN_LOG_INFO(
" argv: {} (argc: {}) ",
fmt::join(std::vector<std::string>(argv, argv + argc), " '),
arge) ;

auto app_argv = holoscan::Application().argv(); // do not use reference (‘auto&') here.
— (lifetime issue)

HOLOSCAN_LOG_INFO("app_argv: {} (size: {})", fmt::join(app_argv, " "), app_argv.
—size());

auto app = holoscan::make_application<MyPingApp>Q);
HOLOSCAN_LOG_INFO("app->argv() == app_argv: {}", app->argv() == app_argv);

app->run();
return 0;

}

// $./myapp --driver --input image.dat --address 10.0.0.20

// my_argv: myapp my_argl

// argv: ./myapp --driver --input image.dat --address 10.0.0.20 (argc: 6)
// app_argv: ./myapp --input image.dat (size: 3)

// app->argv() == app_argv: true

Please see other examples in the Application unit tests in the Holoscan SDK repository.

114 Chapter 10. Creating a Distributed Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed/cpp/ping_distributed.cpp#:~:text=int%20main
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/tests/core/application.cpp#:~:text=TestAppCustomArguments

Holoscan SDK User Guide, Release 2.2.0

Python
A concrete example of usage of app.argv in the ping_distributed.py example is covered in the section on user-defined
command line arguments.

If you want to get access to the arguments before creating the Python instance, you can access them through
Application().argv.

The following example shows how to access the arguments in your application.

import argparse
import sys
from holoscan.core import Application

class MyApp(Application):
def compose(self):

pass
def main(Q:
app = MyApp() # or alternatively, MyApp([sys.executable, *sys.argv])
app.run()
if _name__ == "__main__":
print("sys.argv:", sys.argv)

print("Application().argv:", app.argv)

parser = argparse.ArgumentParser()
parser.add_argument ("--input")

args = parser.parse_args(app.argv[1l:])
print("args:", args)

main()

$ python cli_test.py --address 10.0.0.20 --input image.dat

sys.argv: ['cli_test.py', '--address', '10.0.0.20', '--input', 'image.dat']
Application().argv: ['cli_test.py', '--input', 'image.dat']

args: Namespace(input='a’)

>>> from holoscan.core import Application
>>> import sys

>>> Application().argv == sys.argv

True

>>> Application([]).argv == sys.argv

True

>>> Application([sys.executable, *sys.argv]).argv == sys.argv

True

>>> Application(["python3", "myapp.py", "--driver", "my_argl", "--address=10.0.0.1"]).
—.argv

['myapp.py', 'my_argl']

10.3. Serialization 115

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed/python/ping_distributed.py#:~:text=__main__

Holoscan SDK User Guide, Release 2.2.0

Please see other examples in the Application unit tests (TestApplication class) in the Holoscan SDK repository.

10.3.3 Adding user-defined command line arguments

When adding user-defined command line arguments to an application, one should avoid the use of any of the
default command line argument names as --help, --version, --config, --driver, --worker, --address,
--worker-address, --fragments as covered in the section on running a distributed application. It is recommended
to parse user-defined arguments from the argv ((C++/Python)) method/property of the application as covered in the
note above instead of using C++ char* argv[] or Python sys.argv directly. This way, only the new, user-defined
arguments will need to be parsed.

A concrete example of this for both C++ and Python can be seen in the existing ping_distributed example where an
application-defined boolean argument (--gpu) is specified in addition to the default set of application arguments.

C++

int main(Q) {
auto app = holoscan: :make_application<App>Q);

// Parse args

bool tensor_on_gpu = false;

auto& args = app->argv(Q);

if (std::find(args.begin(), args.end(), "--gpu") != std::end(args)) { tensor_on_gpu =.
—true; }

// configure tensor on host vs. GPU
app->gpu_tensor (tensor_on_gpu) ;

// run the application
app->run() ;

return 0;

Python

def main(on_gpu=False):
app = MyPingApp()

tensor_str = "GPU" if on_gpu else "host"
print(f"Configuring application to use {tensor_str} tensors')
app.gpu_tensor = on_gpu

app.run()

if __name__ == "__main_

get the Application's arguments

(continues on next page)

116 Chapter 10. Creating a Distributed Application

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/unit/test_core.py#:~:text=TestApplication
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

app_argv = Application().argv

parser = ArgumentParser(description="Distributed ping application.")
parser.add_argument (

"--gpu",

action="store_true",

help="Use a GPU tensor instead of a host tensor",
)
pass app_argv[1:] to parse_args (app_argv[0®] is the path of the application)
args = parser.parse_args(app_argv[1l:])
main(on_gpu=args.gpu)

For Python, app.argv[1:] can be used with an ArgumentParser from Python’s argparse module.

Alternatively, it may be preferable to instead use parser.parse_known_args() to allow any arguments not defined
by the user’s parser to pass through to the application class itself. If one also sets add_help=False when constructing
the ArgumentParser, it is possible to print the parser’s help while still preserving the default application help (covering
the default set of distributed application arguments). An example of this style is shown in the code block below.

parser = ArgumentParser(description="Distributed ping application.", add_help=False)
parser.add_argument (

”__gpu";

action="store_true",

help="Use a GPU tensor instead of a host tensor",

use parse_known_args to ignore other CLI arguments that may be used by Application
args, remaining = parser.parse_known_args()

can print the parser's help here prior to the Application's help output
if "-h" in remaining or "--help" in remaining:
print("Additional arguments supported by this application:")
print(textwrap.indent (parser. format_help(), " "))
main(on_gpu=args.gpu)

10.3. Serialization 117

https://docs.python.org/3/library/argparse.html

Holoscan SDK User Guide, Release 2.2.0

118 Chapter 10. Creating a Distributed Application

CHAPTER
ELEVEN

PACKAGING HOLOSCAN APPLICATIONS

The Holoscan App Packager, included as part of the Holoscan CLI as the package command, allows you to package
your Holoscan applications into a HAP-compliant container image for distribution and deployment.

11.1 Prerequisites

11.1.1 Dependencies

Ensure the following are installed in the environment where you want to run the CLI:

* PIP dependencies (automatically installed with the holoscan python wheel)

¢ NVIDIA Container Toolkit with Docker

— Developer Kits (aarch64): already included in IGX Software and JetPack

— x86_64: tested with NVIDIA Container Toolkit 1.13.3 w/Docker v24.0.1

* Docker BuildX plugin

1.

Check if it is installed:

$ docker buildx version
github.com/docker/buildx v0.10.5 86bdced

. If not, run the following commands based on the official doc:

Install Docker dependencies
sudo apt-get update
sudo apt-get install ca-certificates curl gnupg

Add Docker Official GPG Key

sudo install -m 0755 -d /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o.
—/etc/apt/keyrings/docker.gpg

sudo chmod a+r /etc/apt/keyrings/docker.gpg

Configure Docker APT Repository

echo \

"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.
—gpg] https://download.docker.com/linux/ubuntu \

"$(. /etc/os-release &% echo "$VERSION_CODENAME")" stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

(continues on next page)

119

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/requirements.txt
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Install Docker BuildX Plugin
sudo apt-get update
sudo apt-get install docker-buildx-plugin

* QEMU (Optional)

— used for packaging container images of different architectures than the host (example: x86_64 -> arm64)

11.1.2 CLI Installation

The Holoscan CLI is installed as part of the Holoscan SDK and can be called with the following instructions depending
on your installation:

Python Wheel

* In a virtual environment: the holoscan CLI should already be in the PATH

 System python: ensure that $HOME/ . local/bin is added to your PATH. If using bash, the following command
will make it persist across sessions:

echo 'export PATH=$HOME/.local/bin:$PATH' >> ~/.bashrc

Debian Package

Ensure that /opt/nvidia/holoscan/ is added to your PATH. If using bash, the following command will make it
persist across sessions:

echo 'alias holoscan=/opt/nvidia/holoscan/bin/holoscan' >> ~/.bashrc

From source
If building the SDK from source and starting the build container with run launch, the holoscan CLI should already
be in the PATH.

If building bare-metal (advanced), ensure that <BUILD_OR_INSTALL_DIR>/bin is added to your PATH. If using bash,
the following command will make it persist across sessions:

echo 'alias holoscan=<BUILD_OR_INSTALL_DIR>/bin/holoscan' >> ~/.bashrc

NGC Container

The NGC container has the CLI installed already, no additional steps are required.

120 Chapter 11. Packaging Holoscan Applications

https://github.com/multiarch/qemu-user-static

Holoscan SDK User Guide, Release 2.2.0

11.2 Package an application

Tip: The packager feature is also illustrated in the cli_packager and video_replayer_distributed examples.

Additional arguments are required when launching the container to enable the packaging of Holoscan applications
inside the NGC Holoscan container. Please see the NGC Holoscan container page for additional details.

1. Ensure to use the HAP environment variables wherever possible when accessing data. For example:
Let’s take a look at the distributed video replayer example (examples/video_replayer_distributed).

* Using the Application Configuration File

C++

In the main function, we call the app->config(config_path) function with the default configuration
file. The app->config(. . .) checks to see if the application was executed with --config argument first.
If --config was set, the method uses the configuration file from the --config argument. Otherwise, it
checks if the environment variable HOLOSCAN_CONFIG_PATH is set and uses that value as the source. If
neither were set, the default configuration file (config_path) is used.

int main(int argc, char** argv) {
// Get the yaml configuration file
auto config_path = std::filesystem: :canonical (argv[0]).parent_path();
config_path /= std::filesystem::path("video_replayer_distributed.yaml");

auto app = holoscan: :make_application<DistributedVideoReplayerApp>Q);
app->config(config_path);

app->run();

return 0;

Python

In the main function, we call the app.config(config_file_path) function with the default configu-
ration file. The app.config(...) method checks to see if the application was executed with --config
argument first. If --config was set, the method uses the configuration file from the --config argument.
Otherwise, it checks if the environment variable HOLOSCAN_CONFIG_PATH is set and uses that value as the
source. If neither were set, the default configuration file (config_file_path) is used.

def main(Q:

input_path = get_input_path()

config_file_path = os.path.join(os.path.dirname(_file_), "video_replayer_
—distributed.yaml")

logging.info(f"Reading application configuration from {config_file_path}")
app = DistributedVideoReplayerApp(input_path)

app.config(config_file_path)
app.run()

11.2. Package an application 121

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/cli_packager
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/video_replayer_distributed
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan

Holoscan SDK User Guide, Release 2.2.0

¢ Using Environment Variable HOLOSCAN_INPUT_PATH for Data Input

C++

In Fragment1, we try to set the input video directory with the value defined in HOLOSCAN_INPUT_PATH.
When we instantiate a new Video Stream Replayer operator, we pass in all configuration values from the
from_config("replayer™) call. In addition, we include args that we created with the value from
HOLOSCAN_INPUT_PATH if available as the last argument to override the directory setting.

class Fragmentl : public holoscan::Fragment {
public:
void compose() override {
using namespace holoscan;
ArglList args;
auto data_directory = std::getenv("HOLOSCAN_INPUT_PATH");
if (data_directory != nullptr && data_directory[0] != '"\0') {
auto video_directory = std::filesystem::path(data_directory);
video_directory /= "racerx";
args.add(Arg("directory", video_directory.string()));
HOLOSCAN_LOG_INFO("Using video from {}", video_directory.string());
}
auto replayer =
make_operator<ops: :VideoStreamReplayerOp>("replayer", from_config(
~"replayer"), args);
add_operator(replayer);
}
};

Python

In Fragment1, we try to set the input video directory with the value defined in HOLOSCAN_INPUT_PATH.
When we instantiate a new Video Stream Replayer operator, we pass in the video_path along with all
replayer configurations found in the configuration file.

class Fragmentl(Fragment):
def __init__(self, app, name):
super().__init__(app, name)

def __init__(self, app, name):
super().__init__(app, name)

def compose(self):
Set the video source
video_path = self._get_input_path()
logging.info(
f"Using video from {video_path}"

)

Define the replayer and holoviz operators
replayer = VideoStreamReplayerOp (
self, name="replayer", directory=video_path, **self.kwargs('replayer

)

(continues on next page)

122

Chapter 11. Packaging Holoscan Applications

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

)
self.add_operator(replayer)

def _get_input_path(self):
path = os.environ.get(
"HOLOSCAN_INPUT_PATH", os.path.join(os.path.dirname(__file__), "data
-
)

return os.path.join(path, "racerx")

2. Include a YAML configuration file as described in the Application Runner Configuration page.

3. Use the holoscan package command to create a HAP container image. For example:

holoscan package --platform x64-workstation --tag my-awesome-app --config /path/to/
—.my/awesome/application/config.yaml /path/to/my/awesome/application/

11.2.1 Common Issues When Using Holoscan Packager

DNS Name Resolution Error

The Holoscan Packager may be unable to resolve hostnames in specific networking environments and may show errors
similar to the following:

curl: (6) Could not resolve host: github.com.
Failed to establish a new connection:: [Errno -3] Temporary failure in name solution...

To resolve these errors, edit the /etc/docker/daemon. json file to include dns and dns-serach fields as follows:

{
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"args": [1,
"path": "nvidia-container-runtime"
}
3,
"dns": ["IP-1", "IP-n"],
"dns-search": ["DNS-SERVER-1", "DNS-SERVER-n"]
}

You may need to consult your IT team and replace IP-x and DNS-SERVER-x with the provided values.

11.2. Package an application 123

Holoscan SDK User Guide, Release 2.2.0

11.3 Run a packaged application

The packaged Holoscan application container image can run with the Holoscan App Runner:

holoscan run -i /path/to/my/input -o /path/to/application/generated/output my-
—application:1.0.1

Since the packaged Holoscan application container images are OCI-compliant, they’re also compatible with Docker,
Kubernetes, and containerd.

Each packaged Holoscan application container image includes tools inside for extracting the embedded application,
manifest files, models, etc. To access the tool and to view all available options, run the following:

docker run -it my-container-imagel[:tag] help

The command should prints following:

USAGE: /var/holoscan/tools [command] [arguments]...
Command List

extract -------------————— - Extract data based on mounted volume paths.
/var/run/holoscan/export/app extract the application
/var/run/holoscan/export/config extract app.json and pkg.json manifest files.
—and application YAML.
/var/run/holoscan/export/models extract models
/var/run/holoscan/export/docs extract documentation files
/var/run/holoscan/export extract all of the above

IMPORTANT: ensure the directory to be mounted for data extraction is created.
—first on the host system.
and has the correct permissions. If the directory had been created by.
—the container previously
with the user and group being root, please delete it and manually..
—create it again.

show -----—-——————— -~ Print manifest file(s): [appl|pkg] to the.
—terminal.
app print app.json
pkg print pkg.json
eNV —--mm e Print all environment variables to the terminal.

Note: The tools can also be accessed inside the Docker container via /var/holoscan/tools.

For example, run the following commands to extract the manifest files and the application configuration file:

create a directory on the host system first
mkdir -p config-files

mount the directory created to /var/run/holoscan/export/config
docker run -it --rm -v $(pwd)/config-files:/var/run/holoscan/export/config my-container-
—,image[:tag] extract

include -u 1000 if the above command reports a permission error
docker run -it --rm -u 1000 -v $(pwd)/config-files:/var/run/holoscan/export/config my-
—,container-image[:tag] extract

(continues on next page)

124 Chapter 11. Packaging Holoscan Applications

https://www.docker.com
https://kubernetes.io/
https://containerd.io/

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

If the permission error continues to occur, please check if the mounted directory has.
—the correct permission.
If it doesn't, please recreate it or change the permissions as needed.

list files extracted
1ls config-files/

output:
app.json app.yaml pkg.json

11.3. Run a packaged application 125

Holoscan SDK User Guide, Release 2.2.0

126 Chapter 11. Packaging Holoscan Applications

CHAPTER
TWELVE

CREATING OPERATORS

Tip: Creating a custom operator is also illustrated in the ping_custom_op example.

12.1 C++ Operators

When assembling a C++ application, two types of operators can be used:

1. Native C++ operators: custom operators defined in C++ without using the GXF API, by creating a subclass of
holoscan: :Operator. These C++ operators can pass arbitrary C++ objects around between operators.

2. GXF Operators: operators defined in the underlying C++ library by inheriting from the
holoscan: :ops: :GXFOperator class. These operators wrap GXF codelets from GXF extensions. Ex-
amples are VideoStreamReplayerOp for replaying video files, FormatConverterOp for format conversions,
and HolovizOp for visualization.

Note: It is possible to create an application using a mixture of GXF operators and native operators. In this case, some
special consideration to cast the input and output tensors appropriately must be taken, as shown in a section below.

12.1.1 Native C++ Operators

Operator Lifecycle (C++)

The lifecycle of a holoscan: :Operator is made up of three stages:

* start() iscalled once when the operator starts, and is used for initializing heavy tasks such as allocating memory
resources and using parameters.

» compute() is called when the operator is triggered, which can occur any number of times throughout the operator
lifecycle between start() and stop().

¢ stop() is called once when the operator is stopped, and is used for deinitializing heavy tasks such as deallocating
resources that were previously assigned in start().

All operators on the workflow are scheduled for execution. When an operator is first executed, the start () method
is called, followed by the compute() method. When the operator is stopped, the stop() method is called. The
compute () method is called multiple times between start() and stop().

127

20

21

22

23

24

25

Holoscan SDK User Guide, Release 2.2.0

If any of the scheduling conditions specified by Conditions are not met (for example, the CountCondition would
cause the scheduling condition to not be met if the operator has been executed a certain number of times), the operator
is stopped and the stop () method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (C++) section of the user guide.

Typically, the start() and the stop() functions are only called once during the application’s lifecycle. However, if
the scheduling conditions are met again, the operator can be scheduled for execution, and the start () method will be
called again.

compute

Fig. 12.1: The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above methods. The following example
shows how to implement a custom operator that overrides start, stop and compute methods.

Listing 12.1: The basic structure of a Holoscan Operator (C++)

#include "holoscan/holoscan.hpp"

using holoscan: :Operator;

using holoscan: :OperatorSpec;
using holoscan: :InputContext;
using holoscan: :OutputContext;
using holoscan: :ExecutionContext;
using holoscan: :Arg;

using holoscan: :ArgList;

class MyOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (MyOp)

MyOp() = default;

void setup(OperatorSpec& spec) override {

}

void start() override {
HOLOSCAN_LOG_TRACE("MyOp::start()");
}

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
HOLOSCAN_LOG_TRACE("MyOp: :compute()");

(continues on next page)

128 Chapter 12. Creating Operators

26

27

28

29

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

};

void stop() override {
HOLOSCAN_LOG_TRACE ("MyOp: :stop()");
}
};

Creating a custom operator (C++)

To create a custom operator in C++ it is necessary to create a subclass of holoscan: :Operator. The following
example demonstrates how to use native operators (the operators that do not have an underlying, pre-compiled GXF
Codelet).

Code Snippet: examples/ping_multi_port/cpp/ping_multi_port.cpp

Listing 12.2: examples/ping_multi_port/cpp/ping_multi_port.cpp

#include "holoscan/holoscan.hpp"

class ValueData {
public:
ValueData() = default;
explicit ValueData(int value) : data_(value) {
HOLOSCAN_LOG_TRACE("ValueData: :ValueData(): {}", data_);
}
~ValueData() {
HOLOSCAN_LOG_TRACE("ValueData: :~ValueData(): {}'", data_);
}

void data(int value) { data_ = value; }
int data() const { return data_; }

private:
int data_;

};
namespace holoscan::ops {

class PingTxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingTxOp)

PingTxOp() = default;

void setup(OperatorSpec& spec) override {
spec.output<std: :shared_ptr<ValueData>>("outl");
spec.output<std: :shared_ptr<ValueData>>("out2");

3

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
auto valuel = std::make_shared<ValueData>(index_++);

(continues on next page)

12.1. C++ Operators 129

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_multi_port/cpp/ping_multi_port.cpp

56

58

59

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

op_output.emit(valuel, "outl™);

auto value2 = std::make_shared<ValueData>(index_++);
op_output.emit(value2, "out2");

1

int index_ = 0;

};

class PingMiddleOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingMiddleOp)

PingMiddleOp() = default;

void setup(OperatorSpec& spec) override {
spec.input<std: :shared_ptr<ValueData>>("inl");
spec.input<std: :shared_ptr<ValueData>>("in2");
spec.output<std: :shared_ptr<ValueData>>("outl");
spec.output<std: : shared_ptr<ValueData>>("out2");
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value
D)
}

void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&).
—override {
auto valuel = op_input.receive<std: :shared_ptr<ValueData>>("inl").value(Q);
auto value2 = op_input.receive<std::shared_ptr<ValueData>>("in2").value(Q);

HOLOSCAN_LOG_INFO("Middle message received (count: {})", count_++);

HOLOSCAN_LOG_INFO("Middle message valuel: {}", valuel->data());
HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data());

// Multiply the values by the multiplier parameter
valuel->data(valuel->data() * multiplier_);
value2->data(value2->data() * multiplier_);

op_output.emit(valuel, "outl");
op_output.emit(value2, "out2");

};

private:
int count_ = 1;
Parameter<int> multiplier_;

};

class PingRxOp : public Operator {

public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingRx0p)

PingRxOp() = default;

(continues on next page)

130 Chapter 12. Creating Operators

106

107

108

109

110

111

113

114

115

116

117

118

119

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

void setup(OperatorSpec& spec) override {

spec.param(receivers_, 'receivers", "Input Receivers", "List of input receivers.", {}

=);
}

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
auto value_vector =
op_input.receive<std: :vector<std: :shared_ptr<ValueData>>>("receivers").value(Q);

HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
—vector.size());

HOLOSCAN_LOG_INFO("Rx message valuel: {}", value_vector[0]->data());
HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data());
1

private:
Parameter<std: :vector<IOSpec*>> receivers_;
int count_ = 1;

1
} // namespace holoscan: :ops

class App : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto mx = make_operator<ops: :PingMiddleOp>("mx", Arg("multiplier", 3));
auto rx = make_operator<ops: :PingRxOp>("rx");

add_flow(tx, mx, {{"outl"”, "inl1"}, {"out2", "in2"1}});
add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});
}
3

int main(int argc, char** argv) {
auto app = holoscan::make_application<MyPingApp>Q);
app->runQ);

return 0;

}

Code Snippet: examples/native_operator/cpp/app_config.yaml
In this application, three operators are created: PingTxOp, PingMxOp, and PingRxOp

1. The PingTxOp operator is a source operator that emits two values every time it is invoked. The values are emitted
on two different output ports, out1 (for even integers) and out2 (for odd integers).

2. The PingMxOp operator is a middle operator that receives two values from the PingTxOp operator and emits two
values on two different output ports. The values are multiplied by the multiplier parameter.

3. The PingRxOp operator is a sink operator that receives two values from the PingMxOp operator. The values are

12.1. C++ Operators 131

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/cpp/app_config.yaml

Holoscan SDK User Guide, Release 2.2.0

received on a single input, receivers, which is a vector of input ports. The PingRxOp operator receives the
values in the order they are emitted by the PingMxOp operator.

As covered in more detail below, the inputs to each operator are specified in the setup () method of the operator. Then
inputs are received within the compute () method via op_input.receive() and outputs are emitted via op_output.
emit().

Note that for native C++ operators as defined here, any object including a shared pointer can be emitted or received.
For large objects such as tensors it may be preferable from a performance standpoint to transmit a shared pointer to
the object rather than making a copy. When shared pointers are used and the same tensor is sent to more than one
downstream operator, one should avoid in-place operations on the tensor or race conditions between operators may
occur.

Specifying operator parameters (C++)

In the example holoscan: :ops: :PingMxOp operator above, we have a parameter multiplier that is declared as
part of the class as a private member using the param() templated type:

Parameter<int> multiplier_;

It is then added to the OperatorSpec attribute of the operator in its setup () method, where an associated string key
must be provided. Other properties can also be mentioned such as description and default value:

// Provide key, and optionally other information
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value",.
=2);

Note: If your parameter is of a custom type, you must register that type and provide a YAML encoder/decoder, as
documented under holoscan: :Operator: :register_converter()

See the Configuring operator parameters section to learn how an application can set these parameters.

Specifying operator inputs and outputs (C++)

To configure the input(s) and output(s) of C++ native operators, call the spec.input () and spec.output () methods
within the setup () method of the operator.

The spec.input() and spec.output () methods should be called once for each input and output to be added. The
OperatorSpec object and the setup () method will be initialized and called automatically by the Application class
when its run() method is called.

These methods (spec.input() and spec.output()) return an I0Spec object that can be used to configure the
input/output port.

By default, the holoscan: :MessageAvailableConditionand holoscan: :DownstreamMessageAffordableCondition
conditions are applied (with a min_size of 1) to the input/output ports. This means that the operator’s compute ()

method will not be invoked until a message is available on the input port and the downstream operator’s input port
(queue) has enough capacity to receive the message.

void setup(OperatorSpec& spec) override {
spec.input<std: :shared_ptr<ValueData>>("in");
// Above statement is equivalent to:
// spec.input<std::shared_ptr<ValueData>>("in")

(continues on next page)

132 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

// .condition(ConditionType: :kMessageAvailable, Arg("min_size") = 1);

spec.output<std: : shared_ptr<ValueData>>("out");

// Above statement is equivalent to:

// spec.output<std::shared_ptr<ValueData>>("out")

// .condition(ConditionType: :kDownstreamMessageAffordable, Arg("min_size") =,
~1);

}

In the above example, the spec.input() method is used to configure the input port to have the
holoscan: :MessageAvailableCondition with a minimum size of 1. This means that the operator’s compute ()
method will not be invoked until a message is available on the input port of the operator. Similarly, the spec.output()
method is used to configure the output port to have the holoscan: :DownstreamMessageAffordableCondition
with a minimum size of 1. This means that the operator’s compute () method will not be invoked until the downstream
operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the IOSpec: : condition() method to configure the conditions. For example,
to configure the input and output ports to have no conditions, you can use the following code:

void setup(OperatorSpec& spec) override {
spec.input<std: :shared_ptr<ValueData>>("in")
.condition(ConditionType: :kNone);

spec.output<std: :shared_ptr<ValueData>>("out")
.condition(ConditionType: :kNone);
/) ..
}

The example code in the setup() method configures the input port to have no conditions, which means that the
compute () method will be called as soon as the operator is ready to compute. Since there is no guarantee that the
input port will have a message available, the compute () method should check if there is a message available on the
input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types of input data within the
compute () method of your operator class, where its template argument (DataT) is the data type of the input. This
method takes the name of the input port as an argument (which can be omitted if your operator has a single input port),
and returns the input data. If input data is not available, the method returns an object of the holoscan: :RuntimeError
class which contains an error message describing the reason for the failure. The holoscan: :RuntimeError class is
a derived class of std: :runtime_error and supports accessing more error information, for example, with what ()
method.

In the example code fragment below, the PingRxOp operator receives input on a port called “in” with data type
ValueData. The receive() method is used to access the input data. The value is checked to be valid or not with
the if condition. If value is of holoscan: :RuntimeError type, then if condition will be false. Otherwise, the
data() method of the ValueData class is called to get the value of the input data.

VA

class PingRxOp : public holoscan::ops::GXFOperator {

public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER (PingRxOp, holoscan: :ops: :GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {

(continues on next page)

12.1. C++ Operators 133

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

spec.input<ValueData>("in");

}

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of ‘value' is "ValueData®
auto value = op_input.receive<ValueData>("in");
if (value){

HOLOSCAN_LOG_INFO("Message received (value: {})", value.data());

}

}

};

For GXF Entity objects (holoscan: :gxf::Entity wraps underlying GXF nvidia::gxf::Entity class), the
receive() method will return the GXF Entity object for the input of the specified name. In the example below,
the PingRxOp operator receives input on a port called “in” with data type holoscan: :gxf: :Entity.

VA

class PingRxOp : public holoscan::ops::GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp, holoscan: :ops: :GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {
spec.input<holoscan: :gxf: :Entity>("in");
}
void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of “in_entity is 'holoscan::gxf::Entity’'.
auto in_entity = op_input.receive<holoscan: :gxf::Entity>("in");
if (in_entity) {
// Process with ‘in_entity’.
/) ..
}
}
};

For objects of type std::any, the receive() method will return a std::any object containing the input of the
specified name. In the example below, the PingRxOp operator receives input on a port called “in” with data type
std: :any. The type () method of the std: : any object is used to determine the actual type of the input data, and the
std: :any_cast<T>() function is used to retrieve the value of the input data.

VA

class PingRxOp : public holoscan::ops::GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER (PingRx0Op, holoscan: :ops: :GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {
spec.input<std::any>("in");
}
void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of ‘in_any’ is 'std::any'.
auto in_any = op_input.receive<std::any>("in");
auto& in_any_type = in_any.type(Q);

(continues on next page)

134 Chapter 12. Creating Operators

98

99

100

101

102

103

104

105

106

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

if (in_any_type == typeid(holoscan::gxf::Entity)) {
auto in_entity = std::any_cast<holoscan::gxf::Entity>(in_any);
// Process with ‘in_entity’.
/) ..
} else if (in_any_type == typeid(std::shared_ptr<ValueData>)) {
auto in_message = std::any_cast<std::shared_ptr<ValueData>>(in_any);
// Process with ‘in_message".
/) ...
} else if (in_any_type == typeid(nullptr_t)) {
// No message is available.
} else {
HOLOSCAN_LOG_ERROR("Invalid message type: {}", in_any_type.name());
return;

}
1

The Holoscan SDK provides built-in data types called Domain Objects, defined in the include/holoscan/core/
domain directory. For example, the holoscan: :Tensor is a Domain Object class that is used to represent a multi-
dimensional array of data, which can be used directly by OperatorSpec, InputContext, and OutputContext.

Tip: This holoscan: :Tensor class is a wrapper around the DLManagedTensorContext struct holding a DLLMan-
agedTensor object. As such, it provides a primary interface to access Tensor data and is interoperable with other
frameworks that support the DLPack interface.

Warning: Passing holoscan: : Tensor objects to/from GXF operators directly is not supported. Instead, they
need to be passed through holoscan: :gxf: :Entity objects. See the interoperability section for more details.

Receiving any humber of inputs (C++)

Instead of assigning a specific number of input ports, it may be desired to have the ability to receive any number
of objects on a port in certain situations. This can be done by defining Parameter with std: :vector<IOSpec*>>

(Parameter<std: :vector<IOSpec*>> receivers_) and calling spec.param(receivers_, "receivers",
"Input Receivers", "List of input receivers.", {}); as done for PingRxO0p in the native operator ping
example.

Listing 12.3: examples/ping_multi_port/cpp/ping_multi_port.cpp

class PingRxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingRx0p)

PingRxOp() = default;

void setup(OperatorSpec& spec) override {
spec.param(receivers_, 'receivers", "Input Receivers", "List of input receivers.", {}
=)
}

(continues on next page)

12.1. C++ Operators 135

https://dmlc.github.io/dlpack/latest/c_api.html#c.DLManagedTensor
https://dmlc.github.io/dlpack/latest/c_api.html#c.DLManagedTensor
https://dmlc.github.io/dlpack/latest/

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

128

129

130

131

132

133

134

135

136

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
auto value_vector = op_input.receive<std::vector<ValueData>>("receivers");

HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
—vector.size());

HOLOSCAN_LOG_INFO("Rx message valuel: {}", value_vector[0]->data());
HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data());
1

private:
Parameter<std: :vector<IOSpec*>> receivers_;
int count_ = 1;

};
} // namespace holoscan: :ops

class App : public holoscan: :Application {
public:
void compose() override {
using namespace holoscan;

auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto mx = make_operator<ops: :PingMiddleOp>("mx", Arg("multiplier", 3));
auto rx = make_operator<ops: :PingRxOp>("rx");

add_flow(tx, mx, {{"outl”, "inl"}, {"out2", "in2"}});
add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});
}
1

Then, once the following configuration is provided in the compose () method, the PingRxOp will receive two inputs
on the receivers port.

134: add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});

By using a parameter (receivers) with std: :vector<holoscan::I0Spec*> type, the framework creates input
ports (receivers:0 and receivers:1) implicitly and connects them (and adds the references of the input ports to
the receivers vector).

Building your C++ operator

You can build your C++ operator using CMake, by calling find_package (holoscan) in your CMakeLists.txt to
load the SDK libraries. Your operator will need to link against holoscan: : core:

Listing 12.4: <src_dir>/CMakeLists.txt

Your CMake project
cmake_minimum_required(VERSION 3.20)
project(my_project CXX)

(continues on next page)

136 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Finds the holoscan SDK
find_package(holoscan REQUIRED CONFIG PATHS "/opt/nvidia/holoscan")

Create a library for your operator
add_library(my_operator SHARED my_operator.cpp)

Link your operator against holoscan::core
target_link_ libraries(my_operator

PUBLIC holoscan::core
)

Once your CMakeLists. txt is ready in <src_dir>, you can build in <build_dir> with the command line below.
You can optionally pass Holoscan_ROOT if the SDK installation you’d like to use differs from the PATHS given to
find_package(holoscan) above.

Configure

cmake -S <src_dir> -B <build_dir> -D Holoscan_ROOT="/opt/nvidia/holoscan”
Build

cmake --build <build_dir> -j

Using your C++ Operator in an Application

« If the application is configured in the same CMake project as the operator, you can simply add the operator
CMake target library name under the application executable target_link_libraries call, as the operator
CMake target is already defined.

operator
add_library(my_op my_op.cpp)
target_link libraries(my_operator PUBLIC holoscan::core)

application
add_executable(my_app main.cpp)
target_link_ libraries(my_operator
PRIVATE
holoscan: :core
my_op
)

o If the application is configured in a separate project as the operator, you need to export the operator in
its own CMake project, and import it in the application CMake project, before being able to list it under
target_link libraries also. This is the same as what is done for the SDK built-in operators, available
under the holoscan: : ops namespace.

You can then include the headers to your C++ operator in your application code.

12.1. C++ Operators 137

https://cmake.org/cmake/help/latest/guide/importing-exporting/index.html

20

21

22

23

24

25

Holoscan SDK User Guide, Release 2.2.0

12.1.2 GXF Operators

With the Holoscan C++ API, we can also wrap GXF Codelets from GXF extensions as Holoscan Operators.

Note: If you do not have an existing GXF extension, we recommend developing native operators using the C++ or
Python APIs to skip the need for wrapping gxf codelets as operators. If you do need to create a GXF Extension, follow
the Creating a GXF Extension section for a detailed explanation of the GXF extension development process.

Tip: The manual codelet wrapping mechanism described below is no longer necessary in order to make use of a
GXF Codelet as a Holoscan operator. There is a new GXFCodeletOp which allows directly using an existing GXF
codelet via Fragment: :make_operator without having to first create a wrapper class for it. Similarly there is
now also a GXFComponentResource class which allows a GXF Component to be used as a Holoscan resource via
Fragment: :make_resource. A detailed example of how to use each of these is provided for both C++ and Python
applications in the examples/import_gxf components folder.

Given an existing GXF extension, we can create a simple “identity” application consisting of a replayer, which reads
contents from a file on disk, and our recorder from the last section, which will store the output of the replayer exactly
in the same format. This allows us to see whether the output of the recorder matches the original input files.

The MyRecorderOp Holoscan Operator implementation below will wrap the MyRecorder GXF Codelet shown /Zere.

Operator definition

Listing 12.5: my_recorder_op.hpp

#1ifndef APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP
#define APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP

#include "holoscan/core/gxf/gxf_operator.hpp"
namespace holoscan::ops {
class MyRecorderOp : public holoscan::ops: :GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER (MyRecorderOp, holoscan: :ops: :GXFOperator)
MyRecorderOp() = default;
const char* gxf_typename() const override { return "MyRecorder"; }
void setup(OperatorSpec& spec) override;
void initialize() override;
private:
Parameter<holoscan: : I0OSpec*> receiver_;
Parameter<std: :shared_ptr<holoscan: :Resource>> my_serializer_;
Parameter<std: :string> directory_;

Parameter<std: :string> basename_;
Parameter<bool> flush_on_tick_;

(continues on next page)

138 Chapter 12. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/import_gxf_components

26

27

28

29

22

23

24

25

26

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

};
} // namespace holoscan::ops

#endif /* APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP */

The holoscan::ops::MyRecorderOp class wraps a MyRecorder GXF Codelet by inheriting from the
holoscan: :ops: :GXFOperator class. The HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER macro is used
to forward the arguments of the constructor to the base class.

We first need to define the fields of the MyRecorderOp class. You can see that fields with the same names are defined
in both the MyRecorderOp class and the MyRecorder GXF codelet .

Listing 12.6: Parameter declarations in
gxf_extensions/my_recorder/my_recorder.hpp

nvidia::gxf::Parameter<nvidia: :gxf::Handle<nvidia: :gxf::Receiver>> receiver_;

nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>> my_
—,serializer_;

nvidia: :gxf::Parameter<std::string> directory_;

nvidia: :gxf: :Parameter<std: :string> basename_;

nvidia::gxf::Parameter<bool> flush_on_tick_;

Comparing the MyRecorderOp holoscan parameter to the MyRecorder gxf codelet:

Holoscan Operator GXF Codelet

holoscan: :Parameter nvidia::gxf::Parameter

holoscan: :I0Spec* nvidia::gxf::Handle<nvidia: :gxf: :Receiver>> or
nvidia::gxf::Handle<nvidia::gxf::Transmitter>>

std: :shared_ptr<holoscan:|:Reddiinceyxf: :Handle<T>> example: T is
nvidia::gxf::EntitySerializer

We then need to implement the following functions:

* const char* gxf_typename() const override: return the GXF type name of the Codelet. The fully-
qualified class name (MyRecorder) for the GXF Codelet is specified.

e void setup(OperatorSpec& spec) override: setup the OperatorSpec with the inputs/outputs and param-
eters of the Operator.

e void initialize() override: initialize the Operator.
Setting up parameter specifications
The implementation of the setup (OperatorSpec& spec) function is as follows:

Listing 12.7: my_recorder_op.cpp

#include "./my_recorder_op.hpp"

#include "holoscan/core/fragment.hpp"
#include "holoscan/core/gxf/entity.hpp"
#include "holoscan/core/operator_spec.hpp"

(continues on next page)

12.1. C++ Operators 139

20

21

22

23

24

25

26

27

28

29

30

35

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

#include "holoscan/core/resources/gxf/video_stream_serializer.hpp"
namespace holoscan::ops {

void MyRecorderOp: :setup(OperatorSpec& spec) {

auto& input = spec.input<holoscan::gxf::Entity>("input");

// Above is same with the following two lines (a default condition is assigned to the.
—Iinput port if not specified):

//
// auto& input = spec.input<holoscan::gxf::Entity>("input")
// .condition(ConditionType: :kMessageAvailable, Arg("min_size") =.
~1);
spec.param(receiver_, "receiver", "Entity receiver", "Receiver channel to log", &
< input);
spec.param(my_serializer_,
"serializer",
"Entity serializer",
"Serializer for serializing input data');
spec.param(directory_, "out_directory", "Output directory path", "Directory path to.
—»store received output");
spec.param(basename_, "basename", "File base name", "User specified file name without.,

—extension");
spec.param(flush_on_tick_,
"flush_on_tick",
"Boolean to flush on tick",
"Flushes output buffer on every “tick’ when true",
false);
}

void MyRecorderOp::initialize() {...}

} // namespace holoscan::ops

Here, we set up the inputs/outputs and parameters of the Operator. Note how the content of this function is very similar
to the MyRecorder GXF codelet’s registerinterface function.

e In the C++ API, GXF Receiver and Transmitter components (such as DoubleBufferReceiver and
DoubleBufferTransmitter) are considered as input and output ports of the Operator so we register the in-
puts/outputs of the Operator with input<T> and output<T> functions (where T is the data type of the port).

e Compared to the pure GXF application that does the same job, the Schedul-
inglerm of an Entity in the GXF Application YAML are specified as Conditions
on the input/output ports (e.g., holoscan: :MessageAvailableCondition and
holoscan: :DownstreamMessageAffordableCondition).

The highlighted lines in MyRecorderOp: : setup above match the following highlighted statements of GXF Application
YAML:

Listing 12.8: A part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

name: recorder
components:

(continues on next page)

140 Chapter 12. Creating Operators

37

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

55

56

57

58

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

- name: input
type: nvidia::gxf::DoubleBufferReceiver
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::gxf::StdEntitySerializer
parameters:
component_serializers: [component_serializer]
- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
out_directory: "/tmp"
basename: "tensor_out"
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: input
min_size: 1

In the same way, if we had a Transmitter GXF component, we would have the following statements (Please see
available constants for holoscan: :ConditionType):

auto& output = spec.output<holoscan::gxf::Entity>("output");
// Above is same with the following two lines (a default condition is assigned to the.
—output port if not specified):

//
// auto& output = spec.output<holoscan::gxf::Entity>("output")
// .condition(ConditionType: :kDownstreamMessageAffordable, Arg(

<~ '"min_size") = 1);

Initializing the operator
Next, the implementation of the initialize() function is as follows:

Listing 12.9: my_recorder_op.cpp

#include "./my_recorder_op.hpp"

#include "holoscan/core/fragment.hpp"

#include "holoscan/core/gxf/entity.hpp"

#include "holoscan/core/operator_spec.hpp"

#include "holoscan/core/resources/gxf/video_stream_serializer.hpp"

namespace holoscan::ops {

void MyRecorderOp::setup(OperatorSpec& spec) {...}

(continues on next page)

12.1. C++ Operators 141

20

21

22

23

39

40

41

42

43

44

45

46

47

48

49

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

void MyRecorderOp::initialize() {
// Set up prerequisite parameters before calling GXFOperator::initialize()
auto frag = fragment();
auto serializer =
frag->make_resource<holoscan: :StdEntitySerializer>("serializer");
add_arg(Arg("serializer") = serializer);

GXFOperator::initialize();

} // namespace holoscan::ops

Here we set up the pre-defined parameters such as the serializer. The highlighted lines above matches the high-
lighted statements of GXF Application YAML:

Listing 12.10: Another part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

name: recorder
components:
- name: input
type: nvidia::gxf::DoubleBufferReceiver
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::gxf::StdEntitySerializer
parameters:
component_serializers: [component_serializer]
- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
out_directory: "/tmp"
basename: "tensor_out"
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: input
min_size: 1

Note: The Holoscan C++ API already provides the holoscan: :StdEntitySerializer class which wraps the
nvidia::gxf::StdEntitySerializer GXF component, used here as serializer.

142 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 2.2.0

Building your GXF operator

There are no differences in CMake between building a GXF operator and building a native C++ operator, since
the GXF codelet is actually loaded through a GXF extension as a plugin, and does not need to be added to
target_link libraries(my_operator ...).

Using your GXF Operator in an Application

There are no differences in CMake between using a GXF operator and using a native C++ operator in an application.
However, the application will need to load the GXF extension library which holds the wrapped GXF codelet symbols,
so the application needs to be configured to find the extension library in its yaml configuration file, as documented /ere.

12.1.3 Interoperability between GXF and native C++ operators

To support sending or receiving tensors to and from operators (both GXF and native C++ operators), the Holoscan
SDK provides the C++ classes below:

e A class template called holoscan::Map which inherits from std::unordered_map<std::string,
std: :shared_ptr<T>>. The template parameter T can be any type, and it is used to specify the type of the
std: :shared_ptr objects stored in the map.

* A holoscan::TensorMap class defined as a specialization of holoscan: :Map for the holoscan: : Tensor
type.
When a message with a holoscan: : TensorMap is emitted from a native C++ operator, the message object is always
converted to a holoscan: :gxf: :Entity object and sent to the downstream operator.

Then, if the sent GXF Entity object holds only Tensor object(s) as its components, the downstream operator can receive
the message data as a holoscan: : TensorMap object instead of a holoscan: :gxf: :Entity object.

Fig. 12.2 shows the relationship between the holoscan: :gxf: :Entity and nvidia: :gxf: :Entity classes and the
relationship between the holoscan: : Tensor and nvidia: :gxf: :Tensor classes.

DLPack's
data structure

holoscan::InputContext holoscan::OutputContext

holoscan::gxf::GXFInputContext holoscan::gxf::GXFOutputContext holoscan::Tensor

interchangeable
accept/return

holoscan::gxf::Entity >
contain

Fig. 12.2: Supporting Tensor Interoperability

Both holoscan: :gxf: :Tensor and nvidia::gxf::Tensor are interoperable with each other because they are
wrappers around the same underlying DLManagedTensorContext struct holding a DLManagedTensor object.

12.1. C++ Operators 143

https://dmlc.github.io/dlpack/latest/c_api.html#c.DLManagedTensor

Holoscan SDK User Guide, Release 2.2.0

The holoscan: : TensorMap class is used to store multiple tensors in a map, where each tensor is associated with a
unique key. The holoscan: : TensorMap class is used to pass multiple tensors between operators, and it is used in the
same way as a std: :unordered_map<std::string, std::shared_ptr<holoscan::Tensor>> object.

Since both holoscan: :TensorMap and holoscan: :gxf: :Entity objects hold tensors which are interoperable, the
message data between GXF and native C++ operators are also interoperable.

Fig. 12.3 illustrates the use of the holoscan: : TensorMap class to pass multiple tensors between operators. The
GXFSendTensorOp operator sends a nvidia: :gxf: :Entity object (containing a nvidia: :gxf: :Tensor object as
a GXF component named “tensor”) to the ProcessTensorOp operator, which processes the tensors and then forwards
the processed tensors to the GXFReceiveTensorOp operator.

Consider the following example, where GXFSendTensorOp and GXFReceiveTensorOp are GXF operators, and where
ProcessTensorOp is a Holoscan native operator in C++:

GXFSendTensorOp ProcessTensorOp GXFReceiveTensorOp
signal...in out...signal

4

[in]in : TensorMap [in]signal : gxf::Entity

93

9%

95

96

97

98

99

100

101

102

103

104

105

106

107

108

signal(out) : gxf::Entity out(out) : TensorMap

Fig. 12.3: The tensor interoperability between C++ native operator and GXF operator

The following code shows how to implement ProcessTensorOp’s compute () method as a C++ native operator com-

municating with GXF operators. Focus on the use of the holoscan: :gxf::Entity:

Listing 12.11: examples/tensor_interop/cpp/tensor_interop.cpp

void compute(InputContext& op_input, OutputContext& op_output,
ExecutionContext& context) override {
// The type of ‘in_message’ is 'holoscan: :TensorMap'.
auto in_message = op_input.receive<holoscan: :TensorMap>("in").value();
// The type of out_message is TensorMap
TensorMap out_message;

for (auto& [key, tensor] : in_message) { // Process with 'tensor' here.
cudaError_t cuda_status;
size_t data_size = tensor->nbytes();
std: :vector<uint8_t> in_data(data_size);
CUDA_TRY (cudaMemcpy(in_data.data(), tensor->data(), data_size,..
—»cudaMemcpyDeviceToHost)) ;

HOLOSCAN_LOG_INFO("ProcessTensorOp Before key: '{}', shape: ({}), data: [{}]",
key,
fmt:: join(tensor->shape(), ","),
fmt::join(in_data, ","));
for (size_t i = 0; i < data_size; i++) { in_data[i] *= 2; }
HOLOSCAN_LOG_INFO("'ProcessTensorOp After key: '{}', shape: ({}), data: [{}]",
key,
fmt:: join(tensor->shape(), ","),
fmt::join(in_data, ","));

CUDA_TRY (cudaMemcpy (tensor->data(), in_data.data(), data_size,..
—»cudaMemcpyHostToDevice));
out_message.insert({key, tensor});

(continues on next page)

144 Chapter 12. Creating Operators

109

110

111

112

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

}

// Send the processed message.
op_output.emit(out_message);
1

* The input message is of type holoscan: : TensorMap object.

* Every holoscan: : Tensorin the TensorMap object is copied on the host as in_data.
» The data is processed (values multiplied by 2)

* The data is moved back to the holoscan: : Tensor object on the GPU.

* Anew holoscan: : TensorMap object out_messageis created to be sent to the next operator with op_output.
emit().

Note: A complete example of the C++ native operator that supports interoperability with GXF operators is available
in the examples/tensor_interop/cpp directory.

12.2 Python Operators

When assembling a Python application, two types of operators can be used:

1. Native Python operators: custom operators defined in Python, by creating a subclass of holoscan.core.
Operator. These Python operators can pass arbitrary Python objects around between operators and are not
restricted to the stricter parameter typing used for C++ API operators.

2. Python wrappings of C++ Operators: operators defined in the underlying C++ library by inheriting from the
holoscan: :Operator class. These operators have Python bindings available within the holoscan. operators
module. Examples are VideoStreamReplayerOp for replaying video files, FormatConverterOp for format
conversions, and HolovizOp for visualization.

Note: It is possible to create an application using a mixture of Python wrapped C++ operators and native Python
operators. In this case, some special consideration to cast the input and output tensors appropriately must be taken, as
shown in a section below.

12.2.1 Native Python Operator

Operator Lifecycle (Python)

The lifecycle of a holoscan.core.Operator is made up of three stages:

* start() iscalled once when the operator starts, and is used for initializing heavy tasks such as allocating memory
resources and using parameters.

e compute() is called when the operator is triggered, which can occur any number of times throughout the operator
lifecycle between start() and stop().

* stop() is called once when the operator is stopped, and is used for deinitializing heavy tasks such as deallocating
resources that were previously assigned in start().

12.2. Python Operators 145

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/cpp

Holoscan SDK User Guide, Release 2.2.0

All operators on the workflow are scheduled for execution. When an operator is first executed, the start () method
is called, followed by the compute() method. When the operator is stopped, the stop() method is called. The
compute () method is called multiple times between start() and stop().

If any of the scheduling conditions specified by Conditions are not met (for example, the CountCondition would
cause the scheduling condition to not be met if the operator has been executed a certain number of times), the operator
is stopped and the stop () method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (Python) section of the user guide.

Typically, the start() and the stop() functions are only called once during the application’s lifecycle. However, if
the scheduling conditions are met again, the operator can be scheduled for execution, and the start () method will be
called again.

compute

Fig. 12.4: The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above methods. The following example
shows how to implement a custom operator that overrides start, stop and compute methods.

Listing 12.12: The basic structure of a Holoscan Operator (Python)

from holoscan.core import (
ExecutionContext,
InputContext,
Operator,
OperatorSpec,
OutputContext,

class MyOp(Operator):

def __init__(self, fragment, *args, **kwargs):
super().__init__ (fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
pass

def start(self):
pass

def compute(self, op_input: InputContext, op_output: OutputContext, context:.
—ExecutionContext):

(continues on next page)

146 Chapter 12. Creating Operators

22

23

24

25

20

21

22

23

24

25

26

27

28

29

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

pass

def stop(self):
pass

setup method vs initialize vs __init__

The setup method aims to get the “operator’s spec” by providing OperatorSpec object as a spec param. When
__init__ is called, it calls C++’s Operator: :spec method (and also sets self.spec class member), and calls
setup method so that Operator’s spec property holds the operator’s specification. (See the source code for more
details.)

Since the setup method can be called multiple times with other OperatorSpec object (e.g., to enumerate the operator’s
description), in the setup method, a user shouldn’t initialize something in the Operator object. Such initialization
needs to be done in initialize method. The __init__ method is for creating the Operator object and it can be
used for initializing the operator object itself by passing miscellaneous arguments. Still, it doesn’t ‘initialize’ the
corresponding GXF entity object.

Creating a custom operator (Python)

To create a custom operator in Python it is necessary to create a subclass of holoscan.core.Operator. A simple
example of an operator that takes a time-varying 1D input array named “signal” and applies convolution with a boxcar
(i.e. rect) kernel.

For simplicity, this operator assumes that the “signal” that will be received on the input is already a numpy .ndarray
or is something that can be cast to one via (np.asarray). We will see more details in a later section on how we can
interoperate with various tensor classes, including the GXF Tensor objects used by some of the C++-based operators.

Code Snippet: examples/numpy_native/convolve.py

Listing 12.13: examples/numpy_native/convolve.py

import os

from holoscan.conditions import CountCondition
from holoscan.core import Application, Operator, OperatorSpec
from holoscan.logger import LogLevel, set_log_level

import numpy as np

class SignalGeneratorOp(Operator):
"""Generate a time-varying impulse.

Transmits an array of zeros with a single non-zero entry of a
specified ‘height'. The position of the non-zero entry shifts
to the right (in a periodic fashion) each time ‘compute” is
called.

Parameters

fragment : holoscan.core.Fragment

(continues on next page)

12.2. Python Operators 147

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/holoscan/core/__init__.py#:~:text=class%20Operator
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.py

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

81

82

83

84

86

87

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

The Fragment (or Application) the operator belongs to.
height : number

The height of the signal impulse.
size : number

The total number of samples in the generated 1d signal.
dtype : numpy.dtype or str

The data type of the generated signal.

o

def __init__(self, fragment, *args, height=1, size=10, dtype=np.int32, **kwargs):
self.count = 0
self.height = height
self.dtype = dtype
self.size = size
super().__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.output('signal")

def compute(self, op_input, op_output, context):
single sample wide impulse at a time-varying position
signal = np.zeros((self.size,), dtype=self.dtype)
signal[self.count % signal.size] = self.height

self.count += 1

op_output.emit(signal, "signal')

class ConvolveOp(Operator):

"""Apply convolution to a tensor.
Convolves an input signal with a "boxcar" (i.e. "rect") kernel.

Parameters

fragment : holoscan.core.Fragment
The Fragment (or Application) the operator belongs to.

width : number
The width of the boxcar kernel used in the convolution.

unit_area : bool, optional
Whether or not to normalize the convolution kernel to unit area.
If False, all samples have implitude one and the dtype of the
kernel will match that of the signal. When True the sum over
the kernel is one and a 32-bit floating point data type is used
for the kernel.

e

def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs):
self.count = 0
self.width = width
self.unit_area = unit_area

(continues on next page)

148

Chapter 12. Creating Operators

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

super() .__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.input("signal_in'")
spec.output('signal_out™)

def compute(self, op_input, op_output, context):

signal = op_input.receive("signal_in")
assert isinstance(signal, np.ndarray)

if self.unit_area:

kernel = np.full((self.width,), 1/self.width, dtype=np.float32)
else:

kernel = np.ones((self.width,), dtype=signal.dtype)

convolved = np.convolve(signal, kernel, mode='same')

op_output.emit(convolved, "signal_out")

class PrintSignalOp(Operator):
"""Print the received signal to the terminal."""
def setup(self, spec: OperatorSpec):
spec.input('signal™)

def compute(self, op_input, op_output, context):
signal = op_input.receive("signal")
print(signal)

class ConvolveApp(Application):
"""Minimal signal processing application.

Generates a time-varying impulse, convolves it with a boxcar kernel, and
prints the result to the terminal.

A “CountCondition" is applied to the generate to terminate execution
after a specific number of steps.

o

def compose(self):
signal_generator = SignalGeneratorOp(
self,
CountCondition(self, count=24),
name="generator",
**self.kwargs("generator"),
)
convolver = ConvolveOp(self, name="conv'", **self.kwargs('convolve"))
printer = PrintSignalOp(self, name="printer")
self.add_flow(signal_generator, convolver)

(continues on next page)

12.2. Python Operators 149

140

141

143

144

145

146

147

148

149

150

151

152

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

self.add_flow(convolver, printer)

def main(config_file):

app = ConvolveApp()

1f the --config command line argument was provided, it will override this config_
—file"

app.config(config_file)

app.run()

if __name__ == "__main__
config_file = os.path.join(os.path.dirname(__file__), 'convolve.yaml')
main(config _file=config file)

Code Snippet: examples/numpy_native/convolve.yaml

Listing 12.14: examples/numpy_native/convolve.yaml

signal_generator:
height: 1
size: 20
dtype: int32

convolve:
width: 4
unit_area: false

In this application, three native Python operators are created: SignalGeneratorOp, ConvolveOp and
PrintSignalOp. The SignalGeneratorOp generates a synthetic signal such as [0, 0, 1, ®, 0, 0] where the
position of the non-zero entry varies each time it is called. ConvolveOp performs a 1D convolution with a boxcar (i.e.
rect) function of a specified width. PrintSignalOp just prints the received signal to the terminal.

As covered in more detail below, the inputs to each operator are specified in the setup () method of the operator. Then
inputs are received within the compute method via op_input.receive() and outputs are emitted via op_output.
emit().

Note that for native Python operators as defined here, any Python object can be emitted or received. When transmitting
between operators, a shared pointer to the object is transmitted rather than a copy. In some cases, such as sending the
same tensor to more than one downstream operator, it may be necessary to avoid in-place operations on the tensor in
order to avoid any potential race conditions between operators.

Specifying operator parameters (Python)

In the example SignalGeneratorOp operator above, we added three keyword arguments in the operator’s __init__
method, used inside the compose () method of the operator to adjust its behavior:

def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs):
Internal counter for the time-dependent signal generation
self.count = 0

Parameters
self.width = width

(continues on next page)

150 Chapter 12. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.yaml

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

self.unit_area = unit_area

To forward remaining arguments to any underlying C++ Operator class
super().__init__ (fragment, *args, **kwargs)

Note: As an alternative closer to C++, these parameters can be added through the OperatorSpec attribute of the
operator in its setup () method, where an associated string key must be provided as well as a default value:

def setup(self, spec: OperatorSpec):
spec.param("'width", 4)
spec.param("unit_area", False)

Other kwargs properties can also be passed to spec.param such as headline, description (used by GXF applica-
tions), or kind (used when Receiving any number of inputs (Python)).

Note: Native operator parameters added via either of these methods must not have a name that overlaps with any of
the existing attribute or method names of the base Operator class.

See the Configuring operator parameters section to learn how an application can set these parameters.

Specifying operator inputs and outputs (Python)

To configure the input(s) and output(s) of Python native operators, call the spec.input() and spec.output () meth-
ods within the setup() method of the operator.

The spec.input() and spec.output () methods should be called once for each input and output to be added. The
holoscan. core.OperatorSpec object and the setup () method will be initialized and called automatically by the
Application class when its run() method is called.

These methods (spec.input() and spec.output()) return an I0Spec object that can be used to configure the
input/output port.

By default, the holoscan.conditions.MessageAvailableCondition and holoscan.conditions.
DownstreamMessageAffordableCondition conditions are applied (with a min_size of 1) to the input/output
ports. This means that the operator’s compute () method will not be invoked until a message is available on the input
port and the downstream operator’s input port (queue) has enough capacity to receive the message.

def setup(self, spec: OperatorSpec):
spec.input("in")
Above statement is equivalent to:
spec.input("in")
.condition(ConditionType.MESSAGE_AVAILABLE, min_size = 1)
spec.output("out")
Above statement is equivalent to:
spec.output("out")
.condition(ConditionType.DOWNSTREAM_MESSAGE_AFFORDABLE, min_size = 1)

In the above example, the spec.input() method is used to configure the input port to have the holoscan.
conditions.MessageAvailableCondition with a minimum size of 1. This means that the operator’s
compute() method will not be invoked until a message is available on the input port of the operator. Sim-
ilarly, the spec.output() method is used to configure the output port to have a holoscan.conditions.

12.2. Python Operators 151

Holoscan SDK User Guide, Release 2.2.0

DownstreamMessageAffordableCondition with a minimum size of 1. This means that the operator’s compute ()
method will not be invoked until the downstream operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the I0Spec. condition() method to configure the conditions. For example,
to configure the input and output ports to have no conditions, you can use the following code:

from holoscan.core import ConditionType, OperatorSpec
def setup(self, spec: OperatorSpec):
spec.input("in") .condition(ConditionType.NONE)
spec.output("out").condition(ConditionType.NONE)

The example code in the setup() method configures the input port to have no conditions, which means that the
compute () method will be called as soon as the operator is ready to compute. Since there is no guarantee that the
input port will have a message available, the compute () method should check if there is a message available on the
input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types of input data within the
compute () method of your operator class. This method takes the name of the input port as an argument (which can
be omitted if your operator has a single input port).

For standard Python objects, receive () will directly return the Python object for input of the specified name.

The Holoscan SDK also provides built-in data types called Domain Objects, defined in the include/holoscan/
core/domain directory. For example, the Tensor is a Domain Object class that is used to represent a multi-
dimensional array of data, which can be used directly by OperatorSpec, InputContext, and OutputContext.

Tip: This holoscan.core.Tensor class supports both DLPack and NumPy’s array interface
(__array_interface__ and __cuda_array_interface__) so that it can be used with other Python libraries such
as CuPy, PyTorch, JAX, TensorFlow, and Numba. See the interoperability section for more details.

In both cases, it will return None if there is no message available on the input port:

def compute(self, op_input, op_output, context):
msg = op_input.receive('in")
if msg:
Do something with msg

Receiving any number of inputs (Python)

Instead of assigning a specific number of input ports, it may be desired to have the ability to receive any number of
objects on a port in certain situations. This can be done by calling spec.param(port_name, kind='receivers')
as done for PingRxOp in the native operator ping example located at examples/native_operator/python/ping.
py:

Code Snippet: examples/native_operator/python/ping.py

Listing 12.15: examples/native_operator/python/ping.py

class PingRxOp(Operator):
"""Simple receiver operator.

This operator has:

(continues on next page)

152 Chapter 12. Creating Operators

https://dmlc.github.io/dlpack/latest/
https://numpy.org/doc/stable/reference/arrays.interface.html
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://docs.cupy.dev/en/stable/user_guide/interoperability.html
https://github.com/pytorch/pytorch/issues/15601
https://github.com/google/jax/issues/1100#issuecomment-580773098
https://github.com/tensorflow/community/pull/180
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/python/ping.py

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

input: "receivers"

This is an example of a native operator that can dynamically have any
number of inputs connected to is "receivers" port.

e

def __init__(self, fragment, *args, **kwargs):
self.count = 1
Need to call the base class constructor last
super().__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.param(''receivers", kind="receivers")

def compute(self, op_input, op_output, context):
values = op_input.receive(''receivers")
print (f"Rx message received (count: {self.count}, size: {len(values)})")
self.count += 1
print (£"Rx message valuel: {values[0].data}")
print (£"Rx message value2: {values[1l].data}")

and in the compose method of the application, two parameters are connected to this “receivers” port:

self.add_flow(mx, rx, {("outl", "receivers"), ("out2", "receivers")})

This line connects both the outl and out2 ports of operator mx to the receivers port of operator rx.
Here, values as returned by op_input.receive("receivers") will be a tuple of python objects.

12.2.2 Python wrapping of a C++ operator

Wrapping an operator developed in C++ for use from Python is covered in a separate section on creating C++ operator
Python bindings.

Tip: As of Holoscan 2.1, there is a GXFCodeletOp class which can be used to easily wrap an existing GXF codelet
from Python without having to first write an underlying C++ wrapper class for it. Similarly there is now also a
GXFComponentResource class which allows a GXF Component to be used as a Holoscan resource from Python
applications. A detailed example of how to use each of these is provided for Python applications in the exam-
ples/import_gxf_components folder.

12.2.3 Interoperability between wrapped and native Python operators

As described in the Interoperability between GXF and native C++ operators section, holoscan: : Tensor objects can
be passed to GXF operators using a holoscan: : TensorMap message that holds the tensor(s). In Python, this is done
by sending dict type objects that have tensor names as the keys and holoscan Tensor or array-like objects as the values.
Similarly, when a wrapped C++ operator that transmits a single holoscan: : Tensor is connected to the input port of a
Python native operator, calling op_input.receive() on that port will return a Python dict containing a single item.
That item’s key is the tensor name and its value is the corresponding holoscan. core.Tensor.

Consider the following example, where VideoStreamReplayerOp and HolovizOp are Python wrapped C++ opera-
tors, and where ImageProcessingOp is a Python native operator:

12.2. Python Operators 153

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/import_gxf_components/python
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/import_gxf_components/python

62

63

64

65

66

67

68

69

70

71

3

74

75

76

77

78

79

Holoscan SDK User Guide, Release 2.2.0

VideoStreamReplayerOp ImageProcessingOp HolovizOp
output tensor...input tensor [inlinput_tensor : dict[str, Tensor] output tensor...receivers [inJreceivers : Tensor
output_tensor(out) : Tensor output_tensor(out) : dict[str,Tensor]

Fig. 12.5: The tensor interoperability between Python native operator and C++-based Python GXF operator

The following code shows how to implement ImageProcessingOp’s compute () method as a Python native operator
communicating with C++ operators:

Listing 12.16: examples/tensor_interop/python/tensor_interop.py

def compute(self, op_input, op_output, context):
in_message is a dict of tensors
in_message = op_input.receive("input_tensor")

smooth along first two axes, but not the color channels
sigma = (self.sigma, self.sigma, 0)

out_message will be a dict of tensors
out_message = dict()

for key, value in in_message.items():
print(f"message received (count: {self.count})")
self.count += 1

cp_array = cp.asarray(value)

process cp_array
cp_array = ndi.gaussian_filter(cp_array, sigma)

out_message[key] = cp_array

op_output.emit(out_message, "output_tensor')

e The op_input.receive() method call returns a dict object.
* The holoscan.core.Tensor object is converted to a CuPy array by using cupy.asarray () method call.

* The CuPy array is used as an input to the ndi . gaussian_filter() function call with a parameter sigma. The
result of the ndi.gaussian_filter () function call is a CuPy array.

* Finally, a new dict object is created ,out_message, to be sent to the next operator with op_output.
emit(). The CuPy array, cp_array, is added to it where the key is the tensor name. CuPy arrays do not
have to explicitly be converted to a holocan.core.Tensor object first since they implement a DLPack (and
__cuda__array_interface__) interface.

Note: A complete example of the Python native operator that supports interoperability with Python wrapped C++
operators is available in the examples/tensor_interop/python directory.

You can add multiple tensors to a single dict object , as in the example below:

Operator sending a message:

154 Chapter 12. Creating Operators

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/python

Holoscan SDK User Guide, Release 2.2.0

out_message = {
"video": output_array,
"labels": labels,
"bbox_coords": bbox_coords,

emit the tensors
op_output.emit(out_message, "outputs")

Operator receiving the message, assuming the outputs port above is connected to the inputs port below with
add_flow()has the corresponding tensors:

in_message = op_input.receive("inputs")

Tensors and tensor names

video_tensor = in_message["video"]
labels_tensor = in_message["labels"]
bbox_coords_tensor = in_message["bbox_coords"]

Note: Some existing operators allow configuring the name of the tensors they send/receive. An example is the
tensors parameter of HolovizOp, where the name for each tensor maps to the names of the tensors in the Entity
(see the holoviz entry in apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml).

A complete example of a Python native operator that emits multiple tensors to a downstream C++ operator is available
in the examples/holoviz/python directory.

There is a special serialization code for tensor types for emit/receive of tensor objects over a UCX connection that
avoids copying the tensor data to an intermediate buffer. For distributed apps, we cannot just send the Python object as
we do between operators in a single fragment app, but instead we need to cast it to holoscan: : Tensor to use a special
zero-copy code path. However, we also transmit a header indicating if the type was originally some other array-like
object and attempt to return the same type again on the other side so that the behavior remains more similar to the
non-distributed case.

Transmitted object Received Object
holoscan.Tensor holoscan.Tensor

dict of array-like dict of holoscan.Tensor
host array-like object (with __array_interface__) numpy.ndarray

device array-like object (with __cuda_array_interface__) | cupy.ndarray

This avoids NumPy or CuPy arrays being serialized to a string via cloudpickle so that they can efficiently be transmitted
and the same type is returned again on the opposite side. Worth mentioning is that ,if the type emitted was e.g. a
PyTorch host/device tensor on emit, the received value will be a numpy/cupy array since ANY object implementing
the interfaces returns those types.

12.2. Python Operators 155

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python

Holoscan SDK User Guide, Release 2.2.0

12.2.4 Automated operator class creation

Holoscan also provides a holoscan.decorator module which provides ways to autogenerate Operators by
adding decorators to an existing function or class. Please see the separate section on operator creation via
holoscan.decorator.create_op.

12.3 Advanced Topics

12.3.1 Further customizing inputs and outputs

This section complements the information above on basic input and output port configuration given separately in the
C++ and Python operator creation guides. The concepts described here are the same for either the C++ or Python APIs.

By default, both the input and output ports of an Operator will use a double-buffered queue that has a capacity
of one message and a policy that is set to error if a message arrives while the queue is already full. A single
MessageAvailableCondition (C++/Python)) condition is automatically placed on the operator for each input port
so that the compute method will not be called until a single message is available at each port. Similarly each output
port has a DownstreamMessageAffordableCondition (C++/Python) condition that does not let the operator call
compute until any operators connected downstream have space in their receiver queue for a single message. These
default conditions ensure that messages never arrive at a queue when it is already full and that a message has already
been received whenever the compute method is called. These default conditions make it relatively easy to connect a
pipeline where each operator calls compute in turn, but may not be suitable for all applications. This section covers
how the default behavior can be overridden on request.

Note: Overriding operator port properties is an advanced topic. Developers may want to skip this section until they
come across a case where the default behavior is not sufficient for their application.

To override the properties of the queue used for a given port, the connector (C++/Python) method can be used as
shown in the example below. This example also shows how the condition (C++/Python) method can be used to
change the condition type placed on the Operator by a port. In general, when an operator has multiple conditions, they
are AND combined, so the conditions on all ports must be satisfied before an operator can call compute.

C++ Example

Consider the following code from within the holoscan: :Operator: : setup () method of an operator.

spec.output<TensorMap>("outl")
spec.output<TensorMap>("out2").condition(ConditionType: :kNone);

spec.output<TensorMap>("in")
.connector (I0Spec: :ConnectorType: :kDoubleBuffer,
Arg(“"capacity", static_cast<uint64_t>(2)),
Arg("policy", static_cast<uint64_t>(1))) // 0O=pop, l=reject, 2=fault.,
— (default)
.condition(ConditionType: :kMessageAvailable,
Arg("min_size", static_cast<uint64_t>(2)),
Arg("front_stage_max_size", static_cast<size_t>(2)));

This would define

156 Chapter 12. Creating Operators

Holoscan SDK User Guide, Release 2.2.0

* an output port named “outl” with the default properties

* an output port named “out2” that still has the default connector (a
holoscan: :gxf: :DoubleBufferTransmitter), but the default condition of
ConditionType: :kDownstreamMessageAffordable is removed by setting ConditionType: :kNone.
This indicates that the operator will not check if any port downstream of “out2” has space available in its
receiver queue before calling compute.

* an input port named “in” where both the connector and condition have different parameters than the default. For
example, the queue size is increased to 2 and policy=1 is “reject”, indicating that if a message arrives when the
queue is already full, that message will be rejected in favor of the message already in the queue.

Python Example

Consider the following code from within the holoscan: :Operator: : setup () method of an operator.

spec.output(outl")
spec.output ("out2").condition(ConditionType.NONE)

spec.input("in").connector (

I0Spec.ConnectorType.DOUBLE_BUFFER,

capacity=2,

policy=1, # 0O=pop, l=reject, 2=fault (default)
).condition(ConditionType.MESSAGE_AVAILABLE, min_size=2, front_stage_max_size=2)

This would define
* an output port named “outl” with the default properties

e an output port named “out2” that still has the default connector (a holoscan.
resources.DoubleBufferTransmitter), but the default condition of ConditionType.
DOWNSTREAM_MESSAGE_AFFORDABLE is removed by setting ConditionType.NONE. This indicates that
the operator will not check if any port downstream of “out2” has space available in its receiver queue before
calling compute.

* an input port named “in1” where both the connector and condition have different parameters than the default.
For example, the queue size is increased to 2 and policy=1is “reject”, indicating that if a message arrives when
the queue is already full, that message will be rejected in favor of the message already in the queue.

To learn more about overriding connectors and/or conditions there is a multi_branch_pipeline example which overrides
default conditions to allow two branches of a pipeline to run at different frame rates. There is also an example of
increasing the queue sizes available in this Python queue policy test application.

12.3.2 Using the Holoscan SDK with Other Libraries

The Holoscan SDK enables seamless integration with various powerful, GPU-accelerated libraries to build efficient,
high-performance pipelines.

Please refer to the Best Practices to Integrate External Libraries into Holoscan Pipelines tutorial in the HoloHub repos-
itory for detailed examples and more information on Holoscan’s tensor interoperability and handling CUDA libraries
in the pipeline. This includes CUDA Python, CuPy, MatX for C++, cuCIM, CV-CUDA, and OpenCV for integration
into Holoscan applications.

12.3. Advanced Topics 157

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/multi_branch_pipeline
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/system/test_application_with_repeated_emit_on_same_port.py
https://github.com/nvidia-holoscan/holohub/blob/main/tutorials/integrate_external_libs_into_pipeline/README.md
https://github.com/nvidia-holoscan/holohub
https://github.com/NVIDIA/cuda-python
https://cupy.dev/
https://github.com/NVIDIA/MatX
https://github.com/rapidsai/cucim
https://github.com/CVCUDA/CV-CUDA
https://opencv.org/

Holoscan SDK User Guide, Release 2.2.0

158 Chapter 12. Creating Operators

CHAPTER
THIRTEEN

LOGGING

13.1 Overview

The Holoscan SDK uses the Logger module to convey messages to the user. These messages are categorized into
different severity levels (see below) to inform users of the severity of a message and as a way to control the number and
verbosity of messages that are printed to the terminal. There are two settings which can be used for this purpose:

* Logger level

* Logger format

13.1.1 Logger Level
Messages that are logged using the Logger module have a severity level, e.g., messages can be categorized as INFO,
WARN, ERROR, etc.

The default logging level for an application is to print out messages with severity INFO or above, i.e., messages that are
categorized as INFO, WARN, ERROR, and CRITICAL. You can modify this default by calling set_log_level()
(C++/Python) in the application code to override the SDK default logging level and give it one of the following log
levels.

 TRACE

* DEBUG

* INFO

* WARN

« ERROR
CRITICAL
* OFF

159

Holoscan SDK User Guide, Release 2.2.0

CPP

#include <holoscan/holoscan.hpp>

int main(Q) {
holoscan::set_log_level(Choloscan: :LogLevel: :WARN) ;
/)
return 0;

}

PYTHON

from holoscan.logger import set_log_level

def main(Q):
set_log_level (LogLevel: :WARN)
...

if __name__ == "__main__":
main()

Additionally, at runtime, the user can set the HOLOSCAN_LOG_LEVEL environment variable to one of the values listed
above. This provides users with the flexibility to enable printing of diagnostic information for debugging purposes
when an issue occurs.

export HOLOSCAN_LOG_LEVEL=TRACE

Note: Under the hood, Holoscan SDK uses GXF to execute the computation graph. By default, this GXF layer uses
the same logging level as Holoscan SDK. If it is desired to override the logging level of this executor independently
of the Holoscan SDK logging level, environment variable HOLOSCAN_EXECUTOR_LOG_LEVEL can be used. It supports
the same levels as HOLOSCAN_LOG_LEVEL.

Note: For distributed applications, it can sometimes be useful to also enable additional logging for the UCX library
used to transmit data between fragments. This can be done by setting the UCX environment variable UCX_LOG_LEVEL
to one of: fatal, error, warn, info, debug, trace, req, data, async, func, poll. These have the behavior as described here:
UCX log levels.

13.2 Logger Format

When a message is printed out, the default message format shows the message severity level, filename:linenumber, and
the message to be printed.

For example:

[info] [ping_multi_port.cpp:114] Rx message valuel: 51
[info] [ping_multi_port.cpp:115] Rx message value2: 54

160 Chapter 13. Logging

https://github.com/openucx/ucx/blob/v1.14.0/src/ucs/config/types.h#L16C1-L31

Holoscan SDK User Guide, Release 2.2.0

You can modify this default by calling set_log_pattern() (C++/Python) in the application code to override the
SDK default logging format.

The pattern string can be one of the following pre-defined values
* SHORT : prints message severity level, and message
* DEFAULT : prints message severity level, filename:linenumber, and message
* LONG : prints timestamp, application, message severity level, filename:linenumber, and message

* FULL : prints timestamp, thread id, application, message severity level, filename:linenumber, and message

CPP

#include <holoscan/holoscan.hpp>

int main() {
holoscan: :set_log_pattern("SHORT™)
/) ..
return 0;

}

PYTHON

from holoscan.logger import set_log_pattern

def main(Q):
set_log_pattern("SHORT")

if __name__ == "__main__":
main()

With this logger format, the above application would display messages with the following format:

[info] Rx message valuel: 51
[info] Rx message value2: 54

Alternatively, the pattern string can be a custom pattern to customize the logger format. Using this string pattern

"[%Y-%m-%d %H:%M:%S.%e] [%n] [% %1%$] [%s:%#] %v";

would display messages with the following format:

[2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:114] Rx message valuel:.
51
[2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:115] Rx message value2:.
—54

For more details on custom formatting and details of each flag, please see the spdlog wiki page.

Additionally, at runtime, the user can also set the HOLOSCAN_LOG_FORMAT environment variable to modify the logger
format. The accepted string pattern is the same as the string pattern for the set_log_pattern() api mentioned above.

13.2. Logger Format 161

https://github.com/gabime/spdlog/wiki/3.-Custom-formatting#pattern-flags

Holoscan SDK User Guide, Release 2.2.0

13.2.1 Precedence of Logger Level and Logger Format

The HOLOSCAN_LOG_LEVEL environment variable takes precedence and overrides the application settings, such as
Logger: :set_log_level () (C++/Python).

When HOLOSCAN_LOG_LEVEL is set, it determines the logging level. If this environment variable is unset, the applica-
tion settings are used if they are available. Otherwise, the SDK’s default logging level of INFO is applied.

Similarly, the HOLOSCAN_LOG_FORMAT environment variable takes precedence and overrides the application settings,
such as Logger: :set_log_pattern() (C++/Python).

When HOLOSCAN_LOG_FORMAT is set, it determines the logging format. If this environment variable is unset, the
application settings are used if they are available. Otherwise, the SDK’s default logging format depending on the
current log level (FULL format for DEBUG and TRACE log levels. DEFAULT format for other log levels) is applied.

13.3 Calling the Logger in Your Application

The C++ API uses the HOLOSCAN_LOG_XXX() macros to log messages in the application. These macros use the
fmtlib format string syntax for their format strings.

Note: Holoscan automatically checks HOLOSCAN_LOG_LEVEL environment variable and sets the log level when the
Application class instance is created. However, those log level settings are for Holoscan core or C++ operator (C++)’s
logging message (such as HOLOSCAN_LOG_INFO macro), not for Python’s logging. Users of the Python API should
use the built-in 1ogging module to log messages. The user needs to configure the logger before use (logging.
basicConfig(level=1logging.INFO0)):

>>> import logging

>>> logger = logging.getLogger("main")

>>> logger.info('hello"')

>>> logging.basicConfig(level=logging.INFO)
>>> logger.info('hello"')

INFO:main:hello

162 Chapter 13. Logging

https://fmt.dev/latest/syntax.html
https://docs.python.org/3/howto/logging.html

CHAPTER
FOURTEEN

DEBUGGING

14.1 Overview

The Holoscan SDK is designed to streamline the debugging process for developers working on advanced applications.

This comprehensive guide covers the SDK’s debugging capabilities, with a focus on Visual Studio Code integration,
and provides detailed instructions for various debugging scenarios.

It includes methods for debugging both the C++ and Python components of applications, utilizing tools like GDB,
UCX, and Python-specific debuggers.

14.2 Visual Studio Code Integration

14.2.1 VSCode Dev Container

The Holoscan SDK can be effectively developed using Visual Studio Code, leveraging the capabilities of a development
container. This container, defined in the .devcontainer folder, is pre-configured with all the necessary tools and
libraries, as detailed in Visual Studio Code’s documentation on development containers.

14.2.2 Launching VSCode with the Holoscan SDK

* Local Development: Use the ./run vscode command to launch Visual Studio Code in a development con-
tainer.

* Remote Development: For attaching to an existing dev container from a remote machine, use ./run
vscode_remote. Additional instructions can be accessed via . /run vscode_remote -h.

Upon launching Visual Studio Code, the development container will automatically be built. This process also involves
the installation of recommended extensions and the configuration of CMake.

163

https://github.com/nvidia-holoscan/holoscan-sdk
https://code.visualstudio.com/docs/remote/containers

Holoscan SDK User Guide, Release 2.2.0

14.2.3 Configuring CMake

For manual adjustments to the CMake configuration:
1. Open the command palette in VSCode (Ctrl + Shift + P).

2. Execute the CMake: Configure command.

14.2.4 Building the Source Code

To build the source code within the development container:
e Either press Ctrl + Shift + B.

* Or use the command palette (Ctrl + Shift + P)andrun Tasks: Run Build Task.

14.2.5 Debugging Workflow

For debugging the source code:
1. Open the Run and Debug view in VSCode (Ctrl + Shift + D).
2. Select an appropriate debug configuration from the dropdown.
3. Press F5 to start the debugging session.

The launch configurations are defined in .vscode/launch. json(link).

Please refer to Visual Studio Code’s documentation on debugging for more information.

14.2.6 Integrated Debugging for C++ and Python in Holoscan SDK

The Holoscan SDK facilitates seamless debugging of both C++ and Python components within your applications. This
is achieved through the integration of the Python C++ Debugger extension in Visual Studio Code, which can be
found here.

This powerful extension is specifically designed to enable effective debugging of Python operators that are executed
within the C++ runtime environment. Additionally, it provides robust capabilities for debugging C++ operators and
various SDK components that are executed via the Python interpreter.

To utilize this feature, debug configurations for Python C++ Debug should be defined within the .vscode/launch.
json file, available here.

Here’s how to get started:
1. Open a Python file within your project, such as examples/ping_vector/python/ping_vector.py.
2. In the Run and Debug view of Visual Studio Code, select the Python C++ Debug debug configuration.
3. Set the necessary breakpoints in both your Python and C++ code.
4. Initiate the debugging session by pressing F5.

Upon starting the session, two separate debug terminals will be launched - one for Python and another for C++. In the
C++ terminal, you will encounter a prompt regarding superuser access:

Superuser access is required to attach to a process. Attaching as superuser can.
—potentially harm your computer. Do you want to continue? [y/N]

164 Chapter 14. Debugging

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/.vscode/launch.json
https://code.visualstudio.com/docs/editor/debugging
https://marketplace.visualstudio.com/items?itemName=benjamin-simmonds.pythoncpp-debug
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/.vscode/launch.json

Holoscan SDK User Guide, Release 2.2.0

Respond with y to proceed.

Following this, the Python application initiates, and the C++ debugger attaches to the Python process. This setup allows
you to simultaneously debug both Python and C++ code. The CALL STACK tabinthe Run and Debug view will display
Python: Debug Current File and (gdb) Attach, indicating active debugging sessions for both languages.

By leveraging this integrated debugging approach, developers can efficiently troubleshoot and enhance applications
that utilize both Python and C++ components within the Holoscan SDK.

14.3 Debugging an Application Crash

This section outlines the procedures for debugging an application crash.

14.3.1 Core Dump Analysis

In the event of an application crash, you might encounter messages like Segmentation fault (core dumped)
or Aborted (core dumped). These indicate the generation of a core dump file, which captures the application’s
memory state at the time of the crash. This file can be utilized for debugging purposes.

Enabling coredump

There are instances where core dumps might be disabled or not generated despite an application crash.

To activate core dumps, it’s necessary to configure the ulimit setting, which determines the maximum size of core
dump files. By default, ulimit is set to 0, effectively disabling core dumps. Setting ulimit to unlimited enables the
generation of core dumps.

ulimit -c unlimited

Additionally, configuring the core_pattern value is required. This value specifies the naming convention for the core
dump file. To view the current core_pattern setting, execute the following command:

cat /proc/sys/kernel/core_pattern
or
sysctl kernel.core_pattern

To modify the core_pattern value, execute the following command:

echo "coredump_%e_%p" | sudo tee /proc/sys/kernel/core_pattern
or
sudo sysctl -w kernel.core_pattern=coredump_%e_%p

where in this case we have requested both the executable name (%e) and the process id (%p) be present in the generated
file’s name. The various options available are documented in the core documentation.

If you encounter errors like tee: /proc/sys/kernel/core_pattern: Read-only file systemor sysctl:
setting key "kernel.core_pattern", ignoring: Read-only file system within a Docker container,
it’s advisable to set the kernel.core_pattern parameter on the host system instead of within the container.

As kernel.core_pattern is a system-wide kernel parameter, modifying it on the host should impact all containers.
This method, however, necessitates appropriate permissions on the host machine.

Furthermore, when launching a Docker container using docker run, it's often essential to include the
--cap-add=SYS_PTRACE option to enable core dump creation inside the container. Core dump generation typically
requires elevated privileges, which are not automatically available to Docker containers.

14.3. Debugging an Application Crash 165

https://man7.org/linux/man-pages/man5/core.5.html

Holoscan SDK User Guide, Release 2.2.0

Using GDB to Debug a coredump File

After the core dump file is generated, you can utilize GDB to debug the core dump file.

Consider a scenario where a segmentation fault is intentionally induced at line 29 in examples/ping_simple/cpp/
ping_simple.cpp by adding the line *(int*)0® = O0; to trigger the fault.

--- a/examples/ping_simple/cpp/ping_simple.cpp

+++ b/examples/ping_simple/cpp/ping_simple.cpp

@a -19,7 +19,6 @@

#include <holoscan/operators/ping_tx/ping_tx.hpp>
#include <holoscan/operators/ping_rx/ping_rx.hpp>

class MyPingApp : public holoscan::Application {
public:
void compose() override {
@@ -27,6 +26,7 @@ class MyPingApp : public holoscan::Application {
// Define the tx and rx operators, allowing the tx operator to execute 10 times
auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto rx = make_operator<ops: :PingRxOp>("rx");
+ *(int*)0 = 0;

Upon running . /examples/ping_simple/cpp/ping_simple, the following output is observed:

$./examples/ping_simple/cpp/ping_simple
Segmentation fault (core dumped)

It’s apparent that the application has aborted and a core dump file has been generated.

$ 1s coredump*
coredump_ping_simple_2160275

The core dump file can be debugged using GDB by executing gdb <application> <coredump_file>.

$ gdb ./examples/ping_simple/cpp/ping_simple coredump_ping_simple_2160275

GNU gdb (Ubuntu 12.1-Oubuntul~22.04) 12.1

Copyright (C) 2022 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from ./examples/ping_simple/cpp/ping_simple...
[New LWP 2160275]

[Thread debugging using libthread_db enabled]

(continues on next page)

166 Chapter 14. Debugging

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Using host libthread_db library "/usr/lib/x86_64-1linux-gnu/libthread_db.so.1".

Core was generated by °./examples/ping_simple/cpp/ping_simple'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 MyPingApp::compose (this=0x563bd3a3de80) at ../examples/ping_simple/cpp/ping_simple.
—Cpp:29

29 *(int*)0 = 0;

(gdb)

It is evident that the application crashed at line 29 of examples/ping_simple/cpp/ping_simple.cpp.

To display the backtrace, the bt command can be executed.

(gdb) bt

#0 MyPingApp::compose (this=0x563bd3a3de80) at ../examples/ping_simple/cpp/ping_simple.
—Cpp:29

#1 0x00007f2a76cdb5ea in holoscan: :Application::compose_graph (this=0x563bd3a3de80) at .
—./src/core/application.cpp:325

#2 0x00007f2a76c3d121 in holoscan: :AppDriver: :check_configuration (this=0x563bd3a42920).
—at ../src/core/app_driver.cpp:803

#3 0x00007f2a76c384ef in holoscan: :AppDriver::run (this=0x563bd3a42920) at ../src/core/
—app_driver.cpp:168

#4 0x00007f2a76cda70c in holoscan: :Application::run (this=0x563bd3a3de80) at ../src/
—core/application.cpp:207

#5 0x0000563bd2ec4002 in main (argc=1, argv=0x7ffea82c4c28) at ../examples/ping_simple/
—Ccpp/ping_simple.cpp:38

14.3.2 UCX Segmentation Fault Handler

In cases where a distributed application using the UCX library encounters a segmentation fault, you might see stack
traces from UCX. This is a default configuration of the UCX library to output stack traces upon a segmentation fault.
However, this behavior can be modified by setting the UCX_HANDLE_ERRORS environment variable:

* UCX_HANDLE_ERRORS=bt prints a backtrace during a segmentation fault (default setting).
» UCX_HANDLE_ERRORS=debug attaches a debugger if a segmentation fault occurs.
* UCX_HANDLE_ERRORS=freeze freezes the application on a segmentation fault.
* UCX_HANDLE_ERRORS=freeze, bt both freezes the application and prints a backtrace upon a segmentation fault.
e UCX_HANDLE_ERRORS=none disables backtrace printing during a segmentation fault.
While the default action is to print a backtrace on a segmentation fault, it may not always be helpful.

For instance, if a segmentation fault is intentionally caused at line 129 in examples/ping_distributed/
cpp/ping_distributed_ops.cpp (by adding * (int*)® = 0;),running . /examples/ping_distributed/cpp/
ping_distributed will result in the following output:

[holoscan:2097261:0:2097311] Caught signal 11 (Segmentation fault: address not mapped to.
—object at address (nil))
==== backtrace (tid:2097311) ====

® /opt/ucx/1.15.0/1ib/libucs.so.0(ucs_handle_error+0x2e4) [0x7f18db865264]

1 /opt/ucx/1.15.0/1ib/libucs.so.0(+0x3045f) [0x7£f18db86545f]

2 /Jopt/ucx/1.15.0/1ib/libucs.so.0(+0x30746) [0x7£18db865746]

3 /usr/lib/x86_64-1linux-gnu/libc.so.6(+0x42520) [0x7f18da%ee520]

(continues on next page)

14.3. Debugging an Application Crash 167

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

4 . /examples/ping_distributed/cpp/ping_distributed(+0x103d2b) [0x5651dafc7d2b]

5 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libholoscan_core.so.1(_
—»ZN8holoscan3gxf10GXFWrapper4tickEv+0x13d) [0x7f18dcbfaafd]

6 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—.ZN6nvidia3gxfl4EntityExecutor1®EntityItemlltickCodeletERKNSO_6HandleINSO_
—.7CodeletEEE+0x127) [0x7£f18db2cbh487]

7 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—ZN6nvidia3gxfl4EntityExecutor1QEntityItem4tickEIPNS®_6RouterE+0x444) [0x7f18db2cde4d4]
8 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—.ZNénvidia3gxfl4EntityExecutor1®EntityItem7executeE1PNSO_6RouterER1+0x3e9)..

— [0x7£18db2ce859]

9 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—ZNénvidia3gxfl4EntityExecutorl3executeEntityE11+0x41b) [0x7£18db2cf@cb]

10 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf serialization.so(_
—ZNénvidia3gxf20MultiThreadScheduler20workerThreadEntranceEPNSO_10ThreadPoolEl1+0x3c0) .
— [0x7£18daf0Occ50]

11 /usr/lib/x86_64-1linux-gnu/libstdc++.s0.6(+0xdc253) [0x7f18dacb0253]

12 /usr/lib/x86_64-1linux-gnu/libc.so.6(+0x94ac3) [0x7f18daad0ac3]

13 /usr/lib/x86_64-1linux-gnu/libc.so0.6(+0x126660) [0x7f18daad2660]

Segmentation fault (core dumped)

Although a backtrace is provided, it may not always be helpful as it often lacks source code information. To obtain
detailed source code information, using a debugger is necessary.

By setting the UCX_HANDLE_ERRORS environment variable to freeze,bt and running ./examples/
ping_distributed/cpp/ping_distributed, we can observe that the thread responsible for the segmentation fault
is frozen, allowing us to attach a debugger to it for further investigation.

$ UCX_HANDLE_ERRORS=freeze,bt ./examples/ping_distributed/cpp/ping_distributed

[holoscan:2127091:0:2127105] Caught signal 11 (Segmentation fault: address not mapped to.
—object at address (nil))
==== backtrace (tid:2127105) ====

® /opt/ucx/1.15.0/1ib/libucs.so.0(ucs_handle_error+0x2e4) [0x7£9995850264]
/opt/ucx/1.15.0/1ib/libucs.so.0(+0x3045f) [0x7£999585045f]
/opt/ucx/1.15.0/1ib/libucs.so.0(+0x30746) [0x7£9995850746]
/usr/1lib/x86_64-1inux-gnu/libc.so.6(+0x42520) [0x7£99949ee520]
./examples/ping_distributed/cpp/ping_distributed(+0x103d2b) [0x55971617fd2b]
/workspace/holoscan-sdk/build-debug-x86_64/1ib/libholoscan_core.so.1(_
-.ZN8holoscan3gxf10GXFiirapper4tickEv+0x13d) [0x7£9996bfaafd]

6 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—ZN6nvidia3gxfl4EntityExecutor1@EntityItemlltickCodeletERKNSO_6HandleINSO_
—7CodeletEEE+0x127) [0x7£99952ch487]

7 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—.ZN6nvidia3gxfl4EntityExecutor10EntityItem4dtickEIPNS®_6RouterE+0x444) [0x7£99952cded4]
8 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—ZN6nvidia3gxfl4EntityExecutor1@EntityItem7executeE1PNSO_6RouterER1+0x3e9)..

— [0x7£99952ce859]

9 /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_core.so(_
—ZNénvidia3gxfl4EntityExecutorl3executeEntityE11+0x41b) [0x7£99952cfOcb]
10 /workspace/holoscan-sdk/build-debug-x86_64/1ib/1libgxf_serialization.so(_
—ZN6bnvidia3gxf20MultiThreadScheduler20workerThreadEntranceEPNSO_10ThreadPdedERup s &g page)
— [0x7£9994£f0cc50]

168 Chapter 14. Debugging

Ul D W N

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

11 /usr/lib/x86_64-1linux-gnu/libstdc++.s0.6(+0xdc253) [0x7£9994cb0253]
12 /usr/lib/x86_64-1linux-gnu/libc.so.6(+0x94ac3) [0x7f9994a40ac3]
13 /usr/lib/x86_64-1linux-gnu/libc.so0.6(+0x126660) [0x7£9994ad2660]

[holoscan:2127091:0:2127105] Process frozen, press Enter to attach a debugger...

It is observed that the thread responsible for the segmentation fault is 2127105 (tid:2127105). To attach a debugger
to this thread, simply press Enter.

Upon attaching the debugger, a backtrace will be displayed, but it may not be from the thread that triggered the seg-
mentation fault. To handle this, use the info threads command to list all threads, and the thread <thread_id>
command to switch to the thread that caused the segmentation fault.

(gdb) info threads

Id Target Id Frame
* 1 Thread 0x7£9997b36000 (LWP 2127091) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

2 Thread 0x7£9992731000 (LWP 2127093) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

3 Thread 0x7£9991£30000 (LWP 2127094) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

4 Thread 0x7£999172£f000 (LWP 2127095) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

5 Thread 0x7£99909ec000 (LWP 2127096) "cuda-EvtHandlr" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

6 Thread 0x7£99891£ff000 (LWP 2127097) "async" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

7 Thread 0x7£997d7cd®00 (LWP 2127098) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

8 Thread 0x7£997cfcc®00 (LWP 2127099) "ping_distribute" 0x00007£9994a96612 in
—1ibc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

9 Thread 0x7£f995ffff000 (LWP 2127100) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

10 Thread 0x7£99577fe®00 (LWP 2127101) "ping_distribute"”" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

11 Thread 0x7£995f3e5000 (LWP 2127103) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

12 Thread 0x7£995ebe4000 (LWP 2127104) "ping_distribute" 0x00007£9994a96612 in
—libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

13 Thread 0x7£995e3e3000 (LWP 2127105) "ping_distribute" 0x00007£9994a9642f in __ GI__
—_wait4 (pid=pid@entry=2127631, stat_loc=stat_loc@entry=0x7f995e3ddd3c,..
—options=options@entry=0, usage=usage@entry=0x0) at ../sysdeps/unix/sysv/linux/wait4.
—c:30

It’s evident that thread ID 13 is responsible for the segmentation fault (LWP 2127105). To investigate further, we can
switch to this thread using the command thread 13 in GDB:

(gdb) thread 13

After switching, we can employ the bt command to examine the backtrace of this thread.

(gdb) bt
#0 0x0000719994a9642f in __GI___wait4 (pld—pld@entry—2127631, stat_loc=stat_

ﬁsysdeps/unlx/sysv/llnux/wal t4 c:30

14.3. Debugging an Application Crash 169

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

#1 0x00007f9994a963ab in __GI___waitpid (pid=pid@entry=2127631, stat_loc=stat_
—loc@entry=0x7f995e3ddd3c, options=options@entry=0) at ./posix/waitpid.c:38

#2 0x000071999584d587 in ucs_debugger_attach () at /opt/ucx/src/contrib/../src/ucs/
—debug/debug.c:816

#3 0x000071999585031d in ucs_error_freeze (message=0x7f999586ec53 "address not mapped.
—to object") at /opt/ucx/src/contrib/../src/ucs/debug/debug.c:919

#4 ucs_handle_error (message=0x71f999586ec53 "address not mapped to object") at /opt/ucx/
—src/contrib/../src/ucs/debug/debug.c:1089

#5 ucs_handle_error (message=0x71f999586ec53 "address not mapped to object") at /opt/ucx/
—src/contrib/../src/ucs/debug/debug.c:1077

#6 0x00007£999585045f in ucs_debug_handle_error_signal (signo=signo@entry=11,.
—cause=0x7f999586ec53 "address not mapped to object", fmt=fmt@entry=0x7f999586ecf5 " at.
—address %p") at /opt/ucx/src/contrib/../src/ucs/debug/debug.c:1038

#7 0x0000719995850746 in ucs_error_signal_handler (signo=11, info=0x7f995e3de3f0,.
—scontext=<optimized out>) at /opt/ucx/src/contrib/../src/ucs/debug/debug.c:1060

#8 <signal handler called>

#9 holoscan: :ops::PingTensorTxOp: :compute (this=0x559716f26fal®, op_output=..., context=.
—..) at ../examples/ping_distributed/cpp/ping_distributed_ops.cpp:129

#10 0x0000719996bfaafd in holoscan::gxf::GXFWrapper::tick (this=0x559716f6f740) at ../
—src/core/gxf/gxf_wrapper.cpp:66

#11 0x00007199952cb487 in.,

—nvidia::gxf::EntityExecutor: :EntityItem::tickCodelet(nvidia::gxf::Handle
—<nvidia::gxf::Codelet> const&) () from /workspace/holoscan-sdk/build-debug-x86_64/1ib/
—1ibgxf_core.so

#12 0x00007199952cde44 in nvidia::gxf::EntityExecutor::EntityItem::tick(long,..
—nvidia::gxf::Router*) () from /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_
-,core.so

#13 0x00007199952ce859 in nvidia::gxf::EntityExecutor::EntityItem::execute(long,.
—nvidia::gxf::Router”*, long&) () from /workspace/holoscan-sdk/build-debug-x86_64/1ib/
—1ibgxf_core.so

#14 0x00007199952cf0cb in nvidia::gxf::EntityExecutor::executeEntity(long, long) () from.
—/workspace/holoscan-sdk/build-debug-x86_64/1ib/1ibgxf_core.so

#15 0x0000719994f0cc50 in.,

—nvidia::gxf::MultiThreadScheduler: :workerThreadEntrance(nvidia: :gxf::ThreadPool¥*, .
—long) () from /workspace/holoscan-sdk/build-debug-x86_64/1ib/libgxf_serialization.so
#16 0x0000719994cb0253 in ?? () from /usr/lib/x86_64-1inux-gnu/libstdc++.s50.6

#17 0x000071£9994a40ac3 in start_thread (arg=<optimized out>) at ./nptl/pthread_create.
—C:442

#18 0x0000719994ad2660 in clone3 () at ../sysdeps/unix/sysv/linux/x86_64/clone3.S:81

Under the backtrace of thread 13, you will find:

#8 <signal handler called>
#9 holoscan: :ops::PingTensorTxOp: :compute (this=0x559716f26fal, op_output=..., context=.
—..) at ../examples/ping_distributed/cpp/ping_distributed_ops.cpp:129

This indicates that the segmentation fault occurred at line 129 in examples/ping_distributed/cpp/
ping_distributed_ops.cpp.

To view the backtrace of all threads, use the thread apply all bt command.

(gdb) thread apply all bt

(continues on next page)

170 Chapter 14. Debugging

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Thread 13 (Thread 0x7£f995e3e3000 (LWP 2127105) "ping_distribute™):

#0 0x0000719994a9642f in __GI___wait4 (pid=pid@entry=2127631, stat_loc=stat_
—loc@entry=0x71f995e3ddd3c, options=options@entry=0, usage=usage@entry=0x0) at ../
—sysdeps/unix/sysv/linux/wait4.c:30

Thread 12 (Thread 0x7£f995ebe4000 (LWP 2127104) "ping_distribute™):
#0 0x0000719994a96612 in __libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29

14.4 Debugging Holoscan Python Application

The Holoscan SDK provides support for tracing and profiling tools, particularly focusing on the compute method of
Python operators. Debugging Python operators using Python IDEs can be challenging since this method is invoked
from the C++ runtime. This also applies to the initialize, start, and stop methods of Python operators.

Users can leverage IDEs like VSCode/PyCharm (which utilize the PyDev.Debugger) or other similar tools to debug
Python operators:

* For VSCode, refer to VSCode Python Debugging.
* For PyCharm, consult PyCharm Python Debugging.

Subsequent sections will detail methods for debugging, profiling, and tracing Python applications using the Holoscan
SDK.

14.4.1 pdb example

The following command initiates a Python application within a pdb debugger session:

python python/tests/system/test_pytracing.py pdb
Type the following commands to check if the breakpoints are hit:

#
#
b test_pytracing.py:76
#
#

This is an interactive session.
Please type the following commands to check if the breakpoints are hit.

(Pdb) b test_pytracing.py:76
Breakpoint 1 at /workspace/holoscan-sdk/python/tests/system/test_pytracing.py:76
(Pdb) c

> /workspace/holoscan-sdk/python/tests/system/test_pytracing.py(76)start()
-> print("Mx start™)
(Pdb) exit

For more details, please refer to the pdb_main() method in test_pytracing.py.

14.4. Debugging Holoscan Python Application 171

https://github.com/fabioz/PyDev.Debugger
https://code.visualstudio.com/docs/python/debugging
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://docs.python.org/3/library/pdb.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/system/test_pytracing.py

Holoscan SDK User Guide, Release 2.2.0

14.4.2 Profiling a Holoscan Python Application

For profiling, users can employ tools like cProfile or line_profiler for profiling Python applications/operators.

Note that when using a multithreaded scheduler, cProfile or the profile module might not accurately identify worker
threads, or errors could occur.

In such cases with multithreaded schedulers, consider using multithread-aware profilers like pyinstrument, pprofile, or
yappi.

For further information, refer to the test case at test_pytracing.py.
Using pyinstrument

pyinstrument is a call stack profiler for Python, designed to highlight performance bottlenecks in an easily understand-
able format directly in your terminal as the code executes.

python -m pip install pyinstrument
pyinstrument python/tests/system/test_pytracing.py

Note: With a multithreaded scheduler, the same method may appear multiple times.
—across different threads.
pyinstrument python/tests/system/test_pytracing.py -s multithread

0.107 [root] None
— 0.088 MainThread <thread>:140079743820224
L 0.088 <module> ../../../bin/pyinstrument:1
L 0.088 main pyinstrument/__main__.py:28
[7 frames hidden] pyinstrument, <string>, runpy, <built...
0.087 _run_code runpy.py:63
L 9.087 <module> test_pytracing.py:1
— 0.061 main test_pytracing.py:153
— 0.057 MyPingApp.compose test_pytracing.py:141
0.041 PingMxOp.__init__ test_pytracing.py:59
L 0.941 PingMxOp.__init__ ../core/__init__.py:262
[35 frames hidden] .., numpy, re, sre_compile, sre_
—.parse. ..
L 0.015 [self] test_pytracing.py
- 0.002 [self] test_pytracing.py
— 0.024 <module> ../__init__.py:1

[5 frames hidden] .., <built-in>
- 0.001 <module> ../conditions/__init__.py:1
[2 frames hidden] .., <built-in>

L~ 0.019 Dummy-1 <thread>:140078275749440
L 9.019 <module> ../../. ./bin/pyinstrument:1
L 0.019 main pyinstrument/__main__.py:28
[5 frames hidden] pyinstrument, <string>, runpy
0.019 _run_code runpy.py:63
L 0.019 <module> test_pytracing.py:1
- 0.019 main test_pytracing.py:153
0.014 [self] test_pytracing.py
0.004 PingRxOp.compute test_pytracing.py:118
L- 9.004 print <built-in>

172 Chapter 14. Debugging

https://docs.python.org/3/library/profile.html
https://github.com/pyutils/line_profiler
https://github.com/joerick/pyinstrument
https://github.com/vpelletier/pprofile
https://github.com/sumerc/yappi
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/system/test_pytracing.py

Holoscan SDK User Guide, Release 2.2.0

Using pprofile

pprofile is a line-granularity, thread-aware deterministic and statistic pure-python profiler.

python -m pip install pprofile
pprofile --include test_pytracing.py python/tests/system/test_pytracing.py -s multithread

Total duration: 0.972872s
File: python/tests/system/test_pytracing.py

File duration: 0.542628s (55.78%)

Line #| Hits| Time| Time per hit| %|Source code
—————— e s T Tl T TR
33] 0 0 0 0.00%]
34| 21 .86102e-06| .43051e-06| 0.00%] def setup(self, spec:.
—OperatorSpec):
35| 1] .62125e-05] .62125e-05| 0.00%| spec.output ("out")
36| 0 0 0| 0.00%]
371 2] 3.33786e-06] .66893e-06| 0.00%] def initialize(self):
38| 1] .07288e-05] .07288e-05| 0.00%]| print("Tx initialize")
39| 0 0 0| 0.00%]
40| 2| .40667e-05 | .03335e-06| 0.00%] def start(self):
41| 1] .23978e-05| .23978e-05| 0.00%] print("Tx start")
42| 0 0 0 0.00%]
43| 21 .09944e-05| .54972e-05| 0.00%] def stop(self):
44| 1] .88486e-05| .88486e-05| 0.00%| print("Tx stop")
45| 0 0 0| 0.00%]
46| 4| .05312e-05] .01328e-05| 0.00%] def compute(self, op_input, op_
—output, context):
47| 3] .57492e-05] .58307e-06| 0.00%]| value = self.index
48] 3] .12193e-05| .07308e-06| 0.00%] self.index += 1
Using yappi

yappi is a tracing profiler that is multithreading, asyncio and gevent aware.

python -m pip install yappi
yappi requires setting a context ID callback function to specify the correct context.

—~ID for

Holoscan's worker threads.
For more details, please see ‘yappi_main()" in ‘test_pytracing.py .
python python/tests/system/test_pytracing.py yappi | grep test_pytracing.py

Note: With a multithreaded scheduler, method hit counts are distributed across.

—multiple threads.

#python python/tests/system/test_pytracing.py yappi -s multithread | grep test_pytracing.

=Py

test_pytracing.py main:153 1
test_pytracing.py MyPingApp.compose:141 1
test_pytracing.py PingMxOp.__init__:59 1

(continues on next page)

14.4. Debugging Holoscan Python Application

173

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing

-by
-by
-py
-py
-py
-by
-by
-py
-py
-py
-py
-Py
-by
-py
-py
-py
-by

PingTxOp

PingMxOp.
PingRxOp.
PingRxOp.
PingTxOp.
PingTxOp.
PingRx0p.
PingRxOp.
PingMxOp.
PingMxOp.
PingMxOp.
PingTxOp.
PingRxOp.
PingTxOp.
PingMxOp.
PingRxOp.
PingTxOp.

.__init__:29 1
setup:65 1
__init__:99 1
setup:104 1
setup:34 1
initialize:
stop:115 1
initialize
initialize
stop:78 1
compute:81 3
compute:46 3
compute: 118 3
start:40 1
start:75 1
start:112 1
stop:43 1

37

110
172

1

91
1

Using profile/cProfile

profile/cProfile is a deterministic profiling module for Python programs.

python -m cProfile python/tests/system/test_pytracing.py 2>&1 |

Executing a single test case
#python python/tests/system/test_pytracing.py profile

grep test_pytracing.py

.001
.000
.000
.000
.000
.000
.000
.014
.009
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.001

WhR R RRPRRRWRRRRRRRERRRWRRRERH®R
(= I~ R~ I~ R~ R R R R A~ A~ R~ R~ N~ R~ R~ N — R — R — R~]

.001
.000
.000
.000
.000
.000
.000
.014
.009
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

(== I — I — R R — R — R R I — A — I R A~ I — I — I — R~ A I — I — A~]

.107
.000
.000
.000
.000
.000
.000
.073
.083
.000
.000
.000
.000
.000
.000
.000
.000
.058
.000
.000
.000
.000
.001

(== I — I — R I — R — R R I — I I R I I~ I — I — N~ I — I — I~ A~]
(== I — R — R R R R R A I — I — I R R R A~ I~ A~ I — I — I~ A~]

.107
.000
.000
.000
.000
.000
.000
.073
.083
.000
.000
.000
.000
.000
.000
.000
.000
.058
.000
.000
.000
.000
.000

test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing
test_pytracing

.py:
py:
.py:
.py:
.py:
py:
py:
.py:
.py:
.py:
py:
.Py:
.py:
.py:
py:
py:
.Py:
.py:
py:

1(<module>)
104 (setup)
109(initialize)
112(start)
115(stop)

118 (compute)
140 (MyPingApp)
141 (compose)
153 (main)

28 (PingTx0p)
29(__init__)
34 (setup)
37(initialize)
40(start)
43(stop)

46 (compute)

58 (PingMxOp)
59(__init__)
65(setup)
72(initialize)
75(start)

78 (stop)

81 (compute)

(continues on next page)

174

Chapter 14. Debugging

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

1 0.000 0.000 0.000 0.000 test_pytracing.py:98(PingRxOp)
1 0.000 0.000 0.000 0.000 test_pytracing.py:99(__init__)

Using line_profiler

line_profiler is a module for doing line-by-line profiling of functions.

python -m pip install line_profiler

Insert ‘@profile’ before the function ‘def compute(self, op_input, op_output,.
—context): .

The original file will be backed up as ‘test_pytracing.py.bak .
file="python/tests/system/test_pytracing.py"

pattern=" def compute(self, op_input, op_output, context):"

insertion="" @profile"

if ! grep -q "AS$insertion" "$file"; then
sed -i.bak "/A$pattern/i\\

$insertion" "$file"

fi

kernprof -1lv python/tests/system/test_pytracing.py

Remove the inserted “@profile’ decorator.
mv "$file.bak" "$file"

Wrote profile results to test_pytracing.py.lprof
Timer unit: le-06 s

Total time: 0.000304244 s
File: python/tests/system/test_pytracing.py
Function: compute at line 46

Line # Hits Time Per Hit % Time Line Contents

46 @profile

47 def compute(self, op_input, op_
—output, context):

48 3 2.3 0.8 0.8 value = self.index

49 3 9.3 3.1 3.0 self.index += 1

50

51 3 0.5 0.2 0.2 output = []

52 18 5.0 0.3 1.6 for i in range(®, 5):

53 15 4.2 0.3 1.4 output.append(value)

54 15 2.4 0.2 0.8 value += 1

55

56 3 280.6 93.5 92.2 op_output.emit(output, "out")

14.4. Debugging Holoscan Python Application

175

Holoscan SDK User Guide, Release 2.2.0

14.4.3 Measuring Code Coverage

The Holoscan SDK provides support for measuring code coverage using Coverage.py.

python -m pip install coverage

coverage erase
coverage run examples/ping_vector/python/ping_vector.py
coverage report examples/ping_vector/python/ping_vector.py
coverage html

Open the generated HTML report in a browser.
xdg-open htmlcov/index.html

To record code coverage programmatically, please refer to the coverage_main() method in test_pytracing.py.

You can execute the example application with code coverage enabled by running the following command:

python -m pip install coverage
python python/tests/system/test_pytracing.py coverage
python python/tests/system/test_pytracing.py coverage -s multithread

The following command starts a Python application using the trace module:

python -m trace --trackcalls python/tests/system/test_pytracing.py | grep test_pytracing

test_pytracing.main -> test_pytracing.MyPingApp.compose
test_pytracing.main -> test_pytracing.PingMxOp.compute
test_pytracing.main -> test_pytracing.PingMxOp.initialize
test_pytracing.main -> test_pytracing.PingMxOp.start
test_pytracing.main -> test_pytracing.PingMxOp.stop
test_pytracing.main -> test_pytracing.PingRxOp.compute
test_pytracing.main -> test_pytracing.PingRxOp.initialize
test_pytracing.main -> test_pytracing.PingRxOp.start
test_pytracing.main -> test_pytracing.PingRxOp.stop
test_pytracing.main -> test_pytracing.PingTxOp.compute
test_pytracing.main -> test_pytracing.PingTxOp.initialize
test_pytracing.main -> test_pytracing.PingTxOp.start
test_pytracing.main -> test_pytracing.PingTxOp.stop

A test case utilizing the trace module programmatically can be found in the trace_main() method in
test_pytracing.py.

python python/tests/system/test_pytracing.py trace
python python/tests/system/test_pytracing.py trace -s multithread

176 Chapter 14. Debugging

https://github.com/nedbat/coveragepy
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/system/test_pytracing.py
https://docs.python.org/3/library/trace.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/system/test_pytracing.py

CHAPTER
FIFTEEN

WRITING PYTHON BINDINGS FOR A C++ OPERATOR

For convenience while maintaining high performance, operators written in C++ can be wrapped in Python. The general
approach uses Pybind1 1 to concisely create bindings that provide a familiar, Pythonic experience to application authors.

Note: While we provide some utilities to simplify part of the process, this section is designed for advanced developers,
since the wrapping of the C++ class using pybind11 is mostly manual and can vary between each operator.

The existing Pybind11 documentation is good and it is recommended to read at least the basics on wrapping functions
and classes. The material below will assume some basic familiarity with Pybind11, covering the details of creation of
the bindings of a C++ Operator. As a concrete example, we will cover creation of the bindings for ToolTrackingPost-
processorOp from Holohub as a simple case and then highlight additional scenarios that might be encountered.

Tip: There are several examples of bindings on Holohub in the operators folder. The subset of operators that provide
a Python wrapper on top of a C++ implementation will have any C++ headers and sources together in a common folder,
while any corresponding Python bindings will be in a “python” subfolder (see the tool_tracking postprocessor folder
layout, for example).

There are also several examples of bindings for the built-in operators of the SDK. Unlike on Holohub, for the SDK, the
corresponding C++ headers and sources of an operator are stored under separate directory trees.

15.1 Tutorial: binding the ToolTrackingPostprocessorOp class

15.1.1 Creating a PyToolTrackingPostprocessorOp trampoline class

In a C++ file (tool_tracking_postprocessor.cpp in this case), create a subclass of the C++ Operator class to wrap.
The general approach taken is to create a Python-specific class that provides a constructor that takes a Fragment¥*,
an explicit list of the operators parameters with default values for any that are optional, and an operator name.
This constructor needs to setup the operator as done in Fragment: :make_operator, so that it is ready for ini-
tialization by the GXF executor. We use the convention of prepending “Py” to the C++ class name for this (so,
PyToolTrackingPostprocessorOp in this case). :

Listing 15.1: tool_tracking_post_processor/python/tool_tracking_post_processor.cpp

class PyToolTrackingPostprocessorOp : public ToolTrackingPostprocessorOp {
public:

/* Inherit the constructors */

using ToolTrackingPostprocessorOp: :ToolTrackingPostprocessorOp;

(continues on next page)

177

https://pybind11.readthedocs.io/en/stable/index.html
https://pybind11.readthedocs.io/en/stable/basics.html#creating-bindings-for-a-simple-function
https://pybind11.readthedocs.io/en/stable/classes.html#object-oriented-code
https://github.com/nvidia-holoscan/holohub/tree/main/operators/tool_tracking_postprocessor
https://github.com/nvidia-holoscan/holohub/tree/main/operators/tool_tracking_postprocessor
https://github.com/nvidia-holoscan/holohub
https://github.com/nvidia-holoscan/holohub/tree/main/operators
https://github.com/nvidia-holoscan/holohub/tree/main/operators/tool_tracking_postprocessor
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/python/holoscan/operators
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/include/holoscan/operators
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators
https://github.com/nvidia-holoscan/holohub/blob/main/operators/tool_tracking_postprocessor/python/tool_tracking_postprocessor.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/include/holoscan/core/fragment.hpp#L284

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

// Define a constructor that fully initializes the object.
PyToolTrackingPostprocessorOp(
Fragment* fragment, const py::args& args, std::shared_ptr<Allocator> device_
—allocator,
std: :shared_ptr<Allocator> host_allocator, float min_prob = 0.5f,
std: :vector<std: :vector<float>> overlay_img_colors = VIZ_TOOL_DEFAULT_COLORS,
std: :shared_ptr<holoscan::CudaStreamPool> cuda_stream_pool = nullptr,
const std::string& name = "tool_tracking_postprocessor")
: ToolTrackingPostprocessorOp(ArgList{Arg{"device_allocator", device_allocator},
Arg{"host_allocator", host_allocator},
Arg{"min_prob", min_prob},
Arg{"overlay_img_colors", overlay_img_colors}

P {
if (cuda_stream_pool) { this->add_arg(Arg{"cuda_stream_pool", cuda_stream_pool}); }
add_positional_condition_and_resource_args(this, args);

name_ = name;
fragment_ = fragment;
spec_ = std::make_shared<OperatorSpec>(fragment);
setup(*spec_.get());

}
1

This constructor will allow providing a Pythonic experience for creating the operator. Specifically, the user
can pass Python objects for any of the parameters without having to explicitly create any holoscan::Arg
objects via holoscan.core.Arg. For example, a standard Python float can be passed to min_prob and a
Python list[list[float]] can be passed for overlay_img_colors (Pybindl1l handles conversion between
the C++ and Python types). Pybindl1l will also take care of conversion of a Python allocator class like
holoscan.resources.UnboundedAllocator or holoscan.resources.BlockMemoryPool to the underlying
C++std: :shared_ptr<holoscan: :Allocator>type. The arguments device_allocator and host_allocator
correspond to required Parameters of the C++ class and can be provided from Python either positionally or via keyword
while the Parameters min_prob and overlay_img_colors will be optional keyword arguments. cuda_stream_pool
is also optional, but is only conditionally passed as an argument to the underlying ToolTrackingPostprocessorOp
constructor when it is not a nullptr.

* For all operators, the first argument should be Fragment® fragment and is the fragment the operator will be
assigned to. In the case of a single fragment application (i.e. not a distributed application), the fragment is just
the application itself.

* An (optional) const std::string& name argument should be provided to enable the application author to set
the operator’s name.

* The const py::args& args argument corresponds to the *args notation in Python. It is a set of 0 or more
positional arguments. It is not required to provide this in the function signature, but is recommended in order to
enable passing additional conditions such as a CountCondition or PeriodicCondtion as positional arguments
to the operator. The call below to

add_positional_condition_and_resource_args(this, args);

uses a helper function defined in operator_util.hpp to add any Condition or Resource arguments found in the
list of positional arguments.

* The other arguments all correspond to the various parameters (holoscan: :Parameter) that are defined for the
C++ ToolTrackingPostProcessorOp class.

178 Chapter 15. Writing Python bindings for a C++ Operator

https://github.com/nvidia-holoscan/holohub/blob/main/operators/operator_util.hpp

Holoscan SDK User Guide, Release 2.2.0

— All other parameters except cuda_stream_pool are passed directly in the argument list to
the parent ToolTrackingPostProcessorOp class. The parameters present on the C++ opera-
tor can be seen in its header here with default values taken from the setup method of the
source file here. Note that CudaStreamHandler is a utility that will add a parameter of type
Parameter<std: :shared_ptr<CudaStreamPool>>.

— The cuda_stream_pool argument is only conditionally added if it was not nullptr (Python’s None).
This is done via

if (cuda_stream_pool) { this->add_arg(Arg{"cuda_stream_pool", cuda_stream_pool}

=); 1}

instead of passing it as part of the holoscan::ArgList provided to the
ToolTrackingPostprocessorOp constructor call above.

The remaining lines of the constructor

name_ = name;
fragment_ = fragment;
spec_ = std::make_shared<OperatorSpec>(fragment);

setup(*spec_.get());

are required to properly initialize it and should be the same across all operators. These correspond to equivalent code
within the Fragment::make_operator method.

15.1.2 Defining the Python module

For this operator, there are no other custom classes aside from the operator itself, so we define a mod-
ule using PYBIND11_MODULE as shown below with only a single class definition. This is done in the same
tool_tracking_postprocessor.cpp file where we defined the PyToolTrackingPostprocessorOp trampoline class.

The following header will always be needed.

#include <pybindll/pybindll.h>

namespace py = pybindll;
using pybindll::literals::operator""_a;

Here, we typically also add defined the py namespace as a shorthand for pybind11 and indicated that we will use the
_a literal (it provides a shorthand notation when defining keyword arguments).

Often it will be necessary to include the following header if any parameters to the operator involve C++ standard library
containers such as std: :vector or std: :unordered_map.

#include <pybindll/stl.h>

This allows pybind11 to cast between the C++ container types and corresponding Python types (Python dict / C++
std: :unordered_map, for example).

Listing 15.2: tool_tracking_post_processor/python/tool_tracking_post_processor.cpp

PYBIND11_MODULE(_tool_tracking_postprocessor, m) {
py: :class_<ToolTrackingPostprocessorOp,
PyToolTrackingPostprocessorOp,
Operator,

(continues on next page)

15.1. Tutorial: binding the ToolTrackingPostprocessorOp class 179

https://github.com/grlee77/holohub/blob/3adbba16baafb5958950b261a0d6521f7544cfeb/operators/tool_tracking_postprocessor/tool_tracking_postprocessor.hpp#L46-L52
https://github.com/grlee77/holohub/blob/3adbba16baafb5958950b261a0d6521f7544cfeb/operators/tool_tracking_postprocessor/tool_tracking_postprocessor.cpp#L77-L89
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/include/holoscan/core/fragment.hpp#L287-L291
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/include/holoscan/core/fragment.hpp#L287-L291
https://github.com/nvidia-holoscan/holohub/blob/main/operators/tool_tracking_postprocessor/python/tool_tracking_postprocessor.cpp
https://pybind11.readthedocs.io/en/stable/basics.html#keyword-arguments

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

std: :shared_ptr<ToolTrackingPostprocessorOp>>(
m,
"ToolTrackingPostprocessorOp",
doc: :ToolTrackingPostprocessorOp: :doc_ToolTrackingPostprocessorOp_python)
.def(py::init<Fragment*,
const py::args& args,
std: :shared_ptr<Allocator>,
std: :shared_ptr<Allocator>,
float,
std: :vector<std: :vector<float>>,
std: :shared_ptr<holoscan: : CudaStreamPool>,
const std::string&>(),
"fragment"_a,
"device_allocator"_a,
"host_allocator"_a,
"min_prob"_a = 0.5f,
"overlay_img_colors"_a = VIZ_TOOL_DEFAULT_COLORS,
"cuda_stream_pool"_a = py::none(),
"name"_a = "tool_tracking_postprocessor"s,

doc: :ToolTrackingPostprocessorOp: :doc_ToolTrackingPostprocessorOp_python) ;
} // PYBIND11_MODULE NOLINT

Note:

* If you are implementing the python wrapping in Holohub, the <module_name> passed to PYBIND_11_MODULE
must match _<CPP_CMAKE_TARGET> as covered above.

* If you are implementing the python wrapping in a standalone CMake project,the <module_name> passed to
PYBIND_11_MODULE must match the name of the module passed to the pybind|1 1-add-module CMake function.

Using a mismatched name in PYBIND_11_MODULE will result in failure to import the module from Python.

The order in which the classes are specified in the py: :class_<> template call is important and should follow the
convention shown here. The first in the list is the C++ class name (ToolTrackingPostprocessorOp) and second
is the PyToolTrackingPostprocessorOp class we defined above with the additional, explicit constructor. We also
need to list the parent Operator class so that all of the methods such as start, stop, compute, add_arg, etc. that
were already wrapped for the parent class don’t need to be redefined here.

The single .def(py::init<... call wraps the PyToolTrackingPostprocessorOp constructor we wrote above.
As such, the argument types provided to py: :init<> must exactly match the order and types of arguments in that
constructor’s function signature. The subsequent arguments to def are the names and default values (if any) for the
named arguments in the same order as the function signature. Note that the const py::args& args (Python *args)
argument is not listed as these are positional arguments that don’t have a corresponding name. The use of py: :none ()
(Python’s None) as the default for cuda_stream_pool corresponds to the nullptr in the C++ function signature.
The “_a” literal used in the definition is enabled by the following declaration earlier in the file.

The final argument to . def here is a documentation string that will serve as the Python docstring for the function. It is
optional and we chose here to define it in a separate header as described in the next section.

180 Chapter 15. Writing Python bindings for a C++ Operator

https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module

Holoscan SDK User Guide, Release 2.2.0

15.1.3 Documentation strings

Prepare documentation strings (const char¥*) for your python class and its parameters.

Note: Below we use a PYDOC macro defined in the SDK and available in HoloHub as a utility to remove leading
spaces. In this case, the documentation code is located in header file tool_tracking_post_processor_pydoc.hpp, under
a custom holoscan: :doc: : ToolTrackingPostprocessorOp namespace. None of this is required, you just need to
make any documentation strings available for use as an argument to the py: : class_ constructor or method definition
calls.

Listing 15.3: tool_tracking_post_processor/python/tool_tracking_post_processor_pydoc.hpp

[

#include "../macros.hpp"

namespace holoscan::doc {
namespace ToolTrackingPostprocessorOp {

// PyToolTrackingPostprocessorOp Constructor
PYDOC(ToolTrackingPostprocessorOp_python, R"doc(
Operator performing post-processing for the endoscopy tool tracking demo.

==Named Inputs==

in : nvidia::gxf::Entity containing multiple nvidia::gxf::Tensor
Must contain input tensors named "probs'", "scaled_coords" and "binary_masks" that
correspond to the output of the LSTMTensorRTInfereceOp as used in the endoscopy
tool tracking example applications.

==Named Outputs==

out_coords : nvidia::gxf::Tensor
Coordinates tensor, stored on the host (CPU).

out_mask : nvidia::gxf::Tensor
Binary mask tensor, stored on device (GPU).

Parameters

fragment : Fragment
The fragment that the operator belongs to.

device_allocator : "~ “holoscan.resources.Allocator
Output allocator used on the device side.
host_allocator : "~ “holoscan.resources.Allocator

Output allocator used on the host side.
min_prob : float, optional
Minimum probability (in range [0, 1]). Default value is 0.5.
overlay_img_colors : sequence of sequence of float, optional
Color of the image overlays, a list of RGB values with components between ® and 1.
The default value is a qualitative colormap with a sequence of 12 colors.
cuda_stream_pool : "~ “holoscan.resources.CudaStreamPool ", optional
"holoscan.resources.CudaStreamPool” instance to allocate CUDA streams.

(continues on next page)

15.1. Tutorial: binding the ToolTrackingPostprocessorOp class 181

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/python/holoscan/macros.hpp
https://github.com/nvidia-holoscan/holohub/blob/main/cmake/pydoc/macros.hpp
https://github.com/nvidia-holoscan/holohub/blob/main/operators/tool_tracking_postprocessor/python/tool_tracking_postprocessor_pydoc.hpp

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

Default value is "~ "None °
name : str, optional

The name of the operator.
)doc™)

} // namespace ToolTrackingPostprocessorOp
} // namespace holoscan: :doc

We tend to use NumPy-style docstrings for parameters, but also encourage adding a custom section at the top that
describes the input and output ports and what type of data is expected on them. This can make it easier for developers
to use the operator without having to inspect the source code to determine this information.

15.1.4 Configuring with CMake

We use CMake to configure pybind11 and build the bindings for the C++ operator you wish to wrap. There are two
approaches detailed below, one for HoloHub (recommended), one for standalone CMake projects.

Tip: To have your bindings built, ensure the CMake code below is executed as part of a CMake project which al-
ready defines the C++ operator as a CMake target, either built in your project (with add_library) or imported (with
find_package or find_library).

In HoloHub

We provide a CMake utility function named pybind11_add_holohub_module in HoloHub to facilitate configuring and
building your python bindings.

In our skeleton code below, a top-level CMakeLists.txt which already defined the tool_tracking_postprocessor
target for the C++ operator would need to do add_subdirectory(tool_tracking_postprocessor) to in-
clude the following CMakeLists.txt. The pybindl1_add_holohub_module lists that C++ operator target, the
C++ class to wrap, and the path to the C++ binding source code we implemented above. Note how the mod-
ule name provided as the first argument to PYPBIND11_MODULE needs to match _<CPP_CMAKE_TARGET>
(_tool_tracking_postprocessor_op in this case).

Listing 15.4: tool_tracking_postprocessor/python/CMakeLists.txt

include(pybindl1_add_holohub_module)
pybindl1_add_holohub_module(
CPP_CMAKE_TARGET tool_tracking postprocessor
CLASS_NAME "ToolTrackingPostprocessorOp"
SOURCES tool_tracking_postprocessor.cpp

The key details here are that CLASS_NAME should match the name of the C++ class that is being wrapped and is also
the name that will be used for the class from Python. SOURCES should point to the file where the C++ operator that is
being wrapped is defined. The CPP_CMAKE_TARGET name will be the name of the holohub package submodule that
will contain the operator.

Note that the python subdirectory where this CMakeLists.txt resides is reachable thanks to the
add_subdirectory(python) in the CMakeLists.txt one folder above, but that’s an arbitrary opinionated loca-
tion and not a required directory structure.

182 Chapter 15. Writing Python bindings for a C++ Operator

https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/nvidia-holoscan/holohub/blob/main/cmake/pybind11_add_holohub_module.cmake
https://github.com/nvidia-holoscan/holohub/blob/main/operators/tool_tracking_postprocessor/python/CMakeLists.txt
https://github.com/nvidia-holoscan/holohub/blob/30d2797e37615f87056075b36ebf1d905b6c770b/operators/tool_tracking_postprocessor/CMakeLists.txt#L33-L35

Holoscan SDK User Guide, Release 2.2.0

Standalone CMake
Follow the pybindl1 documentation to configure your CMake project to use pybindll. Then, use the py-
bind11_add_module function with the cpp files containing the code above, and link against holoscan: : core and

the library that exposes your C++ operator to wrap.

Listing 15.5: my_op_python/CMakeLists.txt

pybindl1l_add_module(my_python_module my_op_pybind.cpp)
target_link libraries(my_python_module

PRIVATE holoscan::core

PUBLIC my_op
)

Example: in the SDK, this is done here.

Warning: The name chosen for CPP_CMAKE_TARGET must also be used (along with a preceding underscore) as
the module name passed as the first argument to the PYBIND11_MODULE macro in the bindings.

Note that there is an initial underscore prepended to the name. This is the naming convention used for the shared li-
brary and corresponding __init__.py file that will be generated by the pybind11_add_holohub_module helper
function above.

If the name is specified incorrectly, the build will still complete, but at application run time an ImportError such
as the following would occur

[command] python3 /workspace/holohub/applications/endoscopy_tool_tracking/python/
—.endoscopy_tool_tracking.py --data /workspace/holohub/data/endoscopy
Traceback (most recent call last):
File "/workspace/holohub/applications/endoscopy_tool_tracking/python/endoscopy_tool_
—tracking.py", line 38, in <module>
from holohub.tool_tracking_postprocessor import ToolTrackingPostprocessorOp
File "/workspace/holohub/build/python/lib/holohub/tool_tracking_postprocessor/__
—init__.py", line 19, in <module>
from ._tool_tracking postprocessor import ToolTrackingPostprocessorOp
ImportError: dynamic module does not define module export function (PyInit__tool_
—tracking_postprocessor)

15.1.5 Importing the class in Python

In HoloHub
When building your project, two files will be generated inside <build_or_install_dir>/python/lib/holohub/
<CPP_CMAKE_TARGET> (e.g. build/python/1lib/holohub/tool_tracking_postprocessor/):

1. the shared library for your bindings (_tool_tracking_postprocessor_op.
cpython-<pyversion>-<arch>-linux-gnu. so)

2. an __init__.py file that makes the necessary imports to expose this in python

Assuming you have export PYTHONPATH=<build_or_install_dir>/python/1lib/, you should then be able to
create an application in Holohub that imports your class via:

15.1. Tutorial: binding the ToolTrackingPostprocessorOp class 183

https://pybind11.readthedocs.io/en/stable/compiling.html#building-with-cmake
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/python/holoscan/CMakeLists.txt
https://github.com/grlee77/holohub/blob/3adbba16baafb5958950b261a0d6521f7544cfeb/operators/tool_tracking_postprocessor/python/tool_tracking_postprocessor.cpp#L94

Holoscan SDK User Guide, Release 2.2.0

from holohub.tool_tracking_postprocessor_op import ToolTrackingPostProcessorOp

Example: ToolTrackingPostProcessorOp is imported in the Endoscopy Tool Tracking application on HoloHub
here.

Standalone CMake

When building your project, a shared library file holding the python bindings and named my_python_module.
cpython-<pyversion>-<arch>-linux-gnu.so will be generated inside <build_or_install_dir>/
my_op_python (configurable with OUTPUT_NAME and LIBRARY_OUTPUT_DIRECTORY respectively in CMake).

From there, you can import it in python via:

import holoscan.core
import holoscan.gxf # if your c++ operator uses gxf extensions

from <build_or_install_dir>.my_op_python import MyOp

Tip: To imitate HoloHub’s behavior, you can also place that file alongside the .so file, name it __init__.
py, and replace <build_or_install_dir>. by .. It can then be imported as a python module, assuming
<build_or_install_dir> is a module under the PYTHONPATH environment variable.

15.2 Additional Examples

In this section we will cover other cases that may occasionally be encountered when writing Python bindings for
operators.

15.2.1 Optional arguments

It is also possible to use std: :optional to handle optional arguments. The ToolTrackingProcessorOp example
above, for example, has a default argument defined in the spec for min_prob.

constexpr float DEFAULT_MIN_PROB = 0.5f;
/)

spec.param(
min_prob_, "min_prob", "Minimum probability", "Minimum probability.", DEFAULT_MIN_
—PROB) ;

In the tutorial for ToolTrackingProcessorOp above we reproduced this default of 0.5 in both the
PyToolTrackingProcessorOp constructor function signature as well as the Python bindings defined for it. This
carries the risk that the default could change at the C++ operator level without a corresponding change being made for
Python.

An alternative way to define the constructor would have been to use std: :optional as follows

// Define a constructor that fully initializes the object.
PyToolTrackingPostprocessorOp(

Fragment* fragment, const py::args& args, std::shared_ptr<Allocator> device_

—.allocator,

(continues on next page)

184 Chapter 15. Writing Python bindings for a C++ Operator

https://github.com/nvidia-holoscan/holohub/blob/30d2797e37615f87056075b36ebf1d905b6c770b/applications/endoscopy_tool_tracking/python/endoscopy_tool_tracking.py#L38

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)
std: :shared_ptr<Allocator> host_allocator, std::optional<float> min_prob = 0.5f,
std: :optional<std: :vector<std: :vector<float>>> overlay_img_colors = VIZ_TOOL_

—DEFAULT_COLORS,
std: :shared_ptr<holoscan: :CudaStreamPool> cuda_stream_pool = nullptr,
const std::string& name = "tool_tracking_postprocessor")
: ToolTrackingPostprocessorOp(ArgList{Arg{"device_allocator", device_allocator},
Arg{"host_allocator", host_allocator},
H{
if (cuda_stream_pool) { this->add_arg(Arg{"cuda_stream_pool", cuda_stream_pool}); }
if (min_prob.has_value()) { this->add_arg(Arg{"min_prob", min_prob.value() 3}); }
if (overlay_img_colors.has_value()) {

this->add_arg(Arg{"overlay_img_colors", overlay_img_colors.value() });

}

add_positional_condition_and_resource_args(this, args);
name_ = name;

fragment_ = fragment;

spec_ = std::make_shared<OperatorSpec>(fragment);
setup(*spec_.get());

where now that min_prob and overlay_img_colors are optional, they are only conditionally added as an argument to
ToolTrackingPostprocessorOp when they have a value. If this approach is used, the Python bindings for the constructor
should be updated to use py: :none() as the default as follows:

.def(py::init<Fragment*,
const py::args& args,
std: : shared_ptr<Allocator>,
std: :shared_ptr<Allocator>,
float,
std: :vector<std: :vector<float>>,
std: :shared_ptr<holoscan: : CudaStreamPool>,
const std::string&>(Q),

"fragment"_a,

"device_allocator"_a,

"host_allocator"_a,

"min_prob"_a = py::none(),

"overlay_img_colors”_a = py::none(),

"cuda_stream_pool"_a = py::none(),

"name"_a = "tool_tracking_postprocessor's,

doc: :ToolTrackingPostprocessorOp: :doc_ToolTrackingPostprocessorOp_python) ;

15.2.2 C++ enum parameters as arguments

Sometimes, operators may use a Parameter with an enum type. It is necessary to wrap the C++ enum to be able to use
it as a Python type when providing the argument to the operator.

The built-in holoscan::ops: :AJASourceOp is an example of a C++ operator that takes a enum Parameter (an
NTV2Channel enum).

The enum can easily be wrapped for use from Python via py: : enum_ as shown here. It is recommended in this case
to follow Python’s convention of using capitalized names in the enum.

15.2. Additional Examples 185

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/python/holoscan/operators/aja_source/aja_source.cpp#L58
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/python/holoscan/operators/aja_source/aja_source.cpp#L98-L108

Holoscan SDK User Guide, Release 2.2.0

15.2.3 (Advanced) Custom C++ classes as arguments

Sometimes it is necessary to accept a custom C++ class type as an argument in the operator’s constructor. In this case
additional interface code and bindings will likely be necessary to support the type.

A relatively simple example of this is the DataVecMap type used by InferenceProcessorOp. In that case, the type is a
structure that holds an internal std: :map<std:string, std::vector<std::string>>. The bindings are written
to accept a Python dict (py: :dict) and a helper function is used within the constructor to convert that dictionary to
the corresponding C++ DataVecMap.

A more complicated case is the use of a InputSpec type in the HolovizOp bindings. This case involves creating
Python bindings for classes InputSpec and View as well as a couple of enum types. To avoid the user having to build
a list[holoscan.operators.HolovizOp.InputSpec] directly to pass as the tensors argument, an additional
Python wrapper class was defined in the __init__.py to allow passing a simple Python dict for the tensors argument
and any corresponding InputSpec classes are automatically created in its constructor before calling the underlying
Python bindings class.

15.2.4 Customizing the C++ types a Python operator can emit or receive

In some instances, users may wish to be able to have a Python operator receive and/or emit a custom C++ type.
As a first example, suppose we are wrapping an operator that emits a custom C++ type. We need any downstream
native Python operators to be able to receive that type. By default the SDK is able to handle the needed C++
types for built in operators like std: : vector<holoscan: :ops: :HolovizOp: : InputSpec>. The SDK provides an
EmitterReceiverRegistry class that 3rd party projects can use to register receiver and emitter methods for any
custom C++ type that needs to be handled. To handle a new type, users should implement an emitter_receiver<T>
struct for the desired type as in the example below. We will first cover the general steps necessary to register such a
type and then cover where some steps may be omitted in certain simple cases.

Step 1: define emitter_receiver::emit and emitter_receiver::receive methods

Here is an example for the built-in std: : vector<holoscan: :ops: :HolovizOp: : InputSpec> used by HolovizOp
to define the input specifications for its received tensors.

#include <holoscan/python/core/emitter_receiver_registry.hpp>
namespace py = pybindll;
namespace holoscan {

/% Implements emit and receive capability for the HolovizOp::InputSpec type.
*/
template <>
struct emitter_receiver<std::vector<holoscan: :ops::HolovizOp: :InputSpec>> {
static void emit(py::object& data, const std::string& name, PyOutputContext& op_output,
const int64_t acg_timestamp = -1) {
auto input_spec = data.cast<std::vector<holoscan: :ops::HolovizOp: :InputSpec>>Q);
py::gil_scoped_release release;
op_output.emit<std: :vector<holoscan: :ops::HolovizOp: :InputSpec>>(input_spec, name.c_
—str(), acq_timestamp);
return;

}

static py::object receive(std::any result, const std::string& name, PyInputContext& op_

—input)y { (continues on next page)

186 Chapter 15. Writing Python bindings for a C++ Operator

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/python/holoscan/operators/inference_processor/inference_processor.cpp#L52-L58
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/python/holoscan/operators/holoviz/__init__.py#L100-L182
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v1.0.3/python/holoscan/operators/holoviz/__init__.py#L100-L182

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

HOLOSCAN_LOG_DEBUG("'py_receive: std::vector<HolovizOp::InputSpec> case');

// can directly return vector<InputSpec>

auto specs = std::any_cast<std::vector<holoscan::ops: :HolovizOp: :InputSpec>>(result);
py::object py_specs = py::cast(specs);

return py_specs;

};

This emitter_receiver class defines a receive method that takes a std: :any message and casts it to the corre-
sponding Python 1list[HolovizOp.InputSpect] object. Here the pybind11: :cast call works because we have
wrapped the HolovizOp: : InputSpec class here.

Similarly, the emit method takes a pybindl1l::object (of type list[HolovizOp.InputSpect]) and casts it to
the corresponding C++ type, std: : vector<holoscan: :ops: :HolovizOp: : InputSpec>. The conversion between
std: :vector and a Python list is one of Pbind11’s built-in conversions (available as long as “pybind11/stl.h” has been
included).

The signature of the emit and receive methods must exactly match the case shown here.

Step 2: Create a register_types method for adding custom types to the EmitterReceiverRegistry.

The bindings in this operators module, should define a method named register_types that takes a refer-
ence to an EmitterReceiverRegistry as its only argument. Within this function there should be a call to
EmitterReceiverRegistry::add_emitter_receiver for each type that this operator wished to register. The
HolovizOp defines this method using a lambda function

// Import the emitter/receiver registry from holoscan.core and pass it to this.
— function to
// register this new C++ type with the SDK.
m.def("register_types", [](EmitterReceiverRegistry& registry) {
registry.add_emitter_receiver<std: :vector<holoscan: :ops::HolovizOp: : InputSpec>>(
"std::vector<HolovizOp: :InputSpec>"s);
// array camera pose object
registry.add_emitter_receiver<std::shared_ptr<std::array<float, 16>>>(
"std::shared_ptr<std::array<float, 16>>"s);
// Pose3D camera pose object
registry.add_emitter_receiver<std::shared_ptr<nvidia::gxf::Pose3D>>(
"std::shared_ptr<nvidia::gxf::Pose3D>"s);
// camera_eye_input, camera_look_at_input, camera_up_input
registry.add_emitter_receiver<std::array<float, 3>>("std::array<float, 3>"s);

H;

Here the following line registers the std: : vector<holoscan: :ops: :HolovizOp: : InputSpec> type that we wrote
an emitter_receiver for above.

registry.add_emitter_receiver<std: :vector<holoscan: :ops: :HolovizOp: : InputSpec>>(
"std::vector<HolovizOp: :InputSpec>"s);

Internally the registry stores a mapping between the C++ std: :type_index of the type specified in the template
argument and the emitter_receiver defined for that type. The second argument is a string that the user can choose
which is a label for the type. As we will see later, this label can be used from Python to indicate that we want to emit
using the emitter_receiver: :emit method that was registered for a particular label.

15.2. Additional Examples 187

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v2.0.0/python/holoscan/operators/holoviz/holoviz.cpp#L190-L207

Holoscan SDK User Guide, Release 2.2.0

Step 3: In the init.py file for the Python module defining the operator call register_types

To register types with the core SDK, we need to import the io_type_registry class (of type
EmitterReceiverRegistry) from holoscan.core. We then pass that class as input to the register_types
method defined in step 2 to register the 3rd party types with the core SDK.

from holoscan.core import io_type_registry
from ._holoviz import register_types as _register_types
register methods for receiving or emitting list[HolovizOp.InputSpec] and camera pose.

—types
_register_types(io_type_registry)

where we chose to import register_types with an initial underscore as a common Python convention to indicate it
is intended to be “private” to this module.

In some cases steps 1 and 3 as shown above are not necessary.

When creating Python bindings for an Operator on Holohub, the pybind11_add_holohub_module.cmake utility men-
tioned above will take care of autogenerating the __init__.py as shown in step 3, so it will not be necessary to
manually create it in that case.

For types for which Pybind11’s default casting between C++ and Python is adequate, it is not necessary to explicitly
define the emitter_receiver class as shown in step 1. This is true because there are a couple of default implemen-
tations for emitter_receiver<T> and emitter_receiver<std: :shared_ptr<T>> that already cover common
cases. The default emitter_receiver works for the std: : vector<HolovizOp: : InputSpec> type shown above, which
is why the code shown for illustration there is not found within the operator’s bindings. In that case one could imme-
diately implement register_types from step 2 without having to explicitly create an emitter_receiver class.

An example where the default emitter_receiver would not work is the custom one defined by the
SDK for pybindll::dict. In this case, to provide convenient emit of multiple tensors via passing a
dict[holoscan: :Tensor] to op_output.emit we have special handling of Python dictionaries. The dictionary
is inspected and if all keys are strings and all values are tensor-like objects, a single C++ nvidia::gxf::Entity
containing all of the tensors as an nvidia: : gxf: : Tensor is emitted. If the dictionary is not a tensor map, then it is
just emitted as a shared pointer to the Python dict object. The emitter_receiver implementations used for the core
SDK are defined in emitter_receivers.hpp. These can serve as a reference when creating new ones for additional types.

Runtime behavior of emit and receive

After registering a new type, receive of that type on any input port will automatically be handled. This is because due
to the strong typing of C++, any op_input.receive call in an operator’s compute method can find the registered
receive method that matches the std: : type_index of the type and use that to convert to a corresponding Python
object.

Because Python is not strongly typed, on emit, the default behavior remains emitting a shared pointer to the Python
object itself. If we instead want to emit a C++ type, we can pass a 3rd argument to op_output.emit to specify the
name that we used when registering the types via the add_emitter_receiver call as above.

188 Chapter 15. Writing Python bindings for a C++ Operator

https://github.com/nvidia-holoscan/holohub/blob/main/cmake/pybind11_add_holohub_module.cmake
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v2.1.0/python/holoscan/core/emitter_receiver_registry.hpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v2.1.0/python/holoscan/core/emitter_receiver_registry.hpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/holoscan/operators/holoviz/holoviz.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v2.2.0/python/holoscan/core/emitter_receivers.hpp

Holoscan SDK User Guide, Release 2.2.0

Example of emitting a C++ type

As a concrete example, the SDK already registers std: : string by default. If we wanted, for instance, to emit a Python
string as a C++ std: : string for use by a downstream operator that is wrapping a C++ operator expecting string input,
we would add a 3rd argument to the op_output.emit call as follows

emit a Python filename string on port "filename_out" using registered type "std::string

"
—

my_string = "filename.raw"
op_output.emit(my_string, "filename_out", "std::string")

This specifies that the emit method that converts to C++ std: : string should be used instead of the default behavior
of emitting the Python string.

Another example would be to emit a Python List[float] as a std: :array<float, 3> parameter as input to the
camera_eye, camera_look_at or camera_up input ports of HolovizOp.

op_output.emit([0.0, 1.0, 0.0], "camera_eye_out", "std::array<float, 3>")

Only types registered with the SDK can be specified by name in this third argument to emit.

Table of types registered by the core SDK

The list of types that are registered with the SDK’s EmitterReceiverRegistry are given in the table below.

C++ Type name in the EmitterReceiverRegistry
holoscan:: Tensor “holoscan::Tensor”
std::shared_ptr<holoscan::GILGuardedPyObject> | “PyObject”

std::string “std::string”

pybind11::dict “pybind11::dict”

holoscan::gxf::Entity “holoscan::gxf::Entity”
holoscan::PyEntity “holoscan::PyEntity”

nullptr_t “nullptr_t”
CloudPickleSerializedObject “CloudPickleSerializedObject”
std::array<float, 3> “std::array<float, 3>”
std::shared_ptr<std::array<float, 16>> “std::shared_ptr<std::array<float, 16>>"
std::shared_ptr<nvidia::gxf::Pose3D> “std::shared_ptr<nvidia::gxf::Pose3D>"
std::vector<holoscan::ops::HolovizOp::InputSpec> | “std::vector<HolovizOp::InputSpec>"

Note: There is no requirement that the registered name match any particular convention. We generally used the C++
type as the name to avoid ambiguity, but that is not required.

The sections above explain how a register_types function can be added to bindings to expand this list. It is also
possible to get a list of all currently registered types, including those that have been registered by any additional imported
3rd party modules. This can be done via

from holoscan.core import io_type_registry

print(io_type_registry.registered_types())

15.2. Additional Examples 189

Holoscan SDK User Guide, Release 2.2.0

190 Chapter 15. Writing Python bindings for a C++ Operator

CHAPTER
SIXTEEN

SIMPLIFIED PYTHON OPERATOR CREATION VIA THE CREATE_OP
DECORATOR

Warning: The holoscan.decorator.create_op() decorator and the supporting holoscan.decorator.
Input and holoscan.decorator.Output classes are new in Holoscan v2.2 and are still considered experimental.
They are usable now, but it is possible that some backwards incompatible changes to the behavior or API may be
made based on initial feedback.

For convenience, a holoscan.decorator.create_op() decorator is provided which can be used to automatically
convert a simple Python function/generator or a class into a native Python holoscan. core.Operator. The wrapped
function body (or the __call__ method if create_op is applied to a class) will correspond to the computation to
be done in the holoscan. core.Operator.compute() method, but without any need to explicitly make any calls
to holoscan.core.InputContext.receive() to receive inputs or holoscan.core.OutputContext.emit() to
transmit the output. Any necessary input or output ports will have been automatically generated.

Consider first a simple Python function named mask_and_offset that takes image and mask tensors as input and
multiplies them, followed by adding some scalar offset.

def mask_and_offset(image, mask, offset=1.5):
return image * mask + offset

To turn this into an function that returns a corresponding operator we can add the create_op decorator like this:

from holoscan.decorator import create_op

@create_op(
inputs=("image", "mask"),
outputs="out",

)

def mask_and_offset(image, mask, offset=1.5):
return image * mask + offset

By supplying the inputs argument we are specifying that there are two input ports, named “image” and “mask”. By
setting outputs="out" we are indicating that the output will be transmitted on a port named “out”. When inputs are
specified by simple strings in this way, the names used must map to variable names in the wrapped function’s signature.
We will see later that it is possible to use the holoscan.decorator. Input class to provide more control over how
inputs are mapped to function arguments. Similarly, we will see that the holoscan.decorator.Output class can be
used to provide more control over how the function output is mapped to any output port(s).

There is also an optional, cast_tensors argument to create_op. For convenience, this defaults to True, which
results in any tensor-like objects being automatically cast to a NumPy or CuPy array (for host or device tensors, re-

191

Holoscan SDK User Guide, Release 2.2.0

spectively) before they are passed on to the function. If this is not desired (e.g. due to working with a different third
party tensor framework than NumPy or CuPy), the user can set cast_tensors=False, and manually handle casting
of any holoscan. Tensor objects to the desired form in the function body. This casting option applies to either single
tensors or a tensor map (dict[Tensor]).

This decorated function can then be used within the compose method of an Application to create an operator corre-
sponding to this computation:

from holoscan.core import Application, Operator

def MyApp(Application):

def compose(self)
mask_op = mask_and_offset(self, name="my_scaling_op", offset=0.0)

verify that an Operator was generated
assert(isinstance(mask_op, Operator))

now add any additional operators and create the computation graph using add_
—~flow

Note that as for all other Operator classes, it is required to supply the application (or fragment) as the first argument
(self here). The name kwarg is always supported and is the name that will be assigned to the operator. Due to the use
of this kwarg to specify the operator name, the wrapped function (mask_and_offset in this case) should not use name
as an argument name. In this case, we specified offset=0.0 which would override the default value of offset=1.5
in the function signature.

For completeness, the use of the create_op decorator on mask_and_offset is equivalent to if the user had defined
the following MaskAndOffsetOp class and used it in MyApp . compose:

def MaskAndOffsetOp(Operator):
def setup(self, spec):
spec.input("image")
spec.input("'mask")
spec.output(out")

def compute(self, op_input, op_output, context):
Simplified logic here assumes received values are GPU tensors
create_op would add additional logic to handle the inputs
image = op_input.receive("image'")
image = cp.asarray(image)

mask = op_input.receive('mask")
mask = cp.asarray(mask)

out = image * mask + offset
op_output.emit(out, "out")

192 Chapter 16. Simplified Python operator creation via the create_op decorator

Holoscan SDK User Guide, Release 2.2.0

16.1 Using the Input class for more control over input ports

This section will cover additional use cases where using a str or Tuple[str] for the inputs argument is insufficient.

Scenario 1: Assume that the upstream operator sends a tensormap to a given input port and we need to specify which
tensor(s) in the tensormap will map to which input port.

For a concrete example, suppose we want to print a tensor’s shape using a function like:

def print_shape(tensor):
print (f" {tensor.shape ")

but the upstream operator outputs a dictionary containing two tensors named “image” and “labels”. We could use this

operator by specifying which tensor name on a particular input port would map to the function’s “tensor” argument.
For example:

@create_op(inputs=Input("input_tensor", arg_map={"image": "tensor"}))
def print_shape(tensor):
print(f" {tensor.shape)

would create an operator with a single input port named “input_tensor”” and no output port. The input port may receive
a tensormap with any number of tensors, but will only use the tensor named “image”, mapping it to the “tensor”
argument of the wrapped function. In general, the arg_map is a dictionary mapping tensor names found on the port to
their corresponding function argument names.

Scenario 2: we want to override the scheduling condition present on a port. This can be done by specifying Input with
the condition and optionally condition_kwargs arguments. For example, to override the MessageAvailableCon-
dition that is added to the port by default and allow it to call compute even when no input message is available:

@create_op(inputs=Input("input_tensor", condition=ConditionType.NONE, condition_kwargs={}

=))

Scenario 3: we want to override the parameters of the receiver present on a port. For example, we could specify a
different policy for the double buffer receiver that is used by default (policy=1 corresponds to discarding incoming
messages when the queue is already full)

@create_op(inputs=Input("input_tensor", connector=ConditionType.DOUBLE_BUFFER, connector_
—kwargs=dict(capacity=1, policy=1)))

16.2 Using the Output class for more control over output ports

To support a case where multiple output ports should be present, the user must have the function return a dict. The
holoscan.decorator.Output class then has a tensor_names keyword argument that can be specified to indicate
which items in the dictionary are to be transmitted on a given output port.

For example, assume we have a function that generates three tensors, x, y and z and we want to transmit x and y on
port “outl” while z will be transmitted on port “out2”. This can be done by specifying outputs as follows in the
create_op call:

@create_op(
outputs=(
Output("outl", tensor_names=("x", "y")),
Output("out2", tensor_names=("z",)),

(continues on next page)

16.1. Using the Input class for more control over input ports 193

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

),
)
def xyz_generator(nx=32, ny=32, nz=16):
X = cp.arange(nx, dtype=np.uint32)
y = cp.arange(ny, dtype=np.uint32)
z = cp.arange(nz, dtype=np.uint32)

must return a dict type when Output arg(s) with ‘tensor_names® is used
return dict(x=x, y=y, z=z)

This operator has no input ports and three optional keyword arguments. It splits the output tensors across two ports as
described above. All names used in tensor_names must correspond to keys present in the dict emitted by the object.
Often the dict values are tensors, but that is not a requirement.

The holoscan.decorator.Output class also supports condition, condition_kwargs, connector and
connector_kwargs that work in the same way as shown for holoscan.decorator.Input above. For example,
to override the transmitter queue policy for a single output port named “output_tensor”

@create_op(inputs=Output("output_tensor", connector=ConditionType.DOUBLE_BUFFER,..
—,connector_kwargs=dict(capacity=1, policy=1))

note that tensor_names was not specified which means that the returned object does not need to be a dict. The
object itself will be emitted on the “output_tensor” port.

Note: When specifying the inputs and outputs arguments to create_op, please make sure that all ports have
unique names. As a concrete example, if an operator has a single input and output port that are used to send images,
one should use unique port names like “image_in”" and “image_out” rather than using “image” for both.

16.3 Interoperability with wrapped C++ operators

There SDK includes a python_decorator example showing interoperability of wrapped C++ operators
(VideoStreamReplayerOp and HolovizOp) alongside native Python operators created via the create_op
decorator.

The start of this application imports a couple of the built in C+=+based operators with Python bindings (HolovizOp
and VideoStreamReplayerOp). In addition to these, two new operators are created via the create_op decorator
APIs.

import os

from holoscan.core import Application
from holoscan.decorator import Input, Output, create_op
from holoscan.operators import HolovizOp, VideoStreamReplayerOp

sample_data_path = os.environ.get("HOLOSCAN_INPUT_PATH", "../data")
@create_op(

inputs="tensor",
outputs="out_tensor",

(continues on next page)

194 Chapter 16. Simplified Python operator creation via the create_op decorator

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/python_decorator

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

)

def invert(tensor):
tensor = 255 - tensor
return tensor

@create_op(inputs=Input("in", arg_map="tensor"), outputs=Output('out", tensor_names=(
<"frame",)))
def tensor_info(tensor):

print(f"tensor from 'in' port: shape = {tensor.shape}, " f"dtype = {tensor.dtype.
—name /")

return tensor

The first is created by adding the decorator to a function named invert which just inverts the (8-bit RGB) color
space values. A second operator, is created by adding the decorator to a function named tensor_info, which as-
sumes that the input is a CuPy or NumPy tensor, and prints its shape and data type. Note that create_op’s de-
fault cast_tensors=True option ensures that any host or device tensors are cast to NumPy or CuPy arrays, re-
spectively. This is why it is safe to use NumPy APIs in the function bodies. If the user wants to receive the
holoscan.Tensor object directly and manually handle the casting to a different type of object in the function body,
then cast_tensors=False should be specified in the keyword arguments to create_op.

Now that we have defined or imported all of the operators, we can build an application in the usual way by inheriting
from the Application class and implementing the compose method. The remainder of the code for this example is
shown below.

class VideoReplayerApp(Application):
"""Example of an application that uses the operators defined above.

This application has the following operators:

- VideoStreamReplayerOp

- HolovizOp

- invert (created via decorator API)

- tensor_info (created via decorator API)

‘VideoStreamReplayerOp" reads a video file and sends the frames to the HolovizOp.

The “invert® operator inverts the color map (the 8-bit ‘value' in each color channel.
~1s

set to ‘255 - value’).

The “tensor_info' operator prints information about the tensors shape and data type.

‘HolovizOp® displays the frames.

o

def compose(self):
video_dir = os.path.join(sample_data_path, "racerx')
if not os.path.exists(video_dir):
raise ValueError(f"Could not find video data: {video_dir=}")

Define the replayer and holoviz operators
replayer = VideoStreamReplayerOp (

self,

name="replayer",

directory=video_dir,

(continues on next page)

16.3. Interoperability with wrapped C++ operators 195

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

basename="racerx",
frame_rate=0, # as specified in timestamps
repeat=False, # default: false
realtime=True, # default: true
count=40, # default: 0 (no frame count restriction)
)
invert_op = invert(self, name="image_invert")
info_op = tensor_info(self, name="tensor_info")
visualizer = HolovizOp(
self,
name="holoviz",
width=854,
height=480,
name="frame" to match Output argument to create_op for tensor_info
tensors=[dict(name="frame", type="color", opacity=1.0, priority=0)],
)
Define the workflow
self.add_flow(replayer, invert_op, {("output", "tensor")})
self.add_flow(invert_op, info_op, {("out_tensor", "in")3})
self.add_flow(info_op, visualizer, {("out", "receivers")})

def main(Q:
app = VideoReplayerApp()
app.run()

if __name == "__main_

main()

The highlighted lines show how Operators corresponding to the invert and tensor_info functions are created by
passing the application itself as the first argument. The invert_op and info_op variables now correspond to a
holsocan.core.Operator class and can be connected in the usual way using add_£f1low to define the computation.
Note that a name was provided for these operators, via the optional name keyword argument. In this case each operator
is only used once, but if the same operator is to be used more than once in an application, each should be given a unique
name.

16.4 Using create_op to turn a generator into an Operator

The create_op decorator can be applied to a generator in the same way as for a function. In this case, a
BooleanCondition will automatically be added to the operator that will stop it from trying to call compute again once
the generator is exhausted (has no more values to yield). The following is a basic example of decorating a generator
for integers from 1 to count:

@create_op(outputs="out")
def source_generator(count):
yield from range(l, count + 1)

The compose method can then create an operator from this decorated generator as follows

196 Chapter 16. Simplified Python operator creation via the create_op decorator

Holoscan SDK User Guide, Release 2.2.0

count_op = source_generator(self, count=100, name="int_source")

16.5 Using create_op to turn a class into an Operator

The create_op decorator can also be applied to a class implementing the __call__ method, to turn it into an
Operator(). One reason to choose a class vs. a function is if there is some internal state that needs to be main-
tained across calls. For example, the operator defined below casts the input data to 32-bit floating point and on even
frames also negates the values.

@create_op
class NegateEven:
def __init__(self, start_index=0):
self.counter = start_index

def __call__(self, x):
cast tensor to 32-bit floating point
X = x.astype('float32")

negate the values if the frame is even

if self.counter % 2 == 0:
X = -X
return x

In this case, since there is only a single input and output for the function, we can omit the inputs and outputs
arguments in the call to create_op. In this case the input port will have name "x", as determined from the variable
name in the function signature. The output port will be have an empty name "". To use different port names, the

inputs and/or outputs arguments should be specified.

The compose method can then create an operator from this decorated generator as follows. Note that any positional or
keyword arguments in the __init__ method would be supplied during the NegateEven call. This returns a function
(not yet an operator) that can then be called to generate the operator. This is shown below

negate_op_creation_func = NegateEven(start_index=0) # ‘negate_op_
—creation_func' is a function that returns an Operator

negate_even_op = negate_op_creation_func(self, name="negate_even") # call the function.,
—»to create an instance of NegateEvenOp

or more concisely as just

negate_even_op = NegateEven(start_index=0) (self, name="negate_even")

Note that the operator class as defined above is approximately equivalent to the Python native operator defined below.
We show it here explicitly for reference.

import cupy as cp
import numpy as np
class NegateEvenOp(Operator):

def __init__(self, fragment, *args, start_index=0, **kwargs):
self.counter = start_index

(continues on next page)

16.5. Using create_op to turn a class into an Operator 197

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

def

def

super() .__init__(fragment, *args, **kwargs)

setup(self, spec):
spec.input("x")
spec.output("")

compute(op_input, op_output, context):
X = op_input.receive("x")

cast to CuPy or NumPy array
(validation that "x° is a holoscan.Tensor is omitted for simplicity)
if hasattr(x, '__cuda_array_interface__"'):
X = cupy.asarray(x)
else:
X = numpy.asarray(x)

cast tensor to 32-bit floating point
X = x.astype('float32")

negate the values if the frame is even
if self.counter % 2 == 0:

X = -X

op_output.emit(x, "")

The primary differences between this NegateEvenOp class and the decorated NegateEven above are:

¢ NegateEven does not need to define a setup method

* NegateEven does not inherit from Operator and so does not call its __init__ from the constructor

* The NegateEven: :__call__ method is simpler than the NegateEvenOp: : compute method as receive and
emit methods do not need to be explicitly called and casting to a NumPy or CuPy array is automatically handled
for NegateEven.

198

Chapter 16. Simplified Python operator creation via the create_op decorator

CHAPTER

SEVENTEEN

BUILT-IN OPERATORS AND EXTENSIONS

The units of work of Holoscan applications are implemented within Operators, as described in the core concepts of
the SDK. The operators included in the SDK provide domain-agnostic functionalities such as IO, machine learning
inference, processing, and visualization, optimized for Al streaming pipelines, relying on a set of Core Technologies.

17.1 Operators

The operators below are defined under the holoscan: : ops namespace for C++ and CMake, and under the holoscan.
operators module in Python.

Class CMake target/lib Documentation
AJASourceOp aja C++/Python
BayerDemosaicOp bayer_demosaic C++/Python
FormatConverterOp format_converter C++/Python
HolovizOp holoviz C++/Python
InferenceOp inference C++/Python
InferenceProcessorOp inference_processor C++/Python
PingRxOp ping_rx C++/Python
PingTxOp ping_tx C++/Python
SegmentationPostprocessorOp | segmentation_postprocessor | C++/Python
VideoStreamRecorderOp video_stream_recorder C++/Python
VideoStreamReplayerOp video_stream_replayer C++/Python
V4L.2VideoCaptureOp v4l2 C++/Python

Given an instance of an operator class, you can print a human-readable description of its specification to inspect the
inputs, outputs, and parameters that can be configured on that operator class:

C++

std::cout << operator_object->spec()->description() << std::endl;

199

Holoscan SDK User Guide, Release 2.2.0

Python

print(operator_object.spec)

Note: The Holoscan SDK uses meta-programming with templating and std: :any to support arbitrary data types.
Because of this, some type information (and therefore values) might not be retrievable by the description APL If
more details are needed, we recommend inspecting the list of Parameter members in the operator header to identify
their type.

17.2 Extensions

The Holoscan SDK also includes some GXF extensions with GXF codelets, which are typically wrapped as operators,
or present for legacy reasons. In addition to the core GXF extensions (std, cuda, serialization, multimedia) listed /ere,
the Holoscan SDK includes the following GXF extensions:

e gxf_holoscan_wrapper

* ucx_holoscan

17.2.1 GXF Holoscan Wrapper

The gxf_holoscan_wrapper extension includes the holoscan: :gxf: :OperatorWrapper codelet. It is used as a
utility base class to wrap a holoscan operator to interface with the GXF framework.

Learn more about it in the Using Holoscan Operators in GXF Applications section.

17.2.2 UCX (Holoscan)

The ucx_holoscan extension includes nvidia::holoscan::UcxHoloscanComponentSerializer which
is a nvidia::gxf::ComponentSerializer that handles serialization of holoscan::Message and
holoscan: :Tensor types for transmission using the Unified Communication X (UCX) library. UCX is the
library used by Holoscan SDK to enable communication of data between fragments in distributed applications.

Note: The UcxHoloscanComponentSerializer is intended for use in combination with other UCX compo-
nents defined in the GXF UCX extension. Specifically, it can be used by the UcxEntitySerializer where it
can operate alongside the UcxComponentSerializer that serializes GXF-specific types (nvidia: :gxf: :Tensor,
nvidia: :gxf::VideoBuffer, etc.). This way both GXF and Holoscan types can be serialized by distributed appli-
cations.

200 Chapter 17. Built-in Operators and Extensions

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/include/holoscan/operators

Holoscan SDK User Guide, Release 2.2.0

17.2.3 HoloHub

Visit the HoloHub repository to find a collection of additional Holoscan operators and extensions.

17.2. Extensions 201

https://github.com/nvidia-holoscan/holohub

Holoscan SDK User Guide, Release 2.2.0

202 Chapter 17. Built-in Operators and Extensions

CHAPTER
EIGHTEEN

VISUALIZATION

18.1 Overview

Holoviz provides the functionality to composite real time streams of frames with multiple different other layers like
segmentation mask layers, geometry layers and GUI layers.

For maximum performance Holoviz makes use of Vulkan, which is already installed as part of the Nvidia GPU driver.

Holoscan provides the Holoviz operator which is sufficient for many, even complex visualization tasks. The Holoviz
operator is used by multiple Holoscan example applications.

Additionally, for more advanced use cases, the Holoviz module can be used to create application specific visualization
operators. The Holoviz module provides a C++ API and is also used by the Holoviz operator.

The term Holoviz is used for both the Holoviz operator and the Holoviz module below. Both the operator and the
module roughly support the same features set. Where applicable information how to use a feature with the operator
and the module is provided. It’s explicitly mentioned below when features are not supported by the operator.

18.2 Layers

The core entity of Holoviz are layers. A layer is a two-dimensional image object. Multiple layers are composited to
create the final output.

These layer types are supported by Holoviz:
* image layer
e geometry layer
e GUI layer
All layers have common attributes which define the look and also the way layers are finally composited.

The priority determines the rendering order of the layers. Before rendering the layers they are sorted by priority, the
layers with the lowest priority are rendered first so that the layer with the highest priority is rendered on top of all other
layers. If layers have the same priority then the render order of these layers is undefined.

The example below draws a transparent geometry layer on top of an image layer (geometry data and image data creation
is omitted in the code). Although the geometry layer is specified first, it is drawn last because it has a higher priority
(1) than the image layer (0).

203

https://www.vulkan.org/
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 2.2.0

Operator

The operator has a receivers port which accepts tensors and video buffers produced by other operators. Each tensor
or video buffer will result in a layer.

The operator autodetects the layer type for certain input types (e.g. a video buffer will result in an image layer).

For other input types or more complex use cases input specifications can be provided either at initialization time as a
parameter or dynamically at run time.

std: :vector<ops: :HolovizOp: : InputSpec> input_specs;

auto& geometry_spec =
input_specs.emplace_back(ops: :HolovizOp: :InputSpec("point_tensor",.
—ops: :HolovizOp: : InputType: :POINTS));
geometry_spec.priority_ = 1;
geometry_spec.opacity_ = 0.5;

auto& image_spec =

input_specs.emplace_back(ops: :HolovizOp: : InputSpec("image_tensor",.
—ops: :HolovizOp: :InputType: : IMAGE));
image_spec.priority_ = 0;

auto visualizer = make_operator<ops::HolovizOp>("holoviz", Arg('tensors", input_specs));
// the source provides two tensors named "point_tensor" and "image_tensor" at the

— "outputs" port.
add_flow(source, visualizer, {{"outputs", "receivers"}});

Module
The definition of a layer is started by calling one of the layer begin functions viz::BeginImageLayer(),
viz::BeginGeometryLayer() or viz::BeginImGuiLayer (). The layer definition ends with viz: :EndLayer().

The start of a layer definition is resetting the layer attributes like priority and opacity to their defaults. So for the image
layer, there is no need to set the opacity to 1.0 since the default is already 1.0.

namespace viz = holoscan::viz;
viz::Begin();

viz: :BeginGeometryLayer();
viz::LayerPriority(1);
viz::LayerOpacity(0.5);
/// details omitted
viz::EndLayer();

viz::BeginImageLayer();
viz::LayerPriority(0);
/// details omitted
viz::EndLayer();

viz::EndQ;

204 Chapter 18. Visualization

Holoscan SDK User Guide, Release 2.2.0

18.2.1 Image Layers

Operator

Image data can either be on host or device (GPU), both tensors and video buffers are accepted.

std: :vector<ops: :HolovizOp: :InputSpec> input_specs;

auto& image_spec =

input_specs.emplace_back(ops: :HolovizOp: : InputSpec("image", .
—ops: :HolovizOp: :InputType: : IMAGE));

auto visualizer = make_operator<ops::HolovizOp>("holoviz", Arg("tensors", input_specs));

// the source provides an image named "image" at the "outputs" port.
add_flow(source, visualizer, {{"output", "receivers"}});

Module

The function viz: :BeginImageLayer () starts an image layer. An image layer displays a rectangular 2D image.

The image data is defined by calling viz: : ImageCudaDevice (), viz: : ImageCudaArray() or viz: : ImageHost ().
Various input formats are supported, see viz: : ImageFormat.

For single channel image formats image colors can be looked up by defining a lookup table with viz: :LUT().

viz::BeginImageLayer();

viz::ImageHost(width, height, format, data);

viz::EndLayer();

Supported Image Formats

Operator

Supported formats for nvidia: :gxf::VideoBuffer.

nvidia::gxf::VideoFormat Supported | Description

GXF_VIDEO_FORMAT_CUSTOM -

GXF_VIDEO_FORMAT_YUV420 - BT.601 multi planar 4:2:0 YUV
GXF_VIDEO_FORMAT_YUV420_ER - BT.601 multi planar 4:2:0 YUV ER
GXF_VIDEO_FORMAT_YUV420_709 - BT.709 multi planar 4:2:0 YUV
GXF_VIDEO_FORMAT _YUV420_709_ER - BT.709 multi planar 4:2:0 YUV
GXF_VIDEO_FORMAT_NV12 - BT.601 multi planar 4:2:0 YUV with interleaved UV
GXF_VIDEO_FORMAT_NV12_ER - BT.601 multi planar 4:2:0 YUV ER with interleaved UV
GXF_VIDEO_FORMAT_NV12_709 - BT.709 multi planar 4:2:0 YUV with interleaved UV
GXF_VIDEO_FORMAT NV12_709_ER - BT.709 multi planar 4:2:0 YUV ER with interleaved UV
GXF_VIDEO_FORMAT_RGBA v RGBA-8-8-8-8 single plane
GXF_VIDEO_FORMAT_BGRA v BGRA-8-8-8-8 single plane
GXF_VIDEO_FORMAT_ARGB v ARGB-8-8-8-8 single plane
GXF_VIDEO_FORMAT_ABGR v ABGR-8-8-8-8 single plane
GXF_VIDEO_FORMAT_RGBX v RGBX-8-8-8-8 single plane

continues on next page

18.2. Layers

205

Holoscan SDK User Guide, Release 2.2.0

Table 18.1 — continued from previous page

nvidia::gxf::VideoFormat Supported | Description
GXF_VIDEO_FORMAT_BGRX v BGRX-8-8-8-8 single plane
GXF_VIDEO_FORMAT_XRGB v XRGB-8-8-8-8 single plane
GXF_VIDEO_FORMAT_XBGR v XBGR-8-8-8-8 single plane
GXF_VIDEO_FORMAT_RGB v RGB-8-8-8 single plane
GXF_VIDEO_FORMAT_BGR v BGR-8-8-8 single plane
GXF_VIDEO_FORMAT_RS8_GS8_B8 - RGB - unsigned 8 bit multiplanar
GXF_VIDEO_FORMAT_B8 G8 RS8 - BGR - unsigned 8 bit multiplanar
GXF_VIDEO_FORMAT_GRAY v 8 bit GRAY scale single plane
GXF_VIDEO_FORMAT_GRAY16 v 16 bit GRAY scale single plane
GXF_VIDEO_FORMAT_GRAY32 - 32 bit GRAY scale single plane
GXF_VIDEO_FORMAT_GRAY32F v float 32 bit GRAY scale single plane
GXF_VIDEO_FORMAT_RGBI16 - RGB-16-16-16 single plane
GXF_VIDEO_FORMAT_BGR16 - BGR-16-16-16 single plane
GXF_VIDEO_FORMAT_RGB32 - RGB-32-32-32 single plane
GXF_VIDEO_FORMAT_BGR32 - BGR-32-32-32 single plane
GXF_VIDEO_FORMAT_R16_G16_B16 - RGB - signed 16 bit multiplanar
GXF_VIDEO_FORMAT_B16_G16_R16 - BGR - signed 16 bit multiplanar
GXF_VIDEO_FORMAT_R32_G32_B32 - RGB - signed 32 bit multiplanar
GXF_VIDEO_FORMAT_B32_G32_R32 - BGR - signed 32 bit multiplanar
GXF_VIDEO_FORMAT_ NV24 - multi planar 4:4:4 YUV with interleaved UV
GXF_VIDEO_FORMAT_NV24_ER - multi planar 4:4:4 YUV ER with interleaved UV
GXF_VIDEO_FORMAT_R8 G8 B8 DS - RGBD unsigned 8 bit multiplanar
GXF_VIDEO_FORMAT_R16_G16_B16_D16 | - RGBD unsigned 16 bit multiplanar
GXF_VIDEO_FORMAT _R32_G32_B32_D32 | - RGBD unsigned 32 bit multiplanar
GXF_VIDEO_FORMAT_RGBDS - RGBD 8 bit unsigned single plane
GXF_VIDEO_FORMAT_RGBDI16 - RGBD 16 bit unsigned single plane
GXF_VIDEO_FORMAT_RGBD32 - RGBD 32 bit unsigned single plane
GXF_VIDEO_FORMAT_D32F v Depth 32 bit float single plane

GXF_VIDEO_FORMAT_D64F

Depth 64 bit float single plane

GXF_VIDEO_FORMAT_RAWI16_RGGB

RGGB-16-16-16-16 single plane

GXF_VIDEO_FORMAT_RAWI16_BGGR

BGGR-16-16-16-16 single plane

GXF_VIDEO_FORMAT_RAWI16_GRBG

GRBG-16-16-16-16 single plane

GXF_VIDEO_FORMAT_RAWI16_GBRG

GBRG-16-16-16-16 single plane

Image format detection for nvidia: :gxf: :Tensor. Tensors don’t have image format information attached. The
Holoviz operator detects the image format from the tensor configuration.

206

Chapter 18. Visualization

Holoscan SDK User Guide, Release 2.2.0

nvidia::gxf::PrimitiveType | Channels | Color format Index for color lookup
kUnsigned8 1 8 bit GRAY scale single plane v
kInt8 1 signed 8 bit GRAY scale single plane v
kUnsigned16 1 16 bit GRAY scale single plane v
kint16 1 signed 16 bit GRAY scale single plane | v
kUnsigned32 1 - v
kInt32 1 - v
kFloat32 1 float 32 bit GRAY scale single plane v
kUnsigned8 3 RGB-8-8-8 single plane -
kInt8 3 signed RGB-8-8-8 single plane -
kUnsigned8 4 RGBA-8-8-8-8 single plane -
kInt8 4 signed RGBA-8-8-8-8 single plane -
kUnsigned16 4 RGBA-16-16-16-16 single plane -
kIntl6 4 signed RGBA-16-16-16-16 single plane | -
kFloat32 4 RGBA-16-16-16-16 single plane -
Module

See viz: :ImageFormat for supported image formats. Additionally viz: : ImageComponentMapping() can be used
to map the color components of an image to the color components of the output.

18.2.2 Geometry Layers

A geometry layer is used to draw 2d or 3d geometric primitives. 2d primitives are points, lines, line strips, rectangles,
ovals or text and are defined with 2d coordinates (X, y). 3d primitives are points, lines, line strips or triangles and are
defined with 3d coordinates (x, y, z).

Coordinates start with (0, 0) in the top left and end with (1, 1) in the bottom right for 2d primitives.

Operator

See holoviz_geometry.cpp and holoviz_geometry.py for 2d geometric primitives and and holoviz_geometry.py for 3d
geometric primitives.

Module

The function viz: :BeginGeometryLayer () starts a geometry layer.
See viz::PrimitiveTopology for supported geometry primitive topologies.

There are functions to set attributes for geometric primitives like color (viz::Color()), line width
(viz::LineWidth()) and point size (viz: :PointSize()).

The code below draws a red rectangle and a green text.

namespace viz = holoscan::viz;
viz: :BeginGeometryLayer();

// draw a red rectangle
viz::Color(l.f, 0.f, 0.f, 0.£);

(continues on next page)

18.2. Layers 207

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/cpp/holoviz_geometry.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python/holoviz_geometry.py
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python/holoviz_geometry_3d.py

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

const float data[]{0.1f, 0.1f, 0.9f, 0.9f};
viz::Primitive(viz: :PrimitiveTopology: :RECTANGLE_LIST, 1, sizeof(data) / sizeof(data[0]),
- data);

// draw green text
viz::Color(®.f, 1.f, 0.f, 0.f);
viz::Text(0.5f, 0.5f, 0.2f, "Text");

viz::EndLayer();

18.2.3 ImGui Layers

Note: ImGui layers are not supported when using the Holoviz operator.

The Holoviz module supports user interface layers created with Dear ImGui.

Calls to the Dear ImGui API are allowed between viz: :BeginImGuiLayer () and viz: :EndImGuiLayer () are used
to draw to the ImGui layer. The ImGui layer behaves like other layers and is rendered with the layer opacity and priority.

The code below creates a Dear ImGui window with a checkbox used to conditionally show a image layer.

namespace viz = holoscan::viz;

bool show_image_layer = false;
while (!viz::WindowShouldClose()) {
viz::Begin();

viz::BeginImGuilLayer();

ImGui: :Begin("Options™);
ImGui: :Checkbox ("Image layer", &show_image_layer);
ImGui: :End(Q);

viz: :EndLayer();

if (show_image_layer) {
viz::BeginImageLayer();
viz::ImageHost(...);
viz::EndLayer();

}

viz::End(Q);

ImGUI is a static library and has no stable API. Therefore the application and Holoviz have to use the same ImGUI
version. Therefore the link target holoscan: :viz: :imgui is exported, make sure to link your app against that target.

208 Chapter 18. Visualization

https://github.com/ocornut/imgui

Holoscan SDK User Guide, Release 2.2.0

18.2.4 Depth Map Layers
A depth map is a single channel 2d array where each element represents a depth value. The data is rendered as a 3d
object using points, lines or triangles. The color for the elements can also be specified.
Supported format for the depth map:
* 8-bit unsigned normalized format that has a single 8-bit depth component
Supported format for the depth color map:

 32-bit unsigned normalized format that has an 8-bit R component in byte 0, an 8-bit G component in byte 1, an
8-bit B component in byte 2, and an 8-bit A component in byte 3

Depth maps are rendered in 3D and support camera movement.

Operator

std: :vector<ops: :HolovizOp: : InputSpec> input_specs;

auto& depth_map_spec =
input_specs.emplace_back(ops: :HolovizOp: : InputSpec("depth_map",.
—»ops: :HolovizOp: : InputType: :DEPTH_MAP));
depth_map_spec.depth_map_render_mode_ = ops::HolovizOp: :DepthMapRenderMode: : TRIANGLES;

auto visualizer = make_operator<ops::HolovizOp>("holoviz",
Arg('"tensors", input_specs));

// the source provides an depth map named "depth_map" at the "output" port.
add_flow(source, visualizer, {{"output", "receivers"}});

Module

See holoviz depth map demo.

18.3 Views

By default a layer will fill the whole window. When using a view, the layer can be placed freely within the window.

Layers can also be placed in 3D space by specifying a 3D transformation matrix.

Note: For geometry layers there is a default matrix which allows coordinates in the range of [0 ... 1] instead of the
Vulkan [-1 ... 1] range. When specifying a matrix for a geometry layer, this default matrix is overwritten.

When multiple views are specified the layer is drawn multiple times using the specified layer view.

It’s possible to specify a negative term for height, which flips the image. When using a negative height, one should also
adjust the y value to point to the lower left corner of the viewport instead of the upper left corner.

18.3. Views 209

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/modules/holoviz/examples/depth_map

Holoscan SDK User Guide, Release 2.2.0

Operator

See holoviz_views.py.

Module

Use viz::LayerAddView() to add a view to a layer.

18.4 Camera

When rendering 3d geometry using a geometry layer with 3d primitives or using a depth map layer the camera properties
can either be set by the application or interactively changed by the user.

To interactively change the camera, use the mouse:
* Orbit (LMB)
* Pan (LMB + CTRL | MMB)
* Dolly (LMB + SHIFT | RMB | Mouse wheel)
* Look Around (LMB + ALT | LMB + CTRL + SHIFT)
e Zoom (Mouse wheel + SHIFT)

Operator

See holoviz_camera.cpp.

Module

Use viz: :SetCamera() to change the camera.

18.5 Using a display in exclusive mode

Usually Holoviz opens a normal window on the Linux desktop. In that case the desktop compositor is combining the
Holoviz image with all other elements on the desktop. To avoid this extra compositing step, Holoviz can render to a
display directly.

18.5.1 Configure a display for exclusive use
Single display

SSH into the machine and stop the X server:

sudo systemctl stop display-manager

To resume the display manager, run:

sudo systemctl start display-manager

210 Chapter 18. Visualization

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python/holoviz_views.py
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/cpp/holoviz_camera.cpp

Holoscan SDK User Guide, Release 2.2.0

Multiple displays
The display to be used in exclusive mode needs to be disabled in the NVIDIA Settings application (nvidia-settings):

open the X Server Display Configuration tab, select the display and under Configuration select Disabled.
Press Apply.

18.5.2 Enable exclusive display in Holoviz

Operator

Arguments to pass to the Holoviz operator:

auto visualizer = make_operator<ops::HolovizOp>("holoviz",
Arg('"use_exclusive_display", true), // required
Arg("display_name", "DP-2"), // optional
Arg("width", 2560), // optional
Arg("height", 1440), // optional
Arg("framerate", 240) // optional
Js

Module

Provide the name of the display and desired display mode properties to viz: :Init ().
If the name is nullptr then the first display is selected.

The name of the display can either be the EDID name as displayed in the NVIDIA Settings, or the output name provided
by xrandr or hwinfo --monitor.

Tip:

X11

In this example output of xrandr, DP-2 would be an adequate display name to use:

Screen 0: minimum 8 x 8, current 4480 x 1440, maximum 32767 x 32767

DP-0 disconnected (normal left inverted right x axis y axis)

DP-1 disconnected (normal left inverted right x axis y axis)

DP-2 connected primary 2560x1440+1920+0 (normal left inverted right x axis y axis) 600mm.
—X 340mm

2560x1440 59.98 + 239.97* 199.99 144.00 120.00 99.95
1024x768 60.00
800x600 60.32
640x480 59.94

USB-C-0 disconnected (normal left inverted right x axis y axis)

18.5. Using a display in exclusive mode 211

Holoscan SDK User Guide, Release 2.2.0

Wayland and X11

In this example output of hwinfo, "MSI MPG343CQR would be an adequate display name to use:

$ hwinfo --monitor | grep Model
Model: "MSI MPG343CQR"

18.6 CUDA streams

By default Holoviz is using CUDA stream 0 for all CUDA operations. Using the default stream can affect concurrency
of CUDA operations, see stream synchronization behavior for more information.

Operator

The operator is using a holoscan: : CudaStreamPool instance if provided by the cuda_stream_pool argument. The
stream pool is used to create a CUDA stream used by all Holoviz operations.

const std::shared_ptr<holoscan::CudaStreamPool> cuda_stream_pool =
make_resource<holoscan: :CudaStreamPool>("cuda_stream", 0, 0, 0, 1, 5);
auto visualizer =
make_operator<holoscan: :ops: :HolovizOp>("visualizer",
Arg("cuda_stream_pool") = cuda_stream_pool);

Module
When providing CUDA resources to Holoviz through e.g. viz: : ImageCudaDevice () Holoviz is using CUDA opera-

tions to use that memory. The CUDA stream used by these operations can be set by calling viz: :SetCudaStream().
The stream can be changed at any time.

18.7 Reading the framebuffer

The rendered frame buffer can be read back. This is useful when when doing offscreen rendering or running Holoviz
in a headless environment.

Note: Reading the depth buffer is not supported when using the Holoviz operator.

212 Chapter 18. Visualization

https://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__default-stream

Holoscan SDK User Guide, Release 2.2.0

Operator

To read back the color framebuffer set the enable_render_buffer_output parameter to true and provide an allo-
cator to the operator.

The framebuffer is emitted on the render_buffer_output port.

std: :shared_ptr<holoscan: :ops: :HolovizOp> visualizer =
make_operator<ops: :HolovizOp>("visualizer",
Arg("enable_render_buffer_output", true),
Arg("allocator") = make_resource<holoscan: :UnboundedAllocator>("allocator"),
Arg("cuda_stream_pool") = cuda_stream_pool);

add_flow(visualizer, destination, {{"render_buffer_output", "input"}});

Module

The rendered color or depth buffer can be read back using viz: :ReadFramebuffer().

18.8 Holoviz operator

18.8.1 Class documentation

C++

Python.

18.8.2 Examples

There are multiple examples both in Python and C++ showing how to use various features of the Holoviz operator.

18.9 Holoviz module

18.9.1 Concepts

The Holoviz module uses the concept of the immediate mode design pattern for its API, inspired by the Dear ImGui
library. The difference to the retained mode, for which most APIs are designed for, is, that there are no objects created
and stored by the application. This makes it fast and easy to make visualization changes in a Holoscan application.

18.8. Holoviz operator 213

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/holoviz
https://github.com/ocornut/imgui

Holoscan SDK User Guide, Release 2.2.0

18.9.2 Instances

The Holoviz module uses a thread-local instance object to store its internal state. The instance object is created when
calling the Holoviz module is first called from a thread. All Holoviz module functions called from that thread use this

instance.

When calling into the Holoviz module from other threads other than the thread from which the Holoviz module functions
were first called, make sure to call viz: :GetCurrent () and viz: :SetCurrent() in the respective threads.

There are usage cases where multiple instances are needed, for example, to open multiple windows. Instances can be
created by calling viz: :Create(). Call viz: : SetCurrent () to make the instance current before calling the Holoviz

module function to be executed for the window the instance belongs to.

18.9.3 Getting started

The code below creates a window and displays an image.

First the Holoviz module needs to be initialized. This is done by calling viz::Init ().

The elements to display are defined in the render loop,

viz::WindowShouldClose().

termination of the loop is checked with

The definition of the displayed content starts with viz: :Begin() and ends with viz::End(). viz: :End() starts the
rendering and displays the rendered result.

Finally the Holoviz module is shutdown with viz: : Shutdown().

#include "holoviz/holoviz.hpp"

namespace viz = holoscan::viz;

viz::Init("Holoviz Example");

while (!viz::WindowShouldClose()) {

viz:
viz:
viz:
viz:
viz:

}

:Begin(Q);
:BeginImagelLayer();
:ImageHost (width, height, viz::ImageFormat::R8G8B8A8_UNORM, image_data);
:EndLayer();
:EndQ);

viz: :Shutdown(Q);

Result:

18.9.4 API

Holoviz module API

214

Chapter 18. Visualization

Holoscan SDK User Guide, Release 2.2.0

Holoviz Example

Fig. 18.1: Holoviz example app

18.9.5 Examples

There are multiple examples showing how to use various features of the Holoviz module.

18.9. Holoviz module 215

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/modules/holoviz/examples

Holoscan SDK User Guide, Release 2.2.0

216 Chapter 18. Visualization

CHAPTER
NINETEEN

INFERENCE

19.1 Overview

A Holoscan application that needs to run inference will use an inference operator. The built-in /nference operator
(InferenceOp) can be used, and several related use cases are documented in the Inference operator section below. The
use cases are created using the parameter set that must be defined in the configuration file of the holoscan application.
If the built-in InferenceOp doesn’t cover a specific use case, users can create their own custom inference operator as
documented in Creating an Inference operator section.

The core inference functionality in the Holoscan SDK is provided by the Inference Module which is a framework that
facilitates designing and executing inference and processing applications through its APIs. It is used by the built-in
InferenceOp which supports the same parameters as the Inference Module. All parameters required by the Holoscan
Inference Module are passed through a parameter set in the configuration file of an application.

19.2 Parameters and related Features

Required parameters and related features available with the Holoscan Inference Module are listed below.

» Data Buffer Parameters: Parameters are provided in the inference settings to enable data buffer locations at several
stages of the inference. As shown in the figure below, three parameters input_on_cuda, output_on_cuda and
transmit_on_cuda can be set by the user.

— input_on_cuda refers to the location of the data going into the inference.
% If value is true, it means the input data is on the device
% If value is false, it means the input data is on the host
% Default value: true
— output_on_cuda refers to the data location of the inferred data.
* If value is true, it means the inferred data is on the device
% If value is false, it means the inferred data is on the host
% Default value: true
— transmit_on_cuda refers to the data transmission.
* If value is true, it means the data transmission from the inference extension will be on Device
* If value is false, it means the data transmission from the inference extension will be on Host
% Default value: true

¢ Inference Parameters

217

Holoscan SDK User Guide, Release 2.2.0

— backend parameter is set to either trt for TensorRT, onnxrt for Onnx runtime, or torch for libtorch. If
there are multiple models in the inference application, all models will use the same backend. If it is desired
to use different backends for different models, specify the backend_map parameter instead.

% TensorRT:
- CUDA-based inference supported both on x86_64 and aarch64

- End-to-end CUDA-based data buffer parameters supported. input_on_cuda, output_on_cuda

and transmit_on_cuda will all be true for end-to-end CUDA-based data movement.

- input_on_cuda, output_on_cuda and transmit_on_cuda can be either true or false.

- TensorRT backend expects input models to be in tensorrt engine file formator onnx format.

- if models are in tensorrt engine file format, parameter is_engine_path must be set to
true.

- if models are in onnx format, it will be automatically converted into tensorrt engine file
by the Holoscan inference module.

% Torch:

- CUDA and CPU based inference supported both on x86_64 and aarch64.

- End-to-end CUDA-based data buffer parameters supported. input_on_cuda, output_on_cuda

and transmit_on_cuda will all be true for end-to-end CUDA-based data movement.

- input_on_cuda, output_on_cuda and transmit_on_cuda can be either true or false.

- Libtorch and TorchVision are included in the Holoscan NGC container, initially built as part of

the PyTorch NGC container. To use the Holoscan SDK torch backend outside of these contain-
ers, we recommend you download libtorch and torchvision binaries from Holoscan’s third-party
repository.

- Torch backend expects input models to be in torchscript format.

- Itis recommended to use the same version of torch for torchscript model generation, as used
in the HOLOSCAN SDK on the respective architectures.

- Additionally, it is recommended to generate the torchscript model on the same architecture
on which it will be executed. For example, torchscript model must be generated on x86_64
to be executed in an application running on x86_64 only.

* Onnx runtime:

- Data flow via host only. input_on_cuda, output_on_cuda and transmit_on_cuda must be

false.

- CUDA based inference (supported on x86_64)

- CPU based inference (supported on x86_64 and aarch64)

— infer_on_cpu parameter is set to true if CPU based inference is desired.

The tables below demonstrate the supported features related to the data buffer and the inference with trt
and onnxrt based backend, on x86 and aarch64 system respectively.

x86 input_on_cudd output_on_cuda transmit_on_cuda infer_on_cpuy
Supported values for trt | trueor false | true or false | true or false false
Supported values for | true or false | true or false | true or false true or
torch false
Supported values for | false false true or false true or
onnxrt false

218

Chapter 19. Inference

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/

Holoscan SDK User Guide, Release 2.2.0

Aarch64 input_on_cudd output_on_cuda transmit_on_cuda infer_on_cpu
Supported values for trt | trueor false | trueor false | true or false false
Supported values for | trueor false | trueor false | trueor false true or
torch false
Supported values for | false false true or false true

onnxrt

— model_path_map: User can design single or multi Al inference pipeline by populating model_path_map
in the config file.

% With a single entry it is single inference and with more than one entry, multi Al inference is enabled.

% Each entry in model_path_map has a unique keyword as key (used as an identifier by the Holoscan
Inference Module), and the path to the model as value.

% All model entries must have the models either in onnx or tensorrt engine file or torchscript format.

— pre_processor_map: input tensor to the respective model is specified in pre_processor_map in the
config file.

* The Holoscan Inference Module supports same input for multiple models or unique input per model.

Each entry in pre_processor_map has a unique keyword representing the model (same as used in
model_path_map), and a vector of tensor names as the value.

% The Holoscan Inference Module supports multiple input tensors per model.

— inference_map: output tensors per model after inference is specified in inference_map in the config
file.

% Each entry in inference_map has a unique keyword representing the model (same as used in
model_path_map and pre_processor_map), and a vector of the output tensor names as the value.

* The Holoscan Inference Module supports multiple output tensors per model.
— parallel_inference: Parallel or Sequential execution of inferences.
% If multiple models are input, then user can execute models in parallel.
* Parameter parallel_inference can be either true or false. Default value is true.

Inferences are launched in parallel without any check of the available GPU resources, user must make
sure that there is enough memory and compute available to run all the inferences in parallel.

— enable_fp16: Generation of the TensorRT engine files with FP16 option

* If backend is setto trt, and if the input models are in onnx format, then users can generate the engine
file with fp16 option to accelerate inferencing.

It takes few mintues to generate the engine files for the first time.
% It can be either true or false. Default value is false.

— is_engine_path: if the input models are specified in trt engine format in model_path_map, this flag
must be set to true. Default value is false.

— in_tensor_names: Input tensor names to be used by pre_processor_map. This parameter is optional.
If absent in the parameter map, values are derived from pre_processor_map.

— out_tensor_names: Output tensor names to be used by inference_map. This parameter is optional. If
absent in the parameter map, values are derived from inference_map.

— device_map: Multi-GPU inferencing is enabled if device_map is populated in the parameter set.

19.2. Parameters and related Features 219

Holoscan SDK User Guide, Release 2.2.0

% Each entry in device_map has a unique keyword representing the model (same as used in
model_path_map and pre_processor_map), and GPU identifier as the value. This GPU ID is used
to execute the inference for the specified model.

GPUs specified in the device_map must have P2P (peer to peer) access and they must be connected
to the same PCIE configuration. If P2P access is not possible among GPUs, the host (CPU memory)
will be used to transfer the data.

% Multi-GPU inferencing is supported for all backends.
— temporal_map: Temporal inferencing is enabled if temporal_map is populated in the parameter set.

% Each entry in temporal_map has a unique keyword representing the model (same as used in
model_path_map and pre_processor_map), and frame delay as the value. Frame delay represents
the frame count that are skipped by the operator in doing the inference for that particular model. A
model with the value of 1, is inferred per frame. A model with a value of 10 is inferred for every 10th
frame coming into the operator, which is the 1st frame, 11th frame, 21st frame and so on. Additionally,
the operator will transmit the last inferred result for all the frames that are not inferred. For example,
a model with a value of 10 will be inferred at 11th frame and from 12th to 20th frame, the result from
11th frame is transmitted.

% If the temporal_map is absent in the parameter set, all models are inferred for all the frames.
* All models are not mandatory in the temporal_map. The missing models are inferred per frame.
Temporal map based inferencing is supported for all backends.

— activation_map: Dynamic inferencing can be enabled with this parameter. It is populated in the param-
eter set and is updated at runtime.

Bach entry in activation_map has a unique keyword representing the model (same as used in
model_path_map and pre_processor_map), and activation state as the value. Activation state rep-
resents whether the model will be used for inferencing or not on a given frame. Any model(s) with a
value of 1 will be active and will be used for inference, and any model(s) with a value of O will not run.
The activation map must be initialized in the parameter set for all the models that need to be activated
or deactivated dynamically.

% When the activation state is 0 for a particular model in the activation_map, the inference operator
will not launch the inference for the model and will emits the last inferred result for the model.

% If the activation_map is absent in the parameter set, all of the models are inferred for all frames.
All models are not mandatory in the activation_map. The missing models are active on every frame.
% Activation map based dynamic inferencing is supported for all backends.

— backend_map: Multiple backends can be used in the same application with this parameter.

% Each entry in backend_map has a unique keyword representing the model (same as used in
model_path_map), and the backend as the value.

% A sample backend_map is shown below. In the example, model_1 uses the tensorRT backend, and
model 2 and model 3 uses the torch backend for inference.

backend_map:

"model_1_unique_identifier": "trt"
"model_2_unique_identifier": "torch"
"model_3_unique_identifier": "torch"

¢ Other features: Table below illustrates other features and supported values in the current release.

220 Chapter 19. Inference

Holoscan SDK User Guide, Release 2.2.0

Feature Supported values

Data type float32, int32, int8

Inference Back- | trt, torch, onnxrt

end

Inputs per model | Multiple

Outputs per | Multiple

model

GPU(s) sup- | Multi-GPU on same PCIE network

ported

Tensor data di- | 2, 3,4

mension

Model Type All onnx or all torchscript or all trt engine type or a combination of
torch and trt engine

* Multi Receiver and Single Transmitter support
— The Holoscan Inference Module provides an API to extract the data from multiple receivers.

— The Holoscan Inference Module provides an API to transmit multiple tensors via a single transmitter.

19.2.1 Parameter Specification

All required inference parameters of the inference application must be specified. Below is a sample parameter set for
an application that uses three models for inferencing. User must populate all required fields with appropriate values.

inference:
backend: "trt"
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3"

pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]

inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

parallel_inference: true

infer_on_cpu: false

enable_£fpl6: false

input_on_cuda: true

output_on_cuda: true

transmit_on_cuda: true

is_engine_path: false

19.2. Parameters and related Features 221

Holoscan SDK User Guide, Release 2.2.0

19.3 Inference Operator

In Holoscan SDK, the built-in Inference operator (InferenceOp) is designed using the Holoscan Inference Module
APIs. The Inference operator ingests the inference parameter set (from the configuration file) and the data receivers
(from previous connected operators in the application), executes the inference and transmits the inferred results to the
next connected operators in the application.

InferenceOp is a generic operator that serves multiple use cases via the parameter set. Parameter sets for some key
use cases are listed below:

Note: Some parameters have default values set for them in the InferenceOp. For any parameters not mentioned in the
example parameter sets below, their default is used by the InferenceOp. These parameters are used to enable several
use cases.

« Single model inference using TensorRT backend.

backend: "trt
model_path_map:

"model_1_unique_identifier": "path_to_model_ 1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]

Value of backend can be modified for other supported backends, and other parameters related to each backend.
User must ensure correct model type and model path is provided into the parameter set, along with supported
values of all parameters for the respective backend.

In this example, path_to_model_1 must be an onnx file, which will be converted to a tensorRT engine file
at first execution. During subsequent executions, the Holoscan inference module will automatically find the
tensorRT engine file (if path_to_model_1 has not changed). Additionally, if user has a pre-built tensorRT
engine file, path_to_model_1 must be path to the engine file and the parameter is_engine_path must be set
to true in the parameter set.

* Single model inference using TensorRT backend with multiple outputs.

backend: "trt
model_path_map:
"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:
"model_1_unique_identifier": ["output_tensor_1l_model_1_unique_identifier",
"output_tensor_2_model_1_unique_identifier",
"output_tensor_3_model_1_unique_identifier"]

As shown in example above, Holoscan Inference module automatically maps the model outputs to the named
tensors in the parameter set. Users must ensure to use the named tensors in the same sequence in which the
model generates the output. Similar logic holds for multiple inputs.

 Single model inference using fp16 precision.

backend: "trt
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

(continues on next page)

222 Chapter 19. Inference

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:
"model_1_unique_identifier": ["output_tensor_1l_model_1_unique_identifier",
"output_tensor_2_model_1_unique_identifier",
"output_tensor_3_model_1_unique_identifier"]

enable_£fpl6: true

If a tensorRT engine file is not available for fp16 precision, it will be automatically generated by the Holoscan
Inference module on the first execution. The file is cached for future executions.

* Single model inference on CPU.

backend: "onnxrt"
model_path_map:

"model_1_unique_identifier": "path_to_model_ 1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1l_model_1_unique_identifier"]
infer_on_cpu: true

Note that the backend can only be onnxrt or torch for CPU based inference.

 Single model inference with input/output data on Host.

backend: "trt
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
input_on_cuda: false
output_on_cuda: false

Data in the core inference engine is passed through the host and is received on the host. Inference can happen
on the GPU. Parameters input_on_cuda and output_on_cuda define the location of the data before and after
inference respectively.

* Single model inference with data transmission via Host.

backend: "trt
model_path_map:

"model_1_unique_identifier": "path_to_model_1"
pre_processor_map:

"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
inference_map:

"model_1_unique_identifier": ["output_tensor_1l_model_1_unique_identifier"]
transmit_on_host: true

Data from inference operator to the next connected operator in the application is transmitted via the host.

¢ Multi model inference with a single backend.

19.3. Inference Operator 223

Holoscan SDK User Guide, Release 2.2.0

"

backend: "trt
model_path_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":
pre_processor_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":
inference_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

"path_to_model_1"
"path_to_model_2"
"path_to_model_3"

["input_tensor_1_model_1_unique_identifier"]
["input_tensor_1_model_2_unique_identifier"]
["input_tensor_1_model_3_unique_identifier"]

["output_tensor_1_model_1_unique_identifier"]
["output_tensor_1_model_2_unique_identifier"]
["output_tensor_1_model_3_unique_identifier"]

By default multiple model inferences are launched in parallel. The backend specified via parameter backend is

used for all models in the application.

* Multi model inference with sequential inference.

backend: "trt"

model_path_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

pre_processor_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

inference_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

parallel_inference: false

"path_to_model_1"
"path_to_model_2"
"path_to_model_3"

["input_tensor_1_model_1_unique_identifier"]
["input_tensor_1_model_2_unique_identifier"]
["input_tensor_1_model_3_unique_identifier"]

["output_tensor_1_model_1_unique_identifier"]
["output_tensor_1_model_2_unique_identifier"]
["output_tensor_1_model_3_unique_identifier"]

parallel_inference is set to true by default. To launch model inferences in sequence,

parallel_inference must be set to false

¢ Multi model inference with multiple backends.

backend_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":
model_path_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":
pre_processor_map:
"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":
inference_map:
"model_1_unique_identifier":
"model_2_unique_identifier":

"trt"
"torch"
"torch"

"path_to_model_1"
"path_to_model_2"
"path_to_model_3"

["input_tensor_1_model_1_unique_identifier"]
["input_tensor_1_model_2_unique_identifier"]
["input_tensor_1_model_3_unique_identifier"]

["output_tensor_1_model_1_unique_identifier"]
["output_tensor_1_model_2_unique_identifier"]

(continues on next page)

224

Chapter 19. Inference

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

"model_3_unique_identifier":

["output_tensor_1_model_3_unique_identifier"]

In the above sample parameter set, the first model will do inference using the tensorRT backend, and model 2
and 3 will do inference using the torch backend.

Note: the combination of backends in backend_map must support all other parameters that will be used during
the inference. For. e.g. onnxrt and tensorRT combination with CPU based inference will not be supported.

* Multi model inference with a single backend on multi-GPU.

backend: "trt"

device_map:
"model_1_unique_identifier": "1"
"model_2_unique_identifier": "@"
"model_3_unique_identifier": "1"

model_path_map:

"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

pre_processor_map:

"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

inference_map:

"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

"path_to_model_1"
"path_to_model_2"
"path_to_model_3"

["input_tensor_1_model_1_unique_identifier"]
["input_tensor_1_model_2_unique_identifier"]
["input_tensor_1_model_3_unique_identifier"]

["output_tensor_1_model_1_unique_identifier"]
["output_tensor_1_model_2_unique_identifier"]
["output_tensor_1_model_3_unique_identifier"]

In the sample above, model 1 and model 3 will do inference on the GPU with ID 1 and model 2 will do inferene
on the GPU with ID 0. GPUs must have P2P (peer to peer) access among them. If it is not enabled, the Holoscan
inference module enables it by default. If P2P access is not possible between GPUs, then the data transfer will
happen via the Host.

e Multi model inference with multiple backends on multiple GPUs.

backend_map:

"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

device_map:

"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

model_path_map:

"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

pre_processor_map:

"model_1_unique_identifier":
"model_2_unique_identifier":
"model_3_unique_identifier":

inference_map:

"model_1_unique_identifier":
"model_2_unique_identifier":

"

"trt
"torch"
"torch"

npn
K
nyn

"path_to_model_1"
"path_to_model_2"
"path_to_model_3"

["input_tensor_1_model_1_unique_identifier"]
["input_tensor_1_model_2_unique_identifier"]
["input_tensor_1_model_3_unique_identifier"]

["output_tensor_1_model_1_unique_identifier"]
["output_tensor_1_model_2_unique_identifier"]

(continues on next page)

19.3. Inference Operator

225

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

In the sample above, three models are used during the inference. Model 1 uses the trt backend and runs on the
GPU with ID 1, model 2 uses the torch backend and runs on the GPU with ID 0, and model 3 uses the torch
backend and runs on the GPU with ID 1.

19.4 Creating an Inference operator

The Inference operator is the core inference unit in an inference application. The built-in Inference operator
(InferenceOp) can be used for inference, or users can create their own custom inference operator as explained in
this section. In Holoscan SDK, the inference operator can be designed using the Holoscan Inference Module APIs.

Arguments in the code sections below are referred to as

Parameter Validity Check: Input inference parameters via the configuration (from step 1) are verified for correct-
ness.

auto status = HoloInfer::inference_validity_check(...);

Inference specification creation: For a single Al only one entry is passed into the required entries in the parameter
set. There is no change in the API calls below. Single Al or multi Al is enabled based on the number of entries
in the parameter specifications from the configuration (in step 1).

// Declaration of inference specifications
std: :shared_ptr<HoloInfer: :InferenceSpecs> inference_specs_;

// Creation of inference specification structure
inference_specs_ = std::make_shared<HoloInfer::InferenceSpecs>(...);

Inference context creation.

// Pointer to inference context.

std: :unique_ptr<HoloInfer: :InferContext> holoscan_infer_context_;

// Create holoscan inference context

holoscan_infer_context_ = std::make_unique<HoloInfer: :InferContext>();

Parameter setup with inference context: All required parameters of the Holoscan Inference Module are transferred
in this step, and relevant memory allocations are initiated in the inference specification.

// Set and transfer inference specification to inference context
auto status = holoscan_infer_context_->set_inference_params(inference_specs_);

Data extraction and allocation: The following API is used from the Holoinfer utility to extract and allocate data
for the specified tensor.

// Extract relevant data from input, and update inference specifications
gxf_result_t stat = HoloInfer::get_data_per_model(...);

Inference execution

226

Chapter 19. Inference

Holoscan SDK User Guide, Release 2.2.0

// Execute inference and populate output buffer in inference specifications
auto status = holoscan_infer_context_->execute_inference(inference_specs_->data_per_
—model_,

inference_specs_->output_

—per_model_);

¢ Transmit inferred data:

// Transmit output buffers
auto status = HoloInfer::transmit_data_per_model(...);

Figure below demonstrates the Inference operator in the Holoscan SDK. All blocks with blue color are the API calls
from the Holoscan Inference Module.

Inference parameters
from Configuration
4 v
} [top()
[Validate Create Jg{ Initialize } s p

parameters contexts and setup

Receiver 1
C start [setup() } ()
_ start()
Tensor 1
/
Tensor 2
List of Get data from Get inferred Transmit as] -
Receivers GXF messages Inference data GXF message g
Compute() Tensor N
\\

\ Inference Operator /

19.4. Creating an Inference operator 227

Holoscan SDK User Guide, Release 2.2.0

228 Chapter 19. Inference

CHAPTER
TWENTY

SCHEDULERS

The Scheduler component is a critical part of the system responsible for governing the execution of operators in a graph
by enforcing conditions associated with each operator. Its primary responsibility includes orchestrating the execution
of all operators defined in the graph while keeping track of their execution states.

The Holoscan SDK offers multiple schedulers that can cater to various use cases. These schedulers are:

1. Greedy Scheduler: This basic single-threaded scheduler tests conditions in a greedy manner. It is suitable for

simple use cases and provides predictable execution. However, it may not be ideal for large-scale applications as
it may incur significant overhead in condition execution.

. MultiThread Scheduler: The multithread scheduler is designed to handle complex execution patterns in large-
scale applications. This scheduler consists of a dispatcher thread that monitors the status of each operator and
dispatches it to a thread pool of worker threads responsible for executing them. Once execution is complete,
worker threads enqueue the operator back on the dispatch queue. The multithread scheduler offers superior
performance and scalability over the greedy scheduler.

. Event-Based Scheduler: The event-based scheduler is also a multi-thread scheduler, but as the name indicates
it is event-based rather than polling based. Instead of having a thread that constantly polls for the execution
readiness of each operator, it instead waits for an event to be received which indicates that an operator is ready
to execute. The event-based scheduler will have a lower latency than using the multi-thread scheduler with a
long polling interval (check_recession_period_ms), but without the high CPU usage seen for a multi-thread
scheduler with a very short polling interval.

It is essential to select the appropriate scheduler for the use case at hand to ensure optimal performance and efficient
resource utilization. Since most parameters of the schedulers overlap, it is easy to switch between them to test which
may be most performant for a given application.

Note: Detailed APIs can be found here: C++/Python).

20.1 Greedy Scheduler

The greedy scheduler has a few parameters that the user can configure.

* The clock used by the scheduler can be set to either a realtime or manual clock.

— The realtime clock is what should be used for applications as it pauses execution as needed to respect user
specified conditions (e.g. operators with periodic conditions will wait the requested period before executing
again).

— The manual clock is of benefit mainly for testing purposes as it causes operators to run in a time-compressed
fashion (e.g. periodic conditions are not respected and operators run in immediate succession).

229

Holoscan SDK User Guide, Release 2.2.0

 The user can specify a max_duration_ms that will cause execution of the application to terminate after a speci-
fied maximum duration. The default value of -1 (or any other negative value) will result in no maximum duration
being applied.

* This scheduler also has a boolean parameter, stop_on_deadlock that controls whether the application will
terminate if a deadlock occurs. A deadlock occurs when all operators are in a WAIT state, but there is no periodic
condition pending to break out of this state. This parameter is true by default.

* When setting the stop_on_deadlock_timeout parameter, the scheduler will wait this amount of time (in ms)
before determining that it is in deadlock and should stop. It will reset if a job comes in during the wait. A negative
value means no stop on deadlock. This parameter only applies when stop_on_deadlock=true.

20.2 Multithread Scheduler

The multithread scheduler has several parameters that the user can configure. These are a superset of the parame-
ters available for the GreedyScheduler (described in the section above). Only the parameters unique to the mul-
tithread scheduler are described here. The multi-thread scheduler uses a dedicated thread to poll the status of op-
erators and schedule any that are ready to execute. This will lead to high CPU usage by this polling thread when
check_recession_period_ms is close to 0.

* The number of worker threads used by the scheduler can be set via worker_thread_number, which defaults to
1. This should be set based on a consideration of both the workflow and the available hardware. For example,
the topology of the computation graph will determine how many operators it may be possible to run in parallel.
Some operators may potentially launch multiple threads internally, so some amount of performance profiling
may be required to determine optimal parameters for a given workflow.

* The value of check_recession_period_ms controls how long the scheduler will sleep before checking a given
condition again. In other words, this is the polling interval for operators that are in a WAIT state. The default
value for this parameter is 5 ms.

20.3 Event-Based Scheduler

The event-based scheduler is also a multi-thread scheduler, but it is event-based rather than polling based. As such,
there is no check_recession_period_ms parameter, and this scheduler will not have the high CPU usage that can
occur when polling at a short interval. Instead, the scheduler only wakes up when an event is received indicating that
an operator is ready to execute. The parameters of this scheduler are a superset of the parameters available for the
GreedyScheduler (described above). Only the parameters unique to the event-based scheduler are described here.

* The number of worker threads used by the scheduler can be set via worker_thread_number, which defaults to
1. This should be set based on a consideration of both the workflow and the available hardware. For example,
the topology of the computation graph will determine how many operators it may be possible to run in parallel.
Some operators may potentially launch multiple threads internally, so some amount of performance profiling
may be required to determine optimal parameters for a given workflow.

230 Chapter 20. Schedulers

CHAPTER
TWENTYONE

CONDITIONS

The following table shows various states of the scheduling status of an operator:

Scheduling Status | Description

NEVER Operator will never execute again

READY Operator is ready for execution

WAIT Operator may execute in the future

WAIT_TIME Operator will be ready for execution after specified duration
WAIT_EVENT Operator is waiting on an asynchronous event with unknown time interval

Note:
* A failure in execution of any single operator stops the execution of all the operators.

» QOperators are naturally unscheduled from execution when their scheduling status reaches NEVER state.

By default, operators are always READY, meaning they are scheduled to continuously execute their compute () method.
To change that behavior, some condition classes can be passed to the constructor of an operator. There are various
conditions currently supported in the Holoscan SDK:

* MessageAvailableCondition

» ExpiringMessageAvailableCondition

* DownstreamMessageAffordableCondition
* CountCondition

* BooleanCondition

* PeriodicCondition

¢ AsynchronousCondition

Note: Detailed APIs can be found here: C++/Python).

Conditions are AND-combined

An Operator can be associated with multiple conditions which define its execution behavior. Conditions are AND
combined to describe the current state of an operator. For an operator to be executed by the scheduler, all the conditions
must be in READY state and conversely, the operator is unscheduled from execution whenever any one of the scheduling
terms reaches NEVER state. The priority of various states during AND combine follows the order NEVER, WAIT_EVENT,
WAIT, WAIT_TIME, and READY.

231

Holoscan SDK User Guide, Release 2.2.0

21.1 MessageAvailableCondition

An operator associated with MessageAvailableCondition (C++/Python) is executed when the associated queue of
the input port has at least a certain number of elements. This condition is associated with a specific input port of an
operator through the condition() method on the return value (IOSpec) of the OperatorSpec’s input () method.

The minimum number of messages that permits the execution of the operator is specified by min_size parameter
(default: 1). An optional parameter for this condition is front_stage_max_size, the maximum front stage message
count. If this parameter is set, the condition will only allow execution if the number of messages in the queue does not
exceed this count. It can be used for operators which do not consume all messages from the queue.

21.2 ExpiringMessageAvailableCondition

An operator associated with ExpiringMessageAvailableCondition (C++/Python) is executed when the first mes-
sage received in the associated queue is expiring or when there are enough messages in the queue. This condition is
associated with a specific input or output port of an operator through the condition() method on the return value
(IOSpec) of the OperatorSpec’s input () or output () method.

The parameters max_batch_size and max_delay_ns dictate the maximum number of messages to be batched to-
gether and the maximum delay from first message to wait before executing the entity respectively. Please note that
ExpiringMessageAvailableCondition requires that the input messages sent to any port using this condition must
contain a timestamp. This means that the upstream operator has to emit using a timestamp .

21.3 DownstreamMessageAffordableCondition

The DownstreamMessageAffordableCondition (C++/Python) condition specifies that an operator shall be exe-
cuted if the input port of the downstream operator for a given output port can accept new messages. This condition is
associated with a specific output port of an operator through the condition() method on the return value (IOSpec) of
the OperatorSpec’s output () method. The minimum number of messages that permits the execution of the operator
is specified by min_size parameter (default: 1).

21.4 CountCondition

An operator associated with CountCondition (C++/Python) is executed for a specific number of times specified using
its count parameter. The scheduling status of the operator associated with this condition can either be in READY or
NEVER state. The scheduling status reaches the NEVER state when the operator has been executed count number of
times. The count parameter can be set to a negative value to indicate that the operator should be executed an infinite
number of times (default: 1).

232 Chapter 21. Conditions

Holoscan SDK User Guide, Release 2.2.0

21.5 BooleanCondition

An operator associated with BooleanCondition (C++/Python) is executed when the associated boolean variable is
set to true. The boolean variable is set to true/false by calling the enable_tick()/disable_tick() methods on
the BooleanCondition object. The check_tick_enabled() method can be used to check if the boolean variable
is set to true/false. The scheduling status of the operator associated with this condition can either be in READY or
NEVER state. If the boolean variable is set to true, the scheduling status of the operator associated with this condition is
set to READY. If the boolean variable is set to false, the scheduling status of the operator associated with this condition
is set to NEVER. The enable_tick()/disable_tick() methods can be called from any operator in the workflow.

C++

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {

/) ...

if (<condition expression>) { // e.g. if (index_ >= 10)
auto my_bool_condition = condition<BooleanCondition>("my_bool_condition");
if (my_bool_condition) { // 1f condition exists (not true or false)

my_bool_condition->disable_tick(); // this will stop the operator

}

}

/) ...

}
PYTHON

def compute(self, op_input, op_output, context):

if <condition expression>: # e.g, self.index >= 10
my_bool_condition = self.conditions.get("my_bool_condition')
if my_bool_condition: # if condition exists (not true or false)
my_bool_condition.disable_tick() # this will stop the operator
.

21.6 PeriodicCondition

An operator associated with PeriodicCondition (C++/Python) is executed after periodic time intervals specified
using its recess_period parameter. The scheduling status of the operator associated with this condition can either be
in READY or WAIT_TIME state. For the first time or after periodic time intervals, the scheduling status of the operator
associated with this condition is set to READY and the operator is executed. After the operator is executed, the scheduling
status is set to WAIT_TIME, and the operator is not executed until the recess_period time interval.

21.5. BooleanCondition 233

Holoscan SDK User Guide, Release 2.2.0

21.7 AsynchronousCondition

AsynchronousCondition (C++/Python) is primarily associated with operators which are working with asynchronous
events happening outside of their regular execution performed by the scheduler. Since these events are non-periodic in
nature, AsynchronousCondition prevents the scheduler from polling the operator for its status regularly and reduces
CPU utilization. The scheduling status of the operator associated with this condition can either be in READY, WAIT,
WAIT_EVENT, or NEVER states based on the asynchronous event it’s waiting on.

The state of an asynchronous event is described using AsynchronousEventState and is updated using the
event_state() APL

AsynchronousEventState | Description

READY Init state, first execution of compute () method is pending
WAIT Request to async service yet to be sent, nothing to do but wait
EVENT_WAITING Request sent to an async service, pending event done notification
EVENT_DONE Event done notification received, operator ready to be ticked
EVENT_NEVER Operator does not want to be executed again, end of execution

Operators associated with this scheduling term most likely have an asynchronous thread which can update the state of
the condition outside of its regular execution cycle performed by the scheduler. When the asynchronous event state is
in WATT state, the scheduler regularly polls for the scheduling state of the operator. When the asynchronous event state
is in EVENT_WAITING state, schedulers will not check the scheduling status of the operator again until they receive an
event notification. Setting the state of the asynchronous event to EVENT_DONE automatically sends the event notification
to the scheduler. Operators can use the EVENT_NEVER state to indicate the end of its execution cycle. As for all of the
condition types, the condition type can be used with any of the schedulers.

234 Chapter 21. Conditions

CHAPTER
TWENTYTWO

RESOURCES

Resource classes represent resources such as a allocators, clocks, transmitters or receivers that may be used as a pa-
rameter for operators or schedulers. The resource classes that are likely to be directly used by application authors are
documented here.

Note: There are a number of other resources classes used internally which are not documented here, but appear in the
API Documentation (C++/Python).

22.1 Allocator

22.1.1 UnboundedAllocator

An allocator that uses dynamic host or device memory allocation without an upper bound. This allocator does not take
any user-specified parameters. This memory pool is easy to use and is recommended for initial prototyping. Once an
application is working, switching to a BlockMemoryPool instead may help provide additional performance.

22.1.2 BlockMemoryPool

This is a memory pool which provides a user-specified number of equally sized blocks of memory. Using this memory
pool provides a way to allocate memory blocks once and reuse the blocks on each subsequent call to an Operator’s
compute method. This saves overhead relative to allocating memory again each time compute is called. For the built-
in operators which accept a memory pool parameer, there is a section in it’s API docstrings titled “Device Memory
Requirements” which provides guidance on the num_blocks and block_size needed for use with this memory pool.

* The storage_type parameter can be set to determine the memory storage type used by the operator. This
can be 0 for page-locked host memory (allocated with cudaMallocHost), 1 for device memory (allocated with
cudaMalloc) or 2 for system memory (allocated with C++ new).

* The block_size parameter determines the size of a single block in the memory pool in bytes. Any allocation
requests made of this allocator must fit into this block size.

* The num_blocks parameter controls the total number of blocks that are allocated in the memory pool.

* The dev_id parameter is an optional parameter that can be used to specify the CUDA ID of the device on which
the memory pool will be created.

235

Holoscan SDK User Guide, Release 2.2.0

22.1.3 CudaStreamPool

This allocator creates a pool of CUDA streams.

The stream_flags parameter specifies the flags sent to cudaStreamCreateWithPriority when creating the
streams in the pool.

The stream_priority parameter specifies the priority sent to cudaStreamCreateWithPriority when creating
the streams in the pool. Lower values have a higher priority.

The reserved_size parameter specifies the initial number of CUDA streams created in the pool upon initial-
ization.

The max_size parameter is an optional parameter that can be used to specify a maximum number of CUDA
streams that can be present in the pool. The default value of 0 means that the size of the pool is unlimited.

The dev_id parameter is an optional parameter that can be used to specify the CUDA ID of the device on which
the stream pool will be created.

22.2 Clock

Clock classes can be provided via a clock parameter to the Scheduler classes to manage the flow of time.

All clock classes provide a common set of methods that can be used at runtime in user applications.

The time () method returns the current time in seconds (floating point).
The timestamp () method returns the current time as an integer number of nanoseconds.

The sleep_for() method sleeps for a specified duration in ns. An overloaded version of this method al-
lows specifying the duration using a std: :chrono: :duration<Rep, Period> from the C++ API or a date-
time.timedelta from the Python APL

The sleep_until () method sleeps until a specified target time in ns.

22.2.1 Realtime Clock

The RealtimeClock respects the true duration of conditions such as PeriodicCondition. It is the default clock
type and the one that would likely be used in user applications.

In addition to the general clock methods documented above:

this class has a set_time_scale() method which can be used to dynamically change the time scale used by
the clock.

the parameter initial_time_offset can be used to set an initial offset in the time at initialization.

the parameter initial_time_scale can be used to modify the scale of time. For instance, a scale of 2.0 would
cause time to run twice as fast.

the parameter use_time_since_epoch makes times relative to the POSIX epoch (initial_time_offset
becomes an offset from epoch).

236

Chapter 22. Resources

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://en.wikipedia.org/wiki/Epoch_(computing)

Holoscan SDK User Guide, Release 2.2.0

22.2.2 Manual Clock

The ManualClock compresses time intervals (e.g. PeriodicCondition proceeds immediately rather than waiting
for the specified period). It is provided mainly for use during testing/development.

The parameter initial_timestamp controls the initial timestamp on the clock in ns.

22.3 Transmitter (advanced)

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec ports of Holoscan SDK
operators. For connections between operators a DoubleBufferTransmitter will automatically be used, while for
connections between fragments in a distributed application, a UcxTransmitter will be used. When data frame flow
tracking is enabled any DoubleBufferTransmitter will be replaced by an AnnotatedDoubleBufferTransmitter
which also records the timestamps needed for that feature.

22.3.1 DoubleBufferTransmitter

This is the transmitter class used by output ports of operators within a fragment.

22.3.2 UcxTransmitter

This is the transmitter class used by output ports of operators that connect fragments in a distributed applications. It
takes care of sending UCX active messages and serializing their contents.

22.4 Receiver (advanced)

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec ports of Holoscan SDK
operators. For connections between operators a DoubleBufferReceiver will be used, while for connections between
fragments in a distributed application, the UcxReceiver will be used. When data frame flow tracking is enabled
any DoubleBufferReceiver will be replaced by an AnnotatedDoubleBufferReceiver which also records the
timestamps needed for that feature.

22.4.1 DoubleBufferReceiver

This is the receiver class used by input ports of operators within a fragment.

22.4.2 UcxReceiver

This is the receiver class used by input ports of operators that connect fragments in a distributed applications. It takes
care of receiving UCX active messages and deserializing their contents.

22.3. Transmitter (advanced) 237

Holoscan SDK User Guide, Release 2.2.0

238 Chapter 22. Resources

CHAPTER
TWENTYTHREE

ANALYTICS

23.1 Data Exporter API

The new Data Exporter C++ API (DataExporter and CsvDataExporter) is now available. This API can be used
to export output from Holoscan applications to comma separated value (CSV) files for Holoscan Federated Analytics
applications. DataExporter is a base class to support exporting Holoscan application output in different formats.
CsvDataExporter is a class derived from DataExporter to support exporting Holoscan application output to CSV
files.

The data root directory can be specified using the environment variable HOLOSCAN_ANALYTICS_DATA_DIRECTORY. If
not specified, it defaults to the current directory. The data file name can be specified using the environment variable
HOLOSCAN_ANALYTICS_DATA_FILE_NAME. If not specified, it defaults to the name data.csv. All the generated data
will be stored inside a directory with the same name as the application name that is passed to the DataExporter
constructor. On each run, a new directory inside the <root_dir>\<app_dir>\ will be created and a new data file will
be created inside it. Each new data directory will be named with the current timestamp. This timestamp convention
prevents a given run of the application from overwriting any data stored previously by an earlier run of that same
application.

23.1.1 Sample usage of the API

// Include Header
#include <holoscan/core/analytics/csv_data_exporter.hpp>

// Define CsvDataExporter member variable
CsvDataExporter exporter

// Initialize CsvDataExporter
exporter("app_name", std::vector<std::string>({"columnl", "column2", "column3"}))

// Export data (typically called within an Operator::compute method)
exporter.export_data(std: :vector<std::string>({"valuel", "value2", "value3"}))

239

Holoscan SDK User Guide, Release 2.2.0

23.2 Using Data Exporter APl with DataProcessor

The Holoscan applications like Endoscopy Out of Body Detection uses Inference Processor operator
(InferenceProcessorOp) to output the binary classification results. The DataProcessor class used by the
inference processor operator (InferenceProcessorOp) is now updated to support writing output to CSV files which
can then be used as input to analytics applications. Also any other application using InferenceProcessorOp can
now export the binary classification output to the CSV files.

Below is an example application config using the new export operation:

inference_processor_op:
process_operations:
"out_of_body_inferred": ["export_results_to_csv,

out_of_body_detection,
In-body,
Out-of-body,
Confidence Score"]

in_tensor_names: ["out_of_body_inferred"]

This will create a folder named out_of_body_detection in the specified root directory, creates another folder inside
it with current timestamp on each run, and creates a .csv file with specified name and three columns - In-body,
Out-of-body, and Confidence Score. The lines in the data. csv file will look like:

In-body,Out-of-body,Confidence Score
1,0,0.972435

1,0,0.90207
1,0,0.897973
0,1,0.939281
0,1,0.
0,1,0.

948691
94994

240 Chapter 23. Analytics

CHAPTER
TWENTYFOUR

HOLOSCAN APPLICATION PACKAGE SPECIFICATION (HAP)

24.1 Introduction

The Holoscan Application Package specification extends the MONAI Deploy Application Package specification to
provide the streaming capabilities, multi-fragment and other features of the Holoscan SDK.

24.2 Overview

This document includes the specification of the Holoscan Application Package (HAP). A HAP is a containerized ap-
plication or service which is self-descriptive, as defined by this document.

24.2.1 Goal

This document aims to define the structure and purpose of a HAP, including which parts are optional and which are
required so that developers can easily create conformant HAPs.

24.2.2 Assumptions, Constraints, Dependencies

The following assumptions relate to HAP execution, inspection and general usage:
 Containerized applications will be based on Linux x64 (AMD64) and/or ARM64 (aarch64).

» Containerized applications’ host environment will be based on Linux x64 (AMD64) and/or ARM64 (aarch64)
with container support.

» Developers expect the local execution of their applications to behave identically to the execution of the container-
ized version.

* Developers expect the local execution of their containerized applications to behave identically to the execution
in deployment.

» Developers and operations engineers want the application packages to be self-describing.

* Applications may be created using tool other than that provided in the Holoscan SDK or the MONAI Deploy
App SDK.

» Holoscan Application Package may be created using a tool other than that provided in the Holoscan SDK or the
MONAI Deploy App SDK.

* Pre-existing, containerized applications must be “converted” into Holoscan Application Packages.

241

Holoscan SDK User Guide, Release 2.2.0

* A Holoscan Application Package may contain a classical application (non-fragment based), a single-fragment
application, or a multi-fragment application. (Please see the definition of fragment in Definitions, Acronyms,
Abbreviations)

 The scalability of a multi-fragment application based on Holoscan SDK is outside the scope of this document.

* Application packages are expected to be deployed in one of the supported environments. For additional infor-
mation, see Holoscan Operating Environments.

24.3 Definitions, Acronyms, Abbreviations

Term Definition

ARMO64 Or, AARCH64. See Wikipedia for details.

Container | See What's a container?

Fragment | A fragment is a building block of the Application. It is a directed graph of operators. For details,
please refer to the MONAI Deploy App SDK or Holoscan App SDK.

Gigibytes | A gibibyte (GiB) is a unit of measurement used in computer data storage that equals to 1,073,741,824

(GiB) bytes.

HAP Holoscan Application Package. A containerized application or service which is self-descriptive.

Hosting A service that hosts and orchestrates HAP containers.

Service

MAP MONALI Application Package. A containerized application or service which is self-descriptive.

Mebibytes | A mebibyte (MiB) is a unit of measurement used in computer data storage that equals to 1,048,576

(MiB) bytes.

MONAI Medical Open Network for Artificial Intelligence.

SDK Software Development Kit.

Semantic See Semantic Versioning 2.0.

Version

x64 Or, x86-64 or AMDG64. See Wikipedia for details.

24.4 Requirements

The following requirements MUST be met by the HAP specification to be considered complete and approved. All
requirements marked as MUST or SHALL MUST be implemented in order to be supported by a HAP-ready hosting

service.

24.4.1 Single Artifact

e A HAP SHALL comprise a single container, meeting the minimum requirements set forth by this document.

* A HAP SHALL be a containerized application to maximize the portability of its application.

242

Chapter 24. Holoscan Application Package Specification (HAP)

https://en.wikipedia.org/wiki/AArch64
https://www.docker.com/resources/what-container/
https://semver.org/
https://en.wikipedia.org/wiki/X86-64

Holoscan SDK User Guide, Release 2.2.0

24.4.2 Self-Describing

A HAP MUST be self-describing and provide a mechanism for extracting its description.
— A HAP SHALL provide a method to print the metadata files to the console.
— A HAP SHALL provide a method to copy the metadata files to a user-specified directory.

The method of description SHALL be in a machine-readable and writable format.

The method of description SHALL be in a human-readable format.

* The method of description SHOULD be a human writable format.

* The method of description SHALL be declarative and immutable.

* The method of description SHALL provide the following information about the HAP:
— Execution requirements such as dependencies and restrictions.

— Resource requirements include CPU cores, system memory, shared memory, GPU, and GPU memory.

24.4.3 Runtime Characteristics of the HAP

* A HAP SHALL start the packaged Application when it is executed by the users when arguments are specified.

* A HAP SHALL describe the packaged Application as a long-running service or an application so an external
agent can manage its lifecycle.

24.4.4 10 Specification

* A HAP SHALL provide information about its expected inputs such that an external agent can determine if the
HAP can receive a workload.

¢ A HAP SHALL provide sufficient information about its outputs so that an external agent knows how to handle
the results.

24.4.5 Local Execution

A HAP MUST be in a format that supports local execution in a development environment.

[Note] See Holoscan Operating Environments for additional information about supported environments.

24.4.6 Compatible with Kubernetes

e A HAP SHALL support deployment using Kubernetes.

24.4. Requirements 243

Holoscan SDK User Guide, Release 2.2.0

24.4.7 OCI Compliance

The containerized portion of a HAP SHALL comply with Open Container Initiative format standards.

Image Annotations
All annotations for the containerized portion of a HAP MUST adhere to the specifications laid out by The OpenCon-
tainers Annotations Spec

* org.opencontainers.image.title: A HAP container image SHALL provide a human-readable title
(string).

* org.opencontainers.image.version: A HAP container image SHALL provide a version of the packaged
application using the semantic versioning format. This value is the same as the value defined in /etc/holoscan/
app. json#version in the Table of Application Manifest Fields.

 All other OpenContainers predefined keys SHOULD be provided when available.

24.4.8 Hosting Environment
The HAP Hosting Environment executes the HAP and provides the application with a customized set of environment
variables and command line options as part of the invocation.

* The Hosting Service MUST, by default, execute the application as defined by /etc/holoscan/app.
json#command and then exit when the application or the service completes.

e The Hosting Service MUST provide any environment variables specified by /etc/holoscan/app.
json#environment.

* The Hosting Service SHOULD monitor the Application process and record its CPU, system memory, and GPU
utilization metrics.

* The Hosting Service SHOULD monitor the Application process and enforce any timeout value specified in /
etc/holoscan/app. json#timeout.

244 Chapter 24. Holoscan Application Package Specification (HAP)

https://opencontainers.org/
https://specs.opencontainers.org/image-spec/annotations/?v=v1.0.1
https://specs.opencontainers.org/image-spec/annotations/?v=v1.0.1

Holoscan SDK User Guide, Release 2.2.0

Table of Environment Variables

A HAP SHALL contain the following environment variables and their default values, if not specified by the user, in
the Application Manifest /etc/holoscan/app. json#environment.

Variable Default Format | Description

HOLOSCAN_INPUT_PATH | /var/holoscan/ Folder Path to the input folder for the Application.
input/ Path

HOLOSCAN_OUTPUT_PATH /var/holoscan/ Folder Path to the output folder for the Application.
output/ Path

HOLOSCAN_WORKDIR /var/holoscan/ Folder Path to the Application’s working directory.

Path

HOLOSCAN_MODEL_PATH | /opt/holoscan/ Folder Path to the Application’s models directory.
models/ Path

HOLOSCAN_CONFIG_PATH /var/holoscan/ File Path to the Application’s configuration file.
app.yaml Path

HOLOSCAN_APP_MANIFEST /BAEHholoscan/ File Path to the Application’s configuration file.
app.config Path

HOLOSCAN_PKG_MANIFEST/BAEHholoscan/ File Path to the Application’s configuration file.
pkg.config Path

HOLOSCAN_DOCS /opt/holoscan/ Folder Path to the folder containing application documen-
docs Path tation and licenses.

HOLOSCAN_LOGS /var/holoscan/ Folder Path to the Application’s logs.
logs Path

24.5 Architecture & Design

24.5.1 Description

The Holoscan Application Package (HAP) is a functional package designed to act on datasets of a prescribed format.
A HAP is a container image that adheres to the specification provided in this document.

24.5.2 Application

The primary component of a HAP is the application. The application is provided by an application developer and
incorporated into the HAP using the Holoscan Application Packager.

All application code and binaries SHALL be in the /opt/holoscan/app/ folder, except for any dependencies installed
by the Holoscan Application Packager during the creation of the HAP.

All Al models (PyTorch, TensorFlow, TensorRT, etc.) SHOULD be in separate sub-folders of the /opt/holoscan/
models/ folder. In specific use cases where the app package developer is prevented from enclosing the model files in
the package/container due to intellectual property concerns, the models can be supplied from the host system when the
app package is run, e.g., via the volume mount mappings and the use of container env variables.

24.5. Architecture & Design 245

Holoscan SDK User Guide, Release 2.2.0

24.5.3 Manifests

A HAP SHALL contain two manifests: the Application Manifest and the Package Manifest. The Package Manifest shall
be stored in /etc/holoscan/pkg. json, and the Application Manifest shall be stored in /etc/holoscan/app.json.
Once a HAP is created, its manifests are expected to be immutable.

Application Manifest

Table of Application Manifest Fields

Name Required Default Type Format
apiVersion No 0.0.0 string | semantic version
command Yes N/A string | shell command
environment No N/A object | object w/ name-va
input Yes N/A object | object
input.formats Yes N/A array array of objects
input.path No input/ string | relative file-systen
readiness No N/A object | object
readiness.type Yes N/A string | string
readiness.command Yes (when type is command) N/A array shell command
readiness.port Yes (when type is tcp, grpc, or http-get) | N/A integer | number
readiness.path Yes (when type is http-get) N/A string string
readiness.initialDelaySeconds | No 1 integer | number
readiness.periodSeconds No 10 integer | number
readiness.timeoutSeconds No 1 integer | number
readiness.failureThreshold No 3 integer | number
liveness No N/A object | object
liveness.type Yes N/A string | string
liveness.command Yes (when type is command) N/A array shell command
liveness.port Yes (when type is tcp, grpc, or http-get) | N/A integer | number
liveness.path Yes (when type is http-get) N/A string | string
liveness.initialDelaySeconds No 1 integer | number
liveness.periodSeconds No 10 integer | number
liveness.timeoutSeconds No 1 integer | number
liveness.failureThreshold No 3 integer | number

output Yes N/A object | object
output.format Yes N/A object | object
output.path No output/ string | relative file-systen
sdk No N/A string | string
sdkVersion No 0.0.0 string | semantic version
timeout No 0 integer | number

version No 0.0.0 string | semantic version
workingDirectory No /var/holoscan/ | string | absolute file-syste:

The Application Manifest file provides information about the HAP’s Application.

e The Application Manifest MUST define the type of the containerized application (/etc/holoscan/app.

json#type).

— Type SHALL have the value of either service or application.

246

Chapter 24. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 2.2.0

* The Application Manifest MUST define the command used to run the Application (/etc/holoscan/app.
json#command).

* The Application Manifest SHOULD define the version of the manifest file schema (/etc/holoscan/app.
json#apiVersion).

— The Manifest schema version SHALL be provided as a semantic version string.
— When not provided, the default value 0.0 .0 SHALL be assumed.

* The Application Manifest SHOULD define the SDK used to create the Application (/etc/holoscan/app.
json#sdk).

* The Application Manifest SHOULD define the version of the SDK used to create the Application (/etc/
holoscan/app. json#sdkVersion).

— SDK version SHALL be provided as a semantic version string.
— When not provided, the default value 0.0 .0 SHALL be assumed.

* The Application Manifest SHOULD define the version of the application itself (/etc/holoscan/app.
json#version).

— The Application version SHALL be provided as a semantic version string.
— When not provided, the default value 0.0 .0 SHALL be assumed.

* The Application Manifest SHOULD define the application’s working directory (/etc/holoscan/app.
json#workingDirectory).

— The Application will execute with its current directory set to this value.
— The value provided must be an absolute path (the first character is /).
— The default path /var/holoscan/ SHALL be assumed when not provided.

* The Application Manifest SHOULD define the data input path, relative to the working directory, used by the
Application (/etc/holoscan/app. json#input.path).

— The input path SHOULD be a relative to the working directory or an absolute file-system path to a directory.

When the value is a relative file-system path (the first character is not /), it is relative to the application’s
working directory.

% When the value is an absolute file-system path (the first character is /), the file-system path is used
as-is.

— When not provided, the default value input/ SHALL be assumed.

» The Application Manifest SHOULD define input data formats supported by the Application (/etc/holoscan/
app. json#input . formats).

— Possible values include, but are not limited to, none, network, file.

* The Application Manifest SHOULD define the output path relative to the working directory used by the Appli-
cation (/etc/holoscan/app. json#output.path).

— The output path SHOULD be relative to the working directory or an absolute file-system path to a directory.

* When the value is a relative file-system path (the first character is not /), it is relative to the application’s
working directory.

% When the value is an absolute file-system path (the first character is /), the file-system path is used
as-is.

— When not provided, the default value output/ SHALL be assumed.

24.5. Architecture & Design 247

https://semver.org/
https://semver.org/
https://semver.org/

Holoscan SDK User Guide, Release 2.2.0

e The Application Manifest SHOULD define the output data format produced by the Application (/etc/
holoscan/app. json#output.format).

— Possible values include, but are not limited to, none, screen, file, network.
* The Application Manifest SHOULD configure a check to determine whether or not the application is “ready.”

— The Application Manifest SHALL define the probe type to be performed (/etc/holoscan/app.
json#readiness.type).

% Possible values include tcp, grpc, http-get, and command.

— The Application Manifest SHALL define the probe commands to execute when the type is command (/
etc/holoscan/app. json#readiness.command).

% The data structure is expected to be an array of strings.

— The Application Manifest SHALL define the port to perform the readiness probe when the type is grpc,
tcp, or http-get. (/etc/holoscan/app. json#readiness.port)

% The value provided must be a valid port number ranging from 1 through 65535. (Please note that port
numbers below 1024 are root-only privileged ports.)

— The Application Manifest SHALL define the path to perform the readiness probe when the type ishttp-get
(/etc/holoscan/app. json#readiness.path).

The value provided must be an absolute path (the first character is /).

— The Application Manifest SHALL define the number of seconds after the container has started before the
readiness probe is initiated. (/etc/holoscan/app. json#readiness.initialDelaySeconds).

The default value ® SHALL be assumed when not provided.

— The Application Manifest SHALL define how often to perform the readiness probe (/etc/holoscan/
app. json#readiness.periodSeconds).

* When not provided, the default value 10 SHALL be assumed.

— The Application Manifest SHALL define the number of seconds after which the probe times out (/etc/
holoscan/app. json#readiness. timeoutSeconds)

% When not provided, the default value 1 SHALL be assumed.

— The Application Manifest SHALL define the number of times to perform the probe before considering the
service is not ready (/etc/holoscan/app. json#readiness.failureThreshold)

% The default value 3 SHALL be assumed when not provided.

* The Application Manifest SHOULD configure a check to determine whether or not the application is “live” or
not.

— The Application Manifest SHALL define the type of probe to be performed (/etc/holoscan/app.
json#liveness.type).

% Possible values include tcp, grpc, http-get, and command.

— The Application Manifest SHALL define the probe commands to execute when the type is command (/
etc/holoscan/app. json#liveness.command).

* The data structure is expected to be an array of strings.

— The Application Manifest SHALL define the port to perform the liveness probe when the type is grpc,
tcp, or http-get. (/etc/holoscan/app. json#liveness.port)

% The value provided must be a valid port number ranging from 1 through 65535. (Please note that port
numbers below 1024 are root-only privileged ports.)

248 Chapter 24. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 2.2.0

— The Application Manifest SHALL define the path to perform the liveness probe when the type is http-get
(/etc/holoscan/app. json#liveness.path).

% The value provided must be an absolute path (the first character is /).

— The Application Manifest SHALL define the number of seconds after the container has started before the
liveness probe is initiated. (/etc/holoscan/app.json#liveness.initialDelaySeconds).

% The default value ® SHALL be assumed when not provided.

— The Application Manifest SHALL define how often to perform the liveness probe (/etc/holoscan/app.
json#liveness.periodSeconds).

% When not provided, the default value 10 SHALL be assumed.

— The Application Manifest SHALL define the number of seconds after which the probe times out (/etc/
holoscan/app. json#liveness.timeoutSeconds)

The default value 1 SHALL be assumed when not provided.

— The Application Manifest SHALL define the number of times to perform the probe before considering the
service is not alive (/etc/holoscan/app. json#liveness.failureThreshold)

* When not provided, the default value 3 SHALL be assumed.

e The Application Manifest SHOULD define any timeout applied to the Application (/etc/holoscan/app.
json#timeout).

— When the value is 0, timeout SHALL be disabled.
— When not provided, the default value ® SHALL be assumed.

* The Application Manifest MUST enable the specification of environment variables for the Application (/etc/
holoscan/app. json#environment)

— The data structure is expected to be in "name": "value" members of the object.

— The field’s name will be the name of the environment variable verbatim and must conform to all require-
ments for environment variables and JSON field names.

— The field’s value will be the value of the environment variable and must conform to all requirements for
environment variables.

24.5. Architecture & Design 249

Holoscan SDK User Guide, Release 2.2.0

Package Manifest

250 Chapter 24. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 2.2.0

Table of Package Manifest Fields

Name Re- | Default Type | Format Description
quired
apiVersion No | 0.0.0 string| semantic | Version of the manifest file schema.
version
applicationRoot Yes | /opt/ string| absolute Absolute file-system path to the folder
holoscan/ file- which contains the Application
app/ system
path
modelRoot No | /opt/ string| absolute Absolute file-system path to the folder
holoscan/ file- which contains the model(s).
models/ system
path
models No | N/A ar- array of | Array of objects which describe models in
ray objects the package.
models[*].name Yes | N/A string| string Name of the model.
models[*].path No | N/A string| Relative File-system path to the folder which con-
file- tains the model that is relative to the value
system defined in modelRoot.
path
resources No | N/A ob- | object Object describing resource requirements
ject for the Application.
resources.cpu No 1 dec- | number Number of CPU cores required by the Ap-
imal plication or the Fragment.
&)
resources.cpulLimit No | N/A dec- | number The CPU core limit for the Application or
imal the Fragment. (1)
&)
resources.gpu No | O dec- | number Number of GPU devices required by the
imal Application or the Fragment.
&)
resources.gpulLimit No | N/A dec- | number The GPU device limit for the Application
imal or the Fragment. (1)
&)
resources.memory No 1Gi string| memory The memory required by the Application or
size the Fragment.
resources. No | N/A string| memory The memory limit for the Application or
memoryLimit size the Fragment. (1)
resources.gpuMemory No | N/A string| memory The GPU memory required by the Appli-
size cation or the Fragment.
resources. No | N/A string| memory The GPU memory limit for the Application
gpuMemoryLimit size or the Fragment. (1)
resources. No | 64Mi string| memory The shared memory required by the Appli-
sharedMemory size cation or the Fragment.
resources. fragments No | N/A ob- objects Nested objects which describe resources
ject for a Multi-Fragment Application.
resources. fragments. | Yes | N/A string| string Name of the fragment.
<fragment-name>
resources.fragments. | No 1 dec- | number Number of CPU cores required by the Frag-
<fragment-name>.cpu imal ment.
@)
resources. fragments. | No | N/A dec- | number The CPU core limit for the Fragment. (1)
<fragment-name>. imal
24181 Wrchitecture & Design (2 251
resources.fragments. | No | 0 dec- | number Number of GPU devices required by the
<fragment-name>.gpu imal Fragment.
@)

Holoscan SDK User Guide, Release 2.2.0

[Notes] (1) Use of resource limits depend on the orchestration service or the hosting environement’s con-
figuration and implementation. (2) Consider rounding up to a whole number as decimal values may not
be supported by all orchestration/hosting services.

The Package Manifest file provides information about the HAP’s package layout. It is not intended as a mechanism for
controlling how the HAP is used or how the HAP’s Application is executed.

* The Package Manifest MUST be UTF-8 encoded and use the JavaScript Object Notation (JSON) format.
* The Package Manifest SHOULD support either CRLF or LF style line endings.

e The Package Manifest SHOULD specify the folder which contains the application (/etc/holoscan/pkg.
json#applicationRoot).

— When not provided, the default path /opt/holoscan/app/ will be assumed.

* The Package Manifest SHOULD provide the version of the package file manifest schema (/etc/holoscan/
pkg. json#apiVersion).

— The Manifest schema version SHALL be provided as a semantic version string.
* The Package Manifest SHOULD provide the package version of itself (/etc/holoscan/pkg. json#version).
— The Package version SHALL be provided as a semantic version string.

¢ The Package Manifest SHOULD provide the directory path to the user-provided models. (/etc/holoscan/
pkg. json#modelRoot).

— The value provided must be an absolute path (the first character is /).
— When not provided, the default path /opt/holoscan/models/ SHALL be assumed.
* The Package Manifest SHOULD list the models used by the application (/etc/holoscan/pkg. json#models).
— Models SHALL be defined by name (/etc/holoscan/pkg. json#models[*].name).
% Model names SHALL NOT contain any Unicode whitespace or control characters.
% Model names SHALL NOT exceed 128 bytes in length.

— Models SHOULD provide a file-system path if they’re included in the HAP itself (/etc/holoscan/pkg.
json#models[*].path).

% When the value is a relative file-system path (the first character is not /), it is relative to the model root
directory defined in /etc/holoscan/pkg. json#modelRoot.

* When the value is an absolute file-system path (the first character is /), the file-system path is used
as-is.

When no value is provided, the name is assumed as the name of the directory relative to the model
root directory defined in /etc/holoscan/pkg. json#modelRoot.

* The Package Manifest SHOULD specify the resources required to execute the Application and the fragments for
a Multi-Fragment Application.

This information is used to provision resources when running the containerized application using a compatible
application deployment service.

* A classic Application or a single Fragment Application SHALL define its resources in the /etc/holoscan/
pkg. json#resource object.

— The /etc/holoscan/pkg. json#resource object is for the whole application. It CAN also be used as a
catchall for all fragments in a multi-fragment application where applicable.

— CPU requirements SHALL be denoted using the decimal count of CPU cores (/etc/holoscan/pkg.
json#resources.cpu).

252 Chapter 24. Holoscan Application Package Specification (HAP)

https://semver.org/
https://semver.org/

Holoscan SDK User Guide, Release 2.2.0

— Optional CPU limits SHALL be denoted using the decimal count of CPU cores (/etc/holoscan/pkg.
json#resources.cpulimit)

— GPU requirements SHALL be denoted using the decimal count of GPUs (/etc/holoscan/pkg.
json#resources.gpu).

— Optional GPU limits SHALL be denoted using the decimal count of GPUs (/etc/holoscan/pkg.
json#resources.gpulLimit)

— Memory requirements SHALL be denoted using decimal values followed by units (/etc/holoscan/pkg.
json#resources.memory).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

— Optional memory limits SHALL be denoted using decimal values followed by units (/etc/holoscan/
pkg. json#resources.memoryLimit).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

— GPU memory requirements SHALL be denoted using decimal values followed by units (/etc/holoscan/
pkg. json#resources.gpulemory).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

— Optional GPU memory limits SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg. json#resources.gpuMemoryLimit).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

— Shared memory requirements SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg. json#resources.sharedMemory).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

— Optional shared memory limits SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg. json#resources. sharedMemoryLimit).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi
— Integer values MUST be positive and not contain any position separators.
+ Example legal values: 1, 42, 2048
% Example illegal values: -1, 1.5, 2,048

— Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.) character to separate whole
and fractional values, and not contain any positional separators.

+ Example legal values: 1,1.0,0.5,2.5, 1024
% Example illegal values: 1,024, -1.0, 3.14

— When not provided, the default values of cpu=1, gpu=0, memory="1Gi", and sharedMemory="64Mi"
will be assumed.

24.5. Architecture & Design 253

Holoscan SDK User Guide, Release 2.2.0

* A Multi-Fragment Application SHOULD define its resources in the /etc/holoscan/pkg. json#resource.
fragments.<fragment-name> object.

When a matching fragment-name cannot be found, the /etc/holoscan/pkg. json#resource defini-
tion is used.

Fragment names (fragment-name) SHALL NOT contain any Unicode whitespace or control characters.
Fragment names (fragment-name) SHALL NOT exceed 128 bytes in length.

CPU requirements for fragments SHALL be denoted using the decimal count of CPU cores (/etc/
holoscan/pkg. json#resources. fragments.<fragment-name>.cpu).

Optional CPU limits for fragments SHALL be denoted using the decimal count of CPU cores (/etc/
holoscan/pkg. json#resources. fragments.<fragment-name>.cpulLimit).

GPU requirements for fragments SHALL be denoted using the decimal count of GPUs (/etc/holoscan/
pkg. json#resources. fragments.<fragment-name>.gpu).

Optional GPU limits for fragments SHALL be denoted using the decimal count of GPUs (/etc/holoscan/
pkg. json#resources. fragments.<fragment-name>.gpulLimit).

Memory requirements for fragments SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg. json#resources. fragments.<fragment-name>.memory).

* Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

Optional memory limits for fragments SHALL be denoted using decimal values followed by units (/etc/
holoscan/pkg. json#resources. fragments.<fragment-name>.memoryLimit).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

GPU memory requirements for fragments SHALL be denoted using decimal values followed by units (/
etc/holoscan/pkg. json#resources. fragments.<fragment-name>.gpuMemory).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

Optional GPU memory limits for fragments SHALL be denoted using decimal values followed by units
(/etc/holoscan/pkg. json#resources. fragments.<fragment-name>.gpuMemoryLimit).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

Shared memory requirements for fragments SHALL be denoted using decimal values followed by units
(/etc/holoscan/pkg. json#resources. fragments.<fragment-name>. sharedMemory).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi

Optional shared memory limits for fragments SHALL be denoted using decimal values followed by units
(/etc/holoscan/pkg. json#resources. fragments.<fragment-name>. sharedMemoryLimit).

% Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).
- Example: 1.5Gi, 2048Mi
Integer values MUST be positive and not contain any position separators.

+ Example legal values: 1, 42, 2048

254

Chapter 24. Holoscan Application Package Specification (HAP)

Holoscan SDK User Guide, Release 2.2.0

+ Example illegal values: -1, 1.5, 2,048

— Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.) character to separate whole
and fractional values, and not contain any positional separators.

+ Example legal values: 1,1.0,0.5, 2.5, 1024
+ Example illegal values: 1,024, -1.0, 3.14

— When not provided, the default values of cpu=1, gpu=0, memory="1Gi", and sharedMemory="64Mi"
will be assumed.

24.6 Supplemental Application Files

* A HAP SHOULD package supplemental application files provided by the user.
— Supplemental files SHOULD be in sub-folders of the /opt/holoscan/docs/ folder.
— Supplemental files include, but are not limited to, the following:
% README.md

% License.txt

*

Changelog.txt
* EULA

* Documentation

*

Third-party licenses

24.6.1 Container Behavior and Interaction

A HAP is a single container supporting the following defined behaviors when started.

Default Behavior

When a HAP is started from the CLI or other means without any parameters, the HAP shall execute the contained
application. The HAP internally may use Entrypoint, CMD, or a combination of both.

Manifest Export
A HAP SHOULD provide at least one method to access the embedded application, models, licenses, README, or
manifest files, namely, app . json and package. json.

¢ The Method SHOULD provide a container command, show, to print one or more manifest files to the console.

* The Method SHOULD provide a container command, export, to copy one or more manifest files to a mounted
volume path, as described below

— /var/run/holoscan/export/app/: when detected, the Method copies the contents of /opt/
holoscan/app/ to the folder.

— /var/run/holoscan/export/config/: when detected, the Method copies /var/holoscan/app.
yaml, /etc/holoscan/app. json and /etc/holoscan/pkg. json to the folder.

— /var/run/holoscan/export/models/: when detected, the Method copies the contents of /opt/
holoscan/models/ to the folder.

24.6. Supplemental Application Files 255

Holoscan SDK User Guide, Release 2.2.0

- /var/run/holoscan/export/docs/: when detected, the Method copies the contents of /opt/
holoscan/docs/ to the folder.

— /var/run/holoscan/export/: when detected without any of the above being detected, the Method
SHALL copy all of the above.

Since a HAP is an OCI compliant container, a user can also run a HAP and log in to an interactive shell, using a
method supported by the container engine and its command line interface, e.g. Docker supports this by setting the
entrypoint option. The files in the HAP can then be opened or copied to the mapped volumes with shell commands or
scripts. A specific implementation of a HAP may choose to streamline such a process with scripts and applicable user
documentation.

24.6.2 Table of Important Paths

Path Purpose

/etc/holoscan/ HAP manifests and immutable configuration files.

/etc/holoscan/app. Application Manifest file.

json

/etc/holoscan/pkg. Package Manifest file.

json

/opt/holoscan/app/ Application code, scripts, and other files.

/opt/holoscan/models/ | Al models. Each model should be in a separate sub-folder.
/opt/holoscan/docs/ Documentation, licenses, EULA, changelog, etc...

/var/holoscan/ Default working directory.

/var/holoscan/input/ Default input directory.

/var/holoscan/output/ | Default output directory.

/var/run/holoscan/ Special case folder, causes the Script to export contents related to the app. (see:
export/ Manifest Export)

/var/run/holoscan/ Special case folder, causes the Script to export the contents of /opt/holoscan/
export/app/ app/ to the folder.

/var/run/holoscan/ Special case folder, causes the Script to export /etc/holoscan/app.json and /
export/config/ etc/holoscan/pkg. json to the folder.

/var/run/holoscan/ Special case folder, causes the Script to export the contents of /opt/holoscan/
export/models/ models/ to the folder.

24.7 Operating Environments

Holoscan SDK supports the following operating environments.

Characteristics

Clara AGX devkit with RTX 6000 dGPU only
Clara Holoscan devkit with A6000 dGPU only
IGX Orin Devkit, iGPU only

IGX Orin Devkit, with RTX A6000 dGPU

Operating Environment Name

AGX Devkit

IGX Orin Devkit

IGX Orin Devkit - integrated GPU only
IGX Orin Devkit with discrete GPU

Jetson AGX Orin Devkit Jetson Orin Devkit, iGPU only
Jetson Orin Nano Devkit Jetson Orin Nano Devkit, iGPU only
X86_64 dGPU only on Ubuntu 18.04 and 20.04

256 Chapter 24. Holoscan Application Package Specification (HAP)

CHAPTER
TWENTYFIVE

HOLOSCAN CLI

holoscan - a command-line interface for packaging and running your Holoscan applications into HAP-compliant
containers.

25.1 Synopsis

holoscan [--help|-h] [--log-level|-l { DEBUG,INFO,WARN,ERROR,CRITICAL}] {package,run,version,nics}

25.2 Positional Arguments

25.2.1 Holoscan CLI - Package Command

holoscan package - generate HAP-compliant container for your application.

Synopsis

holoscan package [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}] --config|-c CONFIG [-
-docs|-d DOCS] [--models|-m MODELS] --platform PLATFORM [--platform-config PLATFORM_CONFIG] [--
timeout TIMEOUT] [--version VERSION] [--base-image BASE_IMAGE] [--build-image BUILD_IMAGE] [--build-
cache BUILD_CACHE] [--cmake-args CMAKE_ARGS] [--no-cachel|-n] [--sdk SDK] [--sdk-version SDK_VERSION]
[--holoscan-sdk-file HOLOSCAN_SDK_FILE] [--monai-deploy-sdk-file MONAI_DEPLOY_SDK_FILE] [--output|-o
OUTPUT] --tag|-t TAG [--username USERNAME] [--uid UID] [--gid GID] application

Examples

The code below package a python application for x86_64 systems:

Using a Python directory as input

Required: a "__main__.py file in the application directory to execute

Optional: a ‘requirements.txt’ file in the application directory to install dependencies
holoscan package --platform x64-workstation --tag my-awesome-app --config /path/to/my/
—.awesome/application/config.yaml /path/to/my/awesome/application/

Using a Python file as input
holoscan package --platform x64-workstation --tag my-awesome-app --config /path/to/my/
—.awesome/application/config.yaml /path/to/my/awesome/application/my-app.py

257

Holoscan SDK User Guide, Release 2.2.0

The code below package a C++ application for the IGX Orin DevKit (aarch64) with a discrete GPU:

Using a C++ source directory as input

Required: a "CMakelLists.txt file in the application directory

holoscan package --platform igx-orin-devkit --platform-config dgpu --tag my-awesome-app -
—-config /path/to/my/awesome/application/config.yaml /path/to/my/awesome/application/

Using a C++ pre-compiled executable as input

holoscan package --platform igx-orin-devkit --platform-config dgpu --tag my-awesome-app -
—.-config /path/to/my/awesome/application/config.yaml /path/to/my/awesome/bin/
—application-executable

Note: The commands above load the generated image onto Docker to make the image accessible with docker
images.

If you need to package for a different platform or want to transfer the generated image to another system, use the
--output /path/to/output flag so the generated package can be saved to the specified location.

Positional Arguments

application

Path to the application to be packaged. The following inputs are supported:

¢ C++ source code: you may pass a directory path with your C++ source code with a CMakeLists.txt file in it,
and the Packager will attempt to build your application using CMake and include the compiled application in
the final package.

¢ C++ pre-compiled executable: A pre-built executable binary file may be directly provided to the Packager.
* Python application: you may pass either:

— adirectory which includes a __main__.py file to execute (required) and an optional requirements. txt
file that defined dependencies for your Python application, or

— the path to a single python file to execute

Warning: Python (PyPI) modules are installed into the user’s (via [--username USERNAME] argument) directory
with the user ID specified via [--uid UID|. Therefore, when running a packaged Holoscan application on Kubernetes
or other service providers, running Docker with non root user, and running Holoscan CLI run command where the
logged-on user’s ID is different, ensure to specify the USER ID that is used when building the application package.

For example, include the securityContext when running a Holoscan packaged application with UID=1000 using
Argo:

spec:
securityContext:
runAsUser: 1000
runAsNonRoot: true

258 Chapter 25. Holoscan CLI

Holoscan SDK User Guide, Release 2.2.0

Flags

--config|-c CONFIG

Path to the application’s configuration file. The configuration file must be in YAML format with a .yaml file extension.

[--docs|-d DOCS]

An optional directory path of documentation, README, licenses that shall be included in the package.

[--models|-m MODELS]

An optional directory path to a model file, a directory with a single model, or a directory with multiple models.

Single model example:

my-model/
|: surgical_video.gxf_entities
surgical_video.gxf_index

my-model/
L— model
|: surgical_video.gxf_entities
surgical_video.gxf_index

Multi-model example:

my-models/
model-1
t:: my-first-model.gxf_entities
my-first-model.gxf_index
model-2
L— my-other-model.ts

--platform PLATFORM

A comma-separated list of platform types to generate. Each platform value specified generates a standalone container
image. If you are running the Packager on the same architecture, the generated image is automatically loaded onto
Docker and is available with docker images. Otherwise, use --output flag to save the generated image onto the
disk.

PLATFORM must be one of: clara-agx-devkit, igx-orin-devkit, jetson-agx-orin-devkit,
x64-workstation.

e igx-orin-devkit: IGX Orin DevKit
* jetson-agx-orin-devkit: Orin AGX DevKit

* x64-workstation: systems with a x86-64 processor(s)

25.2. Positional Arguments 259

https://en.wikipedia.org/wiki/X86-64

Holoscan SDK User Guide, Release 2.2.0

[--platform-config PLATFORM_CONFIG]

Specifies the platform configuration to generate. PLATFORM_CONFIG must be one of: igpu, igpu-assist, dgpu.
* igpu: Supports integrated GPU
* igpu-assist: Supports compute-only tasks on iGPU in presence of a dGPU

* dgpu: Supports dedicated GPU

Note: --platform-config is required when --platform is not x64-workstation (which uses dgpu).

[--timeout TIMEOUT]

An optional timeout value of the application for the supported orchestrators to manage the application’s lifecycle.
Defaults to 0.

[--version VERSION]

An optional version number of the application. When specified, it overrides the value specified in the configuration

file.

[--base-image BASE_IMAGE]

Optionally specifies the base container image for building packaged application. It must be a valid Docker image tag
either accessible online or via “docker images. By default, the Packager picks a base image to use from NGC.

[--build-image BUILD_IMAGE]

Optionally specifies the build container image for building C++ applications. It must be a valid Docker image tag either
accessible online or via “docker images. By default, the Packager picks a build image to use from NGC.

[--build-cache BUILD_CACHE]

Specifies a directory path for storing Docker cache. Defaults to ~/.holoscan_build_cache. If the $HOME directory
is inaccessible, the CLI uses the /tmp directory.

[--cmake-args CMAKE_ARGS]

A comma-separated list of cmake arguments to be used when building C++ applications.

For example:

holoscan package --cmake-args "-DCMAKE_BUILD_TYPE=DEBUG -DCMAKE_ARG=VALUE"

260 Chapter 25. Holoscan CLI

Holoscan SDK User Guide, Release 2.2.0

[--no-cache|-n]

Do not use cache when building image.

[--sdk SDK]

SDK for building the application: Holoscan or MONAI-Deploy. SDK must be one of: holoscan, monai-deploy.

[--source URL|FILE]

Override the artifact manifest source with a securely hosted file or from the local file system.

E.g. https://my.domain.com/my-file.json

[--sdk-version SDK_VERSION]

Set the version of the SDK that is used to build and package the Application. If not specified, the packager attempts to
detect the installed version.

[--holoscan-sdk-file HOLOSCAN_SDK_FILE]

Path to the Holoscan SDK Debian or PyPI package. If not specified, the packager downloads the SDK file from the
internet depending on the SDK version detected/specified. The HOLOSCAN_SDK_FILE filename must have .deb or
.whl file extension for Debian package or PyPI wheel package, respectively.

[--monai-deploy-sdk-file MONAI_DEPLOY_SDK_FILE]

Path to the MONAI Deploy App SDK Debian or PyPI package. If not specified, the packager downloads the SDK file
from the internet based on the SDK version. The MONAI_DEPLOY_SDK_FILE package filename must have .whl or . gz
file extension.

[--output|-o OUTPUT]

Output directory where result images will be written.

Note: If this flag isn’t present, the packager will load the generated image onto Docker to make the image accessi-
ble with docker images. The --output flag is therefore required when building a packaging for a different target
architecture than the host system that runs the packaer.

25.2. Positional Arguments 261

Holoscan SDK User Guide, Release 2.2.0

--tag|-t TAG

Name and optionally a tag (format: name: tag).

For example:

my-company/my-application:latest
my-company/my-application:1.0.0
my-application:1.0.1
my-application

[--username USERNAME]

Optional username to be created in the container execution context. Defaults to holoscan.

[--uid UID]

Optional user ID to be associated with the user created with --username with default of 1000.

Warning: A very large UID value may result in a very large image due to an open issue with Docker. It is
recommended to use the default value of 1000 when packaging an application and use your current UID/GID when
running the application.

[--gid GID]

Optional group ID to be associated with the user created with --username with default of 1000.

[--source PATH|URL]

Overrides the default manifest file source. This value can be a local file path or a HTTPS url.

25.2.2 Holoscan CLI - Run Command

holoscan run - simplifies running a packaged Holoscan application by reducing the number of arguments required
compared to docker run. In addition, it follows the guidelines of HAP specification when launching your packaged
Holoscan application.

Warning: When running a packaged Holoscan application on Kubernetes or other service providers, running
Docker with non root user, and running Holoscan CLI run command where the logged-on user’s ID is different,
ensure to specify the USER ID that is used when building the application package.

For example, include the securityContext when running a Holoscan packaged application with UID=1000 using
Argo:

spec:
securityContext:
runAsUser: 1000
runAsNonRoot: true

262 Chapter 25. Holoscan CLI

https://github.com/docker/hub-feedback/issues/2263

Holoscan SDK User Guide, Release 2.2.0

Synopsis
holoscan run [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}] [--address ADDRESS] [--
driver] [--input|-i INPUT] [--output|-o OUTPUT] [--fragments|-f FRAGMENTS] [--worker] [--worker-address

WORKER_ADDRESS] [--config CONFIG] [--network|-n NETWORK] [--nic NETWORK_INTERFACE] [--use-all-
nics] [--render|-r] [--quiet|-q] [--shm-size][--terminal] [--device] [--gpu] [--uid UID] [--gid GID Jimage:[tag]

Examples

To run a packaged Holoscan application:

holoscan run -i /path/to/my/input -o /path/to/application/generated/output my-
—application:1.0.1

Positional Arguments

image: [tag]

Name and tag of the Docker container image to execute.
Flags

[--address ADDRESS]

Address ([<IP or hostname>][:<port>]) of the App Driver. If not specified, the App Driver uses the default host
address (0.0.0.0) with the default port number (8765).

For example:

--address my_app_network
--address my_app_network:8765

Note: Ensure that the IP address is not blocked and the port is configured with the firewall accordingly.

[--driver]

Run the App Driver on the current machine. Can be used together with the /[--worker] option to run both the App
Driver and the App Worker on the same machine.

25.2. Positional Arguments 263

Holoscan SDK User Guide, Release 2.2.0

[--input|-i INPUT]

Specifies a directory path with input data for the application to process. When specified, a directory mount is set up to
the value defined in the environment variable HOLOSCAN_INPUT_PATH.

Note: Ensure that the directory on the host is accessible by the current user or the user specified with —uid.

Note: Use the host system path when running applications inside Docker (DooD).

[--output|-o OUTPUT]

Specifies a directory path to store application-generated artifacts. When specified, a directory mount is set up to the
value defined in the environment variable HOLOSCAN_OUTPUT_PATH.

Note: Ensure that the directory on the host is accessible by the current user or the user specified with —uid.

[--fragments|-f FRAGMENTS]

A Comma-separated names of the fragments to be executed by the App Worker. If not specified, only one fragment
(selected by the App Driver) will be executed. all can be used to run all the fragments.

[--worker]

Run the App Worker.

[--worker-address WORKER_ADDRESS]

The address ([<IP or hostname>][:<port>]) of the App Worker. If not specified, the App Worker uses the
default host address (0.0.0.0) with a randomly chosen port number between 10000 and 32767 that is not currently
in use. This argument automatically sets the HOLOSCAN_UCX_SOURCE_ADDRESS environment variable if the worker
address is a local IP address. Refer to Environment Variables for Distributed Applications for details.

For example:

--worker-address my_app_network
--worker-address my_app_network: 10000

Note: Ensure that the IP address is not blocked and the port is configured with the firewall accordingly.

264 Chapter 25. Holoscan CLI

Holoscan SDK User Guide, Release 2.2.0

[--config CONFIG]

Path to the application configuration file. If specified, it overrides the embedded configuration file found in the envi-
ronment variable HOLOSCAN_CONFIG_PATH.

[--network|-n NETWORK]

The Docker network that the application connects to for communicating with other containers. The Runner use the
host network by default if not specified. Otherwise, the specified value is used to create a network with the bridge
driver.

For advanced usages, first create a network using docker network create and pass the name of the network to the
--network option. Refer to Docker Networking documentation for additional details.

[--nic NETWORK_INTERFACE]

Name of the network interface to use with a distributed multi-fragment application. This option sets UCX_NET_DEVICES
environment variable with the value specified and is required when running a distributed multi-fragment application
across multiple nodes. See UCX Network Interface Selection for details.

[--use-all-nics]

When set, this option allows UCX to control the selection of network interface cards for data transfer. Oth-
erwise, the network interface card specified with ‘—nic’ is used. This option sets the environment variable
UCX_CM_USE_ALL_DEVICES to y. (default: False)

When this option is not set, the CLI runner always sets UCX_CM_USE_ALL_DEVICES to n.

[--render|-r]

Enable graphic rendering from your application. Defaults to False.

[--quiet|-q]

Suppress the STDOUT and print only STDERR from the application. Defaults to False.

[--shm-size]

Sets the size of /dev/shm. The format is <number(int,float)>[MB|m|GB|g|Mi|MiB|Gi|GiB]. Use config to read the
shared memory value defined in the app . json manifest. By default, the container is launched using --ipc=host with
host system’s /dev/shm mounted.

25.2. Positional Arguments 265

https://docs.docker.com/network/

Holoscan SDK User Guide, Release 2.2.0

[--terminal]

Enters terminal with all configured volume mappings and environment variables.

[--device]

Map host devices into the application container.
By default, the CLI searches the /dev/ path for devices unless the specified string starts with /.

For example:

mount all AJA capture cards

--device ajantv*

mount AJA capture card 0 and 1

--device ajantv® ajantvl

mount V4L2 video device 1 and AJAX capture card 2
--device videol --device /dev/ajantv2

Warning: When using the --device option, append -- after the last item to avoid misinterpretation by the CLI.
E.g.

holoscan run --render --device ajantv® videol -- my-application-image:1.0

[--gpul

Override the value of the NVIDIA_VISIBLE_DEVICES environment variable with the default value set to the value
defined in the package manifest file or all if undefined.

Refer to the GPU Enumeration page for all available options.

Note: The default value is nvidia.com/igpu=0 when running a HAP built for iGPU on a system with both iGPU
and dGPU,

Note: A single integer value translates to the device index, not the number of GPUs.

[--uid UID]

Run the application with the specified user ID (UID). Defaults to the current user’s UID.

266 Chapter 25. Holoscan CLI

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html#gpu-enumeration

Holoscan SDK User Guide, Release 2.2.0

[--gid GID]

Run the application with the specified group ID (GID). Defaults to the current user’s GID.

Note: The Holoscan Application supports various environment variables for configuration. Refer to Environment

Variables for Distributed Applications for details.

25.2.3 Holoscan CLI - Version Command

holoscan version - print version information for the Holoscan SDK

Synopsis

holoscan version [--help|-h] [--log-level|-l { DEBUG,INFO,WARN,ERROR,CRITICAL}]
package

Package a Holoscan application

run

Run a packaged Holoscan application

version

Print version information for the Holoscan SDK

nics

Print all available network interface cards and its assigned IP address

25.3 CLI-Wide Flags

25.3.1 [--help|-h]

Display detailed help.

25.3.2 [--log-level|-1 {DEBUG,INFO,WARN,ERROR,CRITICAL}]

Override the default logging verbosity. Defaults to INFO.

25.3. CLI-Wide Flags

267

Holoscan SDK User Guide, Release 2.2.0

268 Chapter 25. Holoscan CLI

CHAPTER
TWENTYSIX

APPLICATION RUNNER CONFIGURATION

The Holoscan runner requires a YAML configuration file to define some properties necessary to deploy an application.

Note: That file is the same configuration file commonly used to configure other aspects of an application, documented
here.

26.1 Configuration

The configuration file can be defined in two ways:
* At package time, with the --config flag of the holoscan package command (Required/Default)

¢ At runtime, with the --config flag of the holoscan run command (Optional/Override)

26.2 Properties

The holoscan run command parses two specific YAML nodes from the configuration file:

* A required application parameter group to generate a HAP-compliant™ container image for the application,
including:
— the title (name) and version of the application.

— optionally, inputFormats and outputFormats if the application expects any inputs or outputs respec-
tively.

* An optional resources parameter group that defines the system resources required to run the application, such
as the number of CPUs, GPUs and amount of memory required. If the application contains multiple fragments
for distributed workloads, resource definitions can be assigned to each fragment.

269

Holoscan SDK User Guide, Release 2.2.0

26.3 Example

Below is an example configuration file with the application and optional resources parameter groups, for an
application with two-fragments (first-fragment and second-fragment):

application:
title: My Application Title
version: 1.0.1
inputFormats: ["files"] # optional
outputFormats: ["screen"] # optional

resources: # optional
non-distributed app
cpu: 1 # optional
cpulLimit: 5 # optional
gpu: 1 # optional
gpulLimit: 5 # optional
memory: 1Mi # optional
memoryLimit: 2Gi # optional
gpuMemory: 1Gi # optional
gpuMemoryLimit: 1.5Gi # optional
sharedMemory: 1Gi # optional

distributed app
fragments: # optional

first-fragment: # optional
cpu: 1 # optional
cpulLimit: 5 # optional
gpu: 1 # optional
gpuLimit: 5 # optional
memory: 100Mi # optional
memoryLimit: 1Gi # optional
gpuMemory: 1Gi # optional
gpuMemoryLimit: 10Gi # optional
sharedMemory: 1Gi # optional

second-fragment: # optional
cpu: 1 # optional
cpulLimit: 2 # optional
gpu: 1 # optional
gpuLimit: 2 # optional
memory: 1Gi # optional
memoryLimit: 2Gi # optional
gpuMemory: 1Gi # optional
gpuMemoryLimit: 5Gi # optional
sharedMemory: 10Mi # optional

For details, please refer to the HAP specification.

270 Chapter 26. Application Runner Configuration

CHAPTER
TWENTYSEVEN

GXF CORE CONCEPTS

Here is a list of the key GXF terms used in this section:

Applications are built as compute graphs.
Entities are nodes of the graph. They are nothing more than a unique identifier.
Components are parts of an entity and provide their functionality.

Codelets are special components which allow the execution of custom code. They can be derived by overriding
the C++ functions initialize, start, tick, stop, deinitialize, and registerInterface (for defining
configuration parameters).

Connections are edges of the graph, which connect components.

Scheduler and Scheduling Terms: components that determine how and when the tick () of a Codelet executes.
This can be single or multithreaded, support conditional execution, asynchronous scheduling, and other custom
behavior.

Memory Allocator: provides a system for allocating a large contiguous memory pool up-front and then reusing
regions as needed. Memory can be pinned to the device (enabling zero-copy between Codelets when messages
are not modified) or host, or customized for other potential behavior.

Receivers, Transmitters, and Message Router: a message passing system between Codelets that supports
Zero-copy.

Tensor: the common message type is a tensor. It provides a simple abstraction for numeric data that can be
allocated, serialized, sent between Codelets, etc. Tensors can be rank 1 to 7 supporting a variety of common data
types like arrays, vectors, matrices, multi-channel images, video, regularly sampled time-series data, and higher
dimensional constructs popular with deep learning flows.

Parameters: configuration variables used by the Codelet. In GXF applications, they are loaded from the appli-
cation YAML file and are modifiable without recompiling.

In comparison, the core concepts of the Holoscan SDK can be found here.

271

Holoscan SDK User Guide, Release 2.2.0

272 Chapter 27. GXF Core concepts

CHAPTER
TWENTYEIGHT

HOLOSCAN AND GXF

28.1 Design differences

There are 2 main elements at the core of Holoscan and GXF designs:
1. How to define and execute application graphs
2. How to define nodes’ functionality

How Holoscan SDK interfaces with GXF on those topics varies as Holoscan SDK evolves, as described below:

28.1.1 Holoscan SDK v0.2

Holoscan SDK was tightly coupled with GXF’s existing interface:

1. GXF application graphs are defined in YAML configuration files. GXE (Graph Execution Engine) is used to
execute Al application graphs. Its inputs are the YAML configuration file, and a list of GXF Extensions to load as
plugins (manifest yaml file). This design allows entities to be swapped or updated without needing to recompile
an application.

2. Components are made available by registering them within a GXF extension, each of which maps to a shared
library and header(s).

Those concepts are illustrated in the GXF by example section.
The only additions that Holoscan provided on top of GXF were:
» domain specific reference applications
* new extensions

* CMake configurations for building extensions and applications

28.1.2 Holoscan SDK v0.3

The Holoscan SDK shifted to provide a more developer-friendly interface with C++:

1. GXF application graphs, memory allocation, scheduling, and message routing can be defined using a C++ API,
with the ability to read parameters and required GXF extension names from a YAML configuration file. The
backend used is still GXF as Holoscan uses the GXF C API, but this bypasses GXE and the full YAML definition.

2. The C++ Operator class was added to wrap and expose GXF extensions to that new application interface (See
dev guide).

273

Holoscan SDK User Guide, Release 2.2.0

28.1.3 Holoscan SDK v0.4

The Holoscan SDK added Python wrapping and native operators to further increase ease of use:
1. The C++ API is also wrapped in Python. GXF is still used as the backend.

2. The Operator class supports native operators, i.e. operators that do not require to implement and register a GXF
Extension. An important feature is the ability to support messaging between native and GXF operators without
any performance loss (i.e. zero-copy communication of tensors).

28.1.4 Holoscan SDK v0.5

1. The built-in Holoscan GXF extensions are loaded automatically and don’t need to be listed in the YAML con-
figuration file of Holoscan applications. This allows Holoscan applications to be defined without requiring a
YAML configuration file.

2. No significant changes to build operators. However, most built-in operators were switched to native implemen-
tations, with the ability to convert native operators to GXF codelets for GXF application developers.

28.1.5 Holoscan SDK v1.0

1. The remaining GXF-based DemosiacOp operator was switched to a native implementation. Now all operators
provided by the SDK are native operators.

28.2 Current limitations

Here is a list of GXF capabilities not yet available in the Holoscan SDK which are planned to be supported in future
releases:

e Job Statistics

The GXF capabilities below are not available in the Holoscan SDK either. There is no plan to support them at this
time:

* Graph Composer

* Behavior Trees

* Epoch Scheduler

* Target Time Scheduling Term

* Multi-Message Available Scheduling Term

o Expiring Message Available Scheduling Term

274 Chapter 28. Holoscan and GXF

20

21

22

23

24

25

27

28

CHAPTER
TWENTYNINE

GXF BY EXAMPLE

Warning: This section is legacy (0.2) as we recommend developing extensions and applications using the C++ or
Python APIs. Refer to the developer guide for up-to-date recommendations.

29.1 Innerworkings of a GXF Entity

Let us look at an example of a GXF entity to try to understand its general anatomy. As an example let’s start with the
entity definition for an image format converter entity named format_converter_entity as shown below.

Listing 29.1: An example GXF Application YAML snippet

XYAML 1.2

other entities declared
name: format_converter_entity
components:
- name: in_tensor
type: nvidia::gxf::DoubleBufferReceiver
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: in_tensor
min_size: 1
- name: out_tensor
type: nvidia::gxf::DoubleBufferTransmitter
- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: out_tensor
min_size: 1

- name: pool
type: nvidia::gxf::BlockMemoryPool
parameters:

storage_type: 1
block_size: 4919040 # 854 * 480 * 3 (channel) * 4 (bytes per pixel)
num_blocks: 2
- name: format_converter_component
type: nvidia::holoscan::formatconverter: :FormatConverter
parameters:
in: in_tensor

(continues on next page)

275

43

44

45

46

47

48

49

50

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

out: out_tensor
out_tensor_name: source_video
out_dtype: "float32"
scale_min: 0.0

scale_max: 255.0

pool: pool

other entities declared

components:
- name: input_connection

type: nvidia::gxf::Connection
parameters:

source: upstream_entity/output
target: format_converter/in_tensor

components:
- name: output_connection

name:

type: nvidia::gxf::Connection
parameters:

source: format_converter/out_tensor
target: downstream_entity/input

scheduler

components:
- type: nvidia::gxf::GreedyScheduler

Above:

1.

The entity format_converter_entity receives a message in its in_tensor message from an upstream entity
upstream_entity as declared in the input_connection.

The received message is passed to the format_converter_component component to convert the tensor element
precision from uint8 to float32 and scale any input in the [®, 255] intensity range.

The format_converter_component component finally places the result in the out_tensor message so that
its result is made available to a downstream entity (downstream_ent as declared in output_connection).

The Connection components tie the inputs and outputs of various components together, in
the above case upstream_entity/output -> format_converter_entity/in_tensor and
format_converter_entity/out_tensor -> downstream_entity/input.

. The scheduler entity declares a GreedyScheduler “system component” which orchestrates the execution

of the entities declared in the graph. In the specific case of GreedyScheduler entities are scheduled to run
exclusively, where no more than one entity can run at any given time.

The YAML snippet above can be visually represented as follows.

In the image, as in the YAML, you will notice the use of MessageAvailableSchedulingTerm,
DownstreamReceptiveSchedulingTerm, and BlockMemoryPool. These are components that play a “supporting”
role to in_tensor, out_tensor, and format_converter_component components respectively. Specifically:

* MessageAvailableSchedulingTerm is a component that takes a Receiver "~ (in this case Double-

BufferReceivernamedin_tensor) and alerts the graph Executorthat a message is available.
This alert triggersformat_converter_component .

* DownstreamReceptiveSchedulingTerm is a component that takes a Transmitter (in this case

276

Chapter 29. GXF by Example

Holoscan SDK User Guide, Release 2.2.0

upstream_ent format_converter_entity downstream_ent
. format_converter — ’
onnection — - Connection
output | | connec in_tensor component out_tensor — input
vnstreamRecepti MessageAvailable DownstreamRecepti MessageAvailable
chedulingTerm SchedulingTerm BlockMemoryPool veSchedulingTerm SchedulingTerm
scheduler

Fig. 29.1: Arrangement of components and entities in a Holoscan application

DoubleBufferTransmitter named out_tensor) and alerts the graph Executor that a message has been
placed on the output.

* BlockMemoryPool provides two blocks of almost 5MB allocated on the GPU device and is used by
format_converted_ent to allocate the output tensor where the converted data will be placed within the format
converted component.

Together these components allow the entity to perform a specific function and coordinate communication with other
entities in the graph via the declared scheduler.

More generally, an entity can be thought of as a collection of components where components can be passed to one
another to perform specific subtasks (e.g. event triggering or message notification, format conversion, memory alloca-
tion), and an application as a graph of entities.

The scheduler is a component of type nvidia: :gxf: : System which orchestrates the execution components in each
entity at application runtime based on triggering rules.

29.2 Data Flow and Triggering Rules

Entities communicate with one another via messages which may contain one or more payloads. Messages are
passed and received via a component of type nvidia: :gxf::Queue from which both nvidia: :gxf: :Receiver
and nvidia: :gxf::Transmitter are derived. Every entity that receives and transmits messages has at least one
receiver and one transmitter queue.

Holoscan uses the nvidia: : gxf: : SchedulingTerm component to coordinate data access and component orchestra-
tion for a Scheduler which invokes execution through the tick () function in each Codelet.

Tip: A SchedulingTerm defines a specific condition that is used by an entity to let the scheduler know when it’s
ready for execution.

In the above example, we used a MessageAvailableSchedulingTerm to trigger the execution of the components
waiting for data from in_tensor receiver queue, namely format_converter_component.

Listing 29.2: MessageAvailableSchedulingTerm

- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:

(continues on next page)

29.2. Data Flow and Triggering Rules 277

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

receiver: in_tensor
min_size: 1

Similarly, DownStreamReceptiveSchedulingTerm checks whether the out_tensor transmitter queue has at least
one outgoing message in it. If there are one or more outgoing messages, DownStreamReceptiveSchedulingTerm
will notify the scheduler which in turn attempts to place the message in the receiver queue of a downstream entity. If,
however, the downstream entity has a full receiver queue, the message is held in the out_tensor queue as a means to
handle back-pressure.

Listing 29.3: DownstreamReceptiveSchedulingTerm

- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: out_tensor
min_size: 1

If we were to draw the entity in Fig. 29./ in greater detail it would look something like the following.

e ™
format_converter_entity

format_converter_component

relrieve

Conm Connaction

in_tensor out tensor
MessageAvailable Check #free DownstreamReceptive
Check #msg SchedulingTerm Al ' SchedulingTerm

in receiver
queue

downstream
receiver gueue

Alert
Scheduler

Alert
Scheduler

SchedulingConditionType

READY
<

* scheduler

Fig. 29.2: Receive and transmit Queues and SchedulingTerms in entities.

Up to this point, we have covered the “entity component system” at a high level and showed the functional parts of an
entity, namely, the messaging queues and the scheduling terms that support the execution of components in the entity.
To complete the picture, the next section covers the anatomy and lifecycle of a component, and how to handle events
within it.

278 Chapter 29. GXF by Example

Holoscan SDK User Guide, Release 2.2.0

29.3 Creating a GXF Extension

GXF components in Holoscan can perform a multitude of sub-tasks ranging from data transformations, to memory
management, to entity scheduling. In this section, we will explore an nvidia: :gxf::Codelet component which in
Holoscan is known as a “GXF extension”. Holoscan (GXF) extensions are typically concerned with application-specific
sub-tasks such as data transformations, AI model inference, and the like.

29.3.1 Extension Lifecycle

The lifecycle of a Codelet is composed of the following five stages.

1.
2.
3.

initialize - called only once when the codelet is created for the first time, and use of light-weight initialization.
deinitialize - called only once before the codelet is destroyed, and used for light-weight deinitialization.

start - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy initialization tasks such as allocating memory resources.

stop - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy deinitialization tasks such as deallocation of all resources previously assigned in start.

tick - called when the codelet is triggered, and is called multiple times over the codelet lifecycle; even multiple
times between start and stop.

The flow between these stages is detailed in Fig. 29.3.

initialize > deinitialize

&]

start < | stop

tick |

t [

Fig. 29.3: Sequence of method calls in the lifecycle of a Holoscan extension

29.3.

Creating a GXF Extension 279

20

21

22

23

Holoscan SDK User Guide, Release 2.2.0

29.3.2 Implementing an Extension

In this section, we will implement a simple recorder that will highlight the actions we would perform in the lifecycle
methods. The recorder receives data in the input queue and records the data to a configured location on the disk. The
output format of the recorder files is the GXF-formatted index/binary replayer files (the format is also used for the
data in the sample applications), where the gxf_index file contains timing and sequence metadata that refer to the
binary/tensor data held in the gxf_entities file.

Declare the Class That Will Implement the Extension Functionality

The developer can create their Holoscan extension by extending the Codelet class, implementing the extension func-
tionality by overriding the lifecycle methods, and defining the parameters the extension exposes at the application level
via the registerInterface method. To define our recorder component we would need to implement some of the
methods in the Codelet.

First, clone the Holoscan project from here and create a folder to develop our extension such as under
gxf_extensions/my_recorder.

Tip: Using Bash we create a Holoscan extension folder as follows.

git clone https://github.com/nvidia-holoscan/holoscan-sdk.git
cd clara-holoscan-embedded-sdk
mkdir -p gxf_extensions/my_recorder

In our extension folder, we create a header file my_recorder.hpp with a declaration of our Holoscan component.

Listing 29.4: gxf extensions/my_recorder/my_recorder.hpp

#include <string>

#include "gxf/core/handle.hpp"

#include "gxf/std/codelet.hpp"

#include "gxf/std/receiver.hpp"

#include "gxf/std/transmitter.hpp"

#include '"gxf/serialization/file_stream.hpp"
#include "gxf/serialization/entity_serializer.hpp"

class MyRecorder : public nvidia::gxf::Codelet {

public:
gxf_result_t registerInterface(nvidia::gxf::Registrar® registrar) override;
gxf_result_t initialize() override;
gxf_result_t deinitialize() override;

gxf_result_t start() override;
gxf_result_t tick() override;
gxf_result_t stop() override;

private:
nvidia: :gxf::Parameter<nvidia: :gxf::Handle<nvidia: :gxf::Receiver>> receiver_;
nvidia::gxf::Parameter<nvidia: :gxf::Handle<nvidia: :gxf::EntitySerializer>> my_
—serializer_;

(continues on next page)

280 Chapter 29. GXF by Example

https://github.com/nvidia-holoscan/holoscan-sdk

24

25

26

27

28

29

31

32

33

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

nvidia::gxf::Parameter<std: :string> directory_;
nvidia::gxf::Parameter<std::string> basename_;
nvidia: :gxf::Parameter<bool> flush_on_tick_;

// File stream for data index
nvidia::gxf::FileStream index_file_stream_;
// File stream for binary data
nvidia::gxf::FileStream binary_file_stream_;
// Offset into binary file
size_t binary_file_offset_;

3

Declare the Parameters to Expose at the Application Level

Next, we can start implementing our lifecycle methods in the my_recorder.cpp file, which we also create in
gxf_extensions/my_recorder path.

Our recorder will need to expose the nvidia: :gxf: :Parameter variables to the application so the parameters can
be modified by configuration.

Listing 29.5: registerInterface in gxf_extensions/my_recorder/my_recorder.cpp

#include "my_recorder.hpp"

gxf_result_t MyRecorder::registerInterface(nvidia::gxf::Registrar* registrar) {
nvidia::gxf::Expected<void> result;
result &= registrar->parameter(
receiver_, '"receiver", "Entity receiver",
"Receiver channel to log");
result &= registrar->parameter(
my_serializer_, "serializer", "Entity serializer",
"Serializer for serializing input data");
result &= registrar->parameter(
directory_, "out_directory", "Output directory path",
"Directory path to store received output");
result &= registrar->parameter(
basename_, "basename", "File base name",
"User specified file name without extension",
nvidia::gxf::Registrar: :NoDefaultParameter(), GXF_PARAMETER_FLAGS_OPTIONAL);
result &= registrar->parameter(
flush_on_tick_, "flush_on_tick", "Boolean to flush on tick",
"Flushes output buffer on every "tick’ when true", false); // default value “false’
return nvidia: :gxf::ToResultCode(result);

For pure GXF applications, our component’s parameters can be specified in the following format in the YAML file:

Listing 29.6: Example parameters for MyRecorder component

name: my_recorder_entity
components:
- name: my_recorder_component

(continues on next page)

29.3. Creating a GXF Extension 281

40

41

42

43

44

45

46

47

48

49

50

51

52

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

type: MyRecorder

parameters:
receiver: receiver
serializer: my_serializer
out_directory: /home/user/out_path
basename: my_output_file # optional
flush_on_tick: false # optional

Note that all the parameters exposed at the application level are mandatory except for flush_on_tick, which defaults
to false, and basename, whose default is handled at initialize () below.

Implement the Lifecycle Methods
This extension does not need to perform any heavy-weight initialization tasks, so we will concentrate on
initialize(), tick(), and deinitialize() methods which define the core functionality of our component. At

initialization, we will create a file stream and keep track of the bytes we write on tick() via binary_file_offset.

Listing 29.7: initialize in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::initialize() {
// Create path by appending receiver name to directory path if basename is not provided
std: :string path = directory_.get() + '/';
if (const auto& basename = basename_.try_get()) {
path += basename.value();
} else {
path += receiver_->name();

3

// Initialize index file stream as write-only

index_file_stream_ = nvidia::gxf::FileStream("", path +.
—nvidia::gxf::FileStream: :kIndexFileExtension);

// Initialize binary file stream as write-only

binary_file_stream_ = nvidia::gxf::FileStream("", path +.

—nvidia::gxf::FileStream: :kBinaryFileExtension);

// Open index file stream
nvidia::gxf::Expected<void> result = index_file_stream_.open();
if ('result) {

return nvidia: :gxf::ToResultCode(result);

}

// Open binary file stream
result = binary_file_stream_.open();
if ('result) {
return nvidia: :gxf: :ToResultCode(result);
}
binary_file_offset_ = 0;

return GXF_SUCCESS;

282 Chapter 29. GXF by Example

58

59

60

61

62

63

64

65

66

67

68

69

71

2

73

74

75

76

77

Holoscan SDK User Guide, Release 2.2.0

When de-initializing, our component will take care of closing the file streams that were created at initialization.

Listing 29.8: deinitialize in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::deinitialize() {
// Close binary file stream
nvidia: :gxf: :Expected<void> result = binary_file_stream_.close();
if ('result) {
return nvidia: :gxf::ToResultCode(result);

}

// Close index file stream
result = index_file_stream_.close();
if (lresult) {
return nvidia: :gxf::ToResultCode(result);

3

return GXF_SUCCESS;

In our recorder, no heavy-weight initialization tasks are required so we implement the following, however, we would
use start() and stop() methods for heavy-weight tasks such as memory allocation and deallocation.

Listing 29.9: start/stop in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::start() {
return GXF_SUCCESS;
}

gxf_result_t MyRecorder::stop() {
return GXF_SUCCESS;
}

Tip: For a detailed implementation of start() and stop(), and how memory management can be handled therein,
please refer to the implementation of the AJA Video source extension.

Finally, we write the component-specific functionality of our extension by implementing tick().

Listing 29.10: tick in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::tick() {
// Receive entity
nvidia::gxf::Expected<nvidia::gxf::Entity> entity = receiver_->receive();
if (lentity) {
return nvidia: :gxf::ToResultCode(entity);

}

// Write entity to binary file
nvidia::gxf::Expected<size_t> size = my_serializer_->serializeEntity(entity.value(), &
—binary_file_stream_);
if (!size) {
return nvidia: :gxf::ToResultCode(size);

3

(continues on next page)

29.3. Creating a GXF Extension 283

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/gxf_extensions/aja

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

// Create entity index

nvidia::gxf::EntityIndex index;

index.log_time = std::chrono::system_clock: :now().time_since_epoch().count();
index.data_size = size.value();

index.data_offset = binary_file_offset_;

// Write entity index to index file
nvidia::gxf::Expected<size_t> result = index_file_stream_.writeTrivialType(&index);
if (l'result) {

return nvidia: :gxf::ToResultCode(result);

}

binary_file_offset_ += size.value();

if (flush_on_tick) {
// Flush binary file output stream
nvidia::gxf::Expected<void> result = binary_file_stream_.flush(Q);
if (lresult) {
return nvidia: :gxf::ToResultCode(result);

}

// Flush index file output stream
result = index_file_stream_.flush(Q);
if (lresult) {
return nvidia: :gxf::ToResultCode(result);
}
}

return GXF_SUCCESS;
}

Register the Extension as a Holoscan Component

As a final step, we must register our extension so it is recognized as a component and loaded by the application executor.
For this we create a simple declaration in my_recorder_ext.cpp as follows.

Listing 29.11: gxf_extensions/my_recorder/my_recorder_ext.cpp

#include "gxf/std/extension_factory_helper.hpp"
#include "my_recorder.hpp"

GXF_EXT_FACTORY_BEGIN()
GXF_EXT_FACTORY_SET_INFO(0xb891cef3ce754825, 0x9dd3dcac9bbd8483, "MyRecorderExtension'",
"My example recorder extension", "NVIDIA", "0.1.0", "LICENSE");
GXF_EXT_FACTORY_ADD (0x2464fabf91b34ccf, 0xb554977fa22096bd, MyRecorder,
nvidia::gxf::Codelet, "My example recorder codelet.");
GXF_EXT_FACTORY_END()

GXF_EXT_FACTORY_SET_INFO configures the extension with the following information in order:

e UUID which can be generated using scripts/generate_extension_uuids.py which defines the extension

284 Chapter 29. GXF by Example

20

21

22

23

Holoscan SDK User Guide, Release 2.2.0

id
¢ extension name
* extension description
e author
¢ extension version
e license text

GXF_EXT_FACTORY_ADD registers the newly built extension as a valid Codelet component with the following infor-
mation in order:

e UUID which can be generated using scripts/generate_extension_uuids.py which defines the compo-
nent id (this must be different from the extension id),

« fully qualified extension class,
« fully qualifies base class,
» component description
To build a shared library for our new extension which can be loaded by a Holoscan application at runtime we use a

CMake file under gxf_extensions/my_recorder/CMakeLists.txt with the following content.

Listing 29.12: gxf_extensions/my_recorder/CMakeLists.txt

Create library
add_library(my_recorder_lib SHARED
my_recorder.cpp
my_recorder.hpp
)
target_link_ libraries(my_recorder_lib
PUBLIC
GXF::std
GXF::serialization
yaml -cpp

Create extension

add_library(my_recorder SHARED
my_recorder_ext.cpp

)

target_link libraries(my_recorder
PUBLIC my_recorder_lib

)

Install GXF extension as a component 'holoscan-gxf_extensions'
install_gxf_extension(my_recorder) # this will also install my_recorder_1lib

install_gxf extension(my_recorder_1lib) # this statement is not necessary because this.
—library follows ‘<extension library name>_1ib" convention.

Here, we create a library my_recorder_lib with the implementation of the lifecycle methods, and the extension
my_recorder which exposes the C API necessary for the application runtime to interact with our component.

To make our extension discoverable from the project root we add the line

29.3. Creating a GXF Extension 285

20

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 2.2.0

add_subdirectory(my_recorder)

to the CMake file gxf_extensions/CMakeLists.txt.

Tip: To build our extension, we can follow the steps in the README.

At this point, we have a complete extension that records data coming into its receiver queue to the specified location
on the disk using the GXF-formatted binary/index files.

29.4 Creating a GXF Application

For our application, we create the directory apps/my_recorder_app_gxf with the application definition file
my_recorder_gxf.yaml. The my_recorder_gxf.yaml application is as follows:

Listing 29.13: apps/my_recorder_app_gxf/my_recorder_gxf.yaml

%YAML 1.2
name: replayer
components:
- name: output
type: nvidia::gxf::DoubleBufferTransmitter
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.
—nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]
- type: nvidia::holoscan::stream_playback::VideoStreamReplayer
parameters:
transmitter: output
entity_serializer: entity_serializer
boolean_scheduling_term: boolean_scheduling
directory: "/workspace/data/racerx"
basename: "racerx"

frame_rate: 0 # as specified in timestamps

repeat: false # default: false

realtime: true # default: true

count: 0 # default: 0 (no frame count restriction)

- name: boolean_scheduling
type: nvidia::gxf::BooleanSchedulingTerm
- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: output
min_size: 1

(continues on next page)

286 Chapter 29. GXF by Example

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

65

66

68

69

70

71

73

74

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

name: recorder
components:
- name: input
type: nvidia::gxf::DoubleBufferReceiver
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.,
—nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]
- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
out_directory: "/tmp"
basename: "tensor_out"
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: input
min_size: 1
components:
- name: input_connection
type: nvidia::gxf::Connection
parameters:
source: replayer/output
target: recorder/input
name: scheduler
components:
- name: clock
type: nvidia::gxf::RealtimeClock
- name: greedy_scheduler
type: nvidia::gxf::GreedyScheduler
parameters:
clock: clock

Above:

* The replayer reads data from /workspace/data/racerx/racerx.gxf_[index|entities] files, deserial-
izes the binary data to a nvidia: :gxf: :Tensor using VideoStreamSerializer, and puts the data on an
output message in the replayer/output transmitter queue.

e The input_connection component connects the replayer/output transmitter queue to the recorder/
input receiver queue.

* The recorder reads the data in the input receiver queue, uses StdEntitySerializer to convert the received
nvidia: :gxf::Tensor to a binary stream, and outputs to the /tmp/tensor_out.gxf_[index|entities]

29.4. Creating a GXF Application 287

Holoscan SDK User Guide, Release 2.2.0

location specified in the parameters.

* The scheduler component, while not explicitly connected to the application-specific entities, performs the
orchestration of the components discussed in the Data Flow and Triggering Rules.

Note the use of the component_serializer in our newly built recorder. This component is declared separately in the
entity

- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.
—nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]

and passed into MyRecorder via the serializer parameter which we exposed in the extension development section
(Declare the Parameters to Expose at the Application Level).

- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
directory: "/tmp"
basename: "tensor_out"

For our app to be able to load (and also compile where necessary) the extensions required at runtime, we need to declare
a CMake file apps/my_recorder_app_gxf/CMakeLists. txt as follows.

Listing 29.14: apps/my_recorder_app_gxf/CMakeLists.txt

create_gxe_application(
NAME my_recorder_gxf
YAML my_recorder_gxf.yaml

EXTENSIONS
GXF::std
GXF: :cuda

GXF::multimedia
GXF::serialization
my_recorder
stream_playback

Download the associated dataset if needed

1f (HOLOSCAN_DOWNLOAD_DATASETS)
add_dependencies(my_recorder_gxf racerx_data)

endif()

In the declaration of create_gxe_application we list:

e my_recorder component declared in the CMake file of the extension development section under the
EXTENSIONS argument

* the existing stream_playback Holoscan extension which reads data from disk

To make our newly built application discoverable by the build, in the root of the repository, we add the following line
to apps/CMakeLists. txt:

288 Chapter 29. GXF by Example

Holoscan SDK User Guide, Release 2.2.0

add_subdirectory(my_recorder_app_gxf)

We now have a minimal working application to test the integration of our newly built MyRecorder extension.

29.5 Running the GXF Recorder Application

To run our application in a local development container:

1. Follow the instructions under the Using a Development Container section steps 1-5 (try clearing the CMake
cache by removing the build folder before compiling).

You can execute the following commands to build

./run build
./run clear_cache # if you want to clear build/install/cache folders

2. Our test application can now be run in the development container using the command

./apps/my_recorder_app_gxf/my_recorder_gxf

from inside the development container.

(You can execute . /run launch to run the development container.)

@LINUX:/workspace/holoscan-sdk/build$./apps/my_recorder_app_gxf/my_recorder_gxf
2022-08-24 04:46:47.333 INFO g¢gxf/gxe/gxe.cpp@230: Creating context

2022-08-24 04:46:47.339 INFO g¢gxf/gxe/gxe.cpp@l0®7: Loading app: 'apps/my_recorder_
—app_gxf/my_recorder_gxf.yaml'

2022-08-24 04:46:47.339 INFO g¢gxf/std/yaml_file_loader.cpp@l117: Loading GXF.
—entities from YAML file 'apps/my_recorder_app_gxf/my_recorder_gxf.yaml'...
2022-08-24 04:46:47.340 INFO g¢gxf/gxe/gxe.cpp@291: Initializing...

2022-08-24 04:46:47.437 INFO gxf/gxe/gxe.cpp@298: Running...

2022-08-24 04:46:47.437 INFO g¢gxf/std/greedy_scheduler.cpp@170: Scheduling 2.
—entities

2022-08-24 04:47:14.829 INFO /workspace/holoscan-sdk/gxf_extensions/stream_
—playback/video_stream_replayer.cpp@l44: Reach end of file or playback count.,
—.reaches to the limit. Stop ticking.

2022-08-24 04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:.
—.Some entities are waiting for execution, but there are no periodic or async.
—entities to get out of the deadlock.

2022-08-24 04:47:14.829 INFO g¢gxf/std/greedy_scheduler.cpp@353: Scheduler finished.
2022-08-24 04:47:14.829 INFO g¢gxf/gxe/gxe.cpp@320: Deinitializing...

2022-08-24 04:47:14.863 INFO gxf/gxe/gxe.cpp@327: Destroying context

2022-08-24 04:47:14.863 INFO g¢gxf/gxe/gxe.cpp@333: Context destroyed.

A successful run (it takes about 30 secs) will result in output files (tensor_out.gxf_index and tensor_out.
gxf_entities in /tmp) that match the original input files (racerx.gxf_index and racerx.gxf_entities under
data/racerx) exactly.

@LINUX:/workspace/holoscan-sdk/build$ 1s -al /tmp/
total 821384

drwxrwxrwt 1 root root 4096 Aug 24 04:37 .
drwxr-xr-x 1 root root 4096 Aug 24 04:36 ..

(continues on next page)

29.5. Running the GXF Recorder Application 289

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

Holoscan SDK User Guide, Release 2.2.0

(continued from previous page)

drwxrwxrwt 2 root root 4096 Aug
-rw-r--r-- 1 1000 1000 729309 Aug
-rw-r--r-- 1 1000 1000 840054484 Aug 24 04:47
-rw-r--r-- 1 1000 1000 16392 Aug

11 21:42
24 04:47

24 04:47

@LINUX:/workspace/holoscan-sdk/build$ 1ls -al

total 839116
drwxr-xr-x 2
drwxr-xr-x 4
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1

1000
1000
1000
1000
1000

1000 4096 Aug
1000 4096 Aug
1000 19164125 Jun
1000 840054484 Jun
1000 16392 Jun

X11-unix

gxf_log
tensor_out.gxf_entities
tensor_out.gxf_index

../data/racerx

24 02:08 .
24 02:07 ..

17 16:31
17 16:31
17 16:31

racerx-medium.mp4
racerx.gxf_entities
racerx.gxf_index

290

Chapter 29. GXF by Example

CHAPTER
THIRTY

USING HOLOSCAN OPERATORS IN GXF APPLICATIONS

For users who are familiar with the GXF development ecosystem (used in Holoscan SDK 0.2), we provide an export
feature to leverage native Holoscan operators as GXF codelets to execute in GXF applications and GraphComposer.

We demonstrate how to wrap a native C++ holoscan operator as a GXF codelet in the
wrap_operator_as_gxf_extension example on GitHub, as described below.

30.1 1. Creating compatible Holoscan Operators

Note: This section assumes you are already familiar with how fo create a native C++ operator.

To be compatible with GXF codelets, inputs and outputs specified in Operator: :setup(OperatorSpec& spec)
must be of type holoscan: :gxf: :Entity, as shown in the PingTxNativeOp and the PingRxNativeOp implementa-
tions of this example, in contrast to the PingTxOp and PingRxOp built-in operators of the SDK.

For more details regarding the use of holoscan: :gxf: :Entity, follow the documentation on Interoperability be-
tween GXF and native C++ operators.

30.2 2. Creating the GXF extension that wraps the operator

To wrap the native operator as a GXF codelet in a GXF extension, we provide the CMake
wrap_operator_as_gxf_extension function in the SDK. An example of how it wraps PingTxNativeOp
and PingRxNativeOp can be found here.

e It leverages the CMake target names of the operators defined in their respective CMakeLists.txt
(ping_tx_native_op, ping_rx_native_op)

* The function parameters are documented at the top of the WrapOperatorAsGXFExtension.cmake file (ignore
implementation below).

Warning:

* A unique GXF extension is currently needed for each native operator to export (operators cannot be bundled
in a single extension at this time).

* Wrapping other GXF entities than operators (as codelets) is not currently supported.

291

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/ping_tx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/ping_rx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_tx/ping_tx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_rx/ping_rx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_extension/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/cmake/modules/WrapOperatorAsGXFExtension.cmake#L18-42

Holoscan SDK User Guide, Release 2.2.0

30.3 3. Using your wrapped operator in a GXF application

Note: This section assumes you are familiar with ow fo create a GXF application.

As shown in the gxf_app/CMakelLists.txt here, you need to list the following extensions in
create_gxe_application() to use your wrapped codelets:

e GXF::std
¢ gxf_holoscan_wrapper

¢ the name of the CMake target for the created extension, defined by the EXTENSION_TARGET_NAME argument
passed to wrap_operator_as_gxf_extension in the previous section

The codelet class name (defined by the CODELET_NAMESPACE::CODELET_NAME arguments passed to
wrap_operator_as_gxf_extension in the previous section) can then be used as a component type in a
GXF app node, as shown in the YAML app definition of the example, connecting the two ping operators.

292 Chapter 30. Using Holoscan Operators in GXF Applications

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/CMakeLists.min.txt#L30-33
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/ping.yaml

CHAPTER
THIRTYONE

GXF USER GUIDE

31.1 Graph Specification

Graph Specification is a format to describe high-performance Al applications in a modular and extensible way. It
allows writing applications in a standard format and sharing components across multiple applications without code
modification. Graph Specification is based on entity-composition pattern. Every object in graph is represented with
entity (aka Node) and components. Developers implement custom components which can be added to entity to achieve
the required functionality.

31.1.1 Concepts

The graph contains nodes which follow an entity-component design pattern implementing the “composition over in-
heritance” paradigm. A node itself is just a light-weight object which owns components. Components define how a
node interacts with the rest of the applications. For example, nodes be connected to pass data between each other. A
special component, called compute component, is used to execute the code based on certain rules. Typically a compute
component would receive data, execute some computation and publish data.

Graph

A graph is a data-driven representation of an Al application. Implementing an application by using programming
code to create and link objects results in a monolithic and hard to maintain program. Instead a graph object is used to
structure an application. The graph can be created using specialized tools and it can be analyzed to identify potential
problems or performance bottlenecks. The graph is loaded by the graph runtime to be executed.

The functional blocks of a graph are defined by the set of nodes which the graph owns. Nodes can be queried via the
graph using certain query functions. For example, it is possible to search for a node by its name.

SubGraph

A subgraph is a graph with additional node for interfaces. It points to the components which are accessible outside
this graph. In order to use a subgraph in an existing graph or subgraph, the developer needs to create an entity where
a component of the type nvidia: :gxf: :Subgraph is contained. Inside the Subgraph component a corresponding
subgraph can be loaded from the yaml file indicated by location property and instantiated in the parent graph.

System makes the components from interface available to the parent graph when a sub-graph is loaded in the parent
graph. It allows users to link sub-graphs in parent with defined interface.

A subgraph interface can be defined as follows:

293

Holoscan SDK User Guide, Release 2.2.0

interfaces:
- name: iname # the name of the interface for the access from the parent graph

target: n_entity/n_component # the true component in the subgraph that is represented.
—by the interface

Node

Graph Specification uses an entity-component design principle for nodes. This means that a node is a light-weight
object whose main purpose is to own components. A node is a composition of components. Every component is in
exactly one node. In order to customize a node a developer does not derive from node as a base class, but instead
composes objects out of components. Components can be used to provide a rich set of functionality to a node and thus
to an application.

Components

Components are the main functional blocks of an application. Graph runtime provides a couple of components which
implement features like properties, code execution, rules and message passing. It also allows a developer to extend the
runtime by injecting her own custom components with custom features to fit a specific use case.

The most common component is a codelet or compute component which is used for data processing and code execution.
To implement a custom codelet you’ll need to implement a certain set of functions like start and stop. A special system
- the scheduler - will call these functions at the specified time. Typical examples of triggering code execution are:
receiving a new message from another node, or performing work on a regular schedule based on a time trigger.

Edges

Nodes can receive data from other nodes by connecting them with an edge. This essential feature allows a graph to
represent a compute pipeline or a complicated Al application. An input to a node is called sink while an output is called
source. There can be zero, one or multiple inputs and outputs. A source can be connected to multiple sinks and a sink
can be connected to multiple sources.

Extension

An extension is a compiled shared library of a logical group of component type definitions and their implementations
along with any other asset files that are required for execution of the components. Some examples of asset files are
model files, shared libraries that the extension library links to and hence required to run, header and development files
that enable development of additional components and extensions that use components from the extension.

An extension library is a runtime loadable module compiled with component information in a standard format that
allows the graph runtime to load the extension and retrieve further information from it to:

* Allow the runtime to create components using the component types in the extension.

* Query information regarding the component types in the extension:

The component type name

The base type of the component

A string description of the component

Information of parameters of the co