NVIDIA.

Holoscan SDK User Guide
Release 0.5.1

NVIDIA Corporation

Jun 08, 2023

10

11

12

13

14

15

16

17

18

19

Overview

Relevant Technologies

SDK Installation

Additional Setup

Third Party Hardware Setup
Holoscan Core Concepts
Holoscan by Example

Creating an Application

Creating Operators

Built-in Operators and Extensions
Logging

Visualization Module

Inference Module

GXF Core concepts

Holoscan and GXF

GXF by Example

Using Holoscan Operators in GXF Applications
GXF User Guide

Video Pipeline Latency Tool

INTRODUCTION

15
23
25
61
77
109
113
115
123
129
131
133
149
151

225

CHAPTER
ONE

OVERVIEW

NVIDIA Holoscan is the Al sensor processing platform that combines hardware systems for low-latency sensor and
network connectivity, optimized libraries for data processing and Al, and core microservices to run streaming, imaging,
and other applications, from embedded to edge to cloud. It can be used to build streaming Al pipelines for a variety of
domains, including Medical Devices, High Performance Computing at the Edge, Industrial Inspection and more.

Note: In previous releases, the prefix Clara was used to define Holoscan as a platform designed initially for medical
devices. As Holoscan has grown, its potential to serve other areas has become apparent. With version 0.4.0, we’re proud
to announce that the Holoscan SDK is now officially built to be domain-agnostic and can be used to build sensor Al
applications in multiple domains. Note that some of the content of the SDK (sample applications) or the documentation
might still appear to be healthcare-specific pending additional updates. Going forward, domain specific content will
be hosted on the HoloHub repository.

The Holoscan SDK assists developers by providing:
1. Various installation strategies

From containers, to python wheels, to source, from development to deployment environments, the Holoscan SDK
comes in many packaging flavors to adapt to different needs. Find more information in the sdk installation section.

2. C++ and Python APIs

These APIs are now the recommended interface for the creation of application pipelines in the Holoscan SDK. See
the Using the SDK section to learn how to leverage those APIs, or the Doxygen pages (C++/Python) for specific API
documentation.

3. Built-in Operators

The units of work of Holoscan applications are implemented within Operators, as described in the core concepts of
the SDK. The operators included in the SDK provide domain-agnostic functionalities such as IO, machine learning
inference, processing, and visualization, optimized for Al streaming pipelines, relying on a set of Core Technologies.
This guide provides more information on the operators provided within the SDK /ere.

4. Minimal Examples

The Holoscan SDK provides a list of examples to illustrate specific capabilities of the SDK. Their source code can
be found in the GitHub repository. The Holoscan by Example section provides step-by-step analysis of some of these
examples to illustrate the innerworkings of the Holoscan SDK.

5. Video Pipeline Latency Tool

To help developers make sense of the overall end-to-end latency that could be added to a video stream by augmenting
it through a GPU-powered Holoscan platform such as the NVIDIA IGX Orin [ES] Developer Kit, the Holoscan SDK
includes a Video Pipeline Latency Measurement Tool. This tool can be used to measure and estimate the total end-to-
end latency of a video streaming application including the video capture, processing, and output using various hardware

https://developer.nvidia.com/holoscan-sdk
https://developer.nvidia.com/industries/healthcare
https://www.nvidia.com/en-us/clara/developer-kits/
https://www.nvidia.com/en-us/clara/developer-kits/
https://github.com/nvidia-holoscan/holohub
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples

Holoscan SDK User Guide, Release 0.5.1

and software components that are supported by the Holoscan Developer Kits. The measurements taken by this tool can
then be displayed with a comprehensive and easy-to-read visualization of the data.

6. Documentation
The Holoscan SDK documentation is composed of:
* This user guide, in a webpage or PDF format
* Build and run instructions specific to each installation strategy

¢ Release notes on Github

2 Chapter 1. Overview

https://docs.nvidia.com/clara-holoscan/sdk-user-guide/
https://developer.nvidia.com/clara-holoscan-sdk-documentation
https://github.com/nvidia-holoscan/holoscan-sdk/releases

CHAPTER
TWO

RELEVANT TECHNOLOGIES

Holoscan accelerates streaming Al applications by leveraging both hardware and software. The Holoscan SDK relies
on multiple core technologies to achieve low latency and high throughput:

* Rivermax and GPUDirect RDMA

* Graph Execution Framework (GXF)

o TensorRT TensorRT Optimized Inference

e [Interoperability between CUDA and rendering frameworks

* Accelerated Image Transformations

2.1 Rivermax and GPUDirect RDMA

The Holoscan Developer Kits can be used along with the NVIDIA Rivermax SDK to provide an extremely efficient
network connection using the onboard ConnectX network adapter that is further optimized for GPU workloads by
using GPUDirect for RDMA. This technology avoids unnecessary memory copies and CPU overhead by copying data
directly to or from pinned GPU memory, and supports both the integrated GPU or the discrete GPU.

Note: NVIDIA is also committed to supporting hardware vendors enable RDMA within their own drivers, an example
of which is provided by the AJA Video Systems as part of a partnership with NVIDIA for the Holoscan SDK. The
AJASource operator is an example of how the SDK can leverage RDMA.

For more information about GPUDirect RDMA, see the following:
¢ GPUDirect RDMA Documentation

e Minimal GPUDirect RDMA Demonstration source code, which provides a real hardware example of using
RDMA and includes both kernel drivers and userspace applications for the RHS Research PicoEVB and HiTech
Global HTG-K800 FPGA boards.

https://developer.nvidia.com/networking/rivermax
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/NVIDIA/jetson-rdma-picoevb

Holoscan SDK User Guide, Release 0.5.1

2.2 Graph Execution Framework

The Graph Execution Framework (GXF) is a core component of the Holoscan SDK that provides features to execute
pipelines of various independent tasks with high performance by minimizing or removing the need to copy data across
each block of work, and providing ways to optimize memory allocation.

GXF will be mentioned in many places across this user guide, including a dedicated section which provides more
details.

2.3 TensorRT Optimized Inference

NVIDIA TensorRT is a deep learning inference framework based on CUDA that provided the highest optimizations to
run on NVIDIA GPUs, including the Holoscan Developer Kits.

GXF comes with a TensorRT base extension which is extended in the Holoscan SDK: the updated TensorRT extension
is able to selectively load a cached TensorRT model based on the system GPU specifications.

Similarly, the new inference module leverages TensorRT and provides the ability to execute multiple inferences in
parallel.

Warning: The 7TensorRT extension will be deprecated in favor of operators leveraging the new inference module
in a future release.

2.4 Interoperability between CUDA and rendering frameworks

OpenGL and Vulkan are commonly used for realtime visualization and, like CUDA, are executed on the GPU. This
provides an opportunity for efficient sharing of resources between CUDA and those rendering frameworks.

e The OpenGL and Segmentation Visualizer extensions use the OpenGL interoperability functions provided by
the CUDA runtime APIL.

» The Holoviz module uses the external resource interoperability functions of the low-level CUDA driver applica-
tion programming interface, the Vulkan external memory and external semaphore extensions.

Warning: The OpenGL extension will be deprecated in favor of Vulkan/Holoviz in a future release.

2.5 Accelerated Image Transformations

Streaming image processing often requires common 2D operations like resizing, converting bit widths, and changing
color formats. NVIDIA has built the CUDA accelerated NVIDIA Performance Primitive Library (NPP) that can help
with many of these common transformations. NPP is extensively showcased in the Format Converter operator of the
Holoscan SDK.

4 Chapter 2. Relevant Technologies

https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/cuda/archive/11.6.1/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXTRES__INTEROP.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_memory_fd.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_semaphore.html
https://docs.nvidia.com/cuda/npp/index.html

CHAPTER
THREE

SDK INSTALLATION

The Holoscan SDK requires a specific software stack to build and run. We provide two:

* The Development Stack for Holoscan Developer Kits based on Holopack (Jetson L4T based), and for x86_64
Linux compute platforms, ideal for development and testing of the SDK.

e The Deployment Stack for Holoscan Developer Kits based on OpenEmbedded (Yocto build system), recom-
mended to limit your stack to only the software components required to run your Holoscan application. The
runtime Board Support Package (BSP) can be optimized with respect to memory usage, speed, security and
power requirements.

3.1 Development Software Stack

3.1.1 Prerequisites

Holoscan Developer Kits (aarch64)

Set up your developer kit:
Developer Kit User Guide | HoloPack | GPU
NVIDIA IGX Orin Guide 2.0 dGPU or iGPU
NVIDIA IGX Orin [ES] | Guide 1.2 dGPU only
NVIDIA Clara AGX Guide 1.2 dGPU only
x86_64

You’ll need the following to use the Holoscan SDK on x86_64:

* OS: Ubuntu 20.04

¢ NVIDIA discrete GPU (dGPU)
— Ampere or above recommended for best performance
— Quadro/NVIDIA RTX necessary for GPUDirect RDMA support
— Tested with NVIDIA RTX 6000 and NVIDIA RTX A6000

* NVIDIA dGPU drivers: 510.73.08 or above

¢ For Rivermax support (optional):

— NVIDIA ConnectX SmartNIC

https://www.nvidia.com/en-us/edge-computing/products/igx/
https://github.com/nvidia-holoscan/holoscan-docs/blob/main/devkits/nvidia-igx-orin/nvidia_igx_orin_user_guide.md
https://developer.download.nvidia.com/CLARA/IGX-Orin-Developer-Kit-User-Guide-(v1.0).pdf
https://www.nvidia.com/en-gb/clara/intelligent-medical-instruments/
https://developer.nvidia.com/clara-agx-developer-kit-user-guide
https://www.nvidia.com/en-gb/design-visualization/desktop-graphics/
https://developer.nvidia.com/gpudirect
https://www.nvidia.com/en-us/design-visualization/rtx-6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes
https://www.nvidia.com/en-us/networking/ethernet-adapters/

Holoscan SDK User Guide, Release 0.5.1

— OFED Network Drivers: 5.8
— GPUDirect Drivers: 1.1
— Rivermax SDK: 1.20 (for local development only)

Additional software dependencies are needed, which vary based on how you choose to install the SDK (see section
below).

Refer to the following sections in this user guide for additional setup or to support third-party technologies, such as
AJA cards or Emergent cameras.

3.1.2 Install the SDK

We provide multiple ways to install and run the Holoscan SDK:

* The Holoscan container image on NGC includes the Holoscan libraries, GXF extensions, headers, example
source code, and sample datasets, as well as all the dependencies that were tested with Holoscan. It is the
recommended way to run the Holoscan examples, while still allowing you to create your own C++ and Python
Holoscan application.

* The Holoscan python wheels on PyPI are the simplest way for Python developers to get started with the SDK
using pip install holoscan. The wheels include the SDK libraries, not the example applications or the
sample datasets.

¢ The Holoscan Debian package on NGC includes the libraries, headers, example applications and CMake con-
figurations needed for both C++ and Python developers. It does not include sample datasets.

* The Holoscan SDK source repository provides reference implementations as well as infrastructure for building
the libraries and example applications yourself.

Refer to the documentation in each of those for specific install and run instructions.

3.2 Deployment Software Stack

NVIDIA Holoscan accelerates deployment of production-quality applications by providing a set of OpenEmbed-
ded build recipes and reference configurations that can be leveraged to customize and build Holoscan-compatible
Linux4Tegra (L4T) embedded board support packages (BSP) on Holoscan Developer Kits.

Holoscan OpenEmbedded/Yocto recipes add OpenEmbedded recipes and sample build configurations to build BSPs
for NVIDIA Holoscan Developer Kits that feature support for discrete GPUs (dGPU), AJA Video Systems I/O boards,
and the Holoscan SDK. These BSPs are built on a developer’s host machine and are then flashed onto a Holoscan
Developer Kit using provided scripts.

There are two options available to set up a build environment and start building Holoscan BSP images using OpenEm-
bedded.

 The first sets up a local build environment in which all dependencies are fetched and installed manually by the
developer directly on their host machine. Please refer to the Holoscan OpenEmbedded/Yocto recipes README
for more information on how to use the local build environment.

* The second uses a Holoscan OpenEmbedded/Yocto Build Container that is provided by NVIDIA on NGC which
contains all of the dependencies and configuration scripts such that the entire process of building and flashing a
BSP can be done with just a few simple commands.

6 Chapter 3. SDK Installation

https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://developer.nvidia.com/networking/rivermax
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan
https://pypi.org/project/holoscan/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_dev_deb
https://github.com/nvidia-holoscan/holoscan-sdk
https://github.com/nvidia-holoscan/meta-tegra-holoscan
https://github.com/nvidia-holoscan/meta-tegra-holoscan/blob/main/README.md
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan-oe-builder

CHAPTER
FOUR

ADDITIONAL SETUP

In addition to the required steps to install the Holoscan SDK, the steps below will help you achieve peak performance:

4.1 Setting-up GPUDirect RDMA

Note: Learn more about RDMA in the technology overview section.

Note: This is not required for AJA cards support as they use their own driver (NTV2) which implements GPUDirect
RDMA. However, this is required for Emergent cameras support, as their SDK (eSDK) uses the NVIDIA GPUDirect
drivers.

HoloPack 2.0

The GPUDirect drivers (nvidia peermem) are installed with HoloPack 2.0 in dGPU mode. However - at this time - they
must be reconfigured after installing MOFED drivers (either as part of the Rivermax SDK option in SDK Manager, or
manually), then loaded manually to enable the use of GPUDirect RDMA with NVIDIA’s Quadro/workstation GPUs.

Ensure you've installed MOFED drivers first through SDKM (Rivermax SDK) or manually
sudo dpkg-reconfigure nvidia-dkms-520 && \
insmod /var/lib/dkms/nvidia/520.61.05/5.10.104-tegra/arm64/module/nvidia-peermem.ko

HoloPack 1.2

The GPUDirect drivers (nvidia peermem) are installed after switching to dGPU mode on HoloPack 1.2. However
- at this time - they must be reconfigured after installing MOFED drivers (either as part of the Rivermax SDK op-
tion in SDK Manager, or manually), then loaded manually to enable the use of GPUDirect RDMA with NVIDIA’s
Quadro/workstation GPUs.

Ensure you've installed MOFED drivers first through SDKM (Rivermax SDK) or manually
sudo dpkg-reconfigure nvidia-dkms-510 && \
insmod /var/lib/dkms/nvidia/510.73.08/5.10.65-tegra/aarch64/module/nvidia-peermem.ko

Holoscan SDK User Guide, Release 0.5.1

HoloPack 1.1

The GPUDirect drivers (nvidia peermem) must be manually installed to enable the use of GPUDirect RDMA with
NVIDIA’s Quadro/workstation GPUs. They are not installed as part of Holopack 1.1 when selecting Rivermax SDK
in the SDK Manager at this time.

1. Download the GPUDirect Drivers for OFED: nvidia-peer-memory_1.1.tar.gz
« If the above link does not work, navigate to the Downloads section on the GPUDirect page

2. Install GPUDirect:

mv nvidia-peer-memory_1.1.tar.gz nvidia-peer-memory_1l.1l.orig.tar.gz
tar -xvf nvidia-peer-memory_1l.1l.orig.tar.gz

cd nvidia-peer-memory-1.1

dpkg-buildpackage -us -uc

sudo dpkg -i ../nvidia-peer-memory_1.1-0_all.deb

sudo dpkg -i ../nvidia-peer-memory-dkms_1.1-0_all.deb

sudo service nv_peer_mem start

3. Verify the nv_peer_mem service is running:

sudo service nv_peer_mem status

4. Enable the nv_peer_mem service at boot time:

sudo systemctl enable nv_peer_mem
sudo /lib/systemd/systemd-sysv-install enable nv_peer_mem

Warning: There is a known issue that prevents GPU RDMA from being enabled on the NVIDIA IGX Orin [ES]
Developer Kit without a firmware update or running a manual command. Refer to the instructions in the NVIDIA
IGX Orin [ES] Developer Kit User Guide for instructions.

4.1.1 Testing with Rivermax

The instructions below describe the steps to test GPUDirect using the Rivermax SDK. The test applications used by
these instructions, generic_sender and generic_receiver, can then be used as samples in order to develop custom
applications that use the Rivermax SDK to optimize data transfers.

Note: The Rivermax SDK can be installed onto the Developer Kit via SDK Manager by selecting it as an additional
SDK during the HoloPack installation. Access to the Rivermax SDK Developer Program as well as a valid Rivermax
software license is required to use the Rivermax SDK.

Running the Rivermax sample applications requires two systems, a sender and a receiver, connected via ConnectX
network adapters. If two Developer Kits are used then the onboard ConnectX can be used on each system, but if
only one Developer Kit is available then it is expected that another system with an add-in ConnectX network adapter
will need to be used. Rivermax supports a wide array of platforms, including both Linux and Windows, but these
instructions assume that another Linux based platform will be used as the sender device while the Developer Kit is
used as the receiver.

Note: The $rivermax_sdk variable referenced below corresponds to the path where the Rivermax SDK package was
installed. If the Rivermax SDK was installed via SDK Manager, this path will be:

8 Chapter 4. Additional Setup

https://www.mellanox.com/products/GPUDirect-RDMA
https://www.mellanox.com/downloads/ofed/nvidia-peer-memory_1.1.tar.gz
https://www.mellanox.com/products/GPUDirect-RDMA
https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://developer.nvidia.com/networking/rivermax

Holoscan SDK User Guide, Release 0.5.1

rivermax_sdk=$HOME/Documents/Rivermax/1.8.21

Install path might differ in future versions of Rivermax.

1. Determine the logical name for the ConnectX devices that are used by each system. This can be done by using
the 1shw -class network command, finding the product: entry for the ConnectX device, and making note
of the logical name: that corresponds to that device. For example, this output on a Developer Kit shows
the onboard ConnectX device using the enp9s0£01 logical name (1shw output shortened for demonstration
purposes).

$ sudo 1lshw -class network
*-network:0
description: Ethernet interface
product: MT28908 Family [ConnectX-6]
vendor: Mellanox Technologies
physical id: ©
bus info: pci@0000:09:00.0
logical name: enp9s0fd
version: 00
serial: 48:b0:2d:13:9b:6b
capacity: 10Gbit/s
width: 64 bits
clock: 33MHz
capabilities: pciexpress vpd msix pm bus_master cap_list ethernet physical.
—1000bt-fd 10000bt-fd autonegotiation
configuration: autonegotiation=on broadcast=yes driver=mlx5_core..
wdriverversion=5.4-1.0.3 duplex=full firmware=20.27.4006 (NVDOOOOOOOOO1) ip=10.0.0.
—2 latency=0 link=yes multicast=yes
resources: iomemory:180-17f irqg:33 memory:1818000000-1819ffffff

The instructions that follow will use the enp9s0£0 logical name for ifconfig commands, but these names
should be replaced with the corresponding logical names as determined by this step.

2. Run the generic_sender application on the sending system.

a. Bring up the network:

$ sudo ifconfig enp9s0f0® up 10.0.0.1

b. Build the sample apps:

$ cd ${rivermax_sdk}/apps
$ make

e. Launch the generic_sender application:

$ sudo ./generic_sender -1 10.0.0.1 -d 10.0.0.2 -p 5001 -y 1462 -k 8192 -z 500 -v

+HBHBHBHLH R HHHHRHRHR AL AR HHHRHR AR ARG
| Sender index: O

| Thread ID: 0x7falffblc®

| CPU core affinity: -1

| Number of streams in this thread: 1

| Memory address: 0x7f986e3010

(continues on next page)

4.1. Setting-up GPUDirect RDMA 9

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

| Memory length: 59883520[B]

| Memory key: 40308
+HBHBHBHBHBHH R BB BB AR AR AR HHHRHR AR AR AR LR R R
| Stream index: 0

| Source IP: 10.0.0.1

| Destination IP: 10.0.0.2

| Destination port: 5001

| Number of flows: 1

| Rate limit bps: 0

| Rate limit max burst in packets: 0
| Memory address: 0x7f986e3010

| Memory length: 59883520[B]

| Memory key: 40308

| Number of user requested chunks: 1
| Number of application chunks: 5

| Number of packets in chunk: 8192
| 1462
+* 7

B O R R LR R R LR

Packet's payload size:

R R R R AR R R AR LR A

R A R LR

3. Run the generic_receiver application on the receiving system.

a. Bring up the network:

$ sudo ifconfig enp9s0f0 up 10.0.0.2

b. Build the sample apps with GPUDirect support (CUDA=y):

$ cd ${rivermax_sdk}/apps
$ make CUDA=y

c. Launch the generic_receiver application:

Attached flow 1 to stream.
Running main receive loop...

Got 5877704 GPU packets | 68.75 Gbps during 1.00
Got 5878240 GPU packets | 68.75 Gbps during 1.00
Got 5878240 GPU packets | 68.75 Gbps during 1.00
Got 5877704 GPU packets | 68.75 Gbps during 1.00
Got 5878240 GPU packets | 68.75 Gbps during 1.00

secC
sec
secC
secC
secC

$ sudo ./generic_receiver -i 10.0.0.2 -m 10.0.0.2 -s 10.0.0.1 -p 5001 -g O

With both the generic_sender and generic_receiver processes active, the receiver will continue to print out
received packet statistics every second. Both processes can then be terminated with <ctrl-c>.

10

Chapter 4. Additional Setup

Holoscan SDK User Guide, Release 0.5.1

4.2 Enabling G-SYNC

For better performance and to keep up with the high refresh rate of Holoscan applications, we recommend the use of a
G-SYNC display.

Tip: Holoscan has been tested with these two G-SYNC displays:
¢ Asus ROG Swift PG279QM
¢ Asus ROG Swift 360 Hz PG259QNR

Follow these steps to ensure G-SYNC is enabled on your display:
1. Open the “NVIDIA Settings” Graphical application (nvidia-settings in Terminal).

2. Click on X Server Display Configuration then the Advanced button. This will show the A1low G-SYNC
on monitor not validated as G-SYNC compatible option. Enable the option and click Apply:

3. To show the refresh rate and G-SYNC label on the display window, click on OpenGL Settings for the se-
lected display. Now click Allow G-SYNC/G-SYNC Compatible and Enable G-SYNC/G-SYNC Compatible
Visual Indicator options and click Quit. This step is shown in below image. The Gsync indicator will be
at the top right screen once the application is running.

4.3 Disabling Variable Backlight

Various monitors have a Variable Backlight feature. That setting can add up to a frame of latency when enabled. Refer
to your monitor’s manufacturer instructions to disable it.

Tip: To disable variable backlight on the Asus ROG Swift monitors mentioned above, use the joystick button at the
back of the display, go to the image tag, select variable backlight, then switch that setting to OFF.

4.4 Enabling Exclusive Display Mode

By default, applications use a borderless fullscreen window managed by the window manager. Because the window
manager also manages other applications, applications may suffer a performance hit. To improve performance, exclu-
sive display mode can be used with Holoscan’s new visualization module (Holoviz), allowing the application to bypass
the window manager and render directly to the display. Refer to the Holoviz documentation for details.

4.5 Use both Integrated and Discrete GPUs on Holoscan developer
kits

Due to symbols redundancy between the nvgpu drivers for integrated GPU (iGPU), and the openrm drivers for discrete
GPU (dGPU), additional steps are required to be able to leverage them both in parallel on the Holoscan developer kits
at this time.

Starting with the Holoscan SDK 0.5, we provide a utility container on NGC named L4T Compute Assist designed to
enable iGPU compute access on the development stack configured for dGPU.

4.2. Enabling G-SYNC 11

https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/specs/
https://rog.asus.com/us/monitors/27-to-31-5-inches/rog-swift-pg279qm-model/
https://rog.asus.com/us/monitors/23-to-24-5-inches/rog-swift-360hz-pg259qnr-model/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/l4t-compute-assist

Holoscan SDK User Guide, Release 0.5.1

System Information
X Server Display Configuration

w XScreen0

X Server XVideo Settings
OpenGL Settings
Graphics Information
Antialiasing Settings
WVDPAU Information

~ GPU 0-(Quadro RTX 6000)

Thermal Settings

PowerMizer

ECC Settings

DP-2 - (AUS ROG PG279QM)
Application Profiles
nvidia-settings Configuration

NVIDIA Settings - O

AUS ROG PG279QM

2560x1440
Selection: AUS ROG PG279QM (DP-2 on GPU-0) -
Configuration: Xscreen0 -
Resolution: 2560x1440 - 240 Hz -
Mode Name: 2560x1440_240
Orientation: No Rotation = No Reflection -
ViewPortlIn: 2560x1440
ViewPortOut: 2560x14404040
Panning: 2560x1440

Force Composition Pipeline Force Full Composition Pipeline

Allow G-SYNC on monitor not validated as G-SYNC Compatible

Apply Detect Displays Basic... Reset

Save to X Configuration File

Help Quit

Fig. 4.1: Enable G-SYNC for the current display

12

Chapter 4. Additional Setup

Holoscan SDK User Guide, Release 0.5.1

NVIDIA Settings

System Information
X Server Display Configuration

nyvinDA

v AScreen0
X Server XVideo Settings Performance
OpenGL Settings Sync to VBlank
Graphics Information 3 Allow Flipping
Antialiasing Settings Allow G-SYNC/G-SYNC Compatible

VDPAU Information Enable G-SYNC/G-SYNC Compatible Visual Indicator

~ GPU 0 - (Quadro RTX 6000) Image Settings: | High Quality v
Thermal Settings Miscellaneous
PowerMizer
ECC Settings
DP-2 - (AUS ROG PG279QM)
DP-7 - (AUS ROG PG259QN)
Application Profiles Use Conformant Texture Clamping
Enable Graphics API Visual Indicator

Enable gamma correction For antialiased lines

Gamma correction

nvidia-settings Configuration

Help Quit

Fig. 4.2: Enable Visual Indicator for the current display

4.5. Use both Integrated and Discrete GPUs on Holoscan developer kits 13

Holoscan SDK User Guide, Release 0.5.1

Note: This container enables using the iGPU for compute capabilities only (not rendering).

14 Chapter 4. Additional Setup

CHAPTER
FIVE

THIRD PARTY HARDWARE SETUP

GPU compute performance is a key component of the Holoscan hardware platforms, and to optimize GPU based
video processing applications and provide lowest possible latency the Holoscan SDK now supports AJA Video Sys-
tems capture cards and Emergent Vision Technologies high-speed cameras. The following sections will provide more
information on how to setup the system with these technologies.

5.1 AJA Video Systems

AJA provides a wide range of proven, professional video I/O devices, and thanks to a partnership between NVIDIA
and AJA, Holoscan supports the AJA NTV2 SDK and device drivers as of the NTV2 SDK 16.1 release.

The AJA drivers and SDK now offer RDMA support for NVIDIA GPUs. This feature allows video data to be captured
directly from the AJA card to GPU memory, which significantly reduces latency and system PCI bandwidth for GPU
video processing applications as sysmem to GPU copies are eliminated from the processing pipeline.

The following instructions describe the steps required to setup and use an AJA device with RDMA support on Holoscan
Developer Kits. Note that the AJA NTV2 SDK support for Holoscan includes all of the AJA Developer Products, though
the following instructions have only been verified for the Corvid 44 12G BNC and KONA HDMI products, specifically.

Note: The addition of an AJA device to a Holoscan Developer Kit is optional. The Holoscan SDK has elements that
can be run with an AJA device with the additional features mentioned above, but those elements can also run without
AJA. For example, there are Holoscan sample applications that have an AJA live input component, however they can
also take in video replay as input. Similarly, the latency measurement tool can measure the latency of the video I/O
subsystem with or without an AJA device available.

5.1.1 Installing the AJA Hardware

This section describes how to install the AJA hardware on the Clara AGX Developer Kit. Note that the AJA Hardware
is also compatible with the NVIDIA IGX Orin Developer Kit.

To install an AJA Video Systems device into the Clara AGX Developer Kit, remove the side access panel by removing
two screws on the back of the Clara AGX. This provides access to the two available PCle slots, labelled 13 and 14 in
the Clara AGX Developer Kit User Guide:

While these slots are physically identical PCle x16 slots, they are connected to the Clara AGX via different PCle
bridges. Only slot 14 shares the same PCle bridge as the RTX6000 dGPU, and so the AJA device must be installed
into slot 14 for RDMA support to be available. The following image shows a Corvid 44 12G BNC card installed into
slot 14 as needed to enable RDMA support.

15

https://www.aja.com/
https://www.aja.com/family/developer
https://www.aja.com/products/corvid-44-12g-bnc
https://www.aja.com/products/kona-hdmi
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://www.aja.com/products/corvid-44-12g-bnc

Holoscan SDK User Guide, Release 0.5.1

16 Chapter 5. Third Party Hardware Setup

Holoscan SDK User Guide, Release 0.5.1

5.1.2 Installing the AJA Software

The AJA NTV2 SDK includes both the drivers (kernel module) that are required in order to enable an AJA device, as
well as the SDK (headers and libraries) that are used to access an AJA device from an application.

The drivers must be loaded every time the system is rebooted, and they must be loaded natively on the host system (i.e.
not inside a container). The drivers must be loaded regardless of whether applications will be run natively or inside a
container (see Using AJA Devices in Containers).

The SDK only needs to be installed on the native host and/or container that will be used to compile applications
with AJA support. The Holoscan SDK containers already have the NTV2 SDK installed, and so no additional steps
are required to build AJA-enabled applications (such as the reference Holoscan applications) within these containers.
However, installing the NTV2 SDK and utilities natively on the host is useful for the initial setup and testing of the
AJA device, so the following instructions cover this native installation.

Note: To summarize, the steps in this section must be performed on the native host, outside of a container, with the
following steps required once:

* Downloading the AJA NTV2 SDK Source
* Building the AJA NTV2 Drivers
The following steps required after every reboot:
* Loading the AJA NTV?2 Drivers
And the following steps are optional (but recommended during the initial setup):
* Building and Installing the AJA NTV2 SDK
e Testing the AJA Device

Downloading the AJA NTV2 SDK Source

Navigate to a directory where you would like the source code to be downloaded, then perform the following to clone
the NTV2 SDK source code.

$ git clone https://github.com/nvidia-holoscan/ntv2.git
$ export NTV2=$(pwd)/ntv2

Note: These instructions use a fork of the official AJA NTV2 Repository that is maintained by NVIDIA and may
contain additional changes that are required for Holoscan SDK support. These changes will be pushed to the official AJA
NTV2 repository whenever possible with the goal to minimize or eliminate divergence between the two repositories.

Building the AJA NTV2 Drivers

The following will build the AJA NTV2 drivers with RDMA support enabled. Once built, the kernel module
(ajantv2.ko) and load/unload scripts (load_ajantv2 and unload_ajantv2) will be output to the ${NTV2}/bin di-
rectory.

$ export AJA_RDMA=1

$ export AJA_IGPU=0® # Or 1 to run on the integrated GPU of the IGX Orin Devkit.
— (L4T >= 35.4)

$ make -j --directory ${NTV2}!/ajadriver/linux

5.1. AJA Video Systems 17

https://github.com/aja-video/ntv2

Holoscan SDK User Guide, Release 0.5.1

Loading the AJA NTV2 Drivers

Running any application that uses an AJA device requires the AJA kernel drivers to be loaded, even if the application
is being run from within a container. The drivers must be manually loaded every time the machine is rebooted using
the load_ajantv2 script:

$ sudo sh ${NTV2}/bin/load_ajantv2
loaded ajantv2 driver module
created node /dev/ajantv20

Note: The NTV2 environment variable must point to the NTV2 SDK path where the drivers were previ-
ously built as described in Building the AJA NTV2 Drivers.

Secure boot must be disabled in order to load unsigned module. If any errors occur while loading the
module refer to the Troubleshooting section, below.

Building and Installing the AJA NTV2 SDK

Since the AJA NTV2 SDK is already loaded into the Holoscan containers, this step is not strictly required in order to
build or run any Holoscan applications. However, this builds and installs various tools that can be useful for testing
the operation of the AJA hardware outside of Holoscan containers, and is required for the steps provided in 7esting the
AJA Device.

sudo apt-get install -y cmake

mkdir NTV2}/cmake-build

cd ${NTV2}/cmake-build

export PATH=/usr/local/cuda/bin: ${PATH
cmake ..

make -j

sudo make install

L e A]

Testing the AJA Device

The following steps depend on tools that were built and installed by the previous step, Building and Installing the AJA
NTV2 SDK. If any errors occur, see the Troubleshooting section, below.

1. To ensure that an AJA device has been installed correctly, the ntv2enumerateboards utility can be used:

$ ntv2enumerateboards

AJA NTV2 SDK version 16.2.0 build 3 built on Wed Feb 02 21:58:01 UTC 2022
1 AJA device(s) found:

AJA device 0 is called 'KonaHDMI - O

deviceID of 0x10767400
SDI Input(s)

SDI Output(s)

HDMI Input(s)

HDMI Output(s)

Analog Input(s)

Analog Output(s)

This device has
This device has
This device has
This device has
This device has
This device has
This device has

(=B — I — R A~]

(continues on next page)

18 Chapter 5. Third Party Hardware Setup

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

47 video format(s):
1080150, 1080i59.94, 1080i60, 720p59.94, 720p60, 1080p29.97, 1080p30,
1080p25, 1080p23.98, 1080p24, 2Kp23.98, 2Kp24, 720p50, 1080p50b,
1080p59.94b, 1080p60b, 1080p50a, 1080p59.94a, 1080p60a, 2Kp25, 525i59.94,
625150, UHDp23.98, UHDp24, UHDp25, 4Kp23.98, 4Kp24, 4Kp25, UHDp29.97,
UHDp30, 4Kp29.97, 4Kp30, UHDp5®, UHDp59.94, UHDp60, 4Kp50, 4Kp59.94,
4Kp60, 4Kp4d7.95, 4Kp48, 2Kp60a, 2Kp59.94a, 2Kp29.97, 2Kp30, 2Kp50a,
2Kp47.95a, 2Kp48a

2. To ensure that RDMA support has been compiled into the AJA driver and is functioning correctly, the testrdma
utility can be used:

$ testrdma -t500
test device ® start © end 7 size 8388608 count 500

frames/errors 500/0

5.1.3 Using AJA Devices in Containers

Accessing an AJA device from a container requires the drivers to be loaded natively on the host (see Loading the AJA
NTV?2 Drivers), then the device that is created by the load_ajantv2 script must be shared with the container using the
--device docker argument, such as —device /dev/ajantv20:/dev/ajantv20.

5.1.4 Troubleshooting

1. Problem: The sudo sh ${NTV2}/bin/load_ajantv2 command returns an error.
Solutions:
a. Make sure the AJA card is properly installed and powered (see 2.a below)

b. Check if SecureBoot validation is disabled:

$ sudo mokutil --sb-state
SecureBoot enabled
SecureBoot validation is disabled in shim

If SecureBoot validation is enabled, disable it with the following procedure:

$ sudo mokutil --disable-validation

* Enter a temporary password and reboot the system.

» Upon reboot press any key when you see the blue screen MOK Management
¢ Select Change Secure Boot state

* Enter the password your selected

* Select Yes to disable Secure Book in shim-signed

¢ After reboot you can verify again that SecureBoot validation is disabled in shim.

5.1. AJA Video Systems 19

Holoscan SDK User Guide, Release 0.5.1

2. Problem: The ntv2enumerateboards command does not find any devices.
Solutions:

a. Make sure that the AJA device is installed properly and detected by the system (see Installing the AJA
Hardware):

$ lspci

0000:00:00.0 PCI bridge: NVIDIA Corporation Device lad® (rev al)

0000:05:00.0 Multimedia video controller: AJA Video Device eb25 (rev 01)
0000:06:00.0 PCI bridge: Mellanox Technologies Device 1976

0000:07:00.0 PCI bridge: Mellanox Technologies Device 1976

0000:08:00.0 VGA compatible controller: NVIDIA Corporation Device 1e30 (rev al)

b. Make sure that the AJA drivers are loaded properly (see Loading the AJA NTV2 Drivers):

$ 1smod

Module Size Used by

ajantv2 610066 O

nvidia_drm 54950 4

mlx5_ib 170091 ©

nvidia_modeset 1250361 8 nvidia_drm
ib_core 211721 1 mlx5_ib

nvidia 34655210 315 nvidia_modeset

3. Problem: The testrdma command outputs the following error:

error - GPU buffer lock failed

Solution: The AJA drivers need to be compiled with RDMA support enabled. Follow the instructions in Building
the AJA NTV?2 Drivers, making sure not to skip the export AJA_RDMA=1 when building the drivers.

5.2 Emergent Vision Technologies (EVT)

Thanks to a collaboration with Emergent Vision Technologies, the Holoscan SDK now supports EVT high-speed cam-
eras.

Note: The addition of an EVT camera to the Holoscan Developer Kits is optional. The Holoscan SDK has an
application that can be run with the EVT camera, but there are other applications that can be run without EVT camera.

5.2.1 Installing EVT Hardware

The EVT cameras can be connected to Holoscan Developer Kits though Mellanox ConnectX SmartNIC, with the most
simple connection method being a single cable between a camera and the devkit. For 25 GigE cameras that use the
SFP28 interface, this can be achieved by using SFP28 cable with QSFP28 to SFP28 adaptor.

Note: The Holoscan SDK application has been tested using a SFP28 copper cable of 2M or less. Longer copper cables
or optical cables and optical modules can be used but these have not been tested as a part of this development.

Refer to the Clara AGX Developer Kit User Guide or the NVIDIA IGX Orin [ES] Developer Kit User Guide for the
location of the QSFP28 connector on the device.

20 Chapter 5. Third Party Hardware Setup

https://emergentvisiontec.com/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://store.nvidia.com/en-us/networking/store/product/MCP2M00-A001E30N/NVIDIAMCP2M00A001E30NDACCableEthernet25GbESFP281m/
https://store.nvidia.com/en-us/networking/store/product/MAM1Q00A-QSA28/NVIDIAMAM1Q00AQSA28CableAdapter100Gbsto25GbsQSFP28toSFP28/
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://developer.nvidia.com/igx-orin-developer-kit-user-guide

Holoscan SDK User Guide, Release 0.5.1

For EVT camera setup, refer to Hardware Installation in EVT Camera User’s Manual. Users need to log in to find be
able to download Camera User’s Manual.

Tip: The EVT cameras require the user to buy the lens. Based on the application of camera, the lens can be bought
from any online store.

5.2.2 Installing EVT Software

The Emergent SDK needs to be installed in order to compile and run the Clara Holoscan applications with EVT camera.
The latest tested version of the Emergent SDK is eSDK 2.37.05 Linux Ubuntu 20.04.04 Kernel 5.10.65 JP
5.0 HP and can be downloaded from here. The Emergent SDK comes with headers, libraries and examples. To install
the SDK refer to the Software Installation section of EVT Camera User’s Manual. Users need to log in to find be able
to download Camera User’s Manual.

Note: The Emergent SDK depends on Rivermax SDK v1.20 and Mellanox OFED Network Drivers v5.8 which are
pre-installed by the SDK Manager on the Holoscan Developer Kits. To avoid duplicate installation of the Rivermax
SDK and the Mellanox OFED Network Drivers use the following command when installing the Emergent SDK:

sudo ./install_eSdk.sh no_mellanox

5.2.3 Post EVT Software Installation Steps

After installation of the software, execute the steps below to bring up the camera node on the Holoscan devkits in dGPU
mode.

1. Restart openibd to configure Mellanox device, if not already.

sudo /etc/init.d/openibd restart

2. Find out the logical name of the ethernet interface being used to connect EVT camera to Mellanox CX NIC using
below command.

sudo ibdev2netdev -v

An example of what output would look like is:

0007:03:00.0 mlx5_0 (MT4125 - MCX623106AN-CDAT) ConnectX-6 Dx EN adapter card, 100GbE,.
—Dual-port QSFP56, PCIe 4.0 x16, No Crypto fw 22.33.1048 port 1 (ACTIVE) ==> ethl (Up)
0007:03:00.1 mlx5_1 (MT4125 - MCX623106AN-CDAT) ConnectX-6 Dx EN adapter card, 100GbE,.
—.Dual-port QSFP56, PCIe 4.0 x16, No Crypto fw 22.33.1048 port 1 (DOWN) ==> eth2 (Down)

In above example, the camera is connected to ACTIVE port ethl.

Note:
* The logical name of the ethernet interface can be anything and does not need to be ethl as in above example.

* if above command does not yield anything, do following and try again:

sudo /etc/init.d/openibd restart

5.2. Emergent Vision Technologies (EVT) 21

https://emergentvisiontec.com/resources/?tab=umg
https://www.bhphotovideo.com/c/search?Ntt=c%20mount%20lens&N=0&InitialSearch=yes&sts=ps
https://emergentvisiontec.com/resources/?tab=ss
https://emergentvisiontec.com/resources/?tab=umg

Holoscan SDK User Guide, Release 0.5.1

3. Configure the NIC with IP address, if not already during the Installing EVT hardware step. The following
command uses the logical name of the ethernet interface found in step 2.

sudo ifconfig ethl down
sudo ifconfig ethl 192.168.1.100 mtu 9000
sudo ifconfig ethl up

5.2.4 Testing the EVT Camera

To test if the EVT camera and SDK was installed correctly, run the eCapture application with sudo privileges. First,
ensure that a valid Rivermax license file is under /opt/mellanox/rivermax/rivermax.lic, then follow the in-
structions under the eCapture section of EVT Camera User’s Manual.

5.2.5 Troubleshooting

1. Problem: The application fails to find the EVT camera.
Solution:

e Make sure that the MLNX ConnectX SmartNIC is configured with the correct IP address. Follow
section Post EVT Software Installation Steps

2. Problem: The application fails to open the EVT camera.
Solutions:
e Make sure that the application was run with sudo privileges.
* Make sure a valid Rivermax license file is located at /opt/mellanox/rivermax/rivermax.lic.
3. Problem: Fail to find eCapture application in the home window.
Solution:

¢ Open the terminal and find it under /opt/EVT/eCapture. The applications needs to be run with
sudo privileges.

4. Problem: The eCapture application fails to connect to the EVT camera with error message “GVCP ack error”.

Solutions: It could be an issue with the HR12 power connection to the camera. Disconnect the HR12
power connector from the camera and try reconnecting it.

5. Problem: The IP address of the Emergent camera is reset even after setting up with the above steps.

Solutions: Check whether the NIC settings in Ubuntu is set to “Connect automatically”. Go to Settings-
>Network->NIC for the Camera and then unselect “Connect automatically” and in the IPv6 tab, select
Disable.

22 Chapter 5. Third Party Hardware Setup

https://emergentvisiontec.com/resources/?tab=umg

CHAPTER
SIX

HOLOSCAN CORE CONCEPTS

Note: In its early days, the Holoscan SDK was tightly linked to the GXF core concepts. While the Holoscan SDK
still relies on GXF as a backend to execute applications, it now offers its own interface, including a C++ API (0.3), a
Python API (0.4), and the ability to write native operators (0.4) without requiring to wrap a GXF extension. Read the
Holoscan and GXF section for additional details.

An Application is composed of Fragments, each of which runs a graph of Operators. The implementation of that
graph is sometimes referred to as a pipeline, or workflow, which can be visualized below:

Application

Fragment 1 Fragment 2

- —

Fig. 6.1: Core concepts: Application

Input Port

: Output Port
Input Port

Fig. 6.2: Core concepts: Port

23

Holoscan SDK User Guide, Release 0.5.1

The core concepts of the Holoscan API are:

Application: An application acquires and processes streaming data. An application is a collection of fragments
where each fragment can be allocated to execute on a physical node of a Holoscan cluster.

Fragment: A fragment is a building block of the Application. It is a Directed Acyclic Graph (DAG) of operators.
A fragment can be assigned to a physical node of a Holoscan cluster during execution. The run-time execution
manages communication across fragments. In a Fragment, Operators (Graph Nodes) are connected to each other
by flows (Graph Edges).

Operator: An operator is the most basic unit of work in this framework. An Operator receives streaming data
at an input port, processes it, and publishes it to one of its output ports. A Codelet in GXF would be replaced
by an Operator in the Holoscan SDK. An Operator encapsulates Receivers and Transmitters of a GXF
Entity as Input/Output Ports of the Operator.

(Operator) Resource: Resources such as system memory or a GPU memory pool that an Operator needs to
perform its job. Resources are allocated during the initialization phase of the application. This matches the
semantics of GXF’s Memory Allocator or any other components derived from the Component class in GXF.

Condition: A condition is a predicate that can be evaluated at runtime to determine if an operator should execute.
This matches the semantics of GXF’s Scheduling Term.

Port: An interaction point between two operators. Operators ingest data at Input ports and publish data at
Output ports. Receiver, Transmitter, and MessageRouter in GXF would be replaced with the concept of
Input/Output Port of the Operator and the Flow (Edge) of the Application Workflow (DAG) in the Framework.

Message: A generic data object used by operators to communicate information.

Executor: An Executor that manages the execution of a Fragment on a physical node. The framework provides
a default Executor that uses a GXF Scheduler to execute an Application.

24

Chapter 6. Holoscan Core Concepts

CHAPTER
SEVEN

HOLOSCAN BY EXAMPLE

In this section, we demonstrate how to use the Holoscan SDK to build applications through a series of examples. The
concepts needed to build your own Holoscan applications will be covered as we go through each example.

Note: Examples source code and run instructions can be found in the examples directory on GitHub, or under /opt/
nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

7.1 Hello World

For our first example, we look at how to create a Hello World example using the Holoscan SDK.
In this example we’ll cover:

* how to define your application class

¢ how to define a one-operator workflow

* how to use a CountCondition to limit the number of times an operator is executed

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

7.1.1 Defining the HelloWorldApp class

For more details, see the Defining an Application Class section.

We define the HelloWorldApp class that inherits from holoscan’s Application base class. An instance of the appli-
cation is created in main. The run() method will then start the application.

25

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

40

41

42

43

44

21

22

23

24

25

26

27

28

Holoscan SDK User Guide, Release 0.5.1

C++

class HellolWorldApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

// Define the operators, allowing the hello operator to execute once
auto hello = make_operator<ops: :HelloWorldOp>("hello", make_condition<CountCondition>

=(1));

// Define the workflow by adding operator into the graph
add_operator(hello);
}
3

int main(int argc, char** argv) {
auto app = holoscan: :make_application<HelloWorldApp>Q);
app->runQ);

return 0;

}

Python

class HelloWorldApp(Application):
def compose(self):
Define the operators
hello = HelloWorldOp(self, CountCondition(self, 1), name="hello")

Define the one-operator workflow
self.add_operator (hello)

if __name__ == "__main__":
app = HelloWorldApp()
app.run()

7.1.2 Defining the HelloWorldApp workflow

For more details, see the Application Workflows section.

When defining your application class, the primary task is to define the operators used in your application and the
interconnectivity between them to define the application workflow. The HelloWorldApp uses the simplest form of a
workflow which consists of a single operator: Hel1loWorldOp.

For the sake of this first example, we will ignore the details of defining a custom operator to focus on the highlighted
information below: when this operator runs (compute), it will print out Hello World! to the standard output:

26 Chapter 7. Holoscan by Example

26

27

28

29

30

Holoscan SDK User Guide, Release 0.5.1

C++

class HelloWorldOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (HelloWorldOp)

HelloWorldOp() = default;

void setup(OperatorSpec& spec) override {

}

void compute(InputContext& op_input, OutputContext& op_output,
ExecutionContext& context) override {
std: :cout << std::endl;
std::cout << "Hello World!\n";
std::cout << std::endl;
}
1

Python

class HelloWorldOp(Operator):
"""Simple hello world operator.

This operator has no ports.

On each tick, this operator prints out hello world.

e

def setup(self, spec: OperatorSpec):
pass

def compute(self, op_input, op_output, context):

print (")
print("Hello World!")
print(" n)

Defining the application workflow occurs within the application’s compose () method. In there, we first create an
instance of the HelloWorldOp operator defined above, then add it to our simple workflow using add_operator().

C++

class HellolWorldApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

// Define the operators, allowing the hello operator to execute once
auto hello = make_operator<ops: :HelloWorldOp>("hello", make_condition<CountCondition>

=(1));

(continues on next page)

7.1. Hello World 27

21

23

24

25

26

27

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// Define the workflow by adding operator into the graph
add_operator (hello);
}
};

Python

class HelloWorldApp(Application):
def compose(self):
Define the operators
hello = HelloWorldOp(self, CountCondition(self, 1), name="hello")

Define the one-operator workflow
self.add_operatorChello)

Holoscan applications deal with streaming data, so an operator’s compute () method will be called continuously until
some situation arises that causes the operator to stop. For our Hello World example, we want to execute the operator
only once. We can impose such a condition by passing a CountCondition object as an argument to the operator’s
constructor.

For more details, see the Configuring operator conditions section.

7.1.3 Running the Application

Running the application should give you the following output in your terminal:

Hello World!

Congratulations! You have successfully run your first Holoscan SDK application!

7.2 Ping Simple

Most applications will require more than one operator. In this example, we will create two operators where one operator
will produce and send data while the other operator will receive and print the data. The code in this example makes
use of the built-in PingTxOp and PingRxOp operators that are defined in the holoscan: : ops namespace.

In this example we’ll cover:
* how to use built-in operators

* how to use add_flow() to connect operators together

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

28 Chapter 7. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.5.1

7.2.1 Operators and Workflow

Here is a example workflow involving two operators that are connected linearly.

PingTxOp PingRxOp
—out...inI> ., . .
. [in]in : int
out(out) : int

Fig. 7.1: A linear workflow

In this example, the source operator PingTxOp produces integers from 1 to 10 and passes it to the sink operator
PingRxOp which prints the integers to standard output.

7.2.2 Connecting Operators

We can connect two operators by calling add_flow() (C++/Python) in the application’s compose () method.

The add_flow() method (C++/Python) takes the source operator, the destination operator, and the optional port name
pairs. The port name pair is used to connect the output port of the source operator to the input port of the destination
operator. The first element of the pair is the output port name of the upstream operator and the second element is the
input port name of the downstream operator. An empty port name (“”’) can be used for specifying a port name if the
operator has only one input/output port. If there is only one output port in the upstream operator and only one input
port in the downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose () method for our example. Note that
when an operator appears in an add_flow() statement, it doesn’t need to be added into the workflow separately using
add_operator().

C++

#include <holoscan/holoscan.hpp>
#include <holoscan/operators/ping_tx/ping_tx.hpp>
#include <holoscan/operators/ping_rx/ping_rx.hpp>

class MyPingApp : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;
// Create the tx and rx operators
auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto rx = make_operator<ops: :PingRxOp>("rx");

// Connect the operators into the workflow: tx -> rx
add_flow(tx, rx);
}
};

int main(int argc, char** argv) {
auto app = holoscan: :make_application<MyPingApp>Q);
app->run(Q);

(continues on next page)

7.2. Ping Simple 29

21

22

23

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

return 0;

}

The header files that define PingTxOp and PingRxOp are included on lines 2 and 3 respectively.

* We create an instance of the PingTxOp using the make_operator () function (line 9) with the name “tx” and
constrain it’s compute () method to execute 10 times.

¢ We create an instance of the PingRxOp using the make_operator () function (line 10) with the name “rx”.

* The tx and rx operators are connected using add_flow() (line 12)

Python

from holoscan.conditions import CountCondition
from holoscan.core import Application
from holoscan.operators import PingRxOp, PingTxOp

class MyPingApp(Application):
def compose(self):
Create the tx and rx operators
tx = PingTxOp(self, CountCondition(self, 10), name="tx")
rx = PingRxOp(self, name="rx")

Connect the operators into the workflow: tx -> rx
self.add_flow(tx, rx)

if __name__ == "__main__":
app = MyPingApp()
app.run()

The built-in holoscan operators, PingRxOp and PingTxOp, are imported on line 3.

* We create an instance of the PingTxOp operator with the name “tx” and constrain it’s compute () method to
execute 10 times (line 8).

e We create an instance of the PingRxOp operator with the name “rx” (line 9).
* The tx and rx operators are connected using add_flow() which defines this application’s workflow (line 12).

7.2.3 Running the Application

Running the application should give you the following output in your terminal:

Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:
Rx message value:

NO VTR W N

(continues on next page)

30 Chapter 7. Holoscan by Example

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

Rx message value: 8
Rx message value: 9
Rx message value: 10

7.3 Ping Custom Op

In this section, we will modify the previous ping_simple example to add a custom operator into the workflow. We’ve
already seen a custom operator defined in the hello_world example but skipped over some of the details.

In this example we will cover:
* the details of creating your own custom operator class
* how to add input and output ports to your operator
* how to add parameters to your operator

* the data type of the messages being passed between operators

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

7.3.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

PingMxOp

PingTxOp PingRxOp

—out...inT> [inlin: int —out...inT> _
out(out) : int [in]in: int
' out(out) : int

Fig. 7.2: A linear workflow with new custom operator

Compared to the previous example, we are adding a new PingMxOp operator between the PingTxOp and PingRxOp
operators. This new operator takes as input an integer, multiplies it by a constant factor, and then sends the new value
to PingRxOp. You can think of this custom operator as doing some data processing on an input stream before sending
the result to downstream operators.

7.3. Ping Custom Op 31

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

20

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 0.5.1

7.3.2 Configuring Operator Input and Output Ports

Our custom operator needs 1 input and 1 output port and can be added by calling spec. input () and spec.output()
methods within the operator’s setup () method. This requires providing the data type and name of the port as arguments
(for C++ API), or just the port name (for Python API). We will see an example of this in the code snippet below. For
more details, see Specifying operator inputs and outputs (C++) or Specifying operator inputs and outputs (Python).

7.3.3 Configuring Operator Parameters

Operators can be made more reusable by customizing their parameters during initialization. The custom parameters
can be provided either directly as arguments or accessed from the application’s YAML configuration file. We will
show how to use the former in this example to customize the “multiplier” factor of our PingMxOp custom operator.
Configuring operators using a YAML configuration file will be shown in a subsequent example. For more details, see
Configuring operator parameters.

The code snippet below shows how to define the PingMxOp class.

C++

#include <holoscan/holoscan.hpp>
#include <holoscan/operators/ping_tx/ping_tx.hpp>
#include <holoscan/operators/ping_rx/ping_rx.hpp>

namespace holoscan::ops {

class PingMxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingMxOp)

PingMxOp() = default;

void setup(OperatorSpec& spec) override {
spec.input<int>("in");
spec.output<int>("out");
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value
="y 2);
}

void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&).
—override {
auto value = op_input.receive<int>("in");

std::cout << "Middle message value: << *(value.get()) << std::endl;

// Multiply the value by the multiplier parameter
*(value.get()) *= multiplier_;

op_output.emit(value);

};

private:
Parameter<int> multiplier_;

(continues on next page)

32 Chapter 7. Holoscan by Example

32

34

20

21

22

23

24

25

26

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

1

} // namespace holoscan::ops

¢ The PingMxOp class inherits from the Operator base class (line 7).

e The HOLOSCAN_OPERATOR_FORWARD_ARGS macro (line 9) is syntactic sugar to help forward an operator’s con-
structor arguments to the Operator base class, and is a convenient shorthand to avoid having to manually define
constructors for your operator with the necessary parameters.

¢ Input/output ports with the names “in”/”out” are added to the operator spec on lines 14 and 15 respectively. The
port type of both ports are int as indicated by the template argument <int>.

e We add a “multiplier” parameter to the operator spec (line 16) with a default value of 2. This parameter is tied
to the private “multiplier_" data member.

In the compute () method, we receive the integer data from the operator’s “in” port (line 20), print it’s value,
multiply it’s value by the multiplicative factor, and send the new value downstream (line 27).

On line 25, note that the data being passed between the operators has the type std: : shared_ptr<int>, a shared
pointer to a int object. To get the raw pointer to the integer, value.get () is first called within the parenthesis.

The call to op_output.emit (value) on line 27 is equivalent to op_output.emit (value, "out") since this
operator has only 1 output port. If the operator has more than 1 output port, then the port name is required.

Python

from holoscan.conditions import CountCondition
from holoscan.core import Application, Operator, OperatorSpec
from holoscan.operators import PingRxOp, PingTxOp

class PingMxOp(Operator):
"""Example of an operator modifying data.

This operator has 1 input and 1 output port:

input: in
output: "out"

The data from the input is multiplied by the "multiplier" parameter

e

def setup(self, spec: OperatorSpec):
spec.input("in")
spec.output(out")
spec.param("multiplier", 2)

def compute(self, op_input, op_output, context):
value = op_input.receive("in")
print(f"Middle message value: {value}")

Multiply the values by the multiplier parameter
value *= self.multiplier

(continues on next page)

7.3. Ping Custom Op 33

28

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

op_output.emit(value, "out")

The PingMxOp class inherits from the Operator base class (line 5).
¢ Input/output ports with the names “in”/”out” are added to the operator spec on lines 17 and 18 respectively.
e We add a “multiplier” parameter to the operator spec with a default value of 2 (line 19).

* In the compute() method, we receive the integer data from the operator’s “in” port (line 22), print it’s value,
multiply it’s value by the multiplicative factor, and send the new value downstream (line 28).

Now that the custom operator has been defined, we create the application, operators, and define the workflow.

C++

class MyPingApp : public holoscan::Application {
public:
void compose() override {

using namespace holoscan;
// Define the tx, mx, rx operators, allowing tx operator to execute 10 times
auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto mx = make_operator<ops: :PingMxOp>("mx", Arg("multiplier", 3));
auto rx = make_operator<ops: :PingRxOp>("rx");

// Define the workflow: tx -> mx -> rx
add_flow(tx, mx);
add_flow(mx, rx);
}
};

int main(int argc, char** argv) {
auto app = holoscan: :make_application<MyPingApp>Q);
app->run(Q);

return 0;

}

* The tx, mx, and rx operators are created in the compose () method on lines 40-42.

e The custom mx operator is created in exactly the same way with make_operator () (line 41) as the built-in
operators, and configured with a “multiplier” parameter initialized to 3 which overrides the parameter’s default
value of 2 (line 16).

* The workflow is defined by connecting tx to mx, and mx to rx using add_£flow() on lines 45-46.

34 Chapter 7. Holoscan by Example

40

41

42

43

Holoscan SDK User Guide, Release 0.5.1

Python

class MyPingApp(Application):
def compose(self):
Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
tx = PingTxOp(self, CountCondition(self, 10), name="tx")
mx = PingMxOp(self, name="mx", multiplier=3)
rx = PingRxOp(self, name="rx")

Define the workflow: tx -> mx -> X
self.add_flow(tx, mx)
self.add_flow(mx, rx)

if __name__ == "__main__":
app = MyPingApp()
app.run()

* The tx, mx, and rx operators are created in the compose () method on lines 32-34.

* The custom mx operator is created in exactly the same way as the built-in operators (line 33), and configured
with a “multiplier” parameter initialized to 3 which overrides the parameter’s default value of 2 (line 19).

* The workflow is defined by connecting tx to mx, and mx to rx using add_flow() on lines 37-38.

7.3.4 Message Data Types

For the C++ API, the messages that are passed between the operators are shared pointers to the objects, so the value
variable from lines 20 and 25 of the example above has the type std: :shared_ptr<int>. For the Python API, the
messages passed between operators can be arbitrary Python objects so no special consideration is needed since it is not
restricted to the stricter parameter typing used for C++ API operators.

Let’s look at the code snippet for the built-in PingTxOp class and see if this helps to make it clearer.

C++

#include "holoscan/operators/ping_tx/ping_tx.hpp"
namespace holoscan::ops {

void PingTxOp::setup(OperatorSpec& spec) {
spec.output<int>("out");

¥

void PingTxOp::compute(InputContext&, OutputContext& op_output, ExecutionContext&) {
auto value = std::make_shared<int>(index_++);
op_output.emit(value, "out");

¥

} // namespace holoscan::ops

¢ The “out” port of the PingTxOp has the type int (line 6).

7.3. Ping Custom Op 35

Holoscan SDK User Guide, Release 0.5.1

* The type returned by the call to std: :make_shared<int>() on line 10 is std: : shared_ptr<int>, and this
shared pointer to an integer is what is published to the “out” port when calling emit () (line 11).

* The message received by the downstream PingMxOp operator when it calls op_input.receive<int>() has
the type std: : shared_ptr<int>.

Python

class PingTxOp(Operator):
"""Simple transmitter operator.

This operator has a single output port:
output: "out"

"

On each tick, it transmits an integer to the "out" port.

o

def setup(self, spec: OperatorSpec):
spec.output("out")

def compute(self, op_input, op_output, context):
op_output.emit(self.index, "out")
self.index += 1

* No special consideration is necessary for the Python version, we simply call emit () and pass the integer object
(line 14).

Attention: For advance use cases, e.g., when writing C++ applications where you need interoperability between
C++ native and GXF operators you will need to use the gxf: :Entity type instead. See Interoperability between
GXF and native C++ operators for more details. If you are writing a Python application which needs a mixture
of Python wrapped C++ operators and native Python operators, see Interoperability between wrapped and native
Python operators

7.3.5 Running the Application

Running the application should give you the following output in your terminal:

Middle message value: 1
Rx message value: 3
Middle message value: 2
Rx message value: 6
Middle message value: 3
Rx message value: 9
Middle message value: 4
Rx message value: 12
Middle message value: 5
Rx message value: 15
Middle message value: 6
Rx message value: 18
Middle message value: 7
Rx message value: 21

(continues on next page)

36 Chapter 7. Holoscan by Example

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

Middle message value: 8
Rx message value: 24
Middle message value: 9
Rx message value: 27
Middle message value: 10
Rx message value: 30

7.4 Ping Multi Port

In this section, we look at how to create an application with a more complex workflow where operators may have
multiple input/output ports that send/receive a user-defined data type.

In this example we will cover:
* how to send/receive messages with a custom data type

* how to add a port that can receive any number of inputs

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

7.4.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

PingMxOp

PingTxOp o :
__outl...inlp, [inlinl:ValueData — _ outl...receivers PingRxOp

in]in2 : ValueData
outl(out) : ValueData ~—out2...in2 " -

out2(out) : ValueData outl(out) : ValueData
out2(out) : ValueData

—out2 receivers‘D [in]receivers : ValueData

Fig. 7.3: A workflow with multiple inputs and outputs
In this example, PingTxOp sends a stream of odd integers to the outl port, and even integers to the out2 port.

PingMxOp receives these values using inl and in2 ports, multiplies them by a constant factor, then forwards them
to a single port - receivers - on PingRxOp.

7.4.2 User Defined Data Types

In the previous ping examples, the port types for our operators were integers, but the Holoscan SDK can send any
arbitrary data type. In this example, we’ll see how to configure operators for our user-defined ValueData class.

7.4. Ping Multi Port 37

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Holoscan SDK User Guide, Release 0.5.1

C++

#include "holoscan/holoscan.hpp"

class ValueData {
public:
ValueData() = default;
explicit ValueData(int value) : data_(value) {
HOLOSCAN_LOG_TRACE("ValueData::ValueData(): {}", data_);

}
~ValueData() { HOLOSCAN_LOG_TRACE("ValueData::~ValueData(): {}", data_); }

void data(int value) { data_ = value; }
int data() const { return data_; }
private:

int data_;
1

The ValueData class wraps a simple integer (line 6, 16), but could have been arbitrarily complex.

Note: The HOLOSCAN_LOG_<LEVEL>() macros can be used for logging with fmtlib syntax (lines 7, 9 above) as

demonstrated across this example. See the Logging section for more details.

Python

from holoscan.conditions import CountCondition
from holoscan.core import Application, Operator, OperatorSpec
from holoscan.logger import load_env_log_level

class ValueData:

"""Example of a custom Python class"""
def __init__(self, value):

self.data = value

def __repr__(self):
return f"ValueData({self.data})"

def __eq__(self, other):
return self.data == other.data

def __hash__(self):
return hash(self.data)

The ValueData class is a simple wrapper, but could have been arbitrarily complex.

38 Chapter 7. Holoscan by Example

20

21

22

23

24

25

26

27

23

24

25

26

27

Holoscan SDK User Guide, Release 0.5.1

7.4.3 Defining an Explicit Number of Inputs and Outputs

After defining our custom ValueData class, we configure our operators’ ports to send/receive messages of this type,
similarly to the previous example.

This is the first operator - PingTxOp - sending ValueData objects on two ports, outl and out2:

C++

namespace holoscan::ops {

class PingTxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingTxOp)

PingTxOp() = default;

void setup(OperatorSpec& spec) override {
spec.output<ValueData>("outl");
spec.output<ValueData>("out2");

}

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
auto valuel = std::make_shared<ValueData>(index_++);
op_output.emit(valuel, "outl");

auto value2 = std::make_shared<ValueData>(index_++);
op_output.emit(value2, "out2");

1

int index_ = 1;

};

* We configure the output ports with the ValueData type on lines 27 and 28 using spec.output<ValueData>().

* The values are then sent out using op_output.emit() on lines 33 and 36. The port name is required since
there is more than one port on this operator.

Note: Data passed between operators is wrapped in shared pointers (std::shared_ptr), hence the call to
std: :make_shared<ValueData>(...) on lines 32 and 35.

Python

class PingTxOp(Operator):
"""Simple transmitter operator.

This operator has:
outputs: "outl", "out2"

On each tick, it transmits a ValueData object at each port. The
transmitted values are even on portl and odd on port2 and increment with
each call to compute.

(continues on next page)

7.4. Ping Multi Port 39

40

41

42

43

44

45

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

e

def __init__(self, fragment, *args, **kwargs):
self.index = 1
super().__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.output("outl")
spec.output("'out2")

def compute(self, op_input, op_output, context):
valuel = ValueData(self.index)
self.index += 1
op_output.emit(valuel, "outl")

value2 = ValueData(self.index)
self.index += 1
op_output.emit(value2, "out2")

* We configure the output ports on lines 35 and 36 using spec.output (). There is no need to reference the type
(ValueData) in Python.

* The values are then sent out using op_output.emit() on lines 41 and 45.

We then configure the middle operator - PingMxOp - to receive that data on ports inl and in2:

C++

class PingMxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingMxOp)

PingMxOp() = default;

void setup(OperatorSpec& spec) override {

"
—

}

spec.input<ValueData>("inl");

spec.input<ValueData>("in2");

spec.output<ValueData>("outl");

spec.output<ValueData>("out2");

spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value
, 2);

void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&).
—override {

auto valuel = op_input.receive<ValueData>("inl");
auto value2 = op_input.receive<ValueData>("in2");

HOLOSCAN_LOG_INFO("Middle message received (count: {})", count_++);

HOLOSCAN_LOG_INFO("Middle message valuel: {}", valuel->data());
HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data());

(continues on next page)

40

Chapter 7. Holoscan by Example

62

63

64

65

66

67

68

69

70

71

2

73

74

46

47

48

49

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// Multiply the values by the multiplier parameter
valuel->data(valuel->data() * multiplier_);
value2->data(value2->data() * multiplier_);

op_output.emit(valuel, "outl™);
op_output.emit(value2, "out2");

3
private:
int count_ = 1;
Parameter<int> multiplier_;
3
* We configure the input ports with the ValueData type on lines 47 and 48 using spec.input<ValueData>().
* The values are received using op_input.receive() on lines 55 and 56 using the port names. The received
values are of type std: :shared_ptr<ValueData>
Python

class PingMxOp(Operator):
"""Example of an operator modifying data.

This operator has:
inputs: "inl", "in2"
outputs: "outl", "out2"

The data from each input is multiplied by a user-defined value.

mren

def __init__(self, fragment, *args, **kwargs):
self.count = 1
super().__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.input("inl")
spec.input("in2")
spec.output("outl")
spec.output("out2")
spec.param('multiplier", 2)

def compute(self, op_input, op_output, context):
valuel = op_input.receive("inl")
value2 = op_input.receive("in2")
print(f"Middle message received (count: {self.count})")
self.count += 1

print(f"Middle message valuel: {valuel.data}")
print(f"Middle message value2: {value2.data}")

(continues on next page)

7.4. Ping Multi Port 41

76

77

78

79

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

Multiply the values by the multiplier parameter
valuel.data *= self.multiplier
value2.data *= self.multiplier

op_output.emit(valuel, "outl")
op_output.emit(value2, "out2")

Sending messages of arbitrary data types is pretty straightforward in Python. The code to define the operator input
ports (lines 61-62), and to receive them (lines 68, 69) did not change when we went from passing int to ValueData
objects.

PingMxOp processes the data, then sends it out on two ports, similarly to what is done by PingTxOp above.

7.4.4 Receiving Any Number of Inputs

In this workflow, PingRxO0p has a single input port - receivers - that is connected to two upstream ports from
PingMxOp. When an input port needs to connect to multiple upstream ports, we define it with spec.param() instead
of spec.input(). The inputs are then stored in a vector, following the order they were added with add_flow().

C++

class PingRxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingRxO0p)

PingRxOp() = default;

void setup(OperatorSpec& spec) override {
spec.param(receivers_, 'receivers", "Input Receivers", "List of input receivers.", {}
=)
}

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
auto value_vector = op_input.receive<std: :vector<ValueData>>("receivers");

HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
—vector.size());

HOLOSCAN_LOG_INFO("Rx message valuel: {}", value_vector[0]->data());
HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[l]->data());

};

private:
Parameter<std: :vector<IOSpec*>> receivers_;
int count_ = 1;

};

} // namespace holoscan::ops

¢ In the operator’s setup() method, we define a parameter receivers (line 82) that is tied to the private data
member receivers_ (line 95) of type Parameter<std: :vector<IOSpec*>>.

42 Chapter 7. Holoscan by Example

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Holoscan SDK User Guide, Release 0.5.1

* The values are retrieved using op_input.receive<std: :vector<ValueData>>(...).

e value_vector’s type is std: : vector<std: : shared_ptr<ValueData>> (line 86).

Python

class PingRxOp(Operator):

e

Simple receiver operator.

This operator has:

input:

"receivers"

This is an example of a native operator that can dynamically have any
number of inputs connected to is "receivers" port.

o

def __init__(self, fragment, *args, **kwargs):
self.count = 1
super().__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.param(''receivers", kind="receivers")

def compute(self, op_input, op_output, context):
values = op_input.receive(''receivers")
print (f"Rx message received (count: {self.count}, size: {len(values)})")
self.count += 1
print (£"Rx message valuel: {values[0].data}")
print (£"Rx message value2: {values[1l].data}")

¢ In Python, a port that can be connected to multiple upstream ports is created by defining a parameter and setting
the argument kind="receivers" (line 97).

e The call to receive() returns a tuple of ValueData objects (line 100).

The rest of the code creates the application, operators, and defines the workflow:

C++

class MyPingApp : public holoscan::Application {

public:

void compose() override {
using namespace holoscan;

// Define
auto tx =
auto mx =
auto rx =

// Define

the tx, mx, rx operators, allowing the tx operator to execute 10 times
make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
make_operator<ops: :PingMxOp>("mx", Arg("multiplier", 3));
make_operator<ops: :PingRxO0p>("rx");

the workflow

add_flow(tx, mx, {{"outl", "inl1"}, {"out2", "in2"1}});
add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});

(continues on next page)

7.4. Ping Multi Port 43

114

115

116

117

118

119

120

121

122

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

1

int main(int argc, char** argv) {
holoscan::load_env_log_level();
auto app = holoscan: :make_application<MyPingApp>Q);
app->run(Q);

return 0;

Python

class MyPingApp(Application):
def compose(self):
Define the tx, mx, rx operators, allowing the tx operator to execute 10 times
tx = PingTxOp(self, CountCondition(self, 10), name="tx")
mx = PingMxOp(self, name="mx", multiplier=3)
rx = PingRxOp(self, name="rx")

Define the workflow

self.add_flow(tx, mx, {("outl", "inl1"), ("out2", "in2")})

self.add_flow(mx, rx, {("outl", "receivers"), ("out2", "receivers'")})
if __name__ == "__main__":
load_env_log_level()
app = MyPingApp(O)
app.run()

* The operators tx, mx, and rx are created in the application’s compose () similarly to previous examples.

* Since the operators in this example have multiple input/output ports, we need to specify the third, port name pair
argument when calling add_flow():

— tx/outl is connected tomx/inl, and tx/out2 is connected to mx/in2.

— mx/outl and mx/out2 are both connected to rx/receivers.

Note: The load_env_log_level () function loads the logging level from the HOLOSCAN_LOG_LEVEL environment
variable .

7.4.5 Running the Application

Running the application should give you output similar to the following in your terminal.

2023-03-17 01:00:28.448 INFO /workspace/holoscan-sdk/src/core/executors/gxf/gxf_
—.executor.cpp@71: Creating context

[2023-03-17 01:00:28.459] [holoscan] [info] [gxf_executor.cpp:100] Loading extensions.
—from configs...

[2023-03-17 01:00:28.459] [holoscan] [info] [gxf_executor.cpp:285] Activating Graph...
[2023-03-17 01:00:28.460] [holoscan] [info] [gxf_executor.cpp:287] Running Graph...

(continues on next page)

44 Chapter 7. Holoscan by Example

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

[2023-03-17 01:00:28.460] [holoscan] [info] [gxf_executor.cpp:289] Waiting for.

—,completion...

2023-03-17 01:00:28.461 INFO gxf/std/greedy_scheduler.cpp@184: Scheduling 3 entities
[ping_ multi_port.cpp:77] Middle message..

[2023-03-17 01:00

—received (count:

[2023-03-17 01:00
—valuel: 1

[2023-03-17 01:00:

—value2: 2

[2023-03-17 01:00:
—received (count:
[2023-03-17 01:00:

3

[2023-03-17 01:00:

—6

[2023-03-17 01:00:
—received (count:
[2023-03-17 01:00:

—valuel: 3

[2023-03-17 01:00:

—value2: 4

[2023-03-17 01:00:
—received (count:
[2023-03-17 01:00:

-9

[2023-03-17 01:00:

—12

[2023-03-17 01:00:

[2023-03-17 01:00:

54

[2023-03-17 01:00:
—received (count:
[2023-03-17 01:00:

—valuel: 19

[2023-03-17 01:00:

—value2: 20

[2023-03-17 01:00:
—received (count:
[2023-03-17 01:00:

—57

[2023-03-17 01:00:

- 60

:28.461] [holoscan]
1
:28.461] [holoscan]

28.461] [holoscan]

28.461] [holoscan]
1, size: 2)
28.461] [holoscan]
28.461] [holoscan]
28.461]

2)
28.461]

[holoscan]
[holoscan]

28.461] [holoscan]
28.461] [holoscan]
2, size: 2)

28.461] [holoscan]

28.461] [holoscan]

28.463] [holoscan]

28.463] [holoscan]

28.464]
10)

28.464]

[holoscan]
[holoscan]
28.464] [holoscan]
28.464] [holoscan]
10, size: 2)
28.464] [holoscan]

28.464] [holoscan]

[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]

[info]

[info]
[info]
[info]
[info]
[info]
[info]
[info]

[info]

[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.

[ping_multi_port.

[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.
[ping_multi_port.

[ping_multi_port.

Ccpp:

Cpp:

Ccpp:

cpp:

Cpp:

cpp:

cpp:

Ccpp:

cpp:

cpp:

cpp:

cpp:

Ccpp:

Ccpp:

Cpp:

Ccpp:

cpp:

Cpp:

Ccpp:

79] Middle message.

80] Middle message..

108] Rx message..

110] Rx message valuel:.
1117 Rx message value2:.
77] Middle message..

79] Middle message..

80] Middle message.

108]

Rx message.

110] Rx message valuel:.

111] Rx message value2:.

110] Rx message valuel:.,

111] Rx message value2:.
77] Middle message.

79] Middle message..

80] Middle message..

108] Rx message.

110] Rx message valuel:.

111] Rx message value2:.

2023-03-17 01:00:28.464 INFO gxf/std/greedy_scheduler.cpp@367: Scheduler finished.
[2023-03-17 01:00:28.464] [holoscan] [info] [gxf_executor.cpp:291] Deactivating Graph...
2023-03-17 01:00:28.464 INFO /workspace/holoscan-sdk/src/core/executors/gxf/gxf_

—,executor.cpp@88: Destroying context

Note: Depending on your log level you may see more or fewer messages. The output above was generated using the

7.4. Ping Multi Port

45

Holoscan SDK User Guide, Release 0.5.1

default value of INFO.

7.5 Video Replayer

So far we have been working with simple operators to demonstrate Holoscan SDK concepts. In this example, we look
at two built-in Holoscan operators that have many practical applications.

In this example we’ll cover:
* how to load a video file from disk using VideoStreamReplayerOp operator
* how to display video using HolovizOp operator

* how to configure your operator’s parameters using a YAML configuration file

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

7.5.1 Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

VideoStreamReplayerOp HolovizOp
—output...receivers>

[in]receivers : Tensor
output(out) : Tensor

Fig. 7.4: Workflow to load and display video from a file

We connect the “output” port of the replayer operator to the “receivers” port of the Holoviz operator.

7.5.2 Video Stream Replayer Operator
The built-in video stream replayer operator can be used to replay a video stream that has been encoded as gxf entities.
You can use the convert_video_to_gxf_entities.py script to encode a video file as gxf entities for use by this operator.

This operator processes the encoded file sequentially and supports realtime, faster than realtime, or slower than realtime
playback of prerecorded data. The input data can optionally be repeated to loop forever or only for a specified count.
For more details, see operators-video-stream-replayer.

We will use the replayer to read gxf entities from disk and send the frames downstream to the Holoviz operator.

46 Chapter 7. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://gitlab-master.nvidia.com/clara-holoscan/clara-holoscan-sdk/-/tree/main/public/scripts#convert_video_to_gxf_entitiespy

Holoscan SDK User Guide, Release 0.5.1

7.5.3 Holoviz Operator

The built-in Holoviz operator provides the functionality of the Visualization Module for Holoscan SDK applications to
visualize data. Holoviz composites real time streams of frames with multiple different other layers like segmentation
mask layers, geometry layers and GUI layers.

We will use Holoviz to display frames that have been sent by the replayer operator to it’s “receivers” port which can
receive any number of inputs. In more intricate workflows, this port can receive multiple streams of input data where,
for example, one stream is the original video data while other streams detect objects in the video to create bounding
boxes and/or text overlays.

7.5.4 Application Configuration File (YAML)

The SDK supports reading an optional YAML configuration file and can be used to customize the application’s work-
flow and operators. For more complex workflows, it may be helpful to use the application configuration file to help
separate operator parameter settings from your code. See Configuring an Application for additional details.

Tip: For C++ applications, the configuration file can be a nice way to set the behavior of the application at runtime
without having to recompile the code.

This example uses the following configuration file to configure the parameters for the replayer and Holoviz operators.
The full list of parameters can be found at operators-video-stream-replayer and operators-holoviz.

%YAML 1.2
replayer:
directory: "../data/endoscopy/video" # Path to gxf entity video data
basename: "surgical_video" # Look for <basename>.gxf_{entities|index}
frame_rate: 0 # Frame rate to replay. (default: 0 follow frame rate in,
—timestamps)
repeat: true # Loop video? (default: false)
realtime: true # Play in realtime, based on frame_rate/timestamps (default:,.,
—true)
count: 0 # Number of frames to read (default: ® for no frame count.
—restriction)
holoviz:
width: 854 # width of window size
height: 480 # height of window size
tensors:
- name: "" # name of tensor containing input data to display
type: color # input type e.g., color, triangles, text, depth_map
opacity: 1.0 # layer opacity
priority: O # determines render order, higher priority layers are rendered on.
—top

The code below shows our video_replayer example. Operator parameters are configured from a configuration file
using from_config() (C++) and self.**kwargs() (Python).

7.5. Video Replayer 47

20

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 0.5.1

C++

#include <holoscan/holoscan.hpp>
#include <holoscan/operators/video_stream_replayer/video_stream_replayer.hpp>
#include <holoscan/operators/holoviz/holoviz.hpp>

class VideoReplayerApp : public holoscan::Application {
public:

void compose() override {
using namespace holoscan;

// Define the replayer and holoviz operators and configure using yaml configuration
auto replayer = make_operator<ops::VideoStreamReplayerOp>("'replayer", from_config(

~"replayer"));

1

auto visualizer = make_operator<ops::HolovizOp>("holoviz", from_config("holoviz"));

// Define the workflow: replayer -> holoviz
add_flow(replayer, visualizer, {{"output", "receivers"}});

3

int main(int argc, char** argv) {

// Get the yaml configuration file
auto config_path = std::filesystem::canonical(argv[0]).parent_path(Q);
config_path /= std::filesystem::path("video_replayer.yaml");
if (argc >= 2) {
config_path = argv[1];
}

auto app = holoscan: :make_application<VideoReplayerApp>Q);
app->config(config_path);

app->run() ;

return 0;

* The built-in VideoStreamReplayerOp and HolovizOp operators are included from lines 1 and 2 respectively.

e We create an instance of VideoStreamReplayerOp named “replayer” with parameters initialized from the
YAML configuration file using the call to from_config() (line 11).

* We create an instance of HolovizOp named “holoviz” with parameters initialized from the YAML configuration
file using the call to from_config() (line 12).

* The “output” port of “replayer’” operator is connected to the “receivers” port of the “holoviz” operator and defines
the application workflow (line 34).

* The application’s YAML configuration file contains the parameters for our operators, and is loaded on line 28.
If no argument is passed to the executable, the application looks for a file with the name “video_replayer.yaml”
in the same directory as the executable (lines 21-22), otherwise it treats the argument as the path to the app’s
YAML configuration file (lines 23-25).

48 Chapter 7. Holoscan by Example

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

Holoscan SDK User Guide, Release 0.5.1

Python

import os
import sys

from holoscan.core import Application
from holoscan.operators import HolovizOp, VideoStreamReplayerOp

sample_data_path = os.environ.get("HOLOSCAN_SAMPLE_DATA_PATH", "../data")

class VideoReplayerApp(Application):

if

e

Example of an application that uses the operators defined above.
This application has the following operators:

- VideoStreamReplayerOp
- HolovizOp

The VideoStreamReplayerOp reads a video file and sends the frames to the HolovizOp.
The HolovizOp displays the frames.

o

def compose(self):
video_dir = os.path.join(sample_data_path, "endoscopy", "video™)
if not os.path.exists(video_dir):
raise ValueError(f"Could not find video data: {video_dir=}")

Define the replayer and holoviz operators
replayer = VideoStreamReplayerOp (

self, name="replayer", directory=video_dir, **self.kwargs('replayer")
)

visualizer = HolovizOp(self, name="holoviz", **self.kwargs("holoviz"))

Define the workflow
self.add_flow(replayer, visualizer, {("output", "receivers'")})

__name__ == "__main__":

config_file = os.path.join(os.path.dirname(__file__), "video_replayer.yaml™)

if len(sys.argv) >= 2:
config_file = sys.argv[1]

app = VideoReplayerApp()
app.config(config_file)
app.run()

¢ The built-in VideoStreamReplayerOp and HolovizOp operators are imported on line 5.

* We create an instance of VideoStreamReplayerOp named “replayer” with parameters initialized from the

YAML configuration file using **self.kwargs() (lines 28-30).

* For the python script, the path to the gxf entity video data is not set in the application configuration file but

7.5. Video Replayer

49

Holoscan SDK User Guide, Release 0.5.1

determined by the code on lines 7 and 23 and is passed directly as the “directory” argument (line 29). This allows
more flexibility for the user to run the script from any directory by setting the HOLOSCAN_SAMPLE_DATA_PATH
directory (line 7).

* We create an instance of HolovizOp named “holoviz” with parameters initialized from the YAML configuration
file using **self.kwargs() (line 31).

* The “output” port of “replayer’” operator is connected to the “receivers” port of the “holoviz” operator and defines
the application workflow (line 34).

» The application’s YAML configuration file contains the parameters for our operators, and is loaded on line 45. If
no argument is passed to the python script, the application looks for a file with the name “video_replayer.yaml”
in the same directory as the script (line 39), otherwise it treats the argument as the path to the app’s YAML
configuration file (lines 41-42).

7.5.5 Running the Application

Running the application should bring up video playback of the surgical video referenced in the YAML file.

7.6 Bring Your Own Model (BYOM)

The Holoscan platform is optimized for performing Al inferencing workflows. This section shows how the user can
easily modify the bring_your_own_model example to create their own Al applications.

In this example we’ll cover:

¢ the usage of FormatCoverterOp, MultiAIInferenceOp, SegmentationPostprocessorOp operators to add
Al inference into the workflow

50 Chapter 7. Holoscan by Example

Holoscan SDK User Guide, Release 0.5.1

* how to modify the existing code in this example to create an ultrasound segmentation application to visualize the
results from a spinal scoliosis segmentation model

Note: The example source code and run instructions can be found in the examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian package, alongside their executables.

7.6.1 Operators and Workflow

Here is the diagram of the operators and workflow used in the byom.py example.

Format

ConverterOp
uint8 -> float32
resize image

MultiAl
InferenceOp

VideoStream
ReplayerOp

Segmentation

Holovi
PostprocessorOp olovizOp

Fig. 7.5: The BYOM inference workflow

The example code already contains the plumbing required to create the pipeline above where the the video is loaded by
VideoStreamReplayer and passed to two branches. The first branch goes directly to Holoviz to display the original
video. The second branch in this workflow goes through Al inferencing and can be used to generate overlays such as
bounding boxes, segmentation masks, or text to add additional information.

This second branch has three operators we haven’t yet encountered.

* Format Converter: The input video stream goes through a preprocessing stage to convert the tensors to the
appropriate shape/format before being fed into the AI model. It is used here to convert the datatype of the image
from uint8 to float32 and resized to match the model’s expectations.

e MultiAl Inference: This operator performs Al inferencing on the input video stream with the provided model. It
supports inferencing of multiple input video streams and models.

» Segmentation Postprocessor: this postprocessing stage takes the output of inference, either with the final softmax
layer (multiclass) or sigmoid (2-class), and emits a tensor with uint8 values that contain the highest probability
class index. The output of the segmentation postprocessor is then fed into the Holoviz visualizer to create the
overlay.

7.6.2 Prerequisites

To follow along this example, you can download the ultrasound dataset with the following commands:

$ wget --content-disposition \
https://api.ngc.nvidia.com/v2/resources/nvidia/clara-holoscan/holoscan_ultrasound_
—sample_data/versions/20220608/zip \
-0 holoscan_ultrasound_sample_data_20220608.zip
$ unzip holoscan_ultrasound_sample_data_20220608.zip -d <SDK_ROOT>/data/ultrasound_
—.segmentation

You can also follow along using your own dataset by adjusting the operator parameters based on your input video and
model, and converting your video and model to a format that is understood by Holoscan.

7.6. Bring Your Own Model (BYOM) 51

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://gitlab-master.nvidia.com/clara-holoscan/clara-holoscan-sdk/-/blob/main/public/examples/bring_your_own_model/python/byom.py

Holoscan SDK User Guide, Release 0.5.1

Input video

The video stream replayer supports reading video files that are encoded as gxf entities. These files are provided with
the ultrasound dataset as the ultrasound_256x256.gxf_entities and ultrasound_256x256.gxf_index files.

Note: To use your own video data, you can use the convert_video_to_gxf_entities.py script from here to
encode your video.

Input model

Currently, the inference operators in Holoscan are able to load ONNX models, or TensorRT engine files built for the
GPU architecture on which you will be running the model. TensorRT engines are automatically generated from ONNX
by the operators when the applications run.

If you are converting your model from PyTorch to ONNX, chances are your input is NCHW and will need to be
converted to NHWC. We provide an example transformation script on Github named graph_surgeon.py. You may
need to modify the dimensions as needed before modifying your model.

Tip: To get a better understanding of your model, and if this step is necessary, websites such as netron.app can be
used.

7.6.3 Understanding the Application Code

Before modifying the application, let’s look at the existing code to get a better understanding of how it works.

Python

import os
from argparse import ArgumentParser

from holoscan.core import Application

from holoscan.logger import load_env_log_level

from holoscan.operators import (
FormatConverterOp,
HolovizOp,
MultiAIInferenceOp,
SegmentationPostprocessorOp,
VideoStreamReplayerOp,

)

from holoscan.resources import UnboundedAllocator

class BYOMApp(Application):
def __init__(self, data):
"""Initialize the application

Parameters

(continues on next page)

52 Chapter 7. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy
https://onnx.ai/
https://developer.nvidia.com/tensorrt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#graph_surgeonpy
https://netron.app/

22

23

24

25

26

43

44

45

46

47

48

49

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

data : Location to the data

e

super().__init__Q

set name
self.name = "BYOM App"

if data == "none":
data = os.environ.get("HOLOSCAN_SAMPLE_DATA_PATH", "../data")

self.sample_data_path = data

self.model_path = os.path.join(os.path.dirname(__file), "../model")
self.model_path_map = {

"byom_model": os.path.join(self.model_path, "identity_model.onnx"),
}

self.video_dir = os.path.join(self.sample_data_path, "endoscopy", "video™)
if not os.path.exists(self.video_dir):
raise ValueError(f"Could not find video data: {self.video_dir=}")

The built-in FormatConvertOp, MultiAIInferenceOp, and SegmentationPostprocessorOp operators are

imported on lines 7, 9, and 10. These 3 operators make up the preprocessing, inference, and postprocessing
stages of our Al pipeline respectively.

¢ The UnboundedAllocator resource is imported on line 13. This is used by our application’s operators for
memory allocation.

* The paths to the identity model are defined on lines 35-38. This model passes it’s input tensor to it’s output,
and acts as a placeholder for this example.

* The directory of the endoscopy video files are defined on line 40.

Next, we look at the operators and their parameters defined in the application yaml file.

Python

def compose(self):

host_allocator = UnboundedAllocator(self, name="host_allocator")

source = VideoStreamReplayerOp(
self, name="replayer", directory=self.video_dir, **self.kwargs('replayer")

)

preprocessor = FormatConverterOp(
self, name="preprocessor", pool=host_allocator, **self.kwargs("preprocessor")

)

inference = MultiAIInferenceOp(
self,
name="inference",
allocator=host_allocator,

(continues on next page)

7.6. Bring Your Own Model (BYOM) 53

58

60

61

62

63

64

65

66

20

21

22

23

24

25

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

model_path_map=self.model_path_map,
**self.kwargs("inference"),

)
postprocessor = SegmentationPostprocessorOp(
self, name="postprocessor", allocator=host_allocator, **self.kwargs(
—"postprocessor")
)
viz = HolovizOp(self, name="viz", **self.kwargs('viz"))

* An instance of the UnboundedAllocator resource class is created (line 44) and used by subsequent operators
for memory allocation. This allocator allocates memory dynamically on the host as needed. For applications
where latency becomes an issue, there is the BlockMemoryPool allocator.

 The preprocessor operator (line 50) takes care of converting the input video from the source video to a format
that can be used by the Al model.

* The inference operator (line 54) feeds the output from the preprocessor to the Al model to perform inference.

» The postprocessor operator (line 62) postprocesses the output from the inference operator before passing it down-
stream to the visualizer. Here, the segmentation postprocessor checks the probabilities output from the model to
determine which class is most likely and emits this class index. This is then used by the Holoviz operator to
create a segmentation mask overlay.

YAML

%YAML 1.2
replayer: # VideoStreamReplayer
basename: "surgical_video"
frame_rate: 0 # as specified in timestamps
repeat: true # default: false
realtime: true # default: true
count: O # default: 0 (no frame count restriction)

preprocessor: # FormatConverter
out_tensor_name: source_video
out_dtype: "float32"
resize_width: 512
resize_height: 512

inference: # MultiaAIInference

backend: "trt"
pre_processor_map:

"byom_model": ["source_video"]
inference_map:

"byom_model": "output"
in_tensor_names: ["source_video"]
out_tensor_names: ["output"]

postprocessor: # SegmentationPostprocessor
in_tensor_name: output

(continues on next page)

54 Chapter 7. Holoscan by Example

67

68

69

70

71

72

73

74

75

76

77

78

79

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

network_output_type: None
data_format: nchw

viz: # Holoviz
width: 854
height: 4860
color_lut: [
[0.65, 0.81, 0.89, 0.1],
]

* The preprocessor converts the tensors to float32 values (line 11) and ensures that the image is resized to
512x512 (line 12-13).

e The pre_processor_map parameter (lines 17-18) maps the model name(s) to input tensor name(s). Here,
“source_video” matches the output tensor name of the preprocessor (line 10). The inference_map parameter
maps the model name(s) to the output tensor name(s). Here, “output”, matches the input tensor name of the
postprocessor (line 25). in_tensor_names is a list of all the input tensor names (line 21). out_tensor_names
is a list of all the output tensor names (line 22). For more details on MultiAIInferenceOp parameters, see
Customizing the MultiAl Inference Operator or refer to Inference Module.

* The network_output_type parameter is commented out on line 26 to remind ourselves that this second
branch is currently not generating anything interesting. If not specified, this parameter defaults to “softmax”
for SegmentationPostprocessorOp.

* The color lookup table defined on lines 32-34 is used here to create a segmentation mask overlay. The values
of each entry in the table are RGBA values between 0.0 and 1.0. For the alpha value, 0.0 is fully transparent and
1.0 is fully opaque.

Finally, we define the application and workflow.

Python

Define the workflow

self.add_flow(source, viz, {("output", "receivers'")})
self.add_flow(source, preprocessor, {("output", "source_video")})
self.add_flow(preprocessor, inference, {("tensor", "receivers")})
self.add_flow(inference, postprocessor, {("transmitter", "in_tensor")})
self.add_flow(postprocessor, viz, {("out_tensor", "receivers'")})

if __name__ == "__main__":

Parse args
parser = ArgumentParser(description="BYOM demo application.")
parser.add_argument (

g,

"--data",

default="none",

help=("Set the data path"),

args = parser.parse_args()

load_env_log_level()

(continues on next page)

7.6. Bring Your Own Model (BYOM) 55

90

91

92

93

20

21

22

23

24

25

26

27

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

config_file = os.path.join(os.path.dirname(__file__), "byom.yaml")

app = BYOMApp(data=args.data)
app.config(config_file)
app.run()

e The add_flow() on line 68 defines the first branch to display the original video.

* The add_flow() commands from line 69-72 defines the second branch to display the segmentation mask over-
lay.

7.6.4 Modifying the Application for Ultrasound Segmentation

To create the ultrasound segmentation application, we need to swap out the input video and model to use the ultrasound
files, and adjust the parameters to ensure the input video is resized correctly to the model’s expectations.

We will need to modify the python and yaml files to change our application to the ultrasound segmentation application.

Python

class BYOMApp(Application):
def __init__(self, data):
"""Initialize the application

Parameters

data : Location to the data

e

super().__init__Q)

set name
self.name = "BYOM App"

if data == "none":
data = os.environ.get("HOLOSCAN_SAMPLE_DATA_PATH", "../data")

self.sample_data_path = data

self.model_path = os.path.join(self.sample_data_path, "ultrasound_segmentation",
—"model")
self.model_path map = {
"byom_model": os.path.join(self.model_path, "us_unet_256x256_nhwc.onnx"),

self.video_dir = os.path.join(self.sample_data_path, "ultrasound_segmentation",
—"video")
if not os.path.exists(self.video_dir):
raise ValueError(f"Could not find video data: {self.video_dir=}")

» Update self.model_path_map to the ultrasound segmentation model (lines 20-23).

56 Chapter 7. Holoscan by Example

20

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 0.5.1

» Update self.video_dir to point to the directory of the ultrasound video files (line 25).

YAML

replayer: # VideoStreamReplayer
basename: "ultrasound_256x256"
frame_rate: ® # as specified in timestamps
repeat: true # default: false
realtime: true # default: true
count: O # default: ® (no frame count restriction)

preprocessor: # FormatConverter
out_tensor_name: source_video
out_dtype: "float32"
resize_width: 256
resize_height: 256

inference: # MultiaAIInference

backend: "trt"
pre_processor_map:

"byom_model": ["source_video"]
inference_map:

"byom_model": "output"
in_tensor_names: ["source_video"]
out_tensor_names: ["output"]

postprocessor: # SegmentationPostprocessor
in_tensor_name: output
network_output_type: softmax
data_format: nchw

viz: # Holoviz
width: 854
height: 480
color_lut: [
[0.65, 0.81, 0.89, 0.1],
[0.2, 0.63, 0.17, 0.7]
]

» Update basename to the basename of the ultrasound video files (line 2).

e The AI model expects the width and height of the images to be 256x256, update the preprocessor’s parameters

to resize the input to 256x256 (line 11-12).

* The Al model’s final output layer is a softmax, so we indicate this to the postprocessor (line 25).

» Since this model predicts between two classes, we need another entry in Holoviz’s color lookup table (line 33).
Note that the alpha value of the first color entry is 0. 1 (line 32) so the mask for the background class may not be
visible. The second entry we just added is a green color with an alpha value of 8.7 which will be easily visible.

The above changes are enough to update the byom example to the ultrasound segmentation application.

In general, when deploying your own Al models, you will need to consider the operators in the second branch. This

example uses a pretty typical Al workflow:

¢ Input: This could be a video on disk, an input stream from a capture device, or other data stream.

7.6. Bring Your Own Model (BYOM)

Holoscan SDK User Guide, Release 0.5.1

* Preprocessing: You may need to preprocess the input stream to convert tensors into the shape and format that is
expected by your Al model (e.g., converting datatype and resizing).

e Inference: Your model will need to be in onnx or trt format.

 Postprocessing: An operator that postprocesses the output of the model to a format that can be readily used by
downstream operators.

e Qutput: The postprocessed stream can be displayed or used by other downstream operators.

The Holoscan SDK comes with a number of built-in operators that you can use to configure your own workflow.
If needed, you can write your own custom operators or visit Holohub for additional implementations and ideas for
operators.

7.6.5 Running the Application

After modifying the application as instructed above, running the application should bring up the ultrasound video with
a segmentation mask overlay similar to the image below.

Fig. 7.6: Ultrasound Segmentation

Note: If you run the byom.py application without modification and are using the debian installation, you may run into
the following error message:

[error] Error in Inference Manager ... TRT Inference: failed to build TRT engine file.

In this case, modifying the write permissions for the model directory should help (use with caution):

sudo chmod a+w /opt/nvidia/holoscan/examples/bring_your_own_model/model

58 Chapter 7. Holoscan by Example

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators
https://github.com/nvidia-holoscan/holohub/

Holoscan SDK User Guide, Release 0.5.1

7.6.6 Customizing the MultiAl Inference Operator

The builtin MultiAIInferceOp operator provides the functionality of the Inference Module. This operator has
a receivers port that can connect to any number of upstream ports to allow for multiai inferencing, and one
transmitter port to send results downstream. Below is a description of some of the operator’s parameters and a
general guidance on how to use them.

* backend: if the input models are in tensorrt engine file format, select trt as the backend. If the input
models are in onnx format select either trt or onnx as the backend.

e allocator: Can be passed to this operator to specify how the output tensors are allocated.

* model_path_map: contains dictionary keys with unique strings that refer to each model. The values are set to
the path to the model files on disk. All models must be either in onnx or in tensorrt engine file format.
The Holoscan Inference Module will do the onnx to tensorrt model conversion if the TensorRT engine files
do not exist.

* pre_processor_map: this dictionary should contain the same keys as model_path_map, mapping to the output
tensor name for each model.

» inference_map: this dictionary should contain the same keys as model_path_map, mapping to the output
tensor name for each model.

e enable_fp1l6: Boolean variable indicating if half-precision should be used to speed up inferencing. The default
value is False, and uses single-precision (32-bit fp) values.

e input_on_cuda: indicates whether input tensors are on device or host
e output_on_cuda: indicates whether output tensors are on device or host

e transmit_on_cuda: if True, it means the data transmission from the inference will be on Device, otherwise it
means the data transmission from the inference will be on Host

7.6.7 Common Pitfalls Deploying New Models
Color Channel Order
It is important to know what channel order your model expects. This may be indicated by the training data, pre-training

transformations performed at training, or the expected inference format used in your application.

For example, if your inference data is RGB, but your model expects BGR, you will need to add the following to your
segmentation_preprocessor in the yaml file: out_channel_order: [2,1,0].

Normalizing Your Data

Similarly, default scaling for streaming data is [0, 1], but dependent on how your model was trained, you may be
expecting [0,255].

For the above case you would add the following to your segmentation_preprocessor in the yaml file:

scale_min: 0.0 scale_max: 255.0

7.6. Bring Your Own Model (BYOM) 59

Holoscan SDK User Guide, Release 0.5.1

Network Output Type
Models often have different output types such as Sigmoid, Softmax, or perhaps something else, and you may need to
examine the last few layers of your model to determine which applies to your case.

As in the case of our ultrasound segmentation example above, we added the following in our yaml file:
network_output_type: softmax

60 Chapter 7. Holoscan by Example

CHAPTER
EIGHT

CREATING AN APPLICATION

In this section, we’ll address:
e how to define an Application class
* how to configure an Application
* how to define different types of workflows

* how to build and run your application

Note: At this time, the Holoscan SDK only supports a single fragment per application. This means that the application
can have only one workflow and work on a single machine. We plan to support multiple fragments per application in
a future release.

8.1 Defining an Application Class

The following code snippet shows an example Application code skeleton:

C++

¢ We define the App class that inherits from the Application base class.
* We create an instance of the App class in main() using the make_application() function.

e The run() method starts the application which will execute its compose () method where the custom workflow
will be defined.

#include <holoscan/holoscan.hpp>

class App : public holoscan: :Application {
public:
void compose() override {
// Define Operators and workflow
//
}
3

int main(Q) {
auto app = holoscan::make_application<App>Q);
app->run() ;

(continues on next page)

61

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

return 0;

}

Python

¢ We define the App class that inherits from the Application base class.
¢ We create an instance of the App class in __main__.

e The run() method starts the application which will execute its compose () method where the custom workflow
will be defined.

from holoscan.core import Application
class App(Application):

def compose(self):
Define Operators and workflow
#

if __name__ == "__main_
app = AppQO
app.run()

8.2 Configuring an Application

An application can be configured at different levels:
1. providing the GXF extensions that need to be loaded (when using GXF operators)
2. configuring parameters for your application, including the operators in the workflow

The sections below will describe how to configure each of them, starting with a native support for YAML-based con-
figuration for convenience.

8.2.1 YAML Configuration support

Holoscan supports loading arbitrary parameters from a YAML configuration file at runtime, making it convenient to
configure each item listed above, or other custom parameters you wish to add on top of the existing API. For C++
applications, it also provides the ability to change the behavior of your application without needing to recompile it.

Note: Usage of the YAML utility is optional. Configurations can be hardcoded in your program, or done using any
parser of your choosing.

Here is an example YAML configuration:

string_param: "test"
float_param: 0.50
bool_param: true

(continues on next page)

62 Chapter 8. Creating an Application

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

dict_param:
key_1: value_1
key_2: value_2

Ingesting these parameters can be done using the two methods below:

C++
* The config() method takes the path to the YAML configuration file. If the input path is relative, it will be
relative to the current working directory.

* The from_config() method returns an ArgList object for a given key in the YAML file. It holds a list of Arg
objects, each of which holds a name (key) and a value.

— If the ArgList object has only one Arg (when the key is pointing to a scalar item), it can be converted to
the desired type using the as () method by passing the type as an argument.

— The key can be a dot-separated string to access nested fields.

// Pass configuration file
auto app = holoscan: :make_application<App>Q);
app->config("path/to/app_config.yaml");

// Scalars

auto string_param = app->from_config("string_param").as<std::string>(Q);
auto float_param = app->from_config("float_param").as<float>Q);

auto bool_param = app->from_config("bool_param").as<bool>();

// Dict
auto dict_param = app->from_config("dict_param");
auto dict_nested_param = app->from_config('dict_param.key_1").as<std::string>Q;

// Print
std::cout << "string_param:

<< string_param << std::endl;

std::cout << "float_param: << float_param << std::endl;

std: :cout << "bool_param: << bool_param << std::endl;

std::cout << "dict_param:\n" << dict_param.description() << std::endl;
std::cout << "dict_param['keyl']: " << dict_nested_param << std::endl;

// // Output

// string_param: test
// float_param: 0.5
// bool_param: 1

// dict_param:

// name: arglist

// args:

// - name: key_1

// type: YAML::Node
// value: value_1
// - name: key_2

// type: YAML::Node
// value: value_2

// dict_param['keyl']: value_1

8.2. Configuring an Application 63

Holoscan SDK User Guide, Release 0.5.1

Python
* The config() method takes the path to the YAML configuration file. If the input path is relative, it will be
relative to the current working directory.
* The kwargs () method return a regular python dict for a given key in the YAML file.

— Advanced: this method wraps the from_config() method similar to the C++ equivalent, which returns
an ArgList object if the key is pointing to a map item, or an Arg object if the key is pointing to a scalar
item. An Arg object can be cast to the desired type (e.g., str(app.from_config("string_param"))).

Pass configuration file
app = AppQ
app.config("path/to/app_config.yaml")

Scalars

string_param = app.kwargs("string_param")["string_param"]
float_param = app.kwargs("float_param")["float_param"]
bool_param = app.kwargs('bool_param™)["bool_param"]

Dict
dict_param = app.kwargs('dict_param")
dict_nested_param = dict_param['key_1"]

Print

print(f"string_param: {string_param;")
print(f"float_param: {float_param/")
print(f"bool_param: {bool_param}")
print(f"dict_param: {dict_param}")
print(f"dict_param['key_1']: {dict_nested_param/")

Output:

string_param: test

float_param: 0.5

bool_param: True

dict_param: {'key_1': 'value_1', 'key_2': 'value_2'}
dict_param['key_1']: 'value_1'

H oW R W R W

Warning: from_config() cannot be used as inputs to the built-in operators at this time, it’s therefore
recommended to use kwargs () in Python.

Attention: With both from_config and kwargs, the returned ArgList/dictionary will include both the key and
its associated item if that item value is a scalar. If the item is a map/dictionary itself, the input key is dropped, and
the output will only hold the key/values from that item.

64 Chapter 8. Creating an Application

Holoscan SDK User Guide, Release 0.5.1

8.2.2 Loading GXF extensions
If you use operators that depend on GXF extensions for their implementations (known as GXF operators), the shared
libraries (. so) of these extensions need to be dynamically loaded as plugins at runtime.

The SDK already automatically handles loading the required extensions for the built-in operators in both C++ and
Python, as well as common extensions (listed here). To load additional extensions for your own operators, you can use
one of the following approach:

YAML

extensions:
- libgxf_myextensionl.so
- /path/to/libgxf_myextension2.so

C++

auto app = holoscan: :make_application<App>Q);
auto exts = {"libgxf myextensionl.so", "/path/to/libgxf _myextension2.so"};
for (auto& ext : exts) {

app->executor() .extension_manager()->load_extension(ext);

}

PYTHON

from holoscan.gxf import load_extensions

from holoscan.core import Application

app = Application()

context = app.executor.context_uint64

exts = ["libgxf_myextensionl.so", "/path/to/libgxf_myextension2.so"]
load_extensions(context, exts)

Note: To be discoverable, paths to these shared libraries need to either be absolute, relative to your working directory,
installed in the 1ib/gxf_extensions folder of the holoscan package, or listed under the HOLOSCAN_LIB_PATH or
LD_LIBRARY_PATH environment variables.

8.2.3 Configuring operators

Operators are instantiated in the compose () method of your application. They have three type of fields which can be
configured: parameters, conditions, and resources.

8.2. Configuring an Application 65

Holoscan SDK User Guide, Release 0.5.1

Configuring operator parameters
Operators could have parameters defined in their setup method to better control their behavior (see details when

creating your own operators). The snippet below would be the implementation of this method for a minimal operator
named MyOp, that takes a string and a boolean as parameters; we’ll ignore any extra details for the sake of this example:

C++

void setup(OperatorSpec& spec) override {
spec.param(string_param_, "string_param");
spec.param(bool_param_, "bool_param");

}

PYTHON

def setup(self, spec: OperatorSpec):
spec.param(''string_param')
spec.param('bool_param™)
Optional in python. Could define ‘self.<param_name>" instead in ‘def __init__"

Tip: Given an instance of an operator class, you can print a human-readable description of its specification to inspect
the parameter fields that can be configured on that operator class:

C++

std::cout << operator_object->spec()->description() << std::endl;

PYTHON

print (operator_object.spec)

Given this YAML configuration:

myop_param:
string_param: "test"
bool_param: true

bool_param: false # we'll use this later

We can configure an instance of the MyOp operator in the application’s compose method like this:

66 Chapter 8. Creating an Application

Holoscan SDK User Guide, Release 0.5.1

C++

void compose() override {
// Using YAML
auto my_opl = make_operator<MyOp>("my_opl", from_config("myop_param™));

// Same as above
auto my_op2 = make_operator<MyOp>("my_op2",

Arg("string_param", std::string("test")), // can use Arg(key, value)...

Arg("bool_param™) = true // ... or Arg(key) = value
DN
}

PYTHON

def compose(self):
Using YAML
my_opl = MyOp(self, name="my_opl", **self.kwargs("myop_param™))

Same as above

my_op2 = MyOp(self,
name="my_op2",
string_param="test",
bool_param=True,

)

If multiple ArgList are provided with duplicate keys, the latest one overrides them:

C++

void compose() override {
// Using YAML
auto my_opl = make_operator<MyOp>("my_opl",
from_config("myop_param"),
from_config("bool_param™)
s

// Same as above

auto my_op2 = make_operator<MyOp>("my_op2",
Arg("string_param", "test"),
Arg("bool_param") = true,
Arg("bool_param") = false

s

// -> my_op ‘bool_param_" will be set to “false’

8.2. Configuring an Application

67

Holoscan SDK User Guide, Release 0.5.1

PYTHON

def compose(self):
Using YAML
my_opl = MyOp(self, name="my_opl",
from_config("myop_param"),
from_config("bool_param"),
)

Note: We're using from_config above since we can't merge automatically with kwargs
as this would create duplicated keys. However, we recommend using kwargs in python
to avoid limitations with wrapped operators, so the code below is preferred.

Same as above

params = self.kwargs("myop_param™).update(self.kwargs("bool_param™))
my_op2 = MyOp(self, name="my_op2", params)

-> my_op ‘bool_param™ will be set to ‘False’

Configuring operator conditions

By default, operators will continuously run. To change that behavior, some condition classes (C++/Python) can be
passed to the constructor of an operator to define when it (its compute () method) should execute. This includes:

¢ A CountCondition (C++/Python) can be used to only execute the operator a specific number of times.

C++

void compose() override {
// Will only run 10 times
auto op = make_operator<MyOp>("my_op", make_condition<CountCondition>(10));

}

PYTHON

def compose(self):
Will only run 10 times
my_op = MyOp(self, CountCondition(self, 10), name="my_op")

* A BooleanCondition (C++/Python) can be used to configure when to disable or enable an operator.

68 Chapter 8. Creating an Application

Holoscan SDK User Guide, Release 0.5.1

C++

void compose() override {
enable_op_condition = make_condition<BooleanCondition>("my_bool_condition™)
auto op = make_operator<MyOp>("my_op", enable_op_condition);

}

PYTHON

def compose(self):
enable_op_condition = BooleanCondition(self, name="my_bool_condition")
my_op = MyOp(self, enable_op_condition, name="my_op")

The condition object has two APIs - enable_tick() and disable_tick() - which will control whether the
operator should execute or not. It can be called outside of the operator, or within the operator compute ()
method, based on any arbitrary condition. In the latter case, the name that is provided to the constructor
("my_bool_condition" here) must match the name used to retrieve it in the operator’s compute () method.
For example:

C++

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override
-1
/) ...
if (<condition expression>) { // e.g. if (index_ >= 10)
auto my_bool_condition = condition<BooleanCondition>("my_bool_condition");
if (my_bool_condition) { // 1f condition exists (not true or.
—false)
my_bool_condition->disable_tick(); // this will stop the operator
}
}
/) ..
}

PYTHON

def compute(self, op_input, op_output, context):
if <condition expression>: # e.g, self.index >= 10
my_bool_condition = self.conditions.get("my_bool_condition")
if my_bool_condition: # 1f condition exists (not true or false)
my_bool_condition.disable_tick() # this will stop the operator

8.2. Configuring an Application 69

Holoscan SDK User Guide, Release 0.5.1

Configuring operator resources

Attention: This section still needs to be written.

8.3 Application Workflows

8.3.1 One-operator Workflow

The simplest form of a workflow would be a single operator.

MyOp

Fig. 8.1: A one-operator workflow

The graph above shows an Operator (C++/Python) (named MyOp) that has neither inputs nor output ports.

* Such an operator may accept input data from the outside (e.g., from a file) and produce output data (e.g., to a
file) so that it acts as both the source and the sink operator.

* Arguments to the operator (e.g., input/output file paths) can be passed as parameters as described in the section
above.

We can add an operator to the workflow by calling add_operator (C++/Python) method in the compose () method.

The following code shows how to define a one-operator workflow in compose () method of the App class (assuming
that the operator class MyOp is declared/defined in the same file).

CPP

class App : public holoscan::Application {
public:
void compose() override {
// Define Operators
auto my_op = make_operator<MyOp>('"my_op");

// Define the workflow
add_operator (my_op) ;
}
};

70 Chapter 8. Creating an Application

Holoscan SDK User Guide, Release 0.5.1

PYTHON

class App(Application):

def compose(self):
Define Operators
my_op = MyOp(self, name="my_op")

Define the workflow
self.add_operator (my_op)

8.3.2 Linear Workflow

Here is an example workflow where the operators are connected linearly:

SourceOp ProcessOp SinkOp
—output...input> [in]input : Tensor = —output...input_>

inlinput : Tensor
output(out) : Tensor Linlinp

output(out) : Tensor

Fig. 8.2: A linear workflow

In this example, SourceOp produces a message and passes it to ProcessOp. ProcessOp produces another message
and passes it to SinkOp.

We can connect two operators by calling the add_£flow() method (C++/Python) in the compose () method.

The add_flow() method (C++/Python) takes the source operator, the destination operator, and the optional port name
pairs. The port name pair is used to connect the output port of the source operator to the input port of the destination
operator. The first element of the pair is the output port name of the upstream operator and the second element is the
input port name of the downstream operator. An empty port name (‘”’) can be used for specifying a port name if the
operator has only one input/output port. If there is only one output port in the upstream operator and only one input
port in the downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose () method of the App class (assuming that
the operator classes SourceOp, ProcessOp, and SinkOp are declared/defined in the same file).

CPP

class App : public holoscan::Application {
public:
void compose() override {
// Define Operators
auto source = make_operator<SourceOp>("source");
auto process = make_operator<ProcessOp>("process");
auto sink = make_operator<SinkOp>("sink");

// Define the workflow

add_flow(source, process); // same as ‘add_flow(source, process, {{"output", "input"}
—});°

add_flow(process, sink); // same as ‘add_flow(process, sink, {{"", ""}});°

(continues on next page)

8.3. Application Workflows 71

20

21

22

23

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

}
};

PYTHON

class App(Application):

def compose(self):
Define Operators
source = SourceOp(self, name="source')
process = ProcessOp(self, name="process')
sink = SinkOp(self, name="sink")

Define the workflow

self.add_flow(source, process) # same as 'self.add_flow(source, process, {(
~"output", "input'")})®

self.add_flow(process, sink) # same as ‘self.add_flow(process, sink, {("",

o8

"}

8.3.3 Complex Workflow (Multiple Inputs and Outputs)

You can design a complex workflow like below where some operators have multi-inputs and/or multi-outputs:

CPP

class App : public holoscan::Application {
public:
void compose() override {

// Define Operators
auto readerl make_operator<Readerl>("readerl");
auto reader2 = make_operator<Reader2>("reader2");
auto processorl = make_operator<Processorl>("'processorl");
auto processor2 = make_operator<Processor2>("processor2");
auto processor3 = make_operator<Processor3>("processor3");
auto writer = make_operator<Writer>("writer");
auto notifier = make_operator<Notifier>("notifier");

// Define the workflow

add_flow(readerl, processorl, {{"image", "imagel"}, {"image", "image2"}, {"metadata",

— "metadata"}});
add_flow(readerl, processorl, {{"image", "image2"}});
add_flow(reader2, processor2, {{"roi", "roi"}});
add_flow(processorl, processor2, {{"image", "image"1}});
add_flow(processorl, writer, {{"image", "image"}});
add_flow(processor2, notifier);
add_flow(processor2, processor3);
add_flow(processor3, writer, {{'seg_image", "seg_image"}});

}
3

72 Chapter 8. Creating an Application

Holoscan SDK User Guide, Release 0.5.1

Readerl

image(out)
metadata(out)

image...{imagel,image2}
metadata...metadata
Processorl

[in]limagel
[in]limage2
[in]metadata

image(out)

\

image...image

[in]roi

/

image...image image...image

Notifier

[inlimage

Reader2

roi(out)

roi...roi

p

Processor2

[in]limage

image(out)

N\

image...image

Processor3
[inlimage

seg_image(out)

)

seg_image...seg_image

Writer

[in]limage
[in]lseg image

8.3. Application Workflows

73

Holoscan SDK User Guide, Release 0.5.1

PYTHON

class App(Application):

def compose(self):
Define Operators
readerl = ReaderlOp(self, name="readerl")
reader2 = Reader20p(self, name="reader2")
processorl = ProcessorlOp(self, name="processorl")
processor2 = Processor20p(self, name="processor2")
processor3 = Processor30Op(self, name="processor3")
notifier = NotifierOp(self, name="notifier")
writer = WriterOp(self, name="writer")

Define the workflow

self.add_flow(readerl, processorl, {("image", "imagel"), ("image", "image2"), (
—"metadata", "metadata")})

self.add_flow(reader2, processor2, {('roi", "roi")})

self.add_flow(processorl, processor2, {("image", "image")})

self.add_flow(processorl, writer, {("image", "image'")})

self.add_flow(processor2, notifier)
self.add_flow(processor2, processor3)
self.add_flow(processor3, writer, {('seg_image", "seg_image')})

8.4 Building and running your Application

C++
You can build your C++ application using CMake, by calling find_package (holoscan) in your CMakeLists.txt
to load the SDK libraries. Your executable will need to link against:
* holoscan::core
* any operator defined outside your main. cpp which you wish to use in your app workflow, such as:
— SDK built-in operators under the holoscan: : ops namespace
— operators created separately in your project with add_library

— operators imported externally using with find_library or find_package

Listing 8.1: <src_dir>/CMakeLists.txt

Your CMake project
cmake_minimum_required (VERSION 3.20)
project(my_project CXX)

Finds the holoscan SDK
find_package(holoscan REQUIRED CONFIG PATHS "/opt/nvidia/holoscan")

Create an executable for your application
add_executable(my_app main.cpp)

(continues on next page)

74 Chapter 8. Creating an Application

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

Link your application against holoscan::core and any existing operators you'd like to.
—use
target_link_ libraries(my_app
PRIVATE
holoscan: :core
holoscan::ops::<some_built_in_operator_target>
<some_other_operator_target>
<ou>

Once your CMakeLists. txt is ready in <src_dir>, you can build in <build_dir> with the command line below.
You can optionally pass Holoscan_ROOT if the SDK installation you’d like to use differs from the PATHS given to
find_package (holoscan) above.

Configure

cmake -S <src_dir> -B <build_dir> -D Holoscan_ROOT="/opt/nvidia/holoscan"
Build

cmake --build <build_dir> -j

You can then run your application by running <build_dir>/my_app.

Python

Python applications do not require building. Simply ensure that:

* The holoscan python module is installed in your dist-packages or is listed under the PYTHONPATH env vari-
able so you can import holoscan. core and any built-in operator you might need in holoscan.operators.

* Any external operators are available in modules in your dist-packages or contained in PYTHONPATH.

Note: While python applications do not need to be built, they might depend on operators that wrap C++ operators.
All python operators built-in in the SDK already ship with the python bindings pre-built. Follow this section if you are
wrapping C++ operators yourself to use in your python application.

You can then run your application by running python3 my_app.py.

8.4. Building and running your Application 75

Holoscan SDK User Guide, Release 0.5.1

76

Chapter 8. Creating an Application

CHAPTER
NINE

CREATING OPERATORS

9.1 C++ Operators

When assembling a C++ application, two types of operators can be used:

1. Native C++ operators: custom operators defined in C++ without using the GXF API, by creating a subclass of
holoscan: :Operator. These C++ operators can pass arbitrary C++ shared objects around between operators.

2. GXF Operators: operators defined in the underlying C++ library by inheriting from the
holoscan: :ops: :GXFOperator class. These operators wrap GXF codelets from GXF extensions. Ex-
amples are VideoStreamReplayerOp for replaying video files, FormatConverterOp for format conversions,
and HolovizOp for visualization.

Note: It is possible to create an application using a mixture of GXF operators and native operators. In this case, some
special consideration to cast the input and output tensors appropriately must be taken, as shown in a section below.

9.1.1 Native C++ Operators

Operator Lifecycle (C++)

The lifecycle of a holoscan: :Operator is made up of three stages:

e start() iscalled once when the operator starts, and is used for initializing heavy tasks such as allocating memory
resources and using parameters.

» compute() is called when the operator is triggered, which can occur any number of times throughout the operator
lifecycle between start () and stop().

* stop() is called once when the operator is stopped, and is used for deinitializing heavy tasks such as deallocating
resources that were previously assigned in start().

All operators on the workflow are scheduled for execution. When an operator is first executed, the start () method
is called, followed by the compute() method. When the operator is stopped, the stop() method is called. The
compute () method is called multiple times between start() and stop().

If any of the scheduling conditions specified by Conditions are not met (for example, the CountCondition would
cause the scheduling condition to not be met if the operator has been executed a certain number of times), the operator
is stopped and the stop () method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (C++) section of the user guide.

77

25

26

27

28

29

Holoscan SDK User Guide, Release 0.5.1

Typically, the start () and the stop() functions are only called once during the application’s lifecycle. However, if
the scheduling conditions are met again, the operator can be scheduled for execution, and the start () method will be
called again.

start — compute — stop

D

Fig. 9.1: The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above methods. The following example
shows how to implement a custom operator that overrides start, stop and compute methods.

Listing 9.1: The basic structure of a Holoscan Operator (C++)

#include "holoscan/holoscan.hpp"

using holoscan: :Operator;

using holoscan: :OperatorSpec;
using holoscan: :InputContext;
using holoscan: :OutputContext;
using holoscan: :ExecutionContext;
using holoscan: :Arg;

using holoscan::ArgList;

class MyOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (MyOp)

MyOp() = default;

void setup(OperatorSpec& spec) override {

3

void start() override {
HOLOSCAN_LOG_TRACE("MyOp::start()");
}

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
HOLOSCAN_LOG_TRACE("MyOp: :compute()");
1

void stop() override {
HOLOSCAN_LOG_TRACE("MyOp: :stop()");
}
b

78 Chapter 9. Creating Operators

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

53

54

55

56

58

59

60

61

Holoscan SDK User Guide, Release 0.5.1

Creating a custom operator (C++)

To create a custom operator in C++ it is necessary to create a subclass of holoscan: :Operator. The following
example demonstrates how to use native operators (the operators that do not have an underlying, pre-compiled GXF
Codelet).

Code Snippet: examples/native_operator/cpp/ping.cpp

Listing 9.2: examples/native_operator/cpp/ping.cpp

#include "holoscan/holoscan.hpp"

class ValueData {
public:
ValueData() = default;
explicit ValueData(int value) : data_(value) {
HOLOSCAN_LOG_TRACE("ValueData::ValueData(): {}", data_);
}
~ValueData() {
HOLOSCAN_LOG_TRACE("ValueData: :~ValueData(): {}", data.);
}

void data(int value) { data_ = value; }
int data() const { return data_; }

private:
int data_;

};
namespace holoscan::ops {

class PingTxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingTxOp)

PingTxOp() = default;

void setup(OperatorSpec& spec) override {
spec.output<ValueData>("outl");
spec.output<ValueData>("out2");

3

void compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
auto valuel = std::make_shared<ValueData>(index_++);
op_output.emit(valuel, "outl");

auto value2 = std::make_shared<ValueData>(index_++);
op_output.emit(value2, "out2");

b

int index_ = 0;

};

class PingMiddleOp : public Operator {

(continues on next page)

9.1. C++ Operators 79

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/cpp/ping.cpp

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingMiddleOp)

PingMiddleOp() = default;

void setup(OperatorSpec& spec) override {
spec.input<ValueData>("inl1");
spec.input<ValueData>("in2");
spec.output<ValueData>("outl");
spec.output<ValueData>("out2");
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value
<"y, 2);
}

void compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&).
—override {
auto valuel = op_input.receive<ValueData>("inl");
auto value2 = op_input.receive<ValueData>("in2");

HOLOSCAN_LOG_INFO("Middle message received (count: {})", count_++);

HOLOSCAN_LOG_INFO("Middle message valuel: {}", valuel->data());
HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data());

// Multiply the values by the multiplier parameter
valuel->data(valuel->data() * multiplier_);
value2->data(value2->data() * multiplier_);

op_output.emit(valuel, "outl");
op_output.emit(value2, "out2");

b

private:
int count_ = 1;
Parameter<int> multiplier_;

};

class PingRxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingRx0p)

PingRxOp() = default;

void setup(OperatorSpec& spec) override {

spec.param(receivers_, '"receivers", "Input Receivers", "List of input receivers.", {}

=)
}

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
auto value_vector = op_input.receive<std::vector<ValueData>>("receivers");

HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_

=vector.size()) (continues on next page)

80 Chapter 9. Creating Operators

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

HOLOSCAN_LOG_INFO("Rx message valuel: {}", value_vector[0]->data());
HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data());
1

private:
Parameter<std: :vector<IOSpec*>> receivers_;
int count_ = 1;

};
} // namespace holoscan: :ops

class App : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto mx = make_operator<ops: :PingMiddleOp>("mx", from_config('"mx"));
auto rx = make_operator<ops: :PingRxOp>("rx");

add_flow(tx, mx, {{"outl", "inl1"}, {"out2", "in2"1}});
add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});
}
3

int main(int argc, char** argv) {
holoscan: :load_env_log_level();

auto app = holoscan: :make_application<App>Q);

// Get the configuration

auto config_path = std::filesystem::canonical (argv[0]).parent_path(Q);
config_path += "/app_config.yaml";

app->config(config_path);

app->run();

return 0;

Code Snippet: examples/native_operator/cpp/app_config.yaml

Listing 9.3: examples/native_operator/cpp/app_config.yaml

mx:
multiplier: 3

In this application, three operators are created: PingTxO0p, PingMiddleOp, and PingRxO0p

1. The PingTxOp operator is a source operator that emits two values every time it is invoked. The values are emitted
on two different output ports, outl (for even integers) and out2 (for odd integers).

2. The PingMiddleOp operator is a middle operator that receives two values from the PingTxOp operator and emits

9.1. C++ Operators 81

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/cpp/app_config.yaml

Holoscan SDK User Guide, Release 0.5.1

two values on two different output ports. The values are multiplied by the multiplier parameter.

3. The PingRxOp operator is a sink operator that receives two values from the PingMiddleOp operator. The values
are received on a single input, receivers, which is a vector of input ports. The PingRxOp operator receives the
values in the order they are emitted by the PingMiddleOp operator.

As covered in more detail below, the inputs to each operator are specified in the setup () method of the operator. Then
inputs are received within the compute () method via op_input.receive() and outputs are emitted via op_output.
emit().

Note that for native C++ operators as defined here, any shared pointer can be emitted or received. When trasmitting
between operators, a shared pointer to the object is transmitted rather than a copy. In some cases, such as sending the
same tensor to more than one downstream operator, it may be necessary to avoid in-place operations on the tensor in
order to avoid any potential race conditions between operators.

Specifying operator parameters (C++)

In the example holoscan: :ops: :PingMiddleOp operator above, we have a parameter multiplier that is declared
as part of the class as a private member using the param() templated type:

Parameter<int> multiplier_;

It is then added to the OperatorSpec attribute of the operator in its setup () method, where an associated string key
must be provided. Other properties can also be mentioned such as description and default value:

// Provide key, and optionally other information
spec.param(multiplier_, "multiplier", "Multiplier", "Multiply the input by this value",.
2);

Note: If your parameter is of a custom type, you must register that type and provide a YAML encoder/decoder, as
documented under holoscan::Operator::register_converter

See the Configuring operator parameters section to learn how an application can set these parameters.

Specifying operator inputs and outputs (C++)

To configure the input(s) and output(s) of C++ native operators, call the spec.input () and spec.output () methods
within the setup () method of the operator.

The spec.input () and spec.output () methods should be called once for each input and output to be added. The
OperatorSpec object and the setup () method will be initialized and called automatically by the Application class
when its run () method is called.

These methods (spec.input() and spec.output()) return an IOSpec object that can be used to configure the
input/output port.

By default, the holoscan: :MessageAvailableConditionand holoscan: :DownstreamMessageAffordableCondition
conditions are applied (with a min_size of 1) to the input/output ports. This means that the operator’s compute ()

method will not be invoked until a message is available on the input port and the downstream operator’s input port
(queue) has enough capacity to receive the message.

void setup(OperatorSpec& spec) override {
spec.input<ValueData>("in");
// Above statement is equivalent to:

(continues on next page)

82 Chapter 9. Creating Operators

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// spec.input<ValueData>("in")
// .condition(ConditionType: :kMessageAvailable, Arg("min_size") = 1);

spec.output<ValueData>("out");

// Above statement is equivalent to:

// spec.output<ValueData>("out")

// .condition(ConditionType: :kDownstreamMessageAffordable, Arg("min_size") =,
~1);

In the above example, the spec.input() method is used to configure the input port to have the
holoscan: :MessageAvailableCondition with a minimum size of 1. This means that the operator’s compute ()
method will not be invoked until a message is available on the input port of the operator. Similarly, the spec.output ()
method is used to configure the output port to have the holoscan: :DownstreamMessageAffordableCondition
with a minimum size of 1. This means that the operator’s compute () method will not be invoked until the downstream
operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the IOSpec: : condition() method to configure the conditions. For example,
to configure the input and output ports to have no conditions, you can use the following code:

void setup(OperatorSpec& spec) override {
spec.input<ValueData>("in")
.condition(ConditionType: :kNone);

spec.output<ValueData>("out")
.condition(ConditionType: :kNone);
/) ...
}

The example code in the setup() method configures the input port to have no conditions, which means that the
compute () method will be called as soon as the operator is ready to compute. Since there is no guarantee that the
input port will have a message available, the compute () method should check if there is a message available on the
input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types of input data within the
compute () method of your operator class, where its template argument (DataT) is the data type of the input. This
method takes the name of the input port as an argument (which can be omitted if your operator has a single input port),
and returns a shared pointer to the input data.

In the example code fragment below, the PingRxOp operator receives input on a port called “in” with data type
ValueData. The receive() method is used to access the input data, and the data() method of the ValueData
class is called to get the value of the input data.

VA

class PingRxOp : public holoscan::ops: :GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER (PingRxOp, holoscan: :ops: :GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {
spec.input<ValueData>("in");

3

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {

(continues on next page)

9.1. C++ Operators 83

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// The type of ‘value® is 'std::shared_ptr<ValueData>"
auto value = op_input.receive<ValueData>("in");
if (value){
HOLOSCAN_LOG_INFO("Message received (value: {})", value->data());
}
}
};

For GXF Entity objects (holoscan: :gxf::Entity wraps underlying GXF nvidia::gxf::Entity class), the
receive() method will return the GXF Entity object for the input of the specified name. In the example below,
the PingRxOp operator receives input on a port called “in” with data type holoscan: :gxf: :Entity.

VA

class PingRxOp : public holoscan::ops: :GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER (PingRxOp, holoscan: :ops: :GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {
spec.input<holoscan: :gxf: :Entity>("in");
}
void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of ‘in_entity is 'holoscan::gxf::Entity'.
auto in_entity = op_input.receive<holoscan: :gxf::Entity>("in");
if (in_entity) {
// Process with ‘in_entity’.
/) ..
}
}
3

For objects of type std: :any, the receive() method will return a std: :any object containing the input of the
specified name. In the example below, the PingRxOp operator receives input on a port called “in” with data type
std: :any. The type() method of the std: : any object is used to determine the actual type of the input data, and the
std: :any_cast<T>() function is used to retrieve the value of the input data.

/).

class PingRxOp : public holoscan::ops::GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER (PingRxOp, holoscan: :ops: :GXFOperator)
PingRxOp() = default;
void setup(OperatorSpec& spec) override {
spec.input<std::any>("in");
}
void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
// The type of “in_any" is 'std::any'.
auto in_any = op_input.receive<std::any>("in");
auto& in_any_type = in_any.type(Q);

if (in_any_type == typeid(holoscan::gxf::Entity)) {
auto in_entity = std::any_cast<holoscan::gxf::Entity>(in_any);

(continues on next page)

84 Chapter 9. Creating Operators

97

98

99

100

101

103

104

105

106

107

108

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// Process with ‘in_entity’.
/) ...
} else if (in_any_type == typeid(std::shared_ptr<ValueData>)) {
auto in_message = std::any_cast<std::shared_ptr<ValueData>>(in_any);
// Process with ‘in_message’.
/) ..
} else if (in_any_type == typeid(nullptr_t)) {
// No message is available.
} else {
HOLOSCAN_LOG_ERROR("Invalid message type: {}", in_any_type.name());
return;

}
};

The Holoscan SDK provides built-in data types called Domain Objects, defined in the include/holoscan/core/
domain directory. For example, the holoscan: : Tensor is a Domain Object class that is used to represent a multi-
dimensional array of data, which can be used directly by OperatorSpec, InputContext, and OutputContext.

Tip: Thisholoscan: :Tensor class is a wrapper around the DLManagedTensorCtx struct holding a DLManagedTen-
sor object. As such, it provides a primary interface to access Tensor data and is interoperable with other frameworks
that support the DLPack interface.

Warning: Passing holoscan: : Tensor objects to/from GXF operators directly is not supported. Instead, they
need to be passed through holoscan: :gxf: :Entity objects. See the interoperability section for more details.

Receiving any number of inputs (C++)

Instead of assigning a specific number of input ports, it may be desired to have the ability to receive any number
of objects on a port in certain situations. This can be done by defining Parameter with std: :vector<IOSpec*>>

(Parameter<std: :vector<IOSpec*>> receivers_) and calling spec.param(receivers_, "receivers",
"Input Receivers", "List of input receivers.", {}); as done for PingRxOp in the native operator ping
example.

Listing 9.4: examples/native_operator/cpp/ping.cpp

class PingRxOp : public Operator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS (PingRxO0p)

PingRxOp() = default;

void setup(OperatorSpec& spec) override {
spec.param(receivers_, 'receivers'", "Input Receivers", "List of input receivers.", {}
=)
}

void compute(InputContext& op_input, OutputContext&, ExecutionContext&) override {
auto value_vector = op_input.receive<std::vector<ValueData>>("receivers");

(continues on next page)

9.1. C++ Operators 85

https://dmlc.github.io/dlpack/latest/c_api.html#_CPPv415DLManagedTensor
https://dmlc.github.io/dlpack/latest/c_api.html#_CPPv415DLManagedTensor
https://dmlc.github.io/dlpack/latest/

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

130

131

132

133

134

135

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++, value_
—vector.size());

HOLOSCAN_LOG_INFO("Rx message valuel: {}", value_vector[0]->data());
HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[l]->data());

}s

private:
Parameter<std: :vector<IOSpec*>> receivers_;
int count_ = 1;

b
} // namespace holoscan::ops

class App : public holoscan::Application {
public:
void compose() override {
using namespace holoscan;

auto tx = make_operator<ops: :PingTxOp>("tx", make_condition<CountCondition>(10));
auto mx = make_operator<ops: :PingMiddleOp>("mx", from_config('"mx"));
auto rx = make_operator<ops: :PingRxOp>("rx");

add_flow(tx, mx, {{"outl", "in1"}, {"out2", "in2"1}});
add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});
}
};

Then, once the following configuration is provided in the compose () method, the PingRxOp will receive two inputs
on the receivers port.

133: add_flow(mx, rx, {{"outl", "receivers"}, {"out2", "receivers"}});

By using a parameter (receivers) with std: :vector<holoscan::I0Spec*> type, the framework creates input
ports (receivers:0 and receivers: 1) implicitly and connects them (and adds the references of the input ports to
the receivers vector).

Building your C++ operator

You can build your C++ operator using CMake, by calling find_package (holoscan) in your CMakeLists.txt to
load the SDK libraries. Your operator will need to link against holoscan: : core:

Listing 9.5: <src_dir>/CMakeLists.txt

Your CMake project
cmake_minimum_required (VERSION 3.20)
project(my_project CXX)

Finds the holoscan SDK
find_package(holoscan REQUIRED CONFIG PATHS "/opt/nvidia/holoscan")

(continues on next page)

86 Chapter 9. Creating Operators

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

Create a library for your operator
add_library(my_operator SHARED my_operator.cpp)

Link your operator against holoscan::core
target_link libraries(my_operator

PUBLIC holoscan::core
)

Once your CMakeLists.txt is ready in <src_dir>, you can build in <build_dir> with the command line below.
You can optionally pass Holoscan_ROOT if the SDK installation you’d like to use differs from the PATHS given to
find_package (holoscan) above.

Configure

cmake -S <src_dir> -B <build_dir> -D Holoscan_ROOT="/opt/nvidia/holoscan"
Build

cmake --build <build_dir> -j

Using your C++ Operator in an Application

« If the application is configured in the same CMake project as the operator, you can simply add the operator
CMake target library name under the application executable target_link_libraries call, as the operator
CMake target is already defined.

operator
add_library(my_op my_op.cpp)
target_link libraries(my_operator PUBLIC holoscan::core)

application
add_executable(my_app main.cpp)
target_link libraries(my_operator
PRIVATE
holoscan: :core
my_op
)

o If the application is configured in a separate project as the operator, you need to export the operator in
its own CMake project, and import it in the application CMake project, before being able to list it under
target_link libraries also. This is the same as what is done for the SDK built-in operators, available
under the holoscan: :ops namespace.

You can then include the headers to your C++ operator in your application code.

9.1. C++ Operators 87

https://cmake.org/cmake/help/latest/guide/importing-exporting/index.html

20

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 0.5.1

9.1.2 GXF Operators

With the Holoscan C++ API, we can also wrap GXF Codelets from GXF extensions as Holoscan Operators.

Note: If you do not have an existing GXF extension, we recommend developing native operators using the C++ or
Python APIs to skip the need for wrapping gxf codelets as operators. If you do need to create a GXF Extension, follow
the Creating a GXF Extension section for a detailed explanation of the GXF extension development process.

Given an existing GXF extension, we can create a simple “identity” application consisting of a replayer, which reads
contents from a file on disk, and our recorder from the last section, which will store the output of the replayer exactly
in the same format. This allows us to see whether the output of the recorder matches the original input files.

The MyRecorderOp Holoscan Operator implementation below will wrap the MyRecorder GXF Codelet shown rhere.

Operator definition

Listing 9.6: my_recorder_op.hpp

#1ifndef APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP
#define APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP

#include "holoscan/core/gxf/gxf_operator.hpp"
namespace holoscan::ops {
class MyRecorderOp : public holoscan::ops: :GXFOperator {
public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER (MyRecorderOp, holoscan: :ops: :GXFOperator)
MyRecorderOp() = default;
const char* gxf_typename() const override { return "MyRecorder"; }
void setup(OperatorSpec& spec) override;
void initialize() override;
private:
Parameter<holoscan: :I0Spec*> receiver_;
Parameter<std: :shared_ptr<holoscan: :Resource>> my_serializer_;
Parameter<std: :string> directory_;
Parameter<std: :string> basename_;

Parameter<bool> flush_on_tick_;

};
} // namespace holoscan: :ops

#endif /* APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP */

The holoscan::ops::MyRecorderOp class wraps a MyRecorder GXF Codelet by inheriting from the
holoscan: :ops: :GXFOperator class. The HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER macro is used
to forward the arguments of the constructor to the base class.

88 Chapter 9. Creating Operators

22

23

24

25

26

Holoscan SDK User Guide, Release 0.5.1

We first need to define the fields of the MyRecorderOp class. You can see that fields with the same names are defined
in both the MyRecorderOp class and the MyRecorder GXF codelet .

Listing 9.7: Parameter declarations in
gxf_extensions/my_recorder/my_recorder.hpp

nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;

nvidia::gxf::Parameter<nvidia: :gxf::Handle<nvidia: :gxf::EntitySerializer>> my_
—serializer_;

nvidia::gxf::Parameter<std::string> directory_;

nvidia::gxf::Parameter<std::string> basename_;

nvidia: :gxf: :Parameter<bool> flush_on_tick_;

Comparing the MyRecorderOp holoscan parameter to the MyRecorder gxf codelet:

Holoscan Operator GXF Codelet

holoscan: :Parameter nvidia::gxf::Parameter

holoscan: :I0Spec* nvidia::gxf::Handle<nvidia::gxf::Receiver>> or
nvidia::gxf::Handle<nvidia::gxf::Transmitter>>

std: :shared_ptr<holoscan:|: Redaiivncexxf: :Handle<T>> example: T is
nvidia::gxf::EntitySerializer

We then need to implement the following functions:

e const char® gxf_typename() const override: return the GXF type name of the Codelet. The fully-
qualified class name (MyRecorder) for the GXF Codelet is specified.

* void setup(OperatorSpec& spec) override: setup the OperatorSpec with the inputs/outputs and param-
eters of the Operator.

* void initialize() override: initialize the Operator.
Setting up parameter specifications
The implementation of the setup (OperatorSpec& spec) function is as follows:

Listing 9.8: my_recorder_op.cpp

#include "./my_recorder_op.hpp"

#include "holoscan/core/fragment.hpp"
#include "holoscan/core/gxf/entity.hpp"
#include "holoscan/core/operator_spec.hpp"

#include "holoscan/core/resources/gxf/video_stream_serializer.hpp"
namespace holoscan::ops {

void MyRecorderOp: :setup(OperatorSpec& spec) {

auto& input = spec.input<holoscan::gxf::Entity>("input");

// Above is same with the following two lines (a default condition is assigned to the.
< Input port if not specified):

//

// auto& input = spec.input<holoscan::gxf::Entity>("input")

(continues on next page)

9.1. C++ Operators 89

20

21

22

23

24

35

36

37

39

40

41

42

43

44

45

46

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// .condition(ConditionType: :kMessageAvailable, Arg("min_size") =.
~1);
spec.param(receiver_, '"receiver", "Entity receiver", "Receiver channel to log", &
—input);
spec.param(my_serializer_,
"serializer",

"Entity serializer",
"Serializer for serializing input data");

spec.param(directory_, "out_directory", "Output directory path", "Directory path to.
—store received output");
spec.param(basename_, "basename", "File base name", "User specified file name without.,

—extension");
spec.param(flush_on_tick_,
"flush_on_tick",
"Boolean to flush on tick",
"Flushes output buffer on every "“tick® when true",
false);

void MyRecorderOp::initialize() {...}

} // namespace holoscan::ops

Here, we set up the inputs/outputs and parameters of the Operator. Note how the content of this function is very similar
to the MyRecorder GXF codelet’s registerinterface function.

e In the C++ API, GXF Receiver and Transmitter components (such as DoubleBufferReceiver and
DoubleBufferTransmitter) are considered as input and output ports of the Operator so we register the in-
puts/outputs of the Operator with input<T> and output<T> functions (where T is the data type of the port).

e Compared to the ©pure GXF application that does the same job, the Schedul-
inglerm of an Entity in the GXF Application YAML are specified as Conditions
on the input/output ports (e.g., holoscan: :MessageAvailableCondition and
holoscan: :DownstreamMessageAffordableCondition).

The highlighted lines in MyRecorderOp: : setup above match the following highlighted statements of GXF Application
YAML:

Listing 9.9: A part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

name: recorder
components:
- name: input
type: nvidia::gxf::DoubleBufferReceiver
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.,
—nvidia::gxf::EntitySerializer

(continues on next page)

90 Chapter 9. Creating Operators

47

48

49

50

51

52

54

55

56

57

58

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

parameters:
component_serializers: [component_serializer]
- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
out_directory: "/tmp"
basename: "tensor_out"
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: input
min_size: 1

In the same way, if we had a Transmitter GXF component, we would have the following statements (Please see
available constants for holoscan: :ConditionType):

auto& output = spec.output<holoscan::gxf::Entity>("output");
// Above 1is same with the following two lines (a default condition is assigned to the.
—output port if not specified):

//
// auto& output = spec.output<holoscan::gxf::Entity>("output")
// .condition(ConditionType: :kDownstreamMessageAffordable, Arg(

<~ "min_size") = 1);

Initializing the operator
Next, the implementation of the initialize() function is as follows:

Listing 9.10: my_recorder_op.cpp

#include "./my_recorder_op.hpp"

#include "holoscan/core/fragment.hpp"
#include "holoscan/core/gxf/entity.hpp"
#include "holoscan/core/operator_spec.hpp"

#include "holoscan/core/resources/gxf/video_stream_serializer.hpp"
namespace holoscan::ops {
void MyRecorderOp::setup(OperatorSpec& spec) {...}
void MyRecorderOp::initialize() {
// Set up prerequisite parameters before calling GXFOperator::initialize()
auto frag = fragment();
auto serializer =
frag->make_resource<holoscan: :VideoStreamSerializer>("serializer");

add_arg(Arg("serializer") = serializer);

GXFOperator::initialize();

(continues on next page)

9.1. C++ Operators 91

23

40

41

42

43

44

45

46

4

48

49

50

51

52

53

55

56

58

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

} // namespace holoscan::ops

Here we set up the pre-defined parameters such as the serializer. The highlighted lines above matches the high-
lighted statements of GXF Application YAML:

Listing 9.11: Another part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

name: recorder
components:
- name: input
type: nvidia::gxf::DoubleBufferReceiver
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.,
—nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]
- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
out_directory: "/tmp"
basename: "tensor_out"
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: input
min_size: 1

Note: The Holoscan C++ API already provides the holoscan::VideoStreamSerializer class which
wraps the nvidia::holoscan::stream_playback: :VideoStreamSerializer GXF component, used here as
serializer.

92 Chapter 9. Creating Operators

Holoscan SDK User Guide, Release 0.5.1

Building your GXF operator

There are no differences in CMake between building a GXF operator and building a native C++ operator, since
the GXF codelet is actually loaded through a GXF extension as a plugin, and does not need to be added to
target_link libraries(my_operator ...).

Using your GXF Operator in an Application

There are no differences in CMake between using a GXF operator and using a native C++ operator in an application.
However, the application will need to load the GXF extension library which holds the wrapped GXF codelet symbols,
so the application needs to be configured to find the extension library in its yaml configuration file, as documented /ere.

9.1.3 Interoperability between GXF and native C++ operators

GXF passes nvidia: :gxf: : Tensor types between its codelets through a nvidia: : gxf: :Entity message. To sup-
port sending or receiving tensors to and from a GXF codelet (wrapped in a GXF operator) the Holoscan SDK provides
the C++ classes below:

¢ holoscan: :gxf: :GXFTensor: inherits from nvidia: :gxf: :Tensor, and holds a DLManagedTensorCtx
struct, making it interchangeable with the holoscan: : Tensor class mentioned above.

* holoscan::gxf::Entity: inherits from nvidia::gxf::Entity, handles the conversion from
holoscan: :gxf: :GXFTensor to holoscan: : Tensor under the hood.

DLPack's
data structure

holoscan::InputContext holoscan::OutputContext

holoscan::gxf::GXFInputContext holoscan::gxf::GXFOutputContext holoscan::Tensor

::shared_ptr<
interchangeable

accept/return

holoscan::gxf::Entity

holoscan::gxf::GXFTensor

contain

Fig. 9.2: Supporting Tensor Interoperability

Consider the following example, where GXFSendTensorOp and GXFReceiveTensorOp are GXF operators, and where
ProcessTensorOp is a C++ native operator:

The following code shows how to implement ProcessTensorOp’s compute () method as a C++ native operator com-
municating with GXF operators. Focus on the use of the holoscan: :gxf: :Entity:

9.1. C++ Operators 93

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Holoscan SDK User Guide, Release 0.5.1

ProcessTensorO
GXFSendTensorOp P GXFReceiveTensorOp

—signal...inI= [in]in : Tensor —out...signal-> linlsignal : Tensor

signal(out) : Tensor
gnall) out(out) : Tensor

Fig. 9.3: The tensor interoperability between C++ native operator and GXF operator

Listing 9.12: examples/tensor_interop/cpp/tensor_interop.cpp

void compute(InputContext& op_input, OutputContext& op_output,
ExecutionContext& context) override {
// The type of ‘in_message’ is 'holoscan::gxf::Entity'.
auto in_message = op_input.receive<holoscan::gxf::Entity>("in");
// The type of “tensor’ is 'std::shared_ptr<holoscan: :Tensor>'.
auto tensor = in_message.get<Tensor>();

// Process with 'tensor' here.
cudaError_t cuda_status;

size_t data_size = tensor->nbytes();

std: :vector<uint8_t> in_data(data_size);

CUDA_TRY (cudaMemcpy(in_data.data(), tensor->data(), data_size,..
—»cudaMemcpyDeviceToHost));

for (size_t i = 0; i < data_size; i++) { in_data[i] *= 2; }

CUDA_TRY (cudaMemcpy (tensor->data(), in_data.data(), data_size,..
—»cudaMemcpyHostToDevice));

// Create a new message (Entity)
auto out_message = holoscan::gxf::Entity::New(&context);
out_message.add(tensor, "tensor");

// Send the processed message.
op_output.emit(out_message);

* The op_input.receive() method call returns a holoscan: :gxf: :Entity object. That object has a get ()
method that returns the holoscan: : Tensor object.

* The holoscan: : Tensor object is copied on the host as in_data.
* The data is process (values multiplied by 2)
* The data is moved back to the holoscan: : Tensor object on the GPU.

* A new holoscan: :gxf::Entity object is created to be sent to the next operator with op_output.emit().
The holoscan: : Tensor object is added to it using the add () method.

Note: A complete example of the C++ native operator that supports interoperability with GXF operators is available
in the examples/tensor_interop/cpp directory.

You can add multiple tensors to a single holoscan: : gxf: :Entity object by calling the add () method multiple times

94 Chapter 9. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/cpp

Holoscan SDK User Guide, Release 0.5.1

with a unique name for each tensor, as in the example below:

Operator sending a message:

auto out_message = holoscan::gxf::Entity::New(&context);
// Tensors and tensor names
out_message.add(output_tensorl, "video");
out_message.add(output_tensor2, "labels");
out_message.add(output_tensor3, "bbox_coords");

// Entity and port name

op_output.emit(out_message, "outputs");

Operator receiving the message, assuming the outputs port above is connected to the inputs port below with
add_flow():

// Entity and port name

auto in_message = op_input.receive<holoscan: :gxf::Entity>("inputs");
// Tensors and tensor names

auto video = in_message.get<Tensor>("video");

auto labels = in_message.get<Tensor>("labels");

auto bbox_coords = in_message.get<Tensor>("bbox_coords™);

Note: Some existing operators allow configuring the name of the tensors they send/receive. An example is the
tensors parameter of HolovizOp, where the name for each tensor maps to the names of the tensors in the Entity
(see the holoviz entry in apps/endoscopy_tool_tracking/cpp/app_config.yaml).

9.2 Python Operators

When assembling a Python application, two types of operators can be used:

1. Native Python operators: custom operators defined in Python, by creating a subclass of holoscan.core.
Operator. These Python operators can pass arbitrary Python objects around between operators and are not
restricted to the stricter parameter typing used for C++ API operators.

2. Python wrappings of C++ Operators: operators defined in the underlying C++ library by inheriting from the
holoscan: :Operator class. These operators have Python bindings available within the holoscan. operators
module. Examples are VideoStreamReplayerOp for replaying video files, FormatConverterOp for format
conversions, and HolovizOp for visualization.

Note: It is possible to create an application using a mixture of Python wrapped C++ operators and native Python
operators. In this case, some special consideration to cast the input and output tensors appropriately must be taken, as
shown in a section below.

9.2. Python Operators 95

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/apps/endoscopy_tool_tracking/cpp/app_config.yaml

Holoscan SDK User Guide, Release 0.5.1

9.2.1 Native Python Operator

Operator Lifecycle (Python)

The lifecycle of a holoscan. core.Operator is made up of three stages:

» start() is called once when the operator starts, and is used for initializing heavy tasks such as allocating memory
resources and using parameters.

» compute() is called when the operator is triggered, which can occur any number of times throughout the operator
lifecycle between start () and stop().

* stop() is called once when the operator is stopped, and is used for deinitializing heavy tasks such as deallocating
resources that were previously assigned in start().

All operators on the workflow are scheduled for execution. When an operator is first executed, the start () method
is called, followed by the compute() method. When the operator is stopped, the stop() method is called. The
compute () method is called multiple times between start() and stop().

If any of the scheduling conditions specified by Conditions are not met (for example, the CountCondition would
cause the scheduling condition to not be met if the operator has been executed a certain number of times), the operator
is stopped and the stop () method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (Python) section of the user guide.

Typically, the start() and the stop() functions are only called once during the application’s lifecycle. However, if
the scheduling conditions are met again, the operator can be scheduled for execution, and the start () method will be

called again.

start —% compute —» stop

D

Fig. 9.4: The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above methods. The following example
shows how to implement a custom operator that overrides start, stop and compute methods.

Listing 9.13: The basic structure of a Holoscan Operator (Python)

from holoscan.core import (
ExecutionContext,
InputContext,
Operator,
OperatorSpec,
OutputContext,

class MyOp(Operator):

def __init__(self, fragment, *args, **kwargs):
super().__init__ (fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):

(continues on next page)

96 Chapter 9. Creating Operators

20

21

22

23

24

25

20

21

22

23

24

25

26

27

28

29

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

pass

def start(self):
pass

def compute(self, op_input: InputContext, op_output: OutputContext, context:.
—ExecutionContext):
pass

def stop(self):
pass

Creating a custom operator (Python)

To create a custom operator in Python it is necessary to create a subclass of holoscan. core.Operator. A simple
example of an operator that takes a time-varying 1D input array named “signal” and applies convolution with a boxcar
(i.e. rect) kernel.

For simplicity, this operator assumes that the “signal” that will be received on the input is already a numpy .ndarray
or is something that can be cast to one via (np.asarray). We will see more details in a later section on how we can
interoperate with various tensor classes, including the GXF Tensor objects used by some of the C++-based operators.

Code Snippet: examples/numpy_native/convolve.py

Listing 9.14: examples/numpy_native/convolve.py

import os

from holoscan.conditions import CountCondition
from holoscan.core import Application, Operator, OperatorSpec
from holoscan.logger import LogLevel, set_log_level

import numpy as np

class SignalGeneratorOp(Operator):
"""Generate a time-varying impulse.

Transmits an array of zeros with a single non-zero entry of a
specified ‘height'. The position of the non-zero entry shifts
to the right (in a periodic fashion) each time ‘compute” is
called.

Parameters
fragment : holoscan.core.Fragment

The Fragment (or Application) the operator belongs to.
height : number

The height of the signal impulse.
size : number

The total number of samples in the generated 1d signal.
dtype : numpy.dtype or str

(continues on next page)

9.2. Python Operators 97

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.py

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

87

88

89

90

91

92

93

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

The data type of the generated signal.

o

def __init__(self, fragment, *args, height=1, size=10, dtype=np.int32, **kwargs):
self.count = 0
self.height = height
self.dtype = dtype
self.size = size
super().__init__ (fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.output('signal™)

def compute(self, op_input, op_output, context):
single sample wide impulse at a time-varying position
signal = np.zeros((self.size,), dtype=self.dtype)
signal[self.count % signal.size] = self.height

self.count += 1

op_output.emit(signal, "signal')

class ConvolveOp(Operator):

"""Apply convolution to a tensor.
Convolves an input signal with a "boxcar" (i.e. "rect") kernel.

Parameters

fragment : holoscan.core.Fragment
The Fragment (or Application) the operator belongs to.

width : number
The width of the boxcar kernel used in the convolution.

unit_area : bool, optional
Whether or not to normalize the convolution kernel to unit area.
If False, all samples have implitude one and the dtype of the
kernel will match that of the signal. When True the sum over
the kernel is one and a 32-bit floating point data type is used
for the kernel.

e

def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs):
self.count = 0
self.width = width
self.unit_area = unit_area
super().__init__(fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.input("signal_in")
spec.output('signal_out")

(continues on next page)

98

Chapter 9. Creating Operators

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

def compute(self, op_input, op_output, context):

signal = op_input.receive("signal_in")
assert isinstance(signal, np.ndarray)

if self.unit_area:

kernel = np.full((self.width,), 1/self.width, dtype=np.float32)
else:

kernel = np.ones((self.width,), dtype=signal.dtype)

convolved = np.convolve(signal, kernel, mode='same')

op_output.emit(convolved, "signal_out")

class PrintSignalOp(Operator):
"""Print the received signal to the terminal."""
def setup(self, spec: OperatorSpec):
spec.input("signal™)

def compute(self, op_input, op_output, context):
signal = op_input.receive("signal")
print(signal)

class ConvolveApp(Application):
"""Minimal signal processing application.

Generates a time-varying impulse, convolves it with a boxcar kernel, and
prints the result to the terminal.

A “CountCondition® is applied to the generate to terminate execution
after a specific number of steps.

o

def compose(self):
signal_generator = SignalGeneratorOp(
self,
CountCondition(self, count=24),
name="generator",
**self.kwargs("generator"),
)
convolver = ConvolveOp(self, name="conv'", **self.kwargs('convolve"))
printer = PrintSignalOp(self, name="printer")
self.add_flow(signal_generator, convolver)
self.add_flow(convolver, printer)

if __name__ == "__main__":
set_log_level (LogLevel.WARN)

(continues on next page)

9.2. Python Operators 99

146

147

148

149

20

21

22

23

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

app = ConvolveApp()

config_file = os.path.join(os.path.dirname(__file__), 'convolve.yaml')
app.config(config_file)

app.run()

Code Snippet: examples/numpy_native/convolve.yaml

Listing 9.15: examples/numpy_native/convolve.yaml

signal_generator:
height: 1
size: 20
dtype: int32

convolve:
width: 4
unit_area: false

In this application, three native Python operators are created: SignalGeneratorOp, ConvolveOp and
PrintSignalOp. The SignalGeneratorOp generates a synthetic signal such as [0, 0, 1, ®, 0, 0] where the
position of the non-zero entry varies each time it is called. ConvolveOp performs a 1D convolution with a boxcar (i.e.
rect) function of a specified width. PrintSignalOp just prints the received signal to the terminal.

As covered in more detail below, the inputs to each operator are specified in the setup () method of the operator. Then
inputs are received within the compute method via op_input.receive() and outputs are emitted via op_output.
emit().

Note that for native Python operators as defined here, any Python object can be emitted or received. When trasmitting
between operators, a shared pointer to the object is transmitted rather than a copy. In some cases, such as sending the
same tensor to more than one downstream operator, it may be necessary to avoid in-place operations on the tensor in
order to avoid any potential race conditions between operators.

Specifying operator parameters (Python)

In the example SignalGeneratorOp operator above, we added three keyword arguments in the operator’s __init__
method, used inside the compose () method of the operator to adjust its behavior:

def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs):
Internal counter for the time-dependent signal generation
self.count = 0

Parameters
self.width = width
self.unit_area = unit_area

To forward remaining arguments to any underlying C++ Operator class
super().__init__ (fragment, *args, **kwargs)

Note: As an alternative closer to C++, these parameters can be added through the OperatorSpec attribute of the
operator in its setup () method, where an associated string key must be provided as well as a default value:

100 Chapter 9. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.yaml

Holoscan SDK User Guide, Release 0.5.1

def setup(self, spec: OperatorSpec):
spec.param("'width", 4)
spec.param("unit_area", False)

Other kwargs properties can also be passed to spec.param such as headline, description (used by GXF applica-
tions), or kind (used when Receiving any number of inputs (Python)).

See the Configuring operator parameters section to learn how an application can set these parameters.

Specifying operator inputs and outputs (Python)

To configure the input(s) and output(s) of Python native operators, call the spec.input() and spec.output () meth-
ods within the setup () method of the operator.

The spec.input() and spec.output () methods should be called once for each input and output to be added. The
holoscan.core.OperatorSpec object and the setup () method will be initialized and called automatically by the
Application class when its run() method is called.

These methods (spec.input() and spec.output()) return an I0Spec object that can be used to configure the
input/output port.

By default, the holoscan.conditions.MessageAvailableCondition and holoscan.conditions.
DownstreamMessageAffordableCondition conditions are applied (with a min_size of 1) to the input/output
ports. This means that the operator’s compute () method will not be invoked until a message is available on the input
port and the downstream operator’s input port (queue) has enough capacity to receive the message.

def setup(self, spec: OperatorSpec):
spec.input("'in")
Above statement is equivalent to:
spec.input("in")
.condition(ConditionType.MESSAGE_AVAILABLE, min_size = 1)
spec.output("out")
Above statement is equivalent to:
spec.output("out")
.condition(ConditionType.DOWNSTREAM_MESSAGE_AFFORDABLE, min_size = 1)

In the above example, the spec.input() method is used to configure the input port to have the holoscan.
conditions.MessageAvailableCondition with a minimum size of 1. This means that the operator’s
compute() method will not be invoked until a message is available on the input port of the operator. Sim-
ilarly, the spec.output() method is used to configure the output port to have a holoscan.conditions.
DownstreamMessageAffordableCondition with a minimum size of 1. This means that the operator’s compute ()
method will not be invoked until the downstream operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the I0Spec. condition() method to configure the conditions. For example,
to configure the input and output ports to have no conditions, you can use the following code:

from holoscan.core import ConditionType, OperatorSpec
def setup(self, spec: OperatorSpec):
spec.input("in") .condition(ConditionType.NONE)
spec.output("out").condition(ConditionType.NONE)

The example code in the setup() method configures the input port to have no conditions, which means that the
compute () method will be called as soon as the operator is ready to compute. Since there is no guarantee that the

9.2. Python Operators 101

124

125

126

127

128

129

130

131

132

133

134

Holoscan SDK User Guide, Release 0.5.1

input port will have a message available, the compute () method should check if there is a message available on the
input port before attempting to read it.

The receive () method of the InputContext object can be used to access different types of input data within the
compute () method of your operator class. This method takes the name of the input port as an argument (which can
be omitted if your operator has a single input port).

For standard Python objects, receive () will directly return the Python object for input of the specified name.

The Holoscan SDK also provides built-in data types called Domain Objects, defined in the include/holoscan/
core/domain directory. For example, the Tensor is a Domain Object class that is used to represent a multi-
dimensional array of data, which can be used directly by OperatorSpec, InputContext, and OutputContext.

Tip: This holoscan.core.Tensor class supports both DLPack and NumPy’s array interface
(__array_interface__ and __cuda_array_interface__) so that it can be used with other Python libraries such
as CuPy, PyTorch, JAX, TensorFlow, and Numba.

Warning: Passing holoscan.core.Tensor objects to/from Python wrapped C++ operators (both C++ native
and GXF-based) directly is not yet supported. At this time, they need to be passed through holoscan.gxf.Entity
objects. See the interoperability section for more details. This won’t be necessary in the future for native C++
operators.

In both cases, it will return None if there is no message available on the input port:

def compute(self, op_input, op_output, context):
msg = op_input.receive("in")
if msg:
Do something with msg

Receiving any number of inputs (Python)

Instead of assigning a specific number of input ports, it may be desired to have the ability to receive any number of
objects on a port in certain situations. This can be done by calling spec.param(port_name, kind='receivers')
as done for PingRxOp in the native operator ping example located at examples/native_operator/python/ping.

py:
Code Snippet: examples/native_operator/python/ping.py

Listing 9.16: examples/native_operator/python/ping.py

class PingRxOp(Operator):
"""Simple receiver operator.

This operator has:
input: "receivers"

This is an example of a native operator that can dynamically have any
number of inputs connected to is '"receivers'" port.

o

def __init__(self, fragment, *args, **kwargs):

(continues on next page)

102 Chapter 9. Creating Operators

https://dmlc.github.io/dlpack/latest/
https://numpy.org/doc/stable/reference/arrays.interface.html
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://docs.cupy.dev/en/stable/user_guide/interoperability.html
https://github.com/pytorch/pytorch/issues/15601
https://github.com/google/jax/issues/1100#issuecomment-580773098
https://github.com/tensorflow/community/pull/180
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/python/ping.py

135

136

137

138

139

140

141

142

143

144

145

146

147

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

self.count = 1
Need to call the base class constructor last
super().__init__ (fragment, *args, **kwargs)

def setup(self, spec: OperatorSpec):
spec.param("receivers", kind="receivers")

def compute(self, op_input, op_output, context):
values = op_input.receive(''receivers")

print(£"Rx message received (count: {self.count}, size: {len(values)})")

self.count += 1
print (£f"Rx message valuel: {values[0].data}")
print (f"Rx message value2: {values[1l].data}")

and in the compose method of the application, two parameters are connected to this “receivers” port:

self.add_flow(mx, rx, {("outl", "receivers"), ("out2", "receivers")})

This line connects both the out1 and out2 ports of operator mx to the receivers port of operator rx.

Here, values as returned by op_input.receive("receivers") will be a tuple of python objects.

9.2.2 Python wrapping of a C++ operator

For convenience while maintaining highest performance, operators written in C++ can be wrapped in Python. In the
Holoscan SDK, we’ve used pybind11 to wrap all the built-in operators in python/src/operators. We’ll highlight

the main components below:

1. Create a subclass in C++ that inherits the C++ Operator class to wrap, to define a new constructor which takes
a Fragment, an explicit list of parameters with potential default values (argA, argB below...), and an operator

name, in order to then fully initialize the operator like is done in Fragment : :make_operator:

#include <holoscan/core/fragment.hpp>
#include <holoscan/core/operator.hpp>
#include <holoscan/core/operator_spec.hpp>

#include "my_op.hpp"

class PyMyOp : public MyOp {
public:
using MyOp: :MyOp;

PyMyOp(
Fragment* fragment,
TypeA argA, TypeB argB = 0, ...,
const std::string& name = "my_op"
) : MyOp(ArgList{
Arg{"argA", argA},
Arg{"argB", argB},

i

—an “Arg’,

If you have arguments you can't pass directly to the "MyOp® constructor as.

(continues on next page)

9.2. Python Operators

103

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/src/operators

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

do the conversion and call ‘this->add_arg" before setting up the spec below.

name_ = name;
fragment_ = fragment;
spec_ = std::make_shared<OperatorSpec>(fragment) ;
setup(*spec_.get());
initialize(Q);
}
}
2. Prepare documentation for your python class. Below we use a PYDOC macro defined in the SDK here. See note
below for HoloHub.
#include "../macros.hpp"

namespace doc: :MyOp {

PYDOC(cls, R"doc(
My operator.
)doc™)

PYDOC(constructor, R"doc(
Create the operator.

Parameters
fragment : holoscan.core.Fragment
The fragment that the operator belongs to.
argA : TypeA
argA description
argB : TypeB, optional
argB description
name : str, optional
The name of the operator.
)doc™)

PYDOC(initialize, R"doc(
Initialize the operator.

This method is called only once when the operator is created for the first time,
and uses a light-weight initialization.
)doc™)

PYDOC(setup, R"doc(
Define the operator specification.

Parameters

spec : holoscan.core.OperatorSpec
The operator specification.

)doc™)

104 Chapter 9. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/src/macros.hpp

Holoscan SDK User Guide, Release 0.5.1

3. Call py: :class_ within PYBIND11_MODULE to define your operator python class:

#include <pybindll/pybindll.h>

using pybindl1l::literals::operator""_a;

#define STRINGIFY(x) #x
#define MACRO_STRINGIFY(x) STRINGIFY(x)

namespace py = pybindll;

// The name used as the first argument to the PYBIND11_MODULE macro here
// must match the name passed to the pybindll_add_module CMake function
PYBIND11_MODULE(_my_python_module, m) {
m.doc() = R"phdoc(
Holoscan SDK Python Bindings

. currentmodule:: _my_python_module
. autosummary::
:toctree: _generate
add
subtract
)pbdoc";

#ifdef VERSION_INFO

m.attr("__version__") = MACRO_STRINGIFY(VERSION_INFO);
#else

m.attr("__version__") = "dev'";
#endif

py::class_<MyOp, PyMyOp, Operator, std::shared_ptr<MyOp>>(
m, "MyOp", doc::MyOp::doc_cls)

.def(py::init<Fragment®, TypeA, TypeB, ..., const std::string&>(Q),
"fragment"_a,
"argA"_a,
"argB"_a = 0,
"name“_a = Ilmy_opll ,

doc: :MyOp: :doc_constructor)
.def("initialize",

&MyOp: :initialize,

doc: :MyOp: :doc_initialize)

.def("setup",
&MyOp: : setup,
"spec'_a,

doc: :MyOp: :doc_setup) ;

4. In CMake, use the pybind11_add_module macro (official doc) with the cpp files containing the code above,
and link against holoscan: : core and the library that exposes your C++ operator to wrap. In the SDK, this is
done here. See note below for HoloHub. For a simple standalone project/operator, it could look like this:

pybindl1l_add_module(my_python_module my_op_pybind.cpp)
target_link_libraries(my_python_module

(continues on next page)

9.2. Python Operators 105

https://pybind11.readthedocs.io/en/stable/compiling.html#building-with-cmake
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/src/CMakeLists.txt

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

PRIVATE holoscan: :core
PUBLIC my_op
)

5. The c++ module will need to be loaded in Python to expose the python class. This canbe done withan __init__.
py file like below. Ituses from . assuming the python file and the generated my_python_module c++ library
are in the same folder.

import holoscan.core

from ._my_python_module import MyOp

Note: We’ve added utilities to facilitate steps 2, 4 and 5 within HoloHub, using the pybind11_add_holohub_module
CMake utility. An example of its use can be found here.

9.2.3 Interoperability between wrapped and native Python operators

As described in the Interoperability between GXF and native C++ operators section, holoscan: : Tensor objects can
only be passed to GXF operators using a holoscan: :gxf: :Entity message that holds the tensor(s). In Python, this
is done with the wrapped methods, holoscan. core.Tensor and holoscan.gxf.Entity.

Warning: Atthis time, using holoscan.gxf.Entity is required when communicating with any Python wrapped
C++ operator. That includes native C++ operators and GXF operators. This will be addressed in future versions to
only require a holoscan.gxf.Entity for Python wrapped GXF operators.

Consider the following example, where VideoStreamReplayerOp and HolovizOp are Python wrapped C++ opera-
tors, and where ImageProcessingOp is a Python native operator:

ImageProcessingOp

VideoStreamReplayerOp HolovizOp

—output_tensor...input_tensor{> [in]input_tensor : Tensor =~ —output_tensor...receivers{= . .
output_tensor(out) : Tensor Linjreceivers : Tensor
put ' output_tensor(out) : Tensor

Fig. 9.5: The tensor interoperability between Python native operator and C++-based Python GXF operator

The following code shows how to implement ImageProcessingOp’s compute () method as a Python native operator
communicating with C++ operators:

Listing 9.17: examples/tensor_interop/python/tensor_interop.py

def compute(self, op_input, op_output, context):
message = op_input.receive("input_tensor")

input_tensor = message.get()

print(f"message received (count: {self.count})")
self.count += 1

cp_array = cp.asarray(input_tensor)

(continues on next page)

106 Chapter 9. Creating Operators

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/CMakeLists.txt

90

91

93

9%

95

96

97

98

99

100

101

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

smooth along first two axes, but not the color channels
sigma = (self.sigma, self.sigma, 0)

process cp_array
cp_array = ndi.gaussian_filter(cp_array, sigma)

out_message = Entity(context)
output_tensor = hs.as_tensor(cp_array)

out_message.add(output_tensor)
op_output.emit(out_message, "output_tensor")

* The op_input.receive() method call returns a holoscan.gxf.Entity object. That object has a get()
method that returns a holoscan. core. Tensor object.

e The holoscan.core.Tensor object is converted to a CuPy array by using cupy.asarray () method call.

* The CuPy array is used as an input to the ndi . gaussian_filter() function call with a parameter sigma. The
result of the ndi.gaussian_filter() function call is a CuPy array.

* The CuPy array is converted to a holoscan. core.Tensor object by using holoscan.as_tensor () function
call.

* Finally, anew holoscan.gxf.Entity objectis created to be sent to the next operator with op_output.emit().
The holoscan.core.Tensor object is added to it using the add () method.

Note: A complete example of the Python native operator that supports interoperability with Python wrapped C++
operators is available in the examples/tensor_interop/python directory.

You can add multiple tensors to a single holoscan.gxf.Entity object by calling the add() method multiple times
with a unique name for each tensor, as in the example below:

Operator sending a message:

out_message = Entity(context)

Tensors and tensor names
out_message.add(output_tensorl, "video")
out_message.add(output_tensor2, "labels")
out_message.add(output_tensor3, "bbox_coords")
Entity and port name
op_output.emit(out_message, "outputs")

Operator receiving the message, assuming the outputs port above is connected to the inputs port below with
add_flow():

Entity and port name

in_message = op_input.receive("inputs")

Tensors and tensor names

video = in_message.get("video")

labels = in_message.get("labels")
bbox_coords = in_message.get("bbox_coords")

Note: Some existing operators allow configuring the name of the tensors they send/receive. An example is the

9.2. Python Operators 107

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/python

Holoscan SDK User Guide, Release 0.5.1

tensors parameter of HolovizOp, where the name for each tensor maps to the names of the tensors in the Entity
(see the holoviz entry in apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml).

A complete example of a Python native operator that emits multiple tensors to a downstream C++ operator is available
in the examples/holoviz/python directory.

108 Chapter 9. Creating Operators

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python

CHAPTER
TEN

BUILT-IN OPERATORS AND EXTENSIONS

The units of work of Holoscan applications are implemented within Operators, as described in the core concepts of
the SDK. The operators included in the SDK provide domain-agnostic functionalities such as IO, machine learning
inference, processing, and visualization, optimized for Al streaming pipelines, relying on a set of Core Technologies.

10.1 Operators

The operators below are defined under the holoscan: : ops namespace for C++ and CMake, and under the holoscan.
operators module in Python.

Class CMake target/lib Documentation
AJASourceOp aja C++/Python
BayerDemosaicOp bayer_demosaic C++/Python
FormatConverterOp format_converter C++/Python
HolovizOp holoviz C++/Python
MultiAllnferenceOp multiai_inference C++/Python
MultiATPostprocessorOp multiai_postprocessor C++/Python
PingRxOp ping_rx C++/Python
PingTxOp ping_tx C++/Python
SegmentationPostprocessorOp | segmentation_postprocessor | C++/Python
TensorRTInferenceOp tensor_rt C++/Python
VideoStreamRecorderOp video_stream_recorder C++/Python
VideoStreamReplayerOp video_stream_replayer C++/Python

T deprecated

Given an instance of an operator class, you can print a human-readable description of its specification to inspect the
inputs, outputs, and parameters that can be configured on that operator class:

109

Holoscan SDK User Guide, Release 0.5.1

C++

std::cout << operator_object->spec()->description() << std::endl;

Python

print(operator_object.spec)

Note: The Holoscan SDK uses meta-programming with templating and std: :any to support arbitrary data types.
Because of this, some type information (and therefore values) might not be retrievable by the description APL If
more details are needed, we recommend inspecting the list of Parameter members in the operator header to identify
their type.

10.2 Extensions

The Holoscan SDK also includes some GXF extensions with GXF codelets, which are typically wrapped as operators,
or present for legacy reasons. In addition to the core GXF extensions (std, cuda, serialization, multimedia) listed /here,
the Holoscan SDK includes the following GXF extensions:

* bayer_demosaic

* gxf _holoscan_wrapper
* opengl

» stream_playback

* tensor_rt

o 412
10.2.1 Bayer Demosaic
The bayer_demosaic extension includes the nvidia: :holoscan: : BayerDemosaic codelet. It performs color filter

array (CFA) interpolation for 1-channel inputs of 8 or 16-bit unsigned integer and outputs an RGB or RGBA image. It
is wrapped by the nvidia: :holoscan: :ops: :BayerDemosaicOp operator.

Note: The BayerDemosaicOp will be converted to a native operator in future releases.

110 Chapter 10. Built-in Operators and Extensions

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/include/holoscan/operators

Holoscan SDK User Guide, Release 0.5.1

10.2.2 GXF Holoscan Wrapper

The gxf_holoscan_wrapper extension includes the holoscan: :gxf: :OperatorWrapper codelet. It is used as a
utility base class to wrap a holoscan operator to interface with the GXF framework.

Learn more about it in the Using Holoscan Operators in GXF Applications section.

10.2.3 OpenGL

The opengl_renderer extension includes the nvidia::holoscan: :OpenGLRenderer codelet. It displays a
VideoBuffer, leveraging OpenGL/CUDA interop.

Note: There is no operator currently wrapping this codelet. It is only use to demonstrate the V4L2 example.

Warning: This codelet is deprecated, and will be removed in a future release in favor of a native operator using
the visualization module.

Parameter Description Type

signal Input Channel gxf::Handle<gxf::Receiver

width Width of the rendering window unsigned int

height Height of the rendering window unsigned int

win- BooleanSchedulingTerm to stop the codelet from tick- | gxf: :Handle<gxf: :BooleanSichedulingTerm>
dow_close_scheduling iterafiter all messages are published

10.2.4 Stream Playback

The stream_playback extension includes thenvidia: :holoscan: : stream_playback: :VideoStreamSerializer
entity serializer to/from a Tensor Object. This extension does not include any codelets: reading and writing video
stream (gxf entity files) from the disk was implemented as native operators with VideoStreamRecorderOp and
VideoStreamReplayerOp, though they leverage the VideoStreamSerializer from this extension.

Note: The VideoStreamSerializer codelet is based on the nvidia: :gxf::StdEntitySerializer with the
addition of a repeat feature. (If the repeat parameter is true and the frame count is out of the maximum frame
index, unnecessary warning messages are printed with nvidia: :gxf: :StdEntitySerializer.)

10.2.5 TensorRT

The tensor_rt extension includes the nvidia::holoscan::TensorRtInference codelet. It
takes input tensors and feeds them into TensorRT for inference. It is wrapped by the
nvidia: :holoscan: :ops: :TensorRTInferenceOp operator.

Note: This codelet is based on nvidia::gxf::TensorRtInference (by GXF), with the addition of the
engine_cache_dir to be able to provide a directory of engine files for multiple GPUs instead of a single one.

10.2. Extensions 111

Holoscan SDK User Guide, Release 0.5.1

Warning: This codelet is deprecated, and will be removed in Holoscan 0.6 in favor of a native operator using the
inference module.

10.2.6 V4L2

The v412_source extension includes the nvidia: :holoscan: :V4L2Source codelet. It uses V4L2 to get image
frames from USB cameras. The output is a VideoBuffer object.

Note: There is no operator currently wrapping this codelet. A native operator also supporting HDMI IN will replace
this codelet in future releases,

Parameter | Description Type Default
signal Output channel gxf::Handle<gxf::Transmitter>

allocator Output Allocator gxf::Handle<gxf::Allocator>

device Path to the V4L2 device std::string /dev/video®
width Width of the V4L2 image uint32_t 640

height Height of the V4L2 image uint32_t 480
numBuffers | Number of V4L2 buffers to use | uint32_t 2

10.2.7 HoloHub

Visit the HoloHub repository to find a collection of additional Holoscan operators and extensions.

112 Chapter 10. Built-in Operators and Extensions

L L S

CHAPTER
ELEVEN

LOGGING

11.1 Defining the log level

The load_env_log_level() (C++/Python) function loads the logging level from the environment variable
HOLOSCAN_LOG_LEVEL (default: INFO).

CPP

#include <holoscan/holoscan.hpp>

int main() {
holoscan::load_env_log_level();
/) ...
return 0;

}

PYTHON

from holoscan.logger import load_env_log_level

def main(Q:
load_env_log_level()

if _name__ == "__main__":
main()

HOLOSCAN_LOG_LEVEL can be set to one of the following values:
* TRACE
« DEBUG
* INFO
* WARN
* ERROR
e CRITICAL
* OFF

113

Holoscan SDK User Guide, Release 0.5.1

export HOLOSCAN_LOG_LEVEL=TRACE

11.2 Calling the logger

The C++ API uses the HOLOSCAN_LOG_XXX() macros to log messages in the application. These macros use the
fmtlib format string syntax for their format strings.

Users of the Python API should use the built-in 1ogging module to log messages. Users can control the logging of any
underlying C++ Operators used via their Python bindings via the functions in the holoscan. logger module. Specifi-
cally, calling load_env_log_level () will load the logging level from the HOLOSCAN_LOG_LEVEL environment vari-
able described above. This log level can also be changed at runtime via set_log_level() using the LogLevel ()
enum class (e.g. set_log_level (LogLevel.WARN)).

114 Chapter 11. Logging

https://fmt.dev/latest/syntax.html
https://docs.python.org/3/howto/logging.html

CHAPTER

TWELVE

VISUALIZATION MODULE

12.1 Overview

Holoviz is a module of the Holoscan SDK for visualizing data. Holoviz composites real time streams of frames with
multiple different other layers like segmentation mask layers, geometry layers and GUI layers.

For maximum performance Holoviz makes use of Vulkan, which is already installed as part of the Nvidia GPU driver.

12.2 Concepts

Holoviz uses the concept of the immediate mode design pattern for its API, inspired by the Dear ImGui library. The
difference to the retained mode, for which most APIs are designed for, is, that there are no objects created and stored
by the application. This makes it fast and easy to make visualization changes in a Holoscan application.

12.3 Usage

The code below creates a window and displays an image.

First Holoviz needs to be initialized. This is done by calling viz::Init().

The elements to display are defined in the render loop,

viz: :WindowShouldClose().

termination of the loop is checked with

The definition of the displayed content starts with viz: :Begin() and ends with viz: :End(Q). viz: :End() starts the
rendering and displays the rendered result.

Finally Holoviz is shutdown with viz: : Shutdown().

#include "holoviz/holoviz.hpp"

namespace viz = holoscan::viz;

viz::Init("Holoviz Example");

while (!viz::WindowShouldClose()) {

viz:
viz:
viz:
viz:
viz:

:Begin(Q);

:BeginImagelLayer();

:ImageHost (width, height, viz::ImageFormat::R8G8B8A8_UNORM, image_data);
:EndLayer();

:EndQ;

(continues on next page)

115

https://www.vulkan.org/
https://github.com/ocornut/imgui

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

}

viz: :Shutdown();

Result:

Holoviz Example

Fig. 12.1: Holoviz example app

12.4 Layers

The core entity of Holoviz are layers. A layer is a two-dimensional image object, multiple layers are composited to
form the final output.

These layer types are supported by Holoviz:
* image layer
* geometry layer
* GUI layer

The definition of a layer is started by calling one of the layer begin functions viz::BeginImageLayer(),
viz::BeginGeometryLayer() or viz::BeginImGuiLayer (). The layer definition ends with viz: :EndLayer().

All layers have common attributes, these are priority and opacity. The start of a layer definition is resetting these values
to their defaults.

The priority determines the rendering order of the layers. Before rendering the layers they are sorted by priority, the
layers with the lowest priority are rendered first so that the layer with the highest priority is rendered on top of all other

116 Chapter 12. Visualization Module

Holoscan SDK User Guide, Release 0.5.1

layers. If layers have the same priority then the render order of these layers is undefined. Priority is set by calling
viz::LayerPriority().

Opacity is used to blend transparent layers over other layers. Opacity is set by calling viz: :LayerOpacity().

The code below draws a transparent geometry layer on top of an image layer (layer details are omitted). Although
the geometry layer is specified first, it is drawn last because it has a higher priority (1) than the image layer (0). As
mentioned the start of a layer is resetting layer attributes, so for the image layer, there is no need to set the opacity to
1.0 since the default is already 1.0.

namespace viz = holoscan::viz;
viz::Begin();

viz: :BeginGeometryLayer();
viz::LayerPriority(1);
viz::LayerOpacity(0.5);
/// details omitted
viz::EndLayer();

viz: :BeginImageLayer();
viz::LayerPriority(0);
/// details omitted
viz::EndLayer();

viz::EndQ;

12.4.1 Image Layers

The function viz: :BeginImageLayer () starts an image layer. An image layer displays a rectangular 2D image.

The image data is defined by calling viz: : ImageCudaDevice() and viz: :ImageHost (). Various input formats are
supported, see viz::ImageFormat. For single channel image formats image colors can be looked up by defining a
lookup table with viz: :LUTQ).

12.4.2 Geometry Layers

The function viz: :BeginGeometryLayer() starts a geometry layer. A geometry layer is used to draw geometric
primitives such as points, lines, rectangles, ovals or text. See viz::PrimitiveTopology for supported geometry
primitive topologies. Coordinates start with (0, 0) in the top left and end with (1, 1) in the bottom right.

There are functions to set attributes for geometric primitives like color (viz::Color()), line width
(viz::LineWidth()) and point size (viz: :PointSize()).

The code below draws a red rectangle and a green text.

namespace viz = holoscan::viz;
viz: :BeginGeometryLayer();

// draw a red rectangle

viz::Color(l.f, 0.f, 0.f, 0.£);

const float data[]{0.1f, 0.1f, 0.9f, 0.9f};

viz::Primitive(viz::PrimitiveTopology: :RECTANGLE_LIST, 1, sizeof(data) / sizeof(data[0]),

Ao o)
=—daata); (continues on next page)

12.4. Layers 117

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// draw green text
viz::Color(0.£f, 1.£f, 0.f, 0.£);
viz::Text(0.5f, 0.5f, 0.2f, "Text");

viz::EndLayer();

12.4.3 ImGui Layers

Holoviz support user interface layers created with Dear ImGui.

If using Dear ImGui, create a context and pass it to Holoviz using viz: : ImGuiSetCurrentContext (), do this before
calling viz::Init(). Background: the Dear ImGui context is a global variable. Global variables are not shared
across so/DLL boundaries. Therefore the app needs to create the Dear ImGui context first and then provide the pointer
to Holoviz like this:

ImGui: :CreateContext();
holoscan: :viz: :ImGuiSetCurrentContext (ImGui: : GetCurrentContext());

Calls to the Dear ImGui API are allowed between viz: :BeginImGuiLayer () and viz: :EndImGuiLayer () are used
to draw to the ImGui layer. The ImGui layer behaves like other layers and is rendered with the layer opacity and priority.

The code below creates a Dear ImGui window with a checkbox used to conditionally show a image layer.

namespace viz = holoscan::viz;

bool show_image_layer = false;
while (!viz::WindowShouldClose()) {
viz::Begin(Q);

viz::BeginImGuiLayer();

ImGui: :Begin("Options™);
ImGui: :Checkbox("Image layer", &show_image_layer);
ImGui::EndQ;

viz::EndLayer();

if (show_image_layer) {
viz::BeginImageLayer();
viz::ImageHost(...);
viz::EndLayer();

}

viz::EndQ);

118 Chapter 12. Visualization Module

https://github.com/ocornut/imgui

Holoscan SDK User Guide, Release 0.5.1

12.4.4 Depth Map Layers

A depth map is single channel 2d array where each element represents a depth value. The data is specified with
viz::DepthMap () and rendered as a 3d object using points, lines or triangles. The color for the elements can also be
specified.

Supported format for the depth map:
* 8-bit unsigned normalized format that has a single 8-bit depth component
Supported format for the depth color map:

* 32-bit unsigned normalized format that has an 8-bit R component in byte 0, an 8-bit G component in byte 1, an
8-bit B component in byte 2, and an 8-bit A component in byte 3

Depth maps are rendered in 3D and support camera movement.
The camera is operated using the mouse.
* Orbit (LMB)
¢ Pan (LMB + CTRL | MMB)
Dolly (LMB + SHIFT | RMB | Mouse wheel)
Look Around (LMB + ALT | LMB + CTRL + SHIFT)
e Zoom (Mouse wheel + SHIFT)

12.5 Using a display in exclusive mode

Usually Holoviz opens a normal window on the Linux desktop. In that case the desktop compositor is combining the
Holoviz image with all other elements on the desktop. To avoid this extra compositing step, Holoviz can render to a
display directly.

12.5.1 Configure a display for exclusive use
Single display

SSH into the machine and stop the X server:

sudo systemctl stop display-manager

To resume the display manager, run:

sudo systemctl start display-manager

12.5. Using a display in exclusive mode 119

Holoscan SDK User Guide, Release 0.5.1

Multiple displays
The display to be used in exclusive mode needs to be disabled in the NVIDIA Settings application (nvidia-settings):

open the X Server Display Configuration tab, select the display and under Configuration select Disabled.
Press Apply.

12.5.2 Enable exclusive display in Holoviz

Provide the name of the display and desired display mode properties to viz::Init ().

For example, here are parameters to pass to the Holoviz Operator:

required
use_exclusive_display: true
optional

display_name: DP-2

width: 2560

height: 1440

framerate: 240

The name of the display can either be the EDID name as displayed in the NVIDIA Settings, or the output name used
by xrandr. If the name is nullptr then the first display is selected.

Tip: In this example output of xrandr, DP-2 would be an adequate display name to use:

Screen 0: minimum 8 x 8, current 4480 x 1440, maximum 32767 x 32767

DP-0 disconnected (normal left inverted right x axis y axis)

DP-1 disconnected (normal left inverted right x axis y axis)

DP-2 connected primary 2560x1440+1920+0 (normal left inverted right x axis y axis) 600mm.
—X 340mm

2560x1440 59.98 + 239.97* 199.99 144.00 120.00 99.95
1024x768 60.00
800x600 60.32
640x480 59.94

USB-C-0 disconnected (normal left inverted right x axis y axis)

12.6 Cuda streams

When providing Cuda resources to Holoviz through e.g. viz: : ImageCudaDevice () Holoviz is using Cuda operations
to use that memory. The Cuda stream used by this operations can be set by calling viz: :SetCudaStream(). The
stream can be changed at any time.

120 Chapter 12. Visualization Module

Holoscan SDK User Guide, Release 0.5.1

12.7 Reading the framebuffer

The rendered framebuffer can be read back using viz: :ReadFramebuffer().

12.7. Reading the framebuffer 121

Holoscan SDK User Guide, Release 0.5.1

122 Chapter 12. Visualization Module

CHAPTER
THIRTEEN

INFERENCE MODULE

13.1 Overview

The Holoscan Inference Module in the Holoscan SDK is a framework that facilitates designing and executing inference
and processing applications through its APIs. All parameters required by the Holoscan Inference Module are passed
through a parameter set in the configuration file of an application. Detailed features and their corresponding parameter
sets are explained in the section below.

13.2 Parameters and related Features

Required parameters and related features available with the Holoscan Inference Module are listed below, along with
the limitations in the current release.

» Data Buffer Parameters: Parameters are provided in the inference settings to enable data buffer locations at several
stages of the inference. As shown in the figure below, three parameters input_on_cuda, output_on_cuda and
transmit_on_cuda can be set by the user.

— input_on_cuda refers to the location of the data going into the inference.
% If value is true, it means the input data is on the device
% If value is false, it means the input data is on the host
— output_on_cuda refers to the data location of the inferred data.
% If value is true, it means the inferred data is on the device
* If value is false, it means the inferred data is on the host
— transmit_on_cuda refers to the data transmission.
% If value is true, it means the data transmission from the inference extension will be on Device
x If value is false, it means the data transmission from the inference extension will be on Host
¢ Inference Parameters
— backend parameter is set to either trt for TensorRT, or onnxrt for Onnx runtime.
% TensorRT:
- CUDA-based inference supported both on x86 and aarch64

- End-to-end CUDA-based data buffer parameters supported. input_on_cuda, output_on_cuda
and transmit_on_cuda will all be true for end-to-end CUDA-based data movement.

- input_on_cuda, output_on_cuda and transmit_on_cuda can be either true or false.

123

Holoscan SDK User Guide, Release 0.5.1

* Onnx runtime:

- Data flow via host only. input_on_cuda, output_on_cuda and transmit_on_cuda must be
false.

- CUDA or CPU based inference on x86, only CPU based inference on aarch64
— infer_on_cpu parameter is set to true if CPU based inference is desired.

The tables below demonstrate the supported features related to the data buffer and the inference with trt
and onnxrt based backend, on x86 and aarch64 system respectively.

x86 input_on_cudd output_on_cuda transmit_on_cuda infer_on_cpuy
Supported values for trt | trueor false | true or false | true or false false
Supported values for | false false false true or
onnxrt false
Aarch64 input_on_cudd output_on_cuda transmit_on_cuda infer_on_cpu
Supported values for trt | trueor false | trueor false | trueor false false
Supported values for | false false false true

onnxrt

— model_path_map: User can design single or multi Al inference pipeline by populating model_path_map
in the config file.

% With a single entry it is single inference and with more than one entry, multi Al inference is enabled.

+ Each entry in model_path_map has a unique keyword as key (used as an identifier by the Holoscan
Inference Module), and the path to the model as value.

% All model entries must have the models either in onnx or tensorrt engine file format.

— pre_processor_map: input tensor to the respective model is specified in pre_processor_map in the
config file.

% The Holoscan Inference Module supports same input for multiple models or unique input per model.

% Each entry in pre_processor_map has a unique keyword representing the model (same as used in
model_path_map), and the tensor name as the value.

* The Holoscan Inference Module supports one input tensor per model.
— inference_map: output tensor per model after inference is specified in inference_map in the config file.

% Each entry in inference_map has a unique keyword representing the model (same as used in
model_path_map and pre_processor_map), and the tensor name as the value.

— parallel_inference: Parallel or Sequential execution of inferences.
% If multiple models are input, then user can execute models in parallel.
* Parameter parallel_inference can be either true or false.

* Inferences are launched in parallel without any check of the available GPU resources, user must make
sure that there is enough memory and compute available to run all the inferences in parallel.

— enable_fp16: Generation of the TensorRT engine files with FP16 option

% If backend is setto trt, and if the input models are in onnx format, then users can generate the engine
file with fp16 option to accelerate inferencing.

* It takes few mintues to generate the engine files for the first time.

124

Chapter 13. Inference Module

Holoscan SDK User Guide, Release 0.5.1

— is_engine_path: if the input models are specified in trt engine format in model_path_map, this flag
must be set to true.

— in_tensor_names: Input tensor names to be used by pre_processor_map.
— out_tensor_names: Output tensor names to be used by inference_map.

* Other features: Table below illustrates other features and supported values in the current release.

Feature Supported values

Data type float32

Inference Backend trt or onnxrt

Inputs per model 1

GPU(s) supported 1

Inferred data size format | NHWC, NC (classification)
Model Type All onnx or All trt engine type

* Multi Receiver and Single Transmitter support
— The Holoscan Inference Module provides an API to extract the data from multiple receivers.

— The Holoscan Inference Module provides an API to transmit multiple tensors via a single transmitter.

13.3 Usage

Following are the steps to be followed in sequence for creating an inference application using the Holoscan Inference
Module in the Holoscan SDK.

13.3.1 Parameter Specification

All required inference parameters of the inference application must be specified. Specification are provided in the
application configuration file in C++ API based application in the Holoscan SDK. Inference parameter set from the
sample multi AT application using C++ APIs in the Holoscan SDK is shown below.

multiai_inference:
backend: "trt"
model_path_map:

"plax_chamber": "../data/multiai_ultrasound/models/plax_chamber.onnx"
"aortic_stenosis": "../data/multiai_ultrasound/models/aortic_stenosis.onnx"
"bmode_perspective": "../data/multiai_ultrasound/models/bmode_perspective.onnx"

pre_processor_map:
"plax_chamber": ["plax_cham_pre_proc"]
"aortic_stenosis": ["aortic_pre_proc"]
"bmode_perspective": ["bmode_pre_proc"]

inference_map:

"plax_chamber": "plax_cham_infer"

"aortic_stenosis": "aortic_infer"

"bmode_perspective": "bmode_infer"
in_tensor_names: ['"plax_cham_pre_proc", "aortic_pre_proc", "bmode_pre_proc"]
out_tensor_names: ["plax_cham_infer", "aortic_infer", "bmode_infer"]

parallel_inference: true
infer_on_cpu: false
enable_£fpl6: false

(continues on next page)

13.3. Usage 125

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

input_on_cuda: true
output_on_cuda: true
transmit_on_cuda: true
is_engine_path: false

13.3.2 Inference workflow

Inference workflow is the core inference unit in the inference application. This section provides steps to be followed to
create an inference workflow.

In Holoscan SDK, the Multi Al Inference operator is designed using the Holoscan Inference Module APIs.

Arguments in the code sections below are referred to as

Parameter Validity Check: Input inference parameters via the configuration (from step 1) are verified for correct-
ness.

auto status = HoloInfer::multiai_inference_validity_check(...);

Multi Al specification creation: For a single Al only one entry is passed into the required entries in the parameter
set. There is no change in the API calls below. Single Al or multi Al is enabled based on the number of entries
in the parameter specifications from the configuration (in step 1).

// Declaration of multi AI inference specifications
std: :shared_ptr<HoloInfer: :MultiAISpecs> multiai_specs_;

// Creation of multi AI specification structure
multiai_specs_ = std::make_shared<HoloInfer::MultiAISpecs>(...);

Inference context creation.

// Pointer to inference context.

std: :unique_ptr<HoloInfer: :InferContext> holoscan_infer_context_;

// Create holoscan inference context

holoscan_infer_context_ = std::make_unique<HoloInfer: :InferContext>();

Parameter setup with inference context: All required parameters of the Holoscan Inference Module are transferred
in this step, and relevant memory allocations are initiated in the multi Al specification.

// Set and transfer inference specification to inference context
auto status = holoscan_infer_context_->set_inference_params(multiai_specs_);

Data extraction and allocation: The following API is used from the Holoscan Inference Module to extract and
allocate data for the specified tensor.

// Extract relevant data from input, and update multi AI specifications
gxf_result_t stat = HoloInfer::multiai_get_data_per_model(...);

Map data from per tensor to per model: This step is required in this release. This step maps data per tensor to
data per model. As mentioned above, current release supports only one input tensor per model.

auto status = HoloInfer::map_data_to_model_from_tensor(...);

Inference execution

126

Chapter 13. Inference Module

Holoscan SDK User Guide, Release 0.5.1

// Execute inference and populate output buffer in multiai specifications
auto status = holoscan_infer_context_->execute_inference(multiai_specs_->data_per_
—model_,

multiai_specs_->output_per_
—model_);

¢ Transmit inferred data:

// Transmit output buffers
auto status = HoloInfer::multiai_transmit_data_per_model(...);

Figure below demonstrates the Multi Al Inference operator in the Holoscan SDK. All blocks with blue color are the
API calls from the the Holoscan Inference Module.

Inference parameters
from Configuration
O (= N
[Validate Create H Initialize } Sto p ()

parameters contexts and setup

\stan() [register()] @

Tensor 1
.
Tensor 2
List of Get data from Do Get inferred Transmit as]
Receivers GXF messages Inference data GXF message J J

tICk() Tensor N

\ l
\ Multi Al Inference Extensity

13.3.3 Application creation

After creation of an inference workflow, an application creation is required to connect input data, pre-processors, infer-
ence workflow, post-processors and visualizers for end-to-end application creation. A sample multi Al pipeline from
iCardio.ai’s Multi Al application is part of Holoscan SDK, provided in both C++ and Python.

13.3.4 Application Execution

After a Holoscan SDK application has been successfully created, built and installed, execution is performed as described
here for a sample Multi Al application

13.3. Usage 127

Holoscan SDK User Guide, Release 0.5.1

128 Chapter 13. Inference Module

CHAPTER
FOURTEEN

GXF CORE CONCEPTS

Here is a list of the key GXF terms used in this section:

Applications are built as compute graphs.
Entities are nodes of the graph. They are nothing more than a unique identifier.
Components are parts of an entity and provide their functionality.

Codelets are special components which allow the execution of custom code. They can be derived by overriding
the C++ functions initialize, start, tick, stop, deinitialize, and registerInterface (for defining
configuration parameters).

Connections are edges of the graph, which connect components.

Scheduler and Scheduling Terms: components that determine how and when the tick () of a Codelet executes.
This can be single or multithreaded, support conditional execution, asynchronous scheduling, and other custom
behavior.

Memory Allocator: provides a system for allocating a large contiguous memory pool up-front and then reusing
regions as needed. Memory can be pinned to the device (enabling zero-copy between Codelets when messages
are not modified) or host, or customized for other potential behavior.

Receivers, Transmitters, and Message Router: a message passing system between Codelets that supports
Zero-copy.

Tensor: the common message type is a tensor. It provides a simple abstraction for numeric data that can be
allocated, serialized, sent between Codelets, etc. Tensors can be rank 1 to 7 supporting a variety of common data
types like arrays, vectors, matrices, multi-channel images, video, regularly sampled time-series data, and higher
dimensional constructs popular with deep learning flows.

Parameters: configuration variables used by the Codelet. In GXF applications, they are loaded from the appli-
cation YAML file and are modifiable without recompiling.

In comparison, the core concepts of the Holoscan SDK can be found here.

129

Holoscan SDK User Guide, Release 0.5.1

130 Chapter 14. GXF Core concepts

CHAPTER
FIFTEEN

HOLOSCAN AND GXF

15.1 Design differences

There are 2 main elements at the core of Holoscan and GXF designs:
1. How to define and execute application graphs
2. How to define nodes’ functionality

How Holoscan SDK interfaces with GXF on those topics varies as Holoscan SDK evolves, as described below:

15.1.1 Holoscan SDK v0.2

Holoscan SDK was tightly coupled with GXF’s existing interface:

1. GXF application graphs are defined in YAML configuration files. GXE (Graph Execution Engine) is used to
execute Al application graphs. Its inputs are the YAML configuration file, and a list of GXF Extensions to load as
plugins (manifest yaml file). This design allows entities to be swapped or updated without needing to recompile
an application.

2. Components are made available by registering them within a GXF extension, each of which maps to a shared
library and header(s).

Those concepts are illustrated in the GXF by example section.
The only additions that Holoscan provided on top of GXF were:
» domain specific reference applications
* new extensions

* CMake configurations for building extensions and applications

15.1.2 Holoscan SDK v0.3

The Holoscan SDK shifted to provide a more developer-friendly interface with C++:

1. GXF application graphs, memory allocation, scheduling, and message routing can be defined using a C++ API,
with the ability to read parameters and required GXF extension names from a YAML configuration file. The
backend used is still GXF as Holoscan uses the GXF C API, but this bypasses GXE and the full YAML definition.

2. The C++ Operator class was added to wrap and expose GXF extensions to that new application interface (See
dev guide).

131

Holoscan SDK User Guide, Release 0.5.1

15.1.3 Holoscan SDK v0.4

The Holoscan SDK added Python wrapping and native operators to further increase ease of use:
1. The C++ API is also wrapped in Python. GXF is still used as the backend.

2. The Operator class supports native operators, i.e. operators that do not require to implement and register a GXF
Extension. An important feature is the ability to support messaging between native and GXF operators without
any performance loss (i.e. zero-copy communication of tensors).

15.1.4 Holoscan SDK v0.5

1. The built-in Holoscan GXF extensions are loaded automatically and don’t need to be listed in the YAML con-
figuration file of Holoscan applications. This allows Holoscan applications to be defined without requiring a
YAML configuration file.

2. No significant changes to build operators. However, most built-in operators were switched to native implemen-
tations, with the ability to convert native operators to GXF codelets for GXF application developers.

15.2 Current limitations

Here is a list of GXF capabilities not yet available in the Holoscan SDK which are planned to be supported in future
releases:

* Multithread scheduler (planned for 0.6)

* Periodic Scheduling Term (planned for 0.6)

o Asynchronous Scheduling Term (planned for 0.6)
* Job Statistics

The GXF capabilities below are not available in the Holoscan SDK either. There is no plan to support them at this
time:

* Graph Composer

* Behavior Trees

» Epoch Scheduler

» Target Time Scheduling Term

* Multi-Message Available Scheduling Term

* Expiring Message Available Scheduling Term

132 Chapter 15. Holoscan and GXF

20

21

22

23

24

25

27

28

CHAPTER
SIXTEEN

GXF BY EXAMPLE

Warning: This section is legacy (0.2) as we recommend developing extensions and applications using the C++ or
Python APIs. Refer to the developer guide for up-to-date recommendations.

16.1 Innerworkings of a GXF Entity

Let us look at an example of a GXF entity to try to understand its general anatomy. As an example let’s start with the
entity definition for an image format converter entity named format_converter_entity as shown below.

Listing 16.1: An example GXF Application YAML snippet

XYAML 1.2

other entities declared
name: format_converter_entity
components:
- name: in_tensor
type: nvidia::gxf::DoubleBufferReceiver
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: in_tensor
min_size: 1
- name: out_tensor
type: nvidia::gxf::DoubleBufferTransmitter
- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: out_tensor
min_size: 1

- name: pool
type: nvidia::gxf::BlockMemoryPool
parameters:

storage_type: 1
block_size: 4919040 # 854 * 480 * 3 (channel) * 4 (bytes per pixel)
num_blocks: 2
- name: format_converter_component
type: nvidia::holoscan::formatconverter: :FormatConverter
parameters:
in: in_tensor

(continues on next page)

133

43

44

45

46

47

48

49

50

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

out: out_tensor
out_tensor_name: source_video
out_dtype: "float32"
scale_min: 0.0

scale_max: 255.0

pool: pool

other entities declared

components:
- name: input_connection

type: nvidia::gxf::Connection
parameters:

source: upstream_entity/output
target: format_converter/in_tensor

components:
- name: output_connection

name:

type: nvidia::gxf::Connection
parameters:

source: format_converter/out_tensor
target: downstream_entity/input

scheduler

components:
- type: nvidia::gxf::GreedyScheduler

Above:

1.

The entity format_converter_entity receives a message in its in_tensor message from an upstream entity
upstream_entity as declared in the input_connection.

The received message is passed to the format_converter_component component to convert the tensor element
precision from uint8 to float32 and scale any input in the [®, 255] intensity range.

The format_converter_component component finally places the result in the out_tensor message so that
its result is made available to a downstream entity (downstream_ent as declared in output_connection).

The Connection components tie the inputs and outputs of various components together, in
the above case upstream_entity/output -> format_converter_entity/in_tensor and
format_converter_entity/out_tensor -> downstream_entity/input.

. The scheduler entity declares a GreedyScheduler “system component” which orchestrates the execution

of the entities declared in the graph. In the specific case of GreedyScheduler entities are scheduled to run
exclusively, where no more than one entity can run at any given time.

The YAML snippet above can be visually represented as follows.

In the image, as in the YAML, you will notice the use of MessageAvailableSchedulingTerm,
DownstreamReceptiveSchedulingTerm, and BlockMemoryPool. These are components that play a “supporting”
role to in_tensor, out_tensor, and format_converter_component components respectively. Specifically:

* MessageAvailableSchedulingTerm is a component that takes a Receiver "~ (in this case Double-

BufferReceivernamedin_tensor) and alerts the graph Executorthat a message is available.
This alert triggersformat_converter_component .

* DownstreamReceptiveSchedulingTerm is a component that takes a Transmitter (in this case

134

Chapter 16. GXF by Example

Holoscan SDK User Guide, Release 0.5.1

upstream_ent format_converter_entity downstream_ent
. format_converter — ’
onnection — - Connection
output | | connec in_tensor component out_tensor — input
vnstreamRecepti MessageAvailable DownstreamRecepti MessageAvailable
chedulingTerm SchedulingTerm BlockMemoryPool veSchedulingTerm SchedulingTerm
scheduler

Fig. 16.1: Arrangement of components and entities in a Holoscan application

DoubleBufferTransmitter named out_tensor) and alerts the graph Executor that a message has been
placed on the output.

* BlockMemoryPool provides two blocks of almost 5MB allocated on the GPU device and is used by
format_converted_ent to allocate the output tensor where the converted data will be placed within the format
converted component.

Together these components allow the entity to perform a specific function and coordinate communication with other
entities in the graph via the declared scheduler.

More generally, an entity can be thought of as a collection of components where components can be passed to one
another to perform specific subtasks (e.g. event triggering or message notification, format conversion, memory alloca-
tion), and an application as a graph of entities.

The scheduler is a component of type nvidia: :gxf: : System which orchestrates the execution components in each
entity at application runtime based on triggering rules.

16.2 Data Flow and Triggering Rules

Entities communicate with one another via messages which may contain one or more payloads. Messages are
passed and received via a component of type nvidia: :gxf::Queue from which both nvidia: :gxf: :Receiver
and nvidia: :gxf::Transmitter are derived. Every entity that receives and transmits messages has at least one
receiver and one transmitter queue.

Holoscan uses the nvidia: : gxf: : SchedulingTerm component to coordinate data access and component orchestra-
tion for a Scheduler which invokes execution through the tick () function in each Codelet.

Tip: A SchedulingTerm defines a specific condition that is used by an entity to let the scheduler know when it’s
ready for execution.

In the above example, we used a MessageAvailableSchedulingTerm to trigger the execution of the components
waiting for data from in_tensor receiver queue, namely format_converter_component.

Listing 16.2: MessageAvailableSchedulingTerm

- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:

(continues on next page)

16.2. Data Flow and Triggering Rules 135

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

receiver: in_tensor
min_size: 1

Similarly, DownStreamReceptiveSchedulingTerm checks whether the out_tensor transmitter queue has at least
one outgoing message in it. If there are one or more outgoing messages, DownStreamReceptiveSchedulingTerm
will notify the scheduler which in turn attempts to place the message in the receiver queue of a downstream entity. If,
however, the downstream entity has a full receiver queue, the message is held in the out_tensor queue as a means to
handle back-pressure.

Listing 16.3: DownstreamReceptiveSchedulingTerm

- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: out_tensor
min_size: 1

If we were to draw the entity in Fig. /6.1 in greater detail it would look something like the following.

e ™
format_converter_entity

format_converter_component

relrieve

Conm Connaction

in_tensor out tensor
MessageAvailable Check #free DownstreamReceptive
Check #msg SchedulingTerm Al ' SchedulingTerm

in receiver
queue

downstream
receiver gueue

Alert
Scheduler

Alert
Scheduler

SchedulingConditionType

READY
<

* scheduler

Fig. 16.2: Receive and transmit Queues and SchedulingTerms in entities.

Up to this point, we have covered the “entity component system” at a high level and showed the functional parts of an
entity, namely, the messaging queues and the scheduling terms that support the execution of components in the entity.
To complete the picture, the next section covers the anatomy and lifecycle of a component, and how to handle events
within it.

136 Chapter 16. GXF by Example

Holoscan SDK User Guide, Release 0.5.1

16.3 Creating a GXF Extension

GXF components in Holoscan can perform a multitude of sub-tasks ranging from data transformations, to memory
management, to entity scheduling. In this section, we will explore an nvidia: :gxf::Codelet component which in
Holoscan is known as a “GXF extension”. Holoscan (GXF) extensions are typically concerned with application-specific
sub-tasks such as data transformations, AI model inference, and the like.

16.3.1 Extension Lifecycle

The lifecycle of a Codelet is composed of the following five stages.

1.
2.
3.

initialize - called only once when the codelet is created for the first time, and use of light-weight initialization.
deinitialize - called only once before the codelet is destroyed, and used for light-weight deinitialization.

start - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy initialization tasks such as allocating memory resources.

stop - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy deinitialization tasks such as deallocation of all resources previously assigned in start.

tick - called when the codelet is triggered, and is called multiple times over the codelet lifecycle; even multiple
times between start and stop.

The flow between these stages is detailed in Fig. 16.3.

initialize > deinitialize

&]

start < | stop

tick |

t [

Fig. 16.3: Sequence of method calls in the lifecycle of a Holoscan extension

16.3.

Creating a GXF Extension 137

20

21

22

23

Holoscan SDK User Guide, Release 0.5.1

16.3.2 Implementing an Extension

In this section, we will implement a simple recorder that will highlight the actions we would perform in the lifecycle
methods. The recorder receives data in the input queue and records the data to a configured location on the disk. The
output format of the recorder files is the GXF-formatted index/binary replayer files (the format is also used for the
data in the sample applications), where the gxf_index file contains timing and sequence metadata that refer to the
binary/tensor data held in the gxf_entities file.

Declare the Class That Will Implement the Extension Functionality

The developer can create their Holoscan extension by extending the Codelet class, implementing the extension func-
tionality by overriding the lifecycle methods, and defining the parameters the extension exposes at the application level
via the registerInterface method. To define our recorder component we would need to implement some of the
methods in the Codelet.

First, clone the Holoscan project from here and create a folder to develop our extension such as under
gxf_extensions/my_recorder.

Tip: Using Bash we create a Holoscan extension folder as follows.

git clone https://github.com/nvidia-holoscan/holoscan-sdk.git
cd clara-holoscan-embedded-sdk
mkdir -p gxf_extensions/my_recorder

In our extension folder, we create a header file my_recorder.hpp with a declaration of our Holoscan component.

Listing 16.4: gxf extensions/my_recorder/my_recorder.hpp

#include <string>

#include "gxf/core/handle.hpp"

#include "gxf/std/codelet.hpp"

#include "gxf/std/receiver.hpp"

#include "gxf/std/transmitter.hpp"

#include '"gxf/serialization/file_stream.hpp"
#include "gxf/serialization/entity_serializer.hpp"

class MyRecorder : public nvidia::gxf::Codelet {

public:
gxf_result_t registerInterface(nvidia::gxf::Registrar® registrar) override;
gxf_result_t initialize() override;
gxf_result_t deinitialize() override;

gxf_result_t start() override;
gxf_result_t tick() override;
gxf_result_t stop() override;

private:
nvidia: :gxf::Parameter<nvidia: :gxf::Handle<nvidia: :gxf::Receiver>> receiver_;
nvidia::gxf::Parameter<nvidia: :gxf::Handle<nvidia: :gxf::EntitySerializer>> my_
—serializer_;

(continues on next page)

138 Chapter 16. GXF by Example

https://github.com/nvidia-holoscan/holoscan-sdk

24

25

26

27

28

29

31

32

33

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

nvidia::gxf::Parameter<std: :string> directory_;
nvidia::gxf::Parameter<std::string> basename_;
nvidia: :gxf::Parameter<bool> flush_on_tick_;

// File stream for data index
nvidia::gxf::FileStream index_file_stream_;
// File stream for binary data
nvidia::gxf::FileStream binary_file_stream_;
// Offset into binary file
size_t binary_file_offset_;

3

Declare the Parameters to Expose at the Application Level

Next, we can start implementing our lifecycle methods in the my_recorder.cpp file, which we also create in
gxf_extensions/my_recorder path.

Our recorder will need to expose the nvidia: :gxf: :Parameter variables to the application so the parameters can
be modified by configuration.

Listing 16.5: registerInterface in gxf_extensions/my_recorder/my_recorder.cpp

#include "my_recorder.hpp"

gxf_result_t MyRecorder::registerInterface(nvidia::gxf::Registrar* registrar) {
nvidia::gxf::Expected<void> result;
result &= registrar->parameter(
receiver_, '"receiver", "Entity receiver",
"Receiver channel to log");
result &= registrar->parameter(
my_serializer_, "serializer", "Entity serializer",
"Serializer for serializing input data");
result &= registrar->parameter(
directory_, "out_directory", "Output directory path",
"Directory path to store received output");
result &= registrar->parameter(
basename_, "basename", "File base name",
"User specified file name without extension",
nvidia::gxf::Registrar: :NoDefaultParameter(), GXF_PARAMETER_FLAGS_OPTIONAL);
result &= registrar->parameter(
flush_on_tick_, "flush_on_tick", "Boolean to flush on tick",
"Flushes output buffer on every "tick’ when true", false); // default value “false’
return nvidia: :gxf::ToResultCode(result);

For pure GXF applications, our component’s parameters can be specified in the following format in the YAML file:

Listing 16.6: Example parameters for MyRecorder component

name: my_recorder_entity
components:
- name: my_recorder_component

(continues on next page)

16.3. Creating a GXF Extension 139

40

41

42

43

44

45

46

47

48

49

50

51

52

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

type: MyRecorder

parameters:
receiver: receiver
serializer: my_serializer
out_directory: /home/user/out_path
basename: my_output_file # optional
flush_on_tick: false # optional

Note that all the parameters exposed at the application level are mandatory except for flush_on_tick, which defaults
to false, and basename, whose default is handled at initialize () below.

Implement the Lifecycle Methods
This extension does not need to perform any heavy-weight initialization tasks, so we will concentrate on
initialize(), tick(), and deinitialize() methods which define the core functionality of our component. At

initialization, we will create a file stream and keep track of the bytes we write on tick() via binary_file_offset.

Listing 16.7: initialize in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::initialize() {
// Create path by appending receiver name to directory path if basename is not provided
std: :string path = directory_.get() + '/';
if (const auto& basename = basename_.try_get()) {
path += basename.value();
} else {
path += receiver_->name();

3

// Initialize index file stream as write-only

index_file_stream_ = nvidia::gxf::FileStream("", path +.
—nvidia::gxf::FileStream: :kIndexFileExtension);

// Initialize binary file stream as write-only

binary_file_stream_ = nvidia::gxf::FileStream("", path +.

—nvidia::gxf::FileStream: :kBinaryFileExtension);

// Open index file stream
nvidia::gxf::Expected<void> result = index_file_stream_.open();
if ('result) {

return nvidia: :gxf::ToResultCode(result);

}

// Open binary file stream
result = binary_file_stream_.open();
if ('result) {
return nvidia: :gxf: :ToResultCode(result);
}
binary_file_offset_ = 0;

return GXF_SUCCESS;

140 Chapter 16. GXF by Example

58

59

60

61

62

63

64

65

66

67

68

69

71

2

73

74

75

76

77

Holoscan SDK User Guide, Release 0.5.1

When de-initializing, our component will take care of closing the file streams that were created at initialization.

Listing 16.8: deinitialize in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::deinitialize() {
// Close binary file stream
nvidia: :gxf: :Expected<void> result = binary_file_stream_.close();
if ('result) {
return nvidia: :gxf::ToResultCode(result);

}

// Close index file stream
result = index_file_stream_.close();
if (lresult) {
return nvidia: :gxf::ToResultCode(result);

3

return GXF_SUCCESS;

In our recorder, no heavy-weight initialization tasks are required so we implement the following, however, we would
use start() and stop() methods for heavy-weight tasks such as memory allocation and deallocation.

Listing 16.9: start/stop in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::start() {
return GXF_SUCCESS;
}

gxf_result_t MyRecorder::stop() {
return GXF_SUCCESS;
}

Tip: For a detailed implementation of start() and stop(), and how memory management can be handled therein,
please refer to the implementation of the AJA Video source extension.

Finally, we write the component-specific functionality of our extension by implementing tick().

Listing 16.10: tick in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::tick() {
// Receive entity
nvidia::gxf::Expected<nvidia::gxf::Entity> entity = receiver_->receive();
if (lentity) {
return nvidia: :gxf::ToResultCode(entity);

}

// Write entity to binary file
nvidia::gxf::Expected<size_t> size = my_serializer_->serializeEntity(entity.value(), &
—binary_file_stream_);
if (!size) {
return nvidia: :gxf::ToResultCode(size);

3

(continues on next page)

16.3. Creating a GXF Extension 141

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/gxf_extensions/aja

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

// Create entity index

nvidia::gxf::EntityIndex index;

index.log_time = std::chrono::system_clock: :now().time_since_epoch().count();
index.data_size = size.value();

index.data_offset = binary_file_offset_;

// Write entity index to index file
nvidia::gxf::Expected<size_t> result = index_file_stream_.writeTrivialType(&index);
if (l'result) {

return nvidia: :gxf::ToResultCode(result);

}

binary_file_offset_ += size.value();

if (flush_on_tick) {
// Flush binary file output stream
nvidia::gxf::Expected<void> result = binary_file_stream_.flush(Q);
if (lresult) {
return nvidia: :gxf::ToResultCode(result);

}

// Flush index file output stream
result = index_file_stream_.flush(Q);
if (lresult) {
return nvidia: :gxf::ToResultCode(result);
}
}

return GXF_SUCCESS;
}

Register the Extension as a Holoscan Component

As a final step, we must register our extension so it is recognized as a component and loaded by the application executor.
For this we create a simple declaration in my_recorder_ext.cpp as follows.

Listing 16.11: gxf_extensions/my_recorder/my_recorder_ext.cpp

#include "gxf/std/extension_factory_helper.hpp"
#include "my_recorder.hpp"

GXF_EXT_FACTORY_BEGIN()
GXF_EXT_FACTORY_SET_INFO(0xb891cef3ce754825, 0x9dd3dcac9bbd8483, "MyRecorderExtension'",
"My example recorder extension", "NVIDIA", "0.1.0", "LICENSE");
GXF_EXT_FACTORY_ADD (0x2464fabf91b34ccf, 0xb554977fa22096bd, MyRecorder,
nvidia::gxf::Codelet, "My example recorder codelet.");
GXF_EXT_FACTORY_END()

GXF_EXT_FACTORY_SET_INFO configures the extension with the following information in order:

e UUID which can be generated using scripts/generate_extension_uuids.py which defines the extension

142 Chapter 16. GXF by Example

20

21

22

23

Holoscan SDK User Guide, Release 0.5.1

id
¢ extension name
* extension description
e author
¢ extension version
e license text

GXF_EXT_FACTORY_ADD registers the newly built extension as a valid Codelet component with the following infor-
mation in order:

e UUID which can be generated using scripts/generate_extension_uuids.py which defines the compo-
nent id (this must be different from the extension id),

« fully qualified extension class,
« fully qualifies base class,
» component description
To build a shared library for our new extension which can be loaded by a Holoscan application at runtime we use a

CMake file under gxf_extensions/my_recorder/CMakeLists.txt with the following content.

Listing 16.12: gxf_extensions/my_recorder/CMakeLists.txt

Create library
add_library(my_recorder_lib SHARED
my_recorder.cpp
my_recorder.hpp
)
target_link_ libraries(my_recorder_lib
PUBLIC
GXF::std
GXF::serialization
yaml -cpp

Create extension

add_library(my_recorder SHARED
my_recorder_ext.cpp

)

target_link libraries(my_recorder
PUBLIC my_recorder_lib

)

Install GXF extension as a component 'holoscan-gxf_extensions'
install_gxf_extension(my_recorder) # this will also install my_recorder_1lib

install_gxf extension(my_recorder_1lib) # this statement is not necessary because this.
—library follows ‘<extension library name>_1ib" convention.

Here, we create a library my_recorder_lib with the implementation of the lifecycle methods, and the extension
my_recorder which exposes the C API necessary for the application runtime to interact with our component.

To make our extension discoverable from the project root we add the line

16.3. Creating a GXF Extension 143

20

21

22

23

24

25

26

27

28

29

30

Holoscan SDK User Guide, Release 0.5.1

add_subdirectory(my_recorder)

to the CMake file gxf_extensions/CMakeLists.txt.

Tip: To build our extension, we can follow the steps in the README.

At this point, we have a complete extension that records data coming into its receiver queue to the specified location
on the disk using the GXF-formatted binary/index files.

16.4 Creating a GXF Application

For our application, we create the directory apps/my_recorder_app_gxf with the application definition file
my_recorder_gxf.yaml. The my_recorder_gxf.yaml application is as follows:

Listing 16.13: apps/my_recorder_app_gxf/my_recorder_gxf.yaml

%YAML 1.2
name: replayer
components:
- name: output
type: nvidia::gxf::DoubleBufferTransmitter
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.
—nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]
- type: nvidia::holoscan::stream_playback::VideoStreamReplayer
parameters:
transmitter: output
entity_serializer: entity_serializer
boolean_scheduling_term: boolean_scheduling
directory: "/workspace/data/endoscopy/video"
basename: "surgical_video"

frame_rate: 0 # as specified in timestamps

repeat: false # default: false

realtime: true # default: true

count: 0 # default: 0 (no frame count restriction)

- name: boolean_scheduling
type: nvidia::gxf::BooleanSchedulingTerm
- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: output
min_size: 1

(continues on next page)

144 Chapter 16. GXF by Example

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

65

66

68

69

70

71

73

74

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

name: recorder
components:
- name: input
type: nvidia::gxf::DoubleBufferReceiver
- name: allocator
type: nvidia::gxf::UnboundedAllocator
- name: component_serializer
type: nvidia::gxf::StdComponentSerializer
parameters:
allocator: allocator
- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.,
—nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]
- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
out_directory: "/tmp"
basename: "tensor_out"
- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: input
min_size: 1
components:
- name: input_connection
type: nvidia::gxf::Connection
parameters:
source: replayer/output
target: recorder/input
name: scheduler
components:
- name: clock
type: nvidia::gxf::RealtimeClock
- name: greedy_scheduler
type: nvidia::gxf::GreedyScheduler
parameters:
clock: clock

Above:

e The replayer reads data from /workspace/data/endoscopy/video/surgical_video.
gxf_[index|entities] files, deserializes the binary data to a nvidia::gxf::Tensor using
VideoStreamSerializer, and puts the data on an output message in the replayer/output transmit-
ter queue.

e The input_connection component connects the replayer/output transmitter queue to the recorder/
input receiver queue.

» The recorder reads the data in the input receiver queue, uses StdEntitySerializer to convert the received

16.4. Creating a GXF Application 145

Holoscan SDK User Guide, Release 0.5.1

nvidia: :gxf::Tensor to a binary stream, and outputs to the /tmp/tensor_out.gxf_[index|entities]
location specified in the parameters.

* The scheduler component, while not explicitly connected to the application-specific entities, performs the
orchestration of the components discussed in the Data Flow and Triggering Rules.

Note the use of the component_serializer in our newly built recorder. This component is declared separately in the
entity

- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from.
—nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]

and passed into MyRecorder via the serializer parameter which we exposed in the extension development section
(Declare the Parameters to Expose at the Application Level).

- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
directory: "/tmp"
basename: "tensor_out"

For our app to be able to load (and also compile where necessary) the extensions required at runtime, we need to declare
a CMake file apps/my_recorder_app_gxf/CMakeLists. txt as follows.

Listing 16.14: apps/my_recorder_app_gxf/CMakeLists.txt

create_gxe_application(
NAME my_recorder_gxf
YAML my_recorder_gxf.yaml

EXTENSIONS
GXF::std
GXF: :cuda

GXF::multimedia
GXF::serialization
my_recorder
stream_playback

Download the associated dataset if needed
if(HOLOSCAN_DOWNLOAD_DATASETS)

add_dependencies(my_recorder_gxf endoscopy_data)
endif()

In the declaration of create_gxe_application we list:

e my_recorder component declared in the CMake file of the extension development section under the
EXTENSIONS argument

* the existing stream_playback Holoscan extension which reads data from disk

To make our newly built application discoverable by the build, in the root of the repository, we add the following line
to apps/CMakelLists. txt:

146 Chapter 16. GXF by Example

Holoscan SDK User Guide, Release 0.5.1

add_subdirectory(my_recorder_app_gxf)

We now have a minimal working application to test the integration of our newly built MyRecorder extension.

16.5 Running the GXF Recorder Application

To run our application in a local development container:

1. Follow the instructions under the Using a Development Container section steps 1-5 (try clearing the CMake
cache by removing the build folder before compiling).

You can execute the following commands to build

./run build
./run clear_cache # if you want to clear build/install/cache folders

2. Our test application can now be run in the development container using the command

./apps/my_recorder_app_gxf/my_recorder_gxf

from inside the development container.

(You can execute . /run launch to run the development container.)

@LINUX:/workspace/holoscan-sdk/build$./apps/my_recorder_app_gxf/my_recorder_gxf
2022-08-24 04:46:47.333 INFO g¢gxf/gxe/gxe.cpp@230: Creating context

2022-08-24 04:46:47.339 INFO g¢gxf/gxe/gxe.cpp@l0®7: Loading app: 'apps/my_recorder_
—app_gxf/my_recorder_gxf.yaml'

2022-08-24 04:46:47.339 INFO g¢gxf/std/yaml_file_loader.cpp@l117: Loading GXF.
—entities from YAML file 'apps/my_recorder_app_gxf/my_recorder_gxf.yaml'...
2022-08-24 04:46:47.340 INFO g¢gxf/gxe/gxe.cpp@291: Initializing...

2022-08-24 04:46:47.437 INFO gxf/gxe/gxe.cpp@298: Running...

2022-08-24 04:46:47.437 INFO g¢gxf/std/greedy_scheduler.cpp@170: Scheduling 2.
—entities

2022-08-24 04:47:14.829 INFO /workspace/holoscan-sdk/gxf_extensions/stream_
—playback/video_stream_replayer.cpp@l44: Reach end of file or playback count.,
—.reaches to the limit. Stop ticking.

2022-08-24 04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:.
—.Some entities are waiting for execution, but there are no periodic or async.
—entities to get out of the deadlock.

2022-08-24 04:47:14.829 INFO g¢gxf/std/greedy_scheduler.cpp@353: Scheduler finished.
2022-08-24 04:47:14.829 INFO g¢gxf/gxe/gxe.cpp@320: Deinitializing...

2022-08-24 04:47:14.863 INFO gxf/gxe/gxe.cpp@327: Destroying context

2022-08-24 04:47:14.863 INFO g¢gxf/gxe/gxe.cpp@333: Context destroyed.

A successful run (it takes about 30 secs) will result in output files (tensor_out.gxf_index and tensor_out.
gxf_entities in /tmp) that match the original input files (surgical_video.gxf_index and surgical_video.
gxf_entities under data/endoscopy/video) exactly.

@LINUX:/workspace/holoscan-sdk/build$ 1s -al /tmp/
total 821384

drwxrwxrwt 1 root root 4096 Aug 24 04:37 .
drwxr-xr-x 1 root root 4096 Aug 24 04:36 ..

(continues on next page)

16.5. Running the GXF Recorder Application 147

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

drwxrwxrwt 2 root root 4096 Aug 11 21:42 .X1l-unix

-rw-r--r-- 1 1000 1000 729309 Aug 24 04:47 gxf_log

-rw-r--r-- 1 1000 1000 840054484 Aug 24 04:47 tensor_out.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Aug 24 04:47 tensor_out.gxf_index

@LINUX:/workspace/holoscan-sdk/build$ 1s -al ../data/endoscopy/video/
total 839116

drwxr-xr-x 2 1000 1000 4096 Aug 24 02:08 .

drwxr-xr-x 4 1000 1000 4096 Aug 24 02:07 ..

-rw-r--r-- 1 1000 1000 19164125 Jun 17 16:31 raw.mp4

-rw-r--r-- 1 1000 1000 840054484 Jun 17 16:31 surgical_video.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Jun 17 16:31 surgical_video.gxf_index

148 Chapter 16. GXF by Example

CHAPTER
SEVENTEEN

USING HOLOSCAN OPERATORS IN GXF APPLICATIONS

For users who are familiar with the GXF development ecosystem (used in Holoscan SDK 0.2), we provide an export
feature to leverage native Holoscan operators as GXF codelets to execute in GXF applications and GraphComposer.

We demonstrate how to wrap a native C++ holoscan operator as a GXF codelet in the
wrap_operator_as_gxf_extension example on GitHub, as described below.

17.1 1. Creating compatible Holoscan Operators

Note: This section assumes you are already familiar with how fo create a native C++ operator.

To be compatible with GXF codelets, inputs and outputs specified in Operator: :setup(OperatorSpec& spec)
must be of type holoscan: :gxf: :Entity, as shown in the PingTxNativeOp and the PingRxNativeOp implementa-
tions of this example, in contrast to the PingTxOp and PingRxOp built-in operators of the SDK.

For more details regarding the use of holoscan: :gxf: :Entity, follow the documentation on Interoperability be-
tween GXF and native C++ operators.

17.2 2. Creating the GXF extension that wraps the operator

To wrap the native operator as a GXF codelet in a GXF extension, we provide the CMake
wrap_operator_as_gxf_extension function in the SDK. An example of how it wraps PingTxNativeOp
and PingRxNativeOp can be found here.

e It leverages the CMake target names of the operators defined in their respective CMakeLists.txt
(ping_tx_native_op, ping_rx_native_op)

* The function parameters are documented at the top of the WrapOperatorAsGXFExtension.cmake file (ignore
implementation below).

Warning:

* A unique GXF extension is currently needed for each native operator to export (operators cannot be bundled
in a single extension at this time).

* Wrapping other GXF entities than operators (as codelets) is not currently supported.

149

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/ping_tx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/ping_rx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_tx/ping_tx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_rx/ping_rx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_extension/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/cmake/modules/WrapOperatorAsGXFExtension.cmake#L18-42

Holoscan SDK User Guide, Release 0.5.1

17.3 3. Using your wrapped operator in a GXF application

Note: This section assumes you are familiar with ow fo create a GXF application.

As shown in the gxf_app/CMakelLists.txt here, you need to list the following extensions in
create_gxe_application() to use your wrapped codelets:

e GXF::std
¢ gxf_holoscan_wrapper

¢ the name of the CMake target for the created extension, defined by the EXTENSION_TARGET_NAME argument
passed to wrap_operator_as_gxf_extension in the previous section

The codelet class name (defined by the CODELET_NAMESPACE::CODELET_NAME arguments passed to
wrap_operator_as_gxf_extension in the previous section) can then be used as a component type in a
GXF app node, as shown in the YAML app definition of the example, connecting the two ping operators.

150 Chapter 17. Using Holoscan Operators in GXF Applications

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/CMakeLists.min.txt#L30-33
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/ping.yaml

CHAPTER
EIGHTEEN

GXF USER GUIDE

18.1 Graph Specification

Graph Specification is a format to describe high-performance Al applications in a modular and extensible way. It
allows writing applications in a standard format and sharing components across multiple applications without code
modification. Graph Specification is based on entity-composition pattern. Every object in graph is represented with
entity (aka Node) and components. Developers implement custom components which can be added to entity to achieve
the required functionality.

18.1.1 Concepts

The graph contains nodes which follow an entity-component design pattern implementing the “composition over in-
heritance” paradigm. A node itself is just a light-weight object which owns components. Components define how a
node interacts with the rest of the applications. For example, nodes be connected to pass data between each other. A
special component, called compute component, is used to execute the code based on certain rules. Typically a compute
component would receive data, execute some computation and publish data.

Graph

A graph is a data-driven representation of an Al application. Implementing an application by using programming
code to create and link objects results in a monolithic and hard to maintain program. Instead a graph object is used to
structure an application. The graph can be created using specialized tools and it can be analyzed to identify potential
problems or performance bottlenecks. The graph is loaded by the graph runtime to be executed.

The functional blocks of a graph are defined by the set of nodes which the graph owns. Nodes can be queried via the
graph using certain query functions. For example, it is possible to search for a node by its name.

SubGraph

A subgraph is a graph with additional node for interfaces. It points to the components which are accessible outside
this graph. In order to use a subgraph in an existing graph or subgraph, the developer needs to create an entity where
a component of the type nvidia: :gxf: :Subgraph is contained. Inside the Subgraph component a corresponding
subgraph can be loaded from the yaml file indicated by location property and instantiated in the parent graph.

System makes the components from interface available to the parent graph when a sub-graph is loaded in the parent
graph. It allows users to link sub-graphs in parent with defined interface.

A subgraph interface can be defined as follows:

151

Holoscan SDK User Guide, Release 0.5.1

interfaces:
- name: iname # the name of the interface for the access from the parent graph

target: n_entity/n_component # the true component in the subgraph that is represented.
—by the interface

Node

Graph Specification uses an entity-component design principle for nodes. This means that a node is a light-weight
object whose main purpose is to own components. A node is a composition of components. Every component is in
exactly one node. In order to customize a node a developer does not derive from node as a base class, but instead
composes objects out of components. Components can be used to provide a rich set of functionality to a node and thus
to an application.

Components

Components are the main functional blocks of an application. Graph runtime provides a couple of components which
implement features like properties, code execution, rules and message passing. It also allows a developer to extend the
runtime by injecting her own custom components with custom features to fit a specific use case.

The most common component is a codelet or compute component which is used for data processing and code execution.
To implement a custom codelet you’ll need to implement a certain set of functions like start and stop. A special system
- the scheduler - will call these functions at the specified time. Typical examples of triggering code execution are:
receiving a new message from another node, or performing work on a regular schedule based on a time trigger.

Edges

Nodes can receive data from other nodes by connecting them with an edge. This essential feature allows a graph to
represent a compute pipeline or a complicated Al application. An input to a node is called sink while an output is called
source. There can be zero, one or multiple inputs and outputs. A source can be connected to multiple sinks and a sink
can be connected to multiple sources.

Extension

An extension is a compiled shared library of a logical group of component type definitions and their implementations
along with any other asset files that are required for execution of the components. Some examples of asset files are
model files, shared libraries that the extension library links to and hence required to run, header and development files
that enable development of additional components and extensions that use components from the extension.

An extension library is a runtime loadable module compiled with component information in a standard format that
allows the graph runtime to load the extension and retrieve further information from it to:

* Allow the runtime to create components using the component types in the extension.

* Query information regarding the component types in the extension:

The component type name

The base type of the component

A string description of the component

Information of parameters of the component — parameter name, type, description etc.,

152 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

* Query information regarding the extension itself - Name of the extension, version, license, author and a string

description of the extension.

The section :doc: GraphComposer_Dev_Workflow talks more about this with a focus on developing extensions and

components.

18.1.2 Graph File Format

Graph file stores list of entities. Each entity has a unique name and list of components. Each component has a name, a

type and properties. Properties are stored as key-value pairs.

%YAML 1.2
name: source
components:
- name: signal
type: sample::test::ping
- type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 10
components:
- type: nvidia::gxf::GreedyScheduler
parameters:
realtime: false
max_duration_ms: 1000000

18.2 Graph Execution Engine

Graph Execution Engine is used to execute Al application graphs. It accepts multiple graph files as input, and all graphs
are executed in same process context. It also needs manifest files as input which includes list of extensions to load. It

must list all extensions required for the graph.

gxe --help
Flags from gxf/gxe/gxe.cpp:

-app (GXF app file to execute. Multiple files can be comma-separated)
type: string default: ""

-graph_directory (Path to a directory for searching graph files.)
type: string default: ""

-log_file_path (Path to a file for logging.) type: string default:

-manifest (GXF manifest file with extensions. Multiple files can be
comma-separated) type: string default: ""

-severity (Set log severity levels: 0=None, 1=Error, 2=Warning, 3=Info,
4=Debug. Default: Info) type: int32 default: 3

18.2. Graph Execution Engine

153

Holoscan SDK User Guide, Release 0.5.1

18.3 Graph Specification TimeStamping

18.3.1 Message Passing

Once the graph is built, the communication between various entities occur by passing around messages (messages
are entities themselves). Specifically, one component/codelet can publish a message entity and another can receive it.
When publishing, a message should always have an associated Timestamp component with the name “timestamp”.
A Timestamp component contains two different time values (See the gxf/std/timestamp . hpp header file for more
information.):

1. acqtime - This is the time when the message entity is acquired, for instance, this would generally be the driver time
of the camera when it captures an image. You must provide this timestamp if you are publishing a message in a codelet.

2. pubtime - This is the time when the message entity is published by a node in the graph. This will automatically get
updated using the clock of the scheduler.

In a codelet, when publishing message entities using a Transmitter (tx), there are two ways to add the required
Timestamp:

1. tx.publish(Entity message): You can manually add a component of type Timestamp with the name “times-
tamp” and set the acqtime. The pubtime in this case should be set to 8. The message is published using the
publish(Entity message). This will be deprecated in the next release.

2. tx.publish(Entity message, int64_t acqtime): You can simply call publish(Entity message,
int64_t acqtime) with the acqtime. Timestamp will be added automatically.

18.4 The GXF Scheduler

The execution of entities in a graph is governed by the scheduler and the scheduling terms associated with every
entity. A scheduler is a component responsible for orchestrating the execution of all the entities defined in a graph.
A scheduler typically keeps track of the graph entities and their current execution states and passes them on to a
nvidia::gxf::EntityExecutor component when ready for execution. The following diagram depicts the flow for an entity
execution.

Figure: Entity execution sequence

As shown in the sequence diagram, the schedulers begin executing the graph entities via the
nvidia::gxf::System::runAsync_abi() interface and continue this process until it meets the certain ending crite-
ria. A single entity can have multiple codelets. These codelets are executed in the same order in which they were
defined in the entity. A failure in execution of any single codelet stops the execution of all the entities. Entities are
naturally unscheduled from execution when any one of their scheduling term reaches NEVER state.

Scheduling terms are components used to define the execution readiness of an entity. An entity can have multiple
scheduling terms associated with it and each scheduling term represents the state of an entity using SchedulingCondi-
tion.

The table below shows various states of nvidia::gxf::SchedulingConditionType described us-
ing nvidia::gxf::SchedulingCondition.

154 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

SchedulingConditionType | Description

NEVER Entity will never execute again

READY Entity is ready for execution

WAIT Entity may execute in the future

WAIT_TIME Entity will be ready for execution after specified duration
WAIT_EVENT Entity is waiting on an asynchronous event with unknown time interval

Schedulers define deadlock as a condition when there are no entities which are
in READY, WAIT_TIME or WAIT_EVENT state which guarantee execution at a future point in time. This
implies all the entities are in WAIT state for which the scheduler does not know if they ever will reach the READY state
in the future. The scheduler can be configured to stop when it reaches such a state using the stop_on_deadlock pa-
rameter, else the entities are polled to check if any of them have reached READY state. max_duration configuration
parameter can be used to stop execution of all entities regardless of their state after a specified amount of time has
elapsed.

There are two types of schedulers currently supported by GXF
1. Greedy Scheduler
2. Multithread Scheduler

18.4.1 Greedy Scheduler

This is a basic single threaded scheduler which tests scheduling term greedily. It is great for simple use cases and
predictable execution but may incur a large overhead of scheduling term execution, making it unsuitable for large
applications. The scheduler requires a clock to keep track of time. Based on the choice of clock the scheduler will
execute differently. If a Realtime clock is used the scheduler will execute in real-time. This means pausing execution
- sleeping the thread, until periodic scheduling terms are due again. If a ManualClock is used scheduling will happen
“time-compressed”. This means flow of time is altered to execute codelets in immediate succession.

The GreedyScheduler maintains a running count of entities which are in READY, WAIT_TIME and WAIT_EVENT states.
The following activity diagram depicts the gist of the decision making for scheduling an entity by the greedy scheduler

Figure: Greedy Scheduler Activity Diagram

Greedy Scheduler Configuration

The greedy scheduler takes in the following parameters from the configuration file

18.4. The GXF Scheduler 155

Holoscan SDK User Guide, Release 0.5.1

Parameter name Description

clock The clock used by the scheduler to define the flow of time. Typical choices are
RealtimeClock or ManualClock

max_duration_ms The maximum duration for which the scheduler will execute (in ms). If not

specified, the scheduler will run until all work is done. If periodic terms are
present this means the application will run indefinitely

stop_on_deadlock If stop_on_deadlock is disabled, the GreedyScheduler constantly polls for the
status of all the waiting entities to check if any of them are ready for execution.

Example usage - The following code snippet configures a Greedy scheduler with a ManualClock option specified.

name: scheduler
components:
- type: nvidia::gxf::GreedyScheduler
parameters:
max_duration_ms: 3000
clock: misc/clock
stop_on_deadlock: true
name: misc
components:
- name: clock
type: nvidia::gxf::ManualClock

18.4.2 Multithread Scheduler

The MultiThread scheduler is more suitable for large applications with complex execution patterns. The scheduler
consists of a dispatcher thread which checks the status of an entity and dispatches it to a thread pool of worker threads
responsible for executing them. Worker threads enqueue the entity back on to the dispatch queue upon completion of
execution. The number of worker threads can be configured using worker_thread_number parameter. The MultiThread
scheduler also manages a dedicated queue and thread to handle asynchronous events. The following activity diagram
demonstrates the gist of the multithread scheduler implementation.

Figure: MultiThread Scheduler Activity Diagram

As depicted in the diagram, when an entity reaches WAIT_EVENT state, it’s moved to a queue where they wait to
receive event done notification. The asynchronous event handler thread is responsible for moving entities to the dis-
patcher upon receiving event done notification. The dispatcher thread also maintains a running count of the number
of entities in READY, WAIT_EVENT and WAIT_TIME states and uses these statistics to check if the scheduler has

156 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

reached a deadlock. The scheduler also needs a clock component to keep track of time and it is configured using

the clock parameter.

MultiThread scheduler is more resource efficient compared to the Greedy Scheduler and does not incur any additional
overhead for constantly polling the states of scheduling terms. The check_recession_period_ms parameter can be used
to configure the time interval the scheduler must wait to poll the state of entities which are in WAIT state.

Multithread Scheduler Configuration

The multithread scheduler takes in the following parameters from the configuration file

Parameter name

Description

clock

The clock used by the scheduler to define the flow of time. Typical choices are
RealtimeClock or ManualClock.

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not
specified, the scheduler will run until all work is done. If periodic terms are
present this means the application will run indefinitely.

check_recess_period_ms

Duration to sleep before checking the condition of an entity again [ms]. This is
the maximum duration for which the scheduler would wait when an entity is not
yet ready to run.

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no
periodic entity exists to break the dead end. Should be disabled when scheduling
conditions can be changed by external actors, for example by clearing queues
manually.

worker_thread_number

Number of threads.

Example usage - The following code snippet configures a Multithread scheduler with the number of worked threads

and max duration specified -

name: scheduler
components:

- type: nvidia::gxf::MultiThreadScheduler

parameters:
max_duration_ms:

clock: misc/clock
worker_thread_number:

check_recession_period_ms: 3

stop_on_deadlock: false

name: misc
components:
- name: clock

type: nvidia::gxf::RealtimeClock

18.4. The GXF Scheduler

157

Holoscan SDK User Guide, Release 0.5.1

18.4.3 Epoch Scheduler

The Epoch scheduler is used for running loads in externally managed threads. Each run is called an Epoch. The
scheduler goes over all entities that are known to be active and executes them one by one. If the epoch budget is
provided (in ms), it would keep running all codelets until the budget is consumed or no codelet is ready. It might run
over budget since it guarantees to cover all codelets in epoch. In case the budget is not provided, it would go over all
the codelets once and execute them only once.

The epoch scheduler takes in the following parameters from the configuration file -

Parameter name Description
clock The clock used by the scheduler to define the flow of time. Typical choice is a
RealtimeClock.

Example usage - The following code snippet configures an Epoch scheduler -

name: scheduler
components:
- name: clock
type: nvidia::gxf::RealtimeClock
- name: epoch
type: nvidia::gxf::EpochScheduler
parameters:
clock: clock

Note that the epoch scheduler is intended to run from an external thread. The runEpoch(float budget_ms); can
be used to set the budget_ms and run the scheduler from the external thread. If the specified budget is not positive, all
the nodes are executed once.

18.4.4 SchedulingTerms

A SchedulingTerm defines a specific condition that is used by an entity to let the scheduler know when it’s ready for
execution. There are various scheduling terms currently supported by GXF.

PeriodicSchedulingTerm

An entity associated with nvidia::gxf::PeriodicSchedulingTerm is ready for execution after periodic time intervals spec-
ified using its recess_period parameter. The PeriodicSchedulingTerm can either be in READY or WAIT_TIME state.

Example usage -

- name: scheduling_term
type: nvidia::gxf::PeriodicSchedulingTerm
parameters:
recess_period: 50000000

158 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

CountSchedulingTerm

An entity associated with nvidia::gxf::CountSchedulingTerm is executed for a specific number of times specified using
its count parameter. The CountSchedulingTerm can either be in READY or NEVER state. The scheduling term reaches
the NEVER state when the entity has been executed count number of times.

Example usage -

- name: scheduling_term
type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 42

MessageAvailableSchedulingTerm

An entity associated with nvidia::gxf: :MessageAvailableSchedulingTerm is executed when the associated
receiver queue has at least a certain number of elements. The receiver is specified using the receiver parameter
of the scheduling term. The minimum number of messages that permits the execution of the entity is specified by
min_size. An optional parameter for this scheduling term is front_stage_max_size, the maximum front stage
message count. If this parameter is set, the scheduling term will only allow execution if the number of messages in the
queue does not exceed this count. It can be used for codelets which do not consume all messages from the queue.

In the example shown below, the minimum size of the queue is configured to be 4. This means the entity will not be
executed until there are at least 4 messages in the queue.

- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: tensors
min_size: 4

MultiMessageAvailableSchedulingTerm

An entity associated with nvidia: :gxf::MultiMessageAvailableSchedulingTerm is executed when a list of
provided input receivers combined have at least a given number of messages. The receivers parameter is used to
specify a list of the input channels/receivers. The minimum number of messages needed to permit the entity execution
is set by min_size parameter.

Consider the example shown below. The associated entity will be executed when the number of messages combined
for all the three receivers is at least the min_size, i.e. 5.

- name: input_1
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10
- name: input_2
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10
- name: input_3
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10
- type: nvidia::gxf::MultiMessageAvailableSchedulingTerm

(continues on next page)

18.4. The GXF Scheduler 159

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

parameters:
receivers: [input_1, input_2, input_3]
min_size: 5

BooleanSchedulingTerm

An entity associated with nvidia: :gxf::BooleanSchedulingTerm is executed when its internal state is set to
tick. The parameter enable_tick is used to control the entity execution. The scheduling term also has two APIs
enable_tick() and disable_tick() to toggle its internal state. The entity execution can be controlled by call-
ing these APIs. If enable_tick is set to false, the entity is not executed (Scheduling condition is set to NEVER). If
enable_tick is set to true, the entity will be executed (Scheduling condition is set to READY). Entities can toggle the
state of the scheduling term by maintaining a handle to it.

Example usage -

- type: nvidia::gxf::BooleanSchedulingTerm
parameters:
enable_tick: true

AsynchronousSchedulingTerm

AsynchronousSchedulingTerm is primarily associated with entities which are working with asynchronous events hap-
pening outside of their regular execution performed by the scheduler. Since these events are non-periodic in na-
ture, AsynchronousSchedulingTerm prevents the scheduler from polling the entity for its status regularly and reduces
CPU utilization. AsynchronousSchedulingTerm can either be in READY, WAIT, WAIT_EVENT or NEVER states
based on asynchronous event it’s waiting on.

The state of an asynchronous event is described using nvidia::gxf::AsynchronousEventState and is updated using
the setEventState API.

AsynchronousEventState | Description

READY Init state, first tick is pending

WAIT Request to async service yet to be sent, nothing to do but wait
EVENT_WAITING Request sent to an async service, pending event done notification
EVENT _DONE Event done notification received, entity ready to be ticked
EVENT_NEVER Entity does not want to be ticked again, end of execution

Entities associated with this scheduling term most likely have an asynchronous thread which can update the state
of the scheduling term outside of it’s regular execution cycle performed by the gxf scheduler. When the schedul-
ing term is in WAIT state, the scheduler regularly polls for the state of the entity. When the scheduling term is
in EVENT_WAITING state, schedulers will not check the status of the entity again until they receive an event
notification which can be triggered using the GxfEntityEventNotify api. Setting the state of the scheduling term
to EVENT_DONE automatically sends this notification to the scheduler. Entities can use the EVENT_NEVER state
to indicate the end of its execution cycle.

Example usage -

- name: async_scheduling_term
type: nvidia::gxf::AsynchronousSchedulingTerm

160 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

DownsteamReceptiveSchedulingTerm

This scheduling term specifies that an entity shall be executed if the receiver for a given transmitter can accept new
messages.

Example usage -

- name: downstream_st
type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: output
min_size: 1

TargetTimeSchedulingTerm

This scheduling term permits execution at a user-specified timestamp. The timestamp is specified on the clock provided.

Example usage -

- name: target_st
type: nvidia::gxf::TargetTimeSchedulingTerm
parameters:
clock: clock/manual_clock

ExpiringMessageAvailableSchedulingTerm

This scheduling waits for a specified number of messages in the receiver. The entity is executed when the first message
received in the queue is expiring or when there are enough messages in the queue. The receiver parameter is used
to set the receiver to watch on. The parameters max_batch_size and max_delay_ns dictate the maximum number
of messages to be batched together and the maximum delay from first message to wait before executing the entity
respectively.

In the example shown below, the associated entity will be executed when the number of messages in the queue is greater
than max_batch_size,i.e 5, or when the delay from the first message to current time is greater than max_delay_ns,
i.e 10000000.

- name: target_st
type: nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
parameters:
receiver: signal
max_batch_size: 5
max_delay_ns: 10000000
clock: misc/clock

18.4. The GXF Scheduler 161

Holoscan SDK User Guide, Release 0.5.1

AND Combined

An entity can be associated with multiple scheduling terms which define it’s execution behavior. Scheduling terms
are AND combined to describe the current state of an entity. For an entity to be executed by the scheduler, all the
scheduling terms must be in READY state and conversely, the entity is unscheduled from execution whenever any
one of the scheduling term reaches NEVER state. The priority of various states during AND combine follows the
order NEVER, WAIT_EVENT, WAIT, WAIT_TIME, and READY.

Example usage -

components:
- name: integers
type: nvidia::gxf::DoubleBufferTransmitter
- name: fibonacci
type: nvidia::gxf::DoubleBufferTransmitter
- type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 100
- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: integers
min_size: 1

BTSchedulingTerm

A BT (Behavior Tree) scheduling term is used to schedule a behavior tree entity itself and its child entities (if any) in
a Behavior tree.

Example usage -

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0
- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true
- name: root_codelet
type: nvidia::gxf::SequenceBehavior
parameters:
children: [childl/childl_st]
s_term: root_st
controller: root_controller

162 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

18.5 Behavior Trees

Behavior tree codelets are one of the mechanisms to control the flow of tasks in GXF. They follow the same gen-
eral behavior as classical behavior trees, with some useful additions for robotics applications. This document gives
an overview of the general concept, the available behavior tree node types, and some examples of how to use them
individually or in conjunction with each other.

18.5.1 General Concept

Behavior trees consist of n-ary trees of entities that can have zero or more children. The conditional execution of parent
entity is based on the status of execution of the children. A behavior tree is graphically represented as a directed tree
in which the nodes are classified as root, control flow nodes, or execution nodes (tasks). For each pair of connected
nodes, the outgoing node is called parent and the incoming node is called child.

The execution of a behavior tree starts from the root which sends ticks with a certain frequency to its child. When
the execution of a node in the behavior tree is allowed, it returns to the parent a status running if its execution has
not finished yet, success if it has achieved its goal, or failure otherwise. The behavior tree also uses a controller
component for controlling the entity’s termination policy and the execution status. One of the controller behaviors
currently implemented for Behavior Tree is EntityCountFailureRepeatController, which repeats the entity on
failure up to repeat_count times before deactivating it.

GXEF supports several behavior tree codelets which are explained in the following section.

18.5.2 Behavior Tree Codelets
Each behavior tree codelet can have a set of parameters defining how it should behave. Note that in all

the examples given below, the naming convention for configuring the children parameter for root codelets is
[child_codelet_name\child_codelet_scheduling_term].

Constant Behavior

After each tick period, switches its own status to the configured desired constant status.

Parameter Description
s_term scheduling term used for scheduling the entity itself
constant_status | The desired status to switch to during each tick time.

An example diagram depicting Constant behavior used in conjunction with a Sequence behavior defined for root entity
is shown below

18.5. Behavior Trees 163

Holoscan SDK User Guide, Release 0.5.1

Root GXF_BEHAVIOR_FAILURE
Child1 Child2
constant_status = constant_status =
GXF_BEHAVIOR_SUCCESS GXF_BEHAVIOR_FAILURE

Here, the childl is configured to return a constant status of success (GXF_BEHAVIOR_SUCCESS) and child2 returns
failure (GXF_BEHAVIOR_FAILURE), resulting into the root node (configured to exhibit sequence behavior) returning

GXF_BEHAVIOR_FAILURE.

The controller for each child can be configured to repeat the execution on failure. A code snippet of configuring the

example described is shown below.

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0
- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true
- name: root_codelet
type: nvidia::gxf::SequenceBehavior
parameters:
children: [childl/childl_st, child2/child2_st]
s_term: root_st
name: child2
components:
- name: child2_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 3
return_behavior_running_if_ failure_repeat: true
- name: child2_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: false
- name: child2_codelet
type: nvidia::gxf::ConstantBehavior
parameters:
s_term: child2_st
constant_status: 1

164 Chapter 18.

GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

Parallel Behavior

Runs its child nodes in parallel. By default, succeeds when all child nodes succeed, and fails when all child nodes fail.
This behavior can be customized using the parameters below.

Parameter Description

s_term scheduling term used for scheduling the entity itself

children Child entities

suc- Number of successful children required for success. A value of -1 means all children must succeed
cess_threshold | for this node to succeed.

fail- Number of failed children required for failure. A value of -1 means all children must fail for this
ure_threshold | node to fail.

The diagram below shows a graphical representation of a parallel behavior configured with failure_threshold configured
as -1. Hence, the root node returns GXF_BEHAVIOR_SUCCESS even if one child returns a failure status.

Root

GXF_BEHAVIOR_SUCCESS

Child1

Child2

Child3

ChildN

GXF_BEHAVIOR_SUCCESS

GXF_BEHAVIOR_SUCCESS

GXF_BEHAVIOR_FAILURE

A code snippet to configure the example described is shown below.

GXF_BEHAVIOR_SUCCESS

name: root
components:

- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController

parameters:

max_repeat_count: 0
- name: root_st

type: nvidia::gxf::BTSchedulingTerm
parameters:

is_root: true
- name: root_codelet

type: nvidia::gxf::ParallelBehavior
parameters:
children:

[childl/childl_st, child2/child2_st]
s_term: root_st

success_threshold: 1
failure_threshold: -1

18.5. Behavior Trees

165

Holoscan SDK User Guide, Release 0.5.1

Repeat Behavior

Repeats its only child entity. By default, won’t repeat when the child entity fails. This can be customized using the

parameters below.

Parameter

Description

S_term

scheduling term used for scheduling the entity itself

repeat_after_failure

Denotes whether to repeat the child after it has failed.

The diagram below shows a graphical representation of a repeat behavior. The root entity can be configured to repeat
the only child to repeat after failure. It succeeds when the child entity succeeds.

Root

Child

GXF_BEHAVIOR_SUCCESS

GXF_BEHAVIOR_FAILURE

A code snippet to configure a repeat behavior is as shown below -

GXF_BEHAVIOR_SUCCESS

GXF_BEHAVIOR_FAILURE

name: repeat_knock
components:

- name: repeat_knock_controller

type: nvidia::gxf::EntityCountFailureRepeatController

parameters:
max_repeat_count: 0
- name: repeat_knock_st

type: nvidia::gxf::BTSchedulingTerm

parameters:
is_root: false
- name: repeat_codelet

type: nvidia::gxf::RepeatBehavior

parameters:
s_term: repeat_knock_st

children: [knock_on_door/knock_on_door_st]

repeat_after_failure: true

(continues on next page)

166

Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

Selector Behavior

Runs all child entities in sequence until one succeeds, then reports success. If all child entities fail (or no child entities
are present), this codelet fails.

Parameter | Description
s_term scheduling term used for scheduling the entity itself
children Child entities

The diagram below shows a graphical representation of a Selector behavior. The root entity starts child_1, child_2
and child_3 in a sequence. Although child_1 and child_2 fail, the root entity will return success since child_3 returns
successfully.

Root GXF_BEHAVIOR_SUCCESS
A 4
Child_1 Child_2 Child_3
GXF_BEHAVIOR_FAILURE GXF_BEHAVIOR_FAILURE GXF_BEHAVIOR_SUCCESS

A code snippet to configure a selector behavior is as shown below -

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0
- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true
- name: root_sel_codelet
type: nvidia::gxf::SelectorBehavior
parameters:
children: [door_distance/door_distance_st, door_detected/door_detected_st, knock/
—knock_st]

(continues on next page)

18.5. Behavior Trees 167

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

S_term: root_st

name: door_distance

components:

- name: door_distance_controller

type: nvidia::gxf::EntityCountFailureRepeatController

parameters:

max_repeat_count: 0
- name: door_distance_st
type: nvidia::gxf::BTSchedulingTerm

parameters:
is_root: false
- name: door_dist

type: nvidia::gxf::SequenceBehavior

parameters:
children: []

s_term: door_distance_st

Sequence Behavior

Runs its child entities in sequence, in the order in which they are defined. Succeeds when all child entities succeed or
fails as soon as one child entity fails.

Parameter | Description
s_term scheduling term used for scheduling the entity itself
children Child entities

The diagram below shows a graphical representation of a Sequence behavior. The root entity starts child_1, child_2
and child_3 in a sequence. Although child_1 and child_2 pass, the root entity will return failure since child_3 returns

failure.

Child_1

GXF_BEHAVIOR_SUCCESS

Root

Child_2

GXF_BEHAVIOR_SUCCESS

GXF_BEHAVIOR_FAILURE

Child_3

G¥F_BEHAVIOR_FAILURE

168

Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

A code snippet to configure a sequence behavior is as shown below -

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0
- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true
- name: root_codelet
type: nvidia::gxf::SequenceBehavior
parameters:
children: [childl/childl_st, child2/child2_st]
s_term: root_st

Switch Behavior

Runs the child entity with the index defined as desired_behavior.

Parameter Description

s_term scheduling term used for scheduling the entity itself
children Child entities

desired_behavior | The index of child entity to switch to when this entity runs

In the code snippet shown below, the desired behavior of the root entity is designated to be the the child at index 1.
(scene). Hence, that is the entity that is run.

name: root
components:
- name: root_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 0
- name: root_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: true
- name: root_switch_codelet
type: nvidia::gxf::SwitchBehavior
parameters:
children: [scene/scene_st, ref/ref_st]
s_term: root_st
desired_behavior: 0
name: scene
components:
- name: scene_controller
type: nvidia::gxf::EntityCountFailureRepeatController
parameters:

(continues on next page)

18.5. Behavior Trees 169

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

max_repeat_count: 0
- hame: scene_st

type: nvidia::gxf::BTSchedulingTerm

parameters:
is_root: false
- name: scene_seq

type: nvidia::gxf::SequenceBehavior

parameters:
children: [pose/pose_st
s_term: scene_st

, det/det_st, seg/seg_st]

Timer Behavior

Wiaits for a specified amount of time delay and switches to the configured result switch_status afterwards.

Parameter Description

s_term scheduling term used for scheduling the entity itself
clock Clock

switch_status | Configured result to switch to after the specified delay
delay Configured delay

In the diagram shown below, the child entity switches to failure after a configured delay period. The root entity hence

returns failure.

Child_1

GXF_BEHAVIOR_FAILURE

Root GXF_BEHAVIOR_FAILURE

Switch to failure after

|delay| seconds

A code snippet for the same shown below -

name: knock_on_door
components:

- name: knock_on_door_controller

(continues on next page)

170

Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

type: nvidia::gxf::EntityCountFailureRepeatController
parameters:
max_repeat_count: 10
- name: knock_on_door_st
type: nvidia::gxf::BTSchedulingTerm
parameters:
is_root: false
- name: knock
type: nvidia::gxf::TimerBehavior
parameters:
switch_status: 1
clock: sched/clock
delay: 1
s_term: knock_on_door_st

18.6 GXF Core C APIs

18.6.1 Context

Create context

gxf_result_t GxfContextCreate(gxf_context_t* context);
Creates a new GXF context

A GXF context is required for all almost all GXF operations. The context must be destroyed with ‘GxfContextDestroy’.
Multiple contexts can be created in the same process, however they can not communicate with each other.

parameter: context The new GXF context is written to the given pointer.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Create a context from a shared context

gxf_result_t GxfContextCreatel(gxf_context_t shared, gxf_context_t* context);
Creates a new runtime context from shared context.
A shared runtime context is used for sharing entities between graphs running within the same process.
parameter: shared A valid GXF shared context.
parameter: context The new GXF context is written to the given pointer

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6. GXF Core C APIs 171

Holoscan SDK User Guide, Release 0.5.1

Destroy context

gxf_result_t GxfContextDestroy(gxf_context_t context);
Destroys a GXF context

Every GXF context must be destroyed by calling this function. The context must have been previously created with
‘GxfContextCreate’. This will also destroy all entities and components which were created as part of the context.

parameter: context A valid GXF context.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6.2 Extensions

Maximum number of extensions in a context can be 1024.

Load Extensions from a file

gxf_result_t GxfLoadExtension(gxf_context_t context, const char* filename);
Loads extension in the given context from file.
parameter: context A valid GXF context
parameter: filename A valid filename.
returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

This function will be deprecated.

Load Extension libraries

gxf_result_t GxfLoadExtensions(gxf_context_t context, const GxfLoadExtensionsInfo* info);
Loads GXF extension libraries

Loads one or more extensions either directly by their filename or indirectly by loading manifest files. Before a com-
ponent can be added to a GXF entity the GXF extension shared library providing the component must be loaded. An
extensions must only be loaded once.

To simplify loading multiple extensions at once the developer can create a manifest file which lists all extensions he
needs. This function will then load all extensions listed in the manifest file. Multiple manifest may be loaded, however
each extensions may still be loaded only a single time.

A manifest file is a YAML file with a single top-level entry ‘extensions’ followed by a list of filenames of GXF extension
shared libraries.

Example: — START OF FILE — extensions: - gxf/std/libgxf_std.so - gxf/npp/libgxf_npp.so — END OF FILE

parameter: context A valid GXF context
parameter: filename A valid filename.
returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

gxf_result_t GxfLoadExtensionManifest(gxf_context_t context, const char®
manifest_filename);

Loads extensions from manifest file.

172 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

parameter: context A valid GXF context.
parameter: £ilename A valid filename.
returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

This function will be deprecated.

Load Metadata files

gxf_result_t GxfLoadExtensionMetadataFiles(gxf_context_t context, const char* const*
filenames, uint32_t count);

Loads an extension registration metadata file

Reads a metadata file of the contents of an extension used for registration. These metadata files can be used to resolve
typename and TID’s of components for other extensions which depend on them. Metadata files do not contain the
actual implementation of the extension and must be loaded only to run the extension query API’s on extension libraries
which have the actual implementation and only depend on the metadata for type resolution.

If some components of extension B depend on some components in extension A: - Load metadata file for extension A
- Load extension library for extension B using ‘GxfLoadExtensions’ - Run extension query api’s on extension B and
it’s components.

parameter: context A valid GXF context.
parameter: filenames absolute paths of metadata files.
parameter: count The number of metadata files to be loaded

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Register component

gxf_result_t GxfRegisterComponent(gxf_context_t context, gxf_tid_t tid, const char* name,
const char* base_name);

Registers a component with a GXF extension

A GXF extension need to register all of its components in the extension factory function. For convenience the helper
macros in gxf/std/extension_factory_helper.hpp can be used.

The developer must choose a unique GXF tid with two random 64-bit integers. The developer must ensure that every
GXF component has a unique tid. The name of the component must be the fully qualified C++ type name of the
component. A component may only have a single base class and that base class must be specified with its fully qualified
C++ type name as the parameter ‘base_name’.

ref: gxf/std/extension_factory_helper.hpp ref: core/type_name.hpp
parameter: context A valid GXF context
parameter: tid The chosen GXF tid
parameter: name The type name of the component
parameter: base_name The type name of the base class of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6. GXF Core C APIs 173

Holoscan SDK User Guide, Release 0.5.1

18.6.3 Graph Execution

Loads a list of entities from YAML file
gxf_result_t GxfGraphloadFile(gxf_context_t context, const char* filename, const char*
parameters_override[], const uint32_t num_overrides);
parameter: context A valid GXF context
parameter: filename A valid YAML filename.
parameter: params_override An optional array of strings used for override parameters in yaml file.
parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Set the root folder for searching YAML files during loading

gxf_result_t GxfGraphSetRootPath(gxf_context_t context, const char* path);
parameter: context A valid GXF context
parameter: path Path to root folder for searching YAML files during loading

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Loads a list of entities from YAML text
gxf_result_t GxfGraphParseString(gxf_context_t context, const char* tex, const char*
parameters_override[], const uint32_t num_overrides);
parameter: context A valid GXF context
parameter: text A valid YAML text.
parameter: params_override An optional array of strings used for override parameters in yaml file.
parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Activate all system components

gxf_result_t GxfGraphActivate(gxf_context_t context);
parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

174 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

Deactivate all System components

gxf_result_t GxfGraphDeactivate(gxf_context_t context);
parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Starts the execution of the graph asynchronously

gxf_result_t GxfGraphRunAsync(gxf_context_t context);
parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Interrupt the execution of the graph

gxf_result_t GxfGraphInterrupt(gxf_context_t context);
parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Waits for the graph to complete execution

gxf_result_t GxfGraphWait(gxf_context_t context);
parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Runs all System components and waits for their completion

gxf_result_t GxfGraphRun(gxf_context_t context);
parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6.4 Entities

Create an entity

gxf_result_t GxfEntityCreate(gxf_context_t context, gxf uid_t* eid);
Creates a new entity and updates the eid to the unique identifier of the newly created entity.
This method will be deprecated.

gxf_result_t GxfCreateEntity((gxf_context_t context, const GxfEntityCreateInfo* info,
gxf_uid_t* eid);

Create a new GXF entity.

Entities are light-weight containers to hold components and form the basic building blocks of a GXF application.
Entities are created when a GXF file is loaded, or they can be created manually using this function. Entities created
with this function must be destroyed using ‘GxfEntityDestroy’. After the entity was created components can be added

18.6. GXF Core C APIs 175

Holoscan SDK User Guide, Release 0.5.1

to it with ‘GxfComponentAdd’. To start execution of codelets on an entity the entity needs to be activated first. This
can happen automatically using ‘GXF_ENTITY_CREATE_PROGRAM_BIT’ or manually using ‘GxfEntity Activate’.

parameter context: GXF context that creates the entity. parameter info: pointer to a GxfEntityCre-
atelnfo structure containing parameters affecting the creation of the entity. parameter eid: pointer to a
gxf_uid_t handle in which the resulting entity is returned. returns: GXF_SUCCESS if the operation was
successful, or otherwise one of the GXF error codes.

Activate an entity

gxf_result_t GxfEntityActivate(gxf_context_t context, gxf uid_t eid);
Activates a previously created and inactive entity

Activating an entity generally marks the official start of its lifetime and has multiple implications: - If mandatory
parameters, i.e. parameter which do not have the flag “optional”, are not set the operation will fail.

¢ All components on the entity are initialized.

 All codelets on the entity are scheduled for execution. The scheduler will start calling start, tick and stop functions
as specified by scheduling terms.

» After activation trying to change a dynamic parameters will result in a failure.

* Adding or removing components of an entity after activation will result in a failure.
parameter: context A valid GXF context
parameter: eid UID of a valid entity

returns: GXF error code

Deactivate an entity

gxf_result_t GxfEntityDeactivate(gxf_context_t context, gxf uid_t eid);
Deactivates a previously activated entity
Deactivating an entity generally marks the official end of its lifetime and has multiple implications:
* All codelets are removed from the schedule. Already running entities are run to completion.
* All components on the entity are deinitialized.
* Components can be added or removed again once the entity was deactivated.
* Mandatory and non-dynamic parameters can be changed again.
Note: In case that the entity is currently executing this function will wait and block until
the current execution is finished.
parameter: context A valid GXF context
parameter: eid UID of a valid entity

returns: GXF error code

176 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

Destroy an entity

gxf_result_t GxfEntityDestroy(gxf_context_t context, gxf uid_t eid);
Destroys a previously created entity

Destroys an entity immediately. The entity is destroyed even if the reference count has not yet reached 0. If the entity
is active it is deactivated first.

Note: This function can block for the same reasons as ‘GxfEntityDeactivate’.
parameter: context A valid GXF context
parameter: eid The returned UID of the created entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find an entity

gxf_result_t GxfEntityFind(gxf_context_t context, const char* name, gxf_uid_t* eid);
Finds an entity by its name

parameter: context A valid GXF context

parameter: name A C string with the name of the entity. Ownership is not transferred.

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find all entities

gxf_result_t GxfEntityFindAll(gxf_context_t context, uint64_t* num_entities, gxf_ uid_t*
entities);

Finds all entities in the current application

Finds and returns all entity ids for the current application. If more than max_entities exist only max_entities will be
returned. The order and selection of entities returned is arbitrary.

parameter: context A valid GXF context

parameter: num_entities In/Out: the max number of entities that can fit in the buffer/the number of
entities that exist in the application

parameter: entities A buffer allocated by the caller for returned UIDs of all entities, with capacity for
num_entities.

returns: GXF_SUCCESS if the operation was successful, GXF_QUERY_NOT_ENOUGH_CAPACITY
if more entities exist in the application than max_entities, or otherwise one of the GXF error codes.

18.6. GXF Core C APIs 177

Holoscan SDK User Guide, Release 0.5.1

Increase reference count of an entity

gxf_result_t GxfEntityRefCountInc(gxf_context_t context, gxf uid_t eid);
Increases the reference count for an entity by 1.

By default reference counting is disabled for an entity. This means that entities created with ‘GxfEntityCreate’ are
not automatically destroyed. If this function is called for an entity with disabled reference count, reference counting is
enabled and the reference count is set to 1. Once reference counting is enabled an entity will be automatically destroyed
if the reference count reaches zero, or if ‘GxfEntityCreate’ is called explicitly.

parameter: context A valid GXF context
parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Decrease reference count of an entity

gxf_result_t GxfEntityRefCountDec(gxf_context_t context, gxf_uid_t eid);
Decreases the reference count for an entity by 1.
See ‘GxfEntityRefCountInc’ for more details on reference counting.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get status of an entity
gxf_result_t GxfEntityGetStatus(gxf_context_t context, gxf_ uid_t eid,
gxf_entity_status_t* entity_status);
Gets the status of the entity.
See ‘gxf_entity_status_t’ for the various status.
parameter: context A valid GXF context
parameter: eid The UID of a valid entity
parameter: entity_status output; status of an entity eid

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get state of an entity
gxf_result_t GxfEntityGetState(gxf_context_t context, gxf uid_t eid, entity_state_t*
entity_state);
Gets the state of the entity.
See ‘gxf_entity_status_t’ for the various status.
parameter: context A valid GXF context
parameter: eid The UID of a valid entity

parameter: entity_state output; behavior status of an entity eid used by the behavior tree parent codelet

178 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Notify entity of an event

gxf_result_t GxfEntityEventNotify(gxf_context_t context, gxf uid_t eid);
Notifies the occurrence of an event and inform the scheduler to check the status of the entity

The entity must have an ‘AsynchronousSchedulingTerm’ scheduling term component and it must be in
“EVENT_WAITING” state for the notification to be acknowledged.

See ‘AsynchronousEventState’ for various states
parameter: context A valid GXF context
parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6.5 Components

Maximum number of components in an entity or an extension can be up to 1024.

Get component type identifier

gxf_result_t GxfComponentTypeId(gxf_context_t context, const char* name, gxf_tid_t* tid);
Gets the GXF unique type ID (TID) of a component

Get the unique type ID which was used to register the component with GXF. The function expects the fully qualified
C++ type name of the component including namespaces.

Example of a valid component type name: “nvidia::gxf::test::PingTx”
parameter: context A valid GXF context
parameter: name The fully qualified C++ type name of the component
parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get component type name

gxf_result_t GxfComponentTypeName(gxf_context_t context, gxf tid_t tid, const char**
name) ;

Gets the fully qualified C++ type name GXF component typename

Get the unique typename of the component with which it was registered using one of the
GXF_EXT_FACTORY_ADD#*() macros

parameter: context A valid GXF context
parameter: tid The unique type ID (TID) of the component with which the component was registered
parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6. GXF Core C APIs 179

Holoscan SDK User Guide, Release 0.5.1

Get component name

gxf_result_t GxfComponentName(gxf_context_t context, gxf uid_t cid, const char** name);
Gets the name of a component

Each component has a user-defined name which was used in the call to ‘GxfComponentAdd’. Usually the name is
specified in the GXF application file.

parameter: context A valid GXF context
parameter: cid The unique object ID (UID) of the component
parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get unique identifier of the entity of given component

gxf_result_t GxfComponentEntity(gxf_context_t context, gxf uid_t cid, gxf_uid_t* eid);
Gets the unique object ID of the entity of a component

Each component has a unique ID with respect to the context and is stored in one entity. This function can be used to
retrieve the ID of the entity to which a given component belongs.

parameter: context A valid GXF context
parameter: cid The unique object ID (UID) of the component
parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Add a new component

gxf_result_t GxfComponentAdd(gxf context_t context, gxf uid_t eid, gxf tid_t tid, const
char* name, gxf_uid_t* cid);

Adds a new component to an entity

An entity can contain multiple components and this function can be used to add a new component to an entity. A
component must be added before an entity is activated, or after it was deactivated. Components must not be added
to active entities. The order of components is stable and identical to the order in which components are added (see
‘GxfComponentFind’).

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is added.
parameter: tid The unique type ID (TID) of the component to be added to the entity.
parameter: name The name of the new component. Ownership is not transferred.
parameter: cid The returned UID of the created component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

180 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

Add component to entity interface

gxf_result_t GxfComponentAddToInterface(gxf_context_t context, gxf_uid_t eid, gxf_ uid_t
cid, const char* name);

Adds an existing component to the interface of an entity

An entity can holds references to other components in its interface, so that when finding a component in an entity, both
the component this entity holds and those it refers to will be returned. This supports the case when an entity contains
a subgraph, then those components that has been declared in the subgraph interface will be put to the interface of the
parent entity.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is added.
parameter: cid The unique object ID of the component.

parameter: name The name of the new component. Ownership is not transferred.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find a component in an entity

gxf_result_t GxfComponentFind(gxf_context_t context, gxf uid_t eid, gxf_tid_t tid, const
char* name, int32_t* offset, gxf_uid_t* cid);

Finds a component in an entity

Searches components in an entity which satisfy certain criteria: component type, component name, and component
min index. All three criteria are optional; in case no criteria is given the first component is returned. The main use case
for “component min index” is a repeated search which continues at the index which was returned by a previous search.

In case no entity with the given criteria was found GXF_ENTITY_NOT_FOUND is returned.
parameter: context A valid GXF context
parameter: eid The unique object ID (UID) of the entity which is searched.
parameter: tid The component type ID (TID) of the component to find (optional)
parameter: name The component name of the component to find (optional). Ownership not transferred.

parameter: offset The index of the first component in the entity to search. Also contains the index of the
component which was found.

parameter: cid The returned UID of the searched component

returns: GXF_SUCCESS if a component matching the criteria was found, GXF_ENTITY_NOT_FOUND
if no component matching the criteria was found, or otherwise one of the GXF error codes.

Get type identifier for a component

gxf_result_t GxfComponentType(gxf_context_t context, gxf uid_t cid, gxf_tid_t* tid);
Gets the component type ID (TID) of a component

parameter: context A valid GXF context

parameter: cid The component object ID (UID) for which the component type is requested.

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6. GXF Core C APIs 181

Holoscan SDK User Guide, Release 0.5.1

Gets pointer to component
gxf_result_t GxfComponentPointer(gxf_context_t context, gxf_ uid_t uid, gxf_tid_t tid,
void** pointer);
Verifies that a component exists, has the given type, gets a pointer to it.
parameter: context A valid GXF context
parameter: uid The component object ID (UID).
parameter: tid The expected component type ID (TID) of the component
parameter: pointer The returned pointer to the component object.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6.6 Primitive Parameters

64-bit floating point

Set

gxf_result_t GxfParameterSetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value a double value

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetFloat64(gxf_context_t context, gxf uid_t uid, const char*
key, double* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value pointer to get the double value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

182 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

64-bit signed integer

Set

gxf_result_t GxfParameterSetInt64(gxf_context_t context, gxf uid_t uid, const char* key,
int64_t value);

Get

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

gxf_result_t GxfParameterGetInt64(gxf_context_t context, gxf uid_t uid, const char* key,
int64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value pointer to get the 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

64-bit unsigned integer

Set

gxf_result_t GxfParameterSetUInt64(gxf_context_t context, gxf uid_t uid, const char* key,
uint64_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value unsigned 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6. GXF Core C APIs 183

Holoscan SDK User Guide, Release 0.5.1

Get

gxf_result_t GxfParameterGetUInt64(gxf_context_t context, gxf uid_t uid, const char* key,
uint64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the unsigned 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

32-bit signed integer

Set

gxf_result_t GxfParameterSetInt32(gxf_context_t context, gxf uid_t uid, const char* key,
int32_t value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value 32-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetInt32(gxf_context_t context, gxf uid_t uid, const char* key,
int32_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value pointer to get the 32-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

String parameter

Set

gxf_result_t GxfParameterSetStr(gxf_context_t context, gxf uid_t uid, const char* key,
const char* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

184 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

parameter: value A char array containing value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char** value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.
parameter: value pointer to a char* array to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Boolean

Set

gxf_result_t GxfParameterSetBool(gxf_context_t context, gxf uid_t uid, const char* key,
bool value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value A boolean value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetBool(gxf_context_t context, gxf uid_t uid, const char* key,
bool* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: value pointer to get the boolean value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6. GXF Core C APIs 185

Holoscan SDK User Guide, Release 0.5.1

Handle

Set

gxf_result_t GxfParameterSetHandle(gxf_context_t context, gxf_uid_t uid, const char* key,
gxf_uid_t cid);

Get

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.
parameter: cid Unique identifier to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

gxf_result_t GxfParameterGetHandle(gxf_context_t context, gxf uid_t uid, const char* key,
gxf_uid_t* cid);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value Pointer to a unique identifier to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6.7 Vector Parameters

To set or get the vector parameters of a component, users can use the following C-APIs for various data types:

Set 1-D Vector Parameters

Users can call gxf_result_t GxfParameterSetlD"DataType'"Vector(gxf_context_t context, gxf_uid_t

uid,

const char* key, data_type* value, uint64_t length)

value should point to an array of the data to be set of the corresponding type. The size of the stored array should
match the 1ength argument passed.

See the table below for all the supported data types and their corresponding function signatures.

parameter: key The name of the parameter
parameter: value The value to set of the parameter
parameter: 1length The length of the vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

186

Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

Table 18.1: Supported Data Types to Set 1D Vector Parameters

Function Name data_type
GxfParameterSet1DFloat64Vector(...) double
GxfParameterSet1DInt64Vector(...) int64_t
GxfParameterSet1DUInt64Vector(...) uint64_t
GxfParameterSet1DInt32Vector(...) int32_t

Set 2-D Vector Parameters
Users can call gxf_result_t GxfParameterSet2D"DataType'Vector(gxf_context_t context, gxf uid_t
uid, const char* key, data_type** value, uint64_t height, uint64_t width)

value should point to an array of array (and not to the address of a contiguous array of data) of the data to be set of
the corresponding type. The length of the first dimension of the array should match the height argument passed and
similarly the length of the second dimension of the array should match the width passed.

See the table below for all the supported data types and their corresponding function signatures.
parameter: key The name of the parameter
parameter: value The value to set of the parameter
parameter: height The height of the 2-D vector parameter
parameter: width The width of the 2-D vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Table 18.2: Supported Data Types to Set 2D Vector Parameters

Function Name data_type
GxfParameterSet2DFloat64Vector(...) double
GxfParameterSet2DInt64Vector(...) int64_t
GxfParameterSet2DUInt64Vector(...) uint64_t
GxfParameterSet2DInt32Vector(...) int32_t

Get 1-D Vector Parameters
Users can call gxf_result_t GxfParameterGetlD"DataType"Vector(gxf_context_t context, gxf uid_t
uid, const char* key, data_type** value, uint64_t* length) to get the value of a 1-D vector.

Before calling this method, users should call GxfParameterGetlD"DataType"VectorInfo(gxf_context_t
context, gxf uid_t uid, const char* key, uint64_t* length) to obtain the 1ength of the vector param-
eter and then allocate at least that much memory to retrieve the value.

value should point to an array of size greater than or equal to length allocated by user of the corresponding type to
retrieve the data. If the 1ength doesn’t match the size of stored vector then it will be updated with the expected size.

See the table below for all the supported data types and their corresponding function signatures.
parameter: key The name of the parameter
parameter: value The value to set of the parameter

parameter: length The length of the 1-D vector parameter obtained by calling
GxfParameterGet1D"DataType"VectorInfo(...)

18.6. GXF Core C APIs 187

Holoscan SDK User Guide, Release 0.5.1

Table 18.3: Supported Data Types to Get the Value of 1D Vector Param-

eters
Function Name data_type
GxfParameterGet1DFloat64Vector(...) double
GxfParameterGet1DInt64Vector(...) int64_t
GxfParameterGet1DUInt64Vector(...) uint64_t
GxfParameterGet1DInt32Vector(...) int32_t

Get 2-D Vector Parameters

Users can call gxf_result_t GxfParameterGet2D"DataType'"Vector(gxf_context_t context, gxf uid_t
uid, const char* key, data_type** value, uint64_t* height, uint64_t* width) to get the value of
a -2D vector.

Before calling this method, users should call GxfParameterGetlD"DataType"VectorInfo(gxf_context_t
context, gxf uid_t uid, const char* key, uint64_t* height, uint64_t* width) to obtain the
height and width of the 2D-vector parameter and then allocate at least that much memory to retrieve the value.

value should point to an array of array of height (size of first dimension) greater than or equal to height and width
(size of the second dimension) greater than or equal to width allocated by user of the corresponding type to get the
data. If the height or width don’t match the height and width of the stored vector then they will be updated with the
expected values.

See the table below for all the supported data types and their corresponding function signatures.
parameter”: key The name of the parameter
parameter”: value Allocated array to get the value of the parameter

parameter’: height The height of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

parameter’: width The width of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

Table 18.4: Supported Data Types to Get the Value of 2D Vector Param-

eters
Function Name data_type
GxfParameterGet2DFloat64Vector(...) double
GxfParameterGet2DInt64Vector(...) int64_t
GxfParameterGet2DUInt64Vector(...) uint64_t
GxfParameterGet2DInt32Vector(...) int32_t

18.6.8 Information Queries

Get Meta Data about the GXF Runtime

gxf_result_t GxfRuntimeInfo(gxf_context_t context, gxf_runtime_info* info);
parameter: context A valid GXF context.
parameter: info pointer to gxf_runtime_info object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

188 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

Get description and list of components in loaded Extension
gxf_result_t GxfExtensionInfo(gxf_context_t context, gxf tid_t tid, gxf_extension_info_t*
info);

parameter: context A valid GXF context.

parameter: tid The unique identifier of the extension.

parameter: info pointer to gxf_extension_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get description and list of parameters of Component
gxf_result_t GxfComponentInfo(gxf_context_t context, gxf tid_t tid, gxf_component_info_t*
info);
Note: Parameters are only available after at least one instance is created for the Component.
parameter: context A valid GXF context.
parameter: tid The unique identifier of the component.
parameter: info pointer to gxf_component_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get parameter type description

Gets a string describing the parameter type
const char* GxfParameterTypeStr(gxf_parameter_type_t param_type);
parameter: param_type Type of parameter to get info about.

returns: C-style string description of the parameter type.

Get flag type description

Gets a string describing the flag type
const char* GxfParameterFlagTypeStr(gxf_parameter_flags_t_ flag_type);
parameter: flag_type Type of flag to get info about.

returns: C-style string description of the flag type.

Get parameter description

Gets description of specific parameter. Fails if the component is not instantiated yet.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, gxf_tid_t cid, const char* key,
gxf_parameter_info_t* info);

parameter: context A valid GXF context.
parameter: cid The unique identifier of the component.

parameter: key The name of the parameter.

18.6. GXF Core C APIs 189

Holoscan SDK User Guide, Release 0.5.1

parameter: info Pointer to a gxf_parameter_info_t object to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Redirect logs to a file

Redirect console logs to the provided file.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, FILE* fp);
parameter: context A valid GXF context.
parameter: fp File path for the redirected logs.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

18.6.9 Miscellaneous

Get string description of error

const char* GxfResultStr(gxf_result_t result);

Gets a string describing an GXF error code.

The caller does not get ownership of the return C string and must not delete it.
parameter: result A GXF error code

returns: A pointer to a C string with the error code description.

18.7 CudaExtension

Extension for CUDA operations.
» UUID: d63a98fa-7882-11eb-a917-b38f664f399¢c
* Version: 2.0.0
* Author: NVIDIA
* License: LICENSE

18.7.1 Components

nvidia::gxf::CudaStream

Holds and provides access to native cudaStream_t.

nvidia::gxf::CudaStream handle must be allocated by nvidia::gxf::CudaStreamPool. Its lifecycle is
valid until explicitly recycled through nvidia: :gxf::CudaStreamPool.releaseStream() or implicitly until
nvidia::gxf::CudaStreamPool is deactivated.

You may call stream() to get the native cudaStream_t handle, and to submit GPU operations. After the submis-
sion, GPU takes over the input tensors/buffers and keeps them in use. To prevent host carelessly releasing these in-use
buffers, CUDA Codelet needs to call record(event, input_entity, sync_cb) toextend input_entity’slifecy-
cle until GPU completely consumes it. Alternatively, you may call record(event, event_destroy_cb) for native
cudaEvent_t operations and free in-use resource via event_destroy_cb.

190 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

It is required to have a nvidia: :gxf::CudaStreamSync in the graph pipeline after all the CUDA operations. See
more details in nvidia: :gxf: :CudaStreamSync

* Component ID: 5683d692-7884-11eb-9338-c3be62d576be
* Defined in: gxf/cuda/cuda_stream.hpp

nvidia::gxf::CudaStreamid

Holds CUDA stream Id to deduce nvidia: :gxf: :CudaStream handle.
stream_cid should be nvidia: :gxf: :CudaStream component id.

* Component ID: 7982aeac-37f1-41be-ade8-6f00b4b5d47c

* Defined in: gxf/cuda/cuda_stream_id.hpp

nvidia::gxf::CudaEvent

Holds and provides access to native cudaEvent_t handle.

When anvidia: :gxf::CudaEvent is created, you’ll need to initialize a native cudaEvent_t through init(flags,
dev_id), or set third party event through initWithEvent(event, dev_id, free_fnc). The event keeps valid
until deinit is called explicitly otherwise gets recycled in destructor.

* Component ID: £5388d5c-a709-47e7-86c4-171779bc64f3
* Defined in: gxf/cuda/cuda_event.hpp

nvidia::gxf::CudaStreamPool

CudaStream allocation.

You must explicitly call allocateStream() to get a valid nvidia: :gxf::CudaStream handle. This component
would hold all the its allocated nvidia: :gxf::CudaStream entities until releaseStream(stream) is called ex-
plicitly or the CudaStreamPool component is deactivated.

* Component ID: 6733bf8b-baSe-4fae-b596-af2d1269d0e7
* Base Type: nvidia::gxf::Allocator

Parameters

dev_id

GPU device id.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_INT32
* Default Value: 0

18.7. CudaExtension 191

Holoscan SDK User Guide, Release 0.5.1

stream_flags

Flag values to create CUDA streams.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT32
* Default Value: 0

stream_priority

Priority values to create CUDA streams.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT32
* Default Value: 0

reserved_size

User-specified file name without extension.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT32
e Default Value: 1

max_size

Maximum Stream Size.
* Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_INT32

¢ Default Value: 0, no limitation.

nvidia::gxf::CudaStreamSync

Synchronize all CUDA streams which are carried by message entities.

This codelet is required to get connected in the graph pipeline after all CUDA ops codelets. When a mes-
sage entity is received, it would find all of the nvidia::gxf::CudaStreamId in that message, and ex-
tract out each nvidia::gxf::CudaStream. With each CudaStream handle, it synchronizes all previous
nvidia::gxf::CudaStream.record() events, along with all submitted GPU operations before this point.

Note: CudaStreamSync must be set in the graph when nvidia: :gxf::CudaStream.record() is used, otherwise
it may cause memory leak.

e Component ID: 0d1d8142-6648-485d-97d5-277eed00129¢

192 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

* Base Type: nvidia::gxf::Codelet

Parameters

rx

Receiver to receive all messages carrying nvidia: :gxf: :CudaStreamId.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Receiver

tx

Transmitter to send messages to downstream.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia::gxf::Transmitter

18.8 MultimediaExtension

Extension for multimedia related data types, interfaces and components in GXF Core.
» UUID: 6f2dlafc-1057-481a-9da6-a5f61fed178e
e Version: 2.0.0
* Author: NVIDIA
* License: LICENSE

18.8.1 Components
nvidia::gxf::AudioBuffer

AudioBuffer is similar to Tensor component in the standard extension and holds memory and metadata corresponding
to an audio buffer.
e Component ID: a914cac6-5£19-449d-9ade-8c5cdcebe7c3

AudioBufferInfo structure captures the following metadata:

18.8. MultimediaExtension 193

Holoscan SDK User Guide, Release 0.5.1

Field Description

channels Number of channels in an audio frame
samples Number of samples in an audio frame
sampling_rate sampling rate in Hz

bytes_per_sample | Number of bytes required per sample
audio_format AudioFormat of an audio frame
audio_layout AudioLayout of an audio frame

Supported AudioFormat types:

AudioFormat Description
GXF_AUDIO_FORMAT_S16LE | 16-bit signed PCM audio
GXF_AUDIO_FORMAT_F32LE | 32-bit floating-point audio

Supported AudioLayout types:

AudioLayout Description
GXF_AUDIO_LAYOUT_INTERLEAVED Data from all the channels to be interleaved - LRLRLR
GXF_AUDIO_LAYOUT_NON_INTERLEAVED | Data from all the channels not to be interleaved - LLLRRR

nvidia::gxf::VideoBuffer

VideoBuffer is similar to Tensor component in the standard extension and holds memory and metadata corresponding
to a video buffer.
e Component ID: 16ad58c8-b463-422c-b097-61a9acc5050e

VideoBufferInfo structure captures the following metadata:

Field Description

width width of a video frame

height height of a video frame

color_format VideoFormat of a video frame

color_planes ColorPlane(s) associated with the VideoFormat
surface_layout | SurfaceLayout of the video frame

Supported VideoFormat types:

194 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

VideoFormat

Description

GXF_VIDEO_FORMAT_YUV420

BT.601 multi planar 4:2:0 YUV

GXF_VIDEO_FORMAT_YUV420_ER

BT.601 multi planar 4:2:0 YUV ER

GXF_VIDEO_FORMAT_YUV420_709

BT.709 multi planar 4:2:0 YUV

GXF_VIDEO_FORMAT_YUV420_709_ER

BT.709 multi planar 4:2:0 YUV ER

GXF_VIDEO_FORMAT_NV12

BT.601 multi planar 4:2:0 YUV with interleaved UV

GXF_VIDEO_FORMAT_NV12_ER

BT.601 multi planar 4:2:0 YUV ER with interleaved UV

GXF_VIDEO_FORMAT_NV12_709

BT.709 multi planar 4:2:0 YUV with interleaved UV

GXF_VIDEO_FORMAT_NV12_709_ER

BT.709 multi planar 4:2:0 YUV ER with interleaved UV

GXF_VIDEO_FORMAT_RGBA

RGBA-8-8-8-8 single plane

GXF_VIDEO_FORMAT_BGRA

BGRA-8-8-8-8 single plane

GXF_VIDEO_FORMAT_ARGB

ARGB-8-8-8-8 single plane

GXF_VIDEO_FORMAT_ABGR

ABGR-8-8-8-8 single plane

GXF_VIDEO_FORMAT_RGBX

RGBX-8-8-8-8 single plane

GXF_VIDEO_FORMAT_BGRX

BGRX-8-8-8-8 single plane

GXF_VIDEO_FORMAT_XRGB

XRGB-8-8-8-8 single plane

GXF_VIDEO_FORMAT_XBGR

XBGR-8-8-8-8 single plane

GXF_VIDEO_FORMAT_RGB

RGB-8-8-8 single plane

GXF_VIDEO_FORMAT_BGR

BGR-8-8-8 single plane

GXF_VIDEO_FORMAT_R8_GS8_BS§

RGB - unsigned 8 bit multiplanar

GXF_VIDEO_FORMAT_B8_G8_RS8

BGR - unsigned 8 bit multiplanar

GXF_VIDEO_FORMAT_GRAY

8 bit GRAY scale single plane

Supported SurfaceLayout types:

SurfacelLayout

Description

GXF_SURFACE_LAYOUT_PITCH_LINEAR

pitch linear surface memory

GXF_SURFACE_LAYOUT_BLOCK_LINEAR

block linear surface memory

18.9 NetworkExtension

Extension for communications external to a computation graph.
» UUID: £50665e5-ade2-£71b-de2a-2380614b1725
* Version: 1.0.0
* Author: NVIDIA
 License: LICENSE

18.9.1 Interfaces
18.9.2 Components

nvidia::gxf::TcpClient

Codelet that functions as a client in a TCP connection.
e Component ID: 9d5955c7-8fda-22c7-f18f-ea5e2d195be9
* Base Type: nvidia: :gxf::Codelet

18.9. NetworkExtension

195

Holoscan SDK User Guide, Release 0.5.1

Parameters

receivers

List of receivers to receive entities from.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_CUSTOM

e Custom Type: std::vector<nvidia: :gxf::Handle<nvidia::gxf::Receiver>>

transmitters

List of transmitters to publish entities to.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_CUSTOM

e Custom Type: std: :vector<nvidia: :gxf::Handle<nvidia: :gxf::Transmitter>>

serializers

List of component serializers to serialize and de-serialize entities.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_CUSTOM

e Custom Type: std: :vector<nvidia: :gxf::Handle<nvidia: :gxf: :ComponentSerializer>>

address

Address of TCP server.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_STRING

port

Port of TCP server.
* Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_INT32

196 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

timeout_ms

Time in milliseconds to wait before retrying connection to TCP server.

 Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_UINT64

maximum_attempts

Maximum number of attempts for I/O operations before failing.

* Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_UINT64

nvidia::gxf::TcpServer

Codelet that functions as a server in a TCP connection.

e Component ID: a3e@e42d-e32e-73ab-e£f83-fbb311310759

* Base Type: nvidia: :gxf::Codelet

Parameters

receivers

List of receivers to receive entities from.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_CUSTOM

e Custom Type: std: :vector<nvidia: :gxf

transmitters

List of transmitters to publish entities to.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_CUSTOM

e Custom Type: std::vector<nvidia: :gxf

::Handle<nvidia: :gxf::Receiver>>

::Handle<nvidia: :gxf::Transmitter>>

18.9. NetworkExtension

197

Holoscan SDK User Guide, Release 0.5.1

serializers

List of component serializers to serialize and de-serialize entities.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_CUSTOM

e Custom Type: std: :vector<nvidia: :gxf::Handle<nvidia: :gxf: :ComponentSerializer>>

address

Address of TCP server.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_STRING

port

Port of TCP server.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT32

timeout_ms

Time in milliseconds to wait before retrying connection to TCP client.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_UINT64

maximum_attempts

Maximum number of attempts for I/O operations before failing.
* Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_UINT64

198 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

18.10 SerializationExtension

Extension for serializing messages.
» UUID: bc573c2£-89b3-d4b0-8061-2da8bllfe79a
e Version: 2.0.0
* Author: NVIDIA
* License: LICENSE

18.10.1 Interfaces
nvidia::gxf::ComponentSerializer

Interface for serializing components.
e Component ID: 8c76a828-2177-1484-£841-d39c3fa47613
* Base Type: nvidia: :gxf: :Component

¢ Defined in: gxf/serialization/component_serializer.hpp

18.10.2 Components
nvidia::gxf::EntityRecorder

Serializes incoming messages and writes them to a file.
e Component ID: 9d5955c7-8fda-22c7-f18f-ea5e2d195be9
* Base Type: nvidia: :gxf::Codelet

Parameters

receiver

Receiver channel to log.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia: :gxf: :Receiver

serializers

List of component serializers to serialize entities.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_CUSTOM

* Custom Type: std::vector<nvidia: :gxf::Handle<nvidia: :gxf: :ComponentSerializer>>

18.10. SerializationExtension

199

Holoscan SDK User Guide, Release 0.5.1

directory

Directory path for storing files.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_STRING

basename

User specified file name without extension.
 Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_STRING

flush_on_tick

Flushes output buffer on every tick when true.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::EntityReplayer

De-serializes and publishes messages from a file.
e Component ID: fe827c12-d360-c63c-8094-32b9244d83b6
* Base Type: nvidia: :gxf::Codelet

Parameters

transmitter

Transmitter channel for replaying entities.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia: :gxf::Transmitter

200 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

serializers

List of component serializers to serialize entities.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_CUSTOM

e Custom Type: std: :vector<nvidia: :gxf::Handle<nvidia: :gxf: :ComponentSerializer>>

directory

Directory path for storing files.
* Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_STRING

batch_size

Number of entities to read and publish for one tick.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_UINT64

ignore_corrupted_entities

If an entity could not be de-serialized, it is ignored by default; otherwise a failure is generated.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::StdComponentSerializer

Serializer for Timestamp and Tensor components.
* Component ID: cOe6b36c-39ac-50ac-ce8d-702e18d8bff7

* Base Type: nvidia: :gxf::ComponentSerializer

18.10. SerializationExtension 201

Holoscan SDK User Guide, Release 0.5.1

Parameters

allocator

Memory allocator for tensor components.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Allocator

18.11 StandardExtension

Most commonly used interfaces and components in Gxf Core.
» UUID: 8ec2d5d6-b5df-48bf-8dee-0252606fdd7e
e Version: 2.1.0
* Author: NVIDIA
* License: LICENSE

18.11.1 Interfaces
nvidia::gxf::Codelet

Interface for a component which can be executed to run custom code.
e Component ID: 5¢6166fa-6eed-41e7-bbf0-bd48cd6e1014
* Base Type: nvidia::gxf::Component

* Defined in: gxf/std/codelet.hpp

nvidia::gxf::Clock

Interface for clock components which provide time.
* Component ID: 779¢61c2-ae70-441d-a26c-8ca64b39f8e7
* Base Type: nvidia::gxf::Component

¢ Defined in: gxf/std/clock.hpp

nvidia::gxf::System

Component interface for systems which are run as part of the application run cycle.
* Component ID: d1febcal-80df-454e-a3f2-715f2b3c6e69

* Base Type: nvidia::gxf::Component

202 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::Queue

Interface for storing entities in a queue.
* Component ID: 792151bf-3138-4603-a912-5ca91828dead
* Base Type: nvidia::gxf::Component

* Defined in: gxf/std/queue.hpp

nvidia::gxf::Router

Interface for classes which are routing messages in and out of entities.
e Component ID: 8b317aad-f55¢c-4c07-8520-8f66db92a19e
* Defined in: gxf/std/router.hpp

nvidia::gxf::Transmitter

Interface for publishing entities.
e Component ID: ¢30cc60f-0db2-409d-92b6-b2db92e02cce
* Base Type: nvidia::gxf::Queue
* Defined in: gxf/std/transmitter.hpp

nvidia::gxf::Receiver

Interface for receiving entities.
* Component ID: a47d2{62-245f-40fc-90b7-5dc78{t2437e
* Base Type: nvidia::gxf::Queue

* Defined in: gxf/std/receiver.hpp

nvidia::gxf::Scheduler

A simple poll-based single-threaded scheduler which executes codelets.
e Component ID: f0103b75-d2e1-4d70-9b13-3fe5b40209be
* Base Type: nvidia::gxf::System
* Defined in: nvidia/gxf/system.hpp

18.11. StandardExtension

203

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::SchedulingTerm

Interface for terms used by a scheduler to determine if codelets in an entity are ready to step.
* Component ID: 184d8e4e-086¢c-475a-903a-69d723f95d19
* Base Type: nvidia::gxf::Component

* Defined in: gxf/std/scheduling_term.hpp

nvidia::gxf::Allocator

Provides allocation and deallocation of memory.
e Component ID: 3c¢dd82d0-2326-4867-8de2-d565dbe28e03
* Base Type: nvidia::gxf::Component

* Defined in: nvidia/gxf/allocator.hpp

nvidia::gxf::Monitor

Monitors entities during execution.
* Component ID: 9ccf9421-b35b-8c79-e1f0-97dc23bd38ea
* Base Type: nvidia::gxf::Component

* Defined in: nvidia/gxf/monitor.hpp
18.11.2 Components

nvidia::gxf::RealtimeClock

A real-time clock which runs based off a system steady clock.
* Component ID: 7b170b7b-cfla-4f3f-997c-bfea25342381
* Base Type: nvidia::gxf::Clock

Parameters

initial_time_offset

The initial time offset used until time scale is changed manually.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_FLOAT64

initial_time_scale

The initial time scale used until time scale is changed manually.

204 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_FLOAT64

use_time_since_epoch

If true, clock time is time since epoch + initial_time_offset at initialize().Otherwise clock time is
initial_time_offset at initialize().

* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::ManualClock

A manual clock which is instrumented manually.
* Component ID: 52falf97-eba8-472a-a8ca-4cff1a2c440f
* Base Type: nvidia::gxf::Clock

Parameters

initial_timestamp

The initial timestamp on the clock (in nanoseconds).
¢ Flags: GXF_PARAMETER_FLAGS_NONE
¢ Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::SystemGroup

A group of systems.
* Component ID: 3d23d470-0aed-41c6-ac92-685¢c1b5469a0
* Base Type: nvidia::gxf::System

nvidia::gxf::MessageRouter

A router which sends transmitted messages to receivers.
e Component ID: 84fd5d56-fda6-4937-0b3c-c283252553d8

* Base Type: nvidia::gxf::Router

18.11. StandardExtension 205

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::RouterGroup

A group of routers.
* Component ID: ca64ee14-2280-4099-9f10-d4b501e09117

* Base Type: nvidia::gxf::Router

nvidia::gxf::DoubleBufferTransmitter

A transmitter which uses a double-buffered queue where messages are pushed to a backstage after they are published.
* Component ID: Oc3cOec7-77f1-4389-aef1-6bae85bddc13

* Base Type: nvidia::gxf::Transmitter

Parameters

capacity
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64
e Default: 1

policy

0: pop, 1: reject, 2: fault.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64
¢ Default: 2

nvidia::gxf::DoubleBufferReceiver

A receiver which uses a double-buffered queue where new messages are first pushed to a backstage.
* Component ID: ee45883d-bf84-4f99-8419-7c5e9deac6bas

* Base Type: nvidia::gxf::Receiver

206 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

Parameters

capacity
* Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_UINT64
e Default: 1

policy

0: pop, 1: reject, 2: fault
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64
 Default: 2

nvidia::gxf::Connection

A component which establishes a connection between two other components.

» Component ID: cc71afae-5ede-47e9-b267-60a5¢c750a89a

* Base Type: nvidia::gxf::Component

Parameters

source
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia::gxf::Transmitter

target
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Receiver

18.11. StandardExtension

207

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::PeriodicSchedulingTerm

A component which specifies that an entity shall be executed periodically.
* Component ID: d392¢98a-9b08-49b4-a422-d5fe6cd72e3e
* Base Type: nvidia::gxf::SchedulingTerm

Parameters

recess_period

The recess period indicates the minimum amount of time which has to pass before the entity is permitted to execute
again. The period is specified as a string containing of a number and an (optional) unit. If no unit is given the value is
assumed to be in nanoseconds. Supported units are: Hz, s, ms. Example: 10ms, 10000000, 0.2s, 50Hz.

* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::CountSchedulingTerm

A component which specifies that an entity shall be executed exactly a given number of times.
e Component ID: f89da2e4-fddf-4aa2-9a80-1119ba3fde05
* Base Type: nvidia::gxf::SchedulingTerm

Parameters

count

The total number of time this term will permit execution.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::TargetTimeSchedulingTerm

A component where the next execution time of the entity needs to be specified after every tick.
* Component ID: e4aaf5¢c3-2b10-4c9a-c463-ebf6084 149bf
* Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

The clock used to define target time.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
¢ Handle Type: nvidia::gxf::Clock

208 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::DownstreamReceptiveSchedulingTerm
A component which specifies that an entity shall be executed if receivers for a certain transmitter can accept new
messages.

e Component ID: 9de75119-8d0f-4819-9a71-2aeaefd23f71

* Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The term permits execution if the receiver connected to the transmitter has at least the specified number of free slots in
its back buffer.

* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64

transmitter

The term permits execution if this transmitter can publish a message, i.e. if the receiver which is connected to this
transmitter can receive messages.

* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

¢ Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::MessageAvailableSchedulingTerm
A scheduling term which specifies that an entity can be executed when the total number of messages over a set of input
channels is at least a given number of messages.

* Component ID: fe799e65-f78b-48eb-beb6-e73083a12d5b

* Base Type: nvidia::gxf::SchedulingTerm

Parameters

front_stage_max_size

If set the scheduling term will only allow execution if the number of messages in the front stage does not exceed this
count. It can for example be used in combination with codelets which do not clear the front stage in every tick.

* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_UINT64

18.11. StandardExtension 209

Holoscan SDK User Guide, Release 0.5.1

min_size

The scheduling term permits execution if the given receiver has at least the given number of messages available.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64

receiver

The scheduling term permits execution if this channel has at least a given number of messages available.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Receiver

nvidia::gxf::MultiMessageAvailableSchedulingTerm

A component which specifies that an entity shall be executed when a queue has at least a certain number of elements.
* Component ID: f15dbeaa-afd6-47a6-9ffc-7afd7e1b4c52
* Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The scheduling term permits execution if all given receivers together have at least the given number of messages
available.

* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64

receivers

The scheduling term permits execution if the given channels have at least a given number of messages available.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Receiver

210 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::ExpiringMessageAvailableSchedulingTerm

A component which tries to wait for specified number of messages in queue for at most specified time.
* Component ID: eb22280c-76ft-11eb-b341-cf6b417c95c9
* Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

Clock to get time from.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Clock

max_batch_size

The maximum number of messages to be batched together.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT64

max_delay_ns

The maximum delay from first message to wait before submitting workload anyway.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_INT64

receiver

Receiver to watch on.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia::gxf::Receiver

18.11. StandardExtension 211

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::BooleanSchedulingTerm

A component which acts as a boolean AND term that can be used to control the execution of the entity.
* Component ID: e07a0dc4-3908-4df8-8134-7ce38e60fbef
* Base Type: nvidia::gxf::SchedulingTerm

nvidia::gxf::AsynchronousSchedulingTerm

A component which is used to inform of that an entity is dependent upon an async event for its execution.
* Component ID: 56be1662-{f63-4179-9200-3fcd8dc38673
* Base Type: nvidia::gxf::SchedulingTerm

nvidia::gxf::GreedyScheduler

A simple poll-based single-threaded scheduler which executes codelets.
e Component ID: 869d30ca-a443-4619-b988-7a52e657f39b
* Base Type: nvidia::gxf::Scheduler

Parameters

clock

The clock used by the scheduler to define flow of time. Typical choices are a RealtimeClock or a ManualClock.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_HANDLE
¢ Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the scheduler will run until all
work is done. If periodic terms are present this means the application will run indefinitely.

* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
» Type: GXF_PARAMETER_TYPE_INT64

realtime
This parameter is deprecated. Assign a clock directly.

* Flags: GXF_PARAMETER_FLAGS_OPTIONAL

212 Chapter 18. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

» Type: GXF_PARAMETER_TYPE_BOOL

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be changed by external actors, for example by clearing queues
manually.

* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::MultiThreadScheduler

A multi thread scheduler that executes codelets for maximum throughput.
¢ Component ID: de5e0646-7fa5-11eb-a5c4-330ebfa81bbf
* Base Type: nvidia::gxf::Scheduler

Parameters

check_recession_perios_ms

The maximum duration for which the scheduler would wait (in ms) when an entity is not ready to run yet.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT64

clock

The clock used by the scheduler to define flow of time. Typical choices are a RealtimeClock or a ManualClock.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the scheduler will run until all
work is done. If periodic terms are present this means the application will run indefinitely.

* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_INT64

18.11. StandardExtension 213

Holoscan SDK User Guide, Release 0.5.1

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be changed by external actors, for example by clearing queues

manually.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_BOOL

worker_thread_number

Number of threads.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT64
* Default: 1

nvidia::gxf::BlockMemoryPool

A memory pools which provides a maximum number of equally sized blocks of memory.
* Component ID: 92b627a3-5dd3-4c3c-976¢-4700e8a3b96a

* Base Type: nvidia::gxf::Allocator

Parameters

block_size

The size of one block of memory in byte. Allocation requests can only be fulfilled if they fit into one block. If less

memory is requested still a full block is issued.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of cudaMallocHost.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_BOOL
e Default: True

214 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

num_blocks

The total number of blocks which are allocated by the pool. If more blocks are requested allocation requests will fail.

* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64

storage_type

The memory storage type used by this allocator. Can be kHost (0) or kDevice (1) or kSystem (2).
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_INT32
* Default: 0

nvidia::gxf::UnboundedAllocator

Allocator that uses dynamic memory allocation without an upper bound.
* Component ID: c3951b16-a01c-539f-d87e-1dc18d911eal
* Base Type: nvidia::gxf::Allocator

Parameters

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of cudaMallocHost.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_BOOL
¢ Default: True

nvidia::gxf::Tensor

A component which holds a single tensor.
e Component ID: 377501d6-9abf-447c-a617-0114d4f33ab8
* Defined in: gxf/std/tensor.hpp

18.11. StandardExtension

215

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::Timestamp

Holds message publishing and acquisition related timing information.
* Component ID: d1095b10-5¢90-4bbc-bc89-601134cb4e03
* Defined in: gxf/std/timestamp.hpp

nvidia::gxf::Metric

Collects, aggregates, and evaluates metric data.
* Component ID: f7cef803-5beb-46f1-186a-05d3919842ac

* Base Type: nvidia::gxf::Component

Parameters

aggregation_policy

Aggregation policy used to aggregate individual metric samples. Choices: {mean, min, max}.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_STRING

lower_threshold

Lower threshold of the metric’s expected range.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_FLOAT64

upper_threshold

Upper threshold of the metric’s expected range.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_FLOAT64

216 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::JobStatistics

Collects runtime statistics.
* Component ID: 2093b91a-7c82-11eb-a92b-3f1304ecc959

* Base Type: nvidia::gxf::Component

Parameters

clock

The clock component instance to retrieve time from.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Clock

codelet_statistics

If set to true, JobStatistics component will collect performance statistics related to codelets.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_BOOL

json_file_path

If provided, all the collected performance statistics data will be dumped into a json file.
* Flags: GXF_PARAMETER_FLAGS_OPTIONAL
* Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::Broadcast

Messages arrived on the input channel are distributed to all transmitters.
* Component ID: 3daadb31-0bca-47e5-9924-342b9984a014
* Base Type: nvidia::gxf::Codelet

18.11. StandardExtension 217

Holoscan SDK User Guide, Release 0.5.1

Parameters

mode

The broadcast mode. Can be Broadcast or RoundRobin.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
e Type: GXF_PARAMETER_TYPE_CUSTOM

source
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Receiver

nvidia::gxf::Gather

All messages arriving on any input channel are published on the single output channel.
* Component ID: 85f64c84-8236-4035-9b9a-3843a6a2026f
* Base Type: nvidia::gxf::Codelet

Parameters

sink

The output channel for gathered messages.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia::gxf::Transmitter

tick_source_limit

Maximum number of messages to take from each source in one tick. 0 means no limit.
* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_INT64

218 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::TensorCopier

Copies tensor either from host to device or from device to host.
* Component ID: c07680f4-75b3-189b-8886-4b5e448e7bb6
* Base Type: nvidia::gxf::Codelet

Parameters

allocator

Memory allocator for tensor data
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Allocator

mode
Configuration to select what tensors to copy:
1. kCopyToDevice (0) - copies to device memory, ignores device allocation

2. kCopyToHost (1) - copies to pinned host memory, ignores host allocation

3. kCopyToSystem (2) - copies to system memory, ignores system allocation.

* Flags: GXF_PARAMETER_FLAGS_NONE
» Type: GXF_PARAMETER_TYPE_INT32
receiver
Receiver for incoming entities.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

» Handle Type: nvidia::gxf::Receiver

transmitter

Transmitter for outgoing entities.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia::gxf:: Transmitter

18.11. StandardExtension

219

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::-TimedThrottler

Publishes the received entity respecting the timestamp within the entity.
* Component ID: ccf7729c-f62¢-4250-5cf7-f4f3ec80454b
* Base Type: nvidia::gxf::Codelet

Parameters

execution_clock

Clock on which the codelet is executed by the scheduler.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Clock

receiver

Channel to receive messages that need to be synchronized.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

» Handle Type: nvidia::gxf::Receiver

scheduling_term
Scheduling term for executing the codelet.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::TargetTimeSchedulingTerm

throttling_clock

Clock which the received entity timestamps are based on.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE
* Handle Type: nvidia::gxf::Clock

220 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

transmitter

Transmitter channel publishing messages at appropriate timesteps.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

e Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::Vault

Safely stores received entities for further processing.
e Component ID: 1108cb8d-85e4-4303-ba02-d27406ee9e65
* Base Type: nvidia::gxf::Codelet

Parameters

drop_waiting

If too many messages are waiting the oldest ones are dropped.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_BOOL

max_waiting_count

The maximum number of waiting messages. If exceeded the codelet will stop pulling messages out of the input queue.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_UINT64

source
Receiver from which messages are taken and transferred to the vault.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

* Handle Type: nvidia::gxf::Receiver

18.11. StandardExtension 221

Holoscan SDK User Guide, Release 0.5.1

nvidia::gxf::Subgraph

Helper component to import a subgraph.
* Component ID: 576eedd7-7c3f-4d2f-8c38-8baa79a3d231

* Base Type: nvidia::gxf::Component

Parameters

location

Yaml source of the subgraph.
¢ Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::EndOfStream

A component which represents end-of-stream notification.
* Component ID: 8c42f7bf-7041-4626-9792-9eb20ce33cce
* Defined in: gxf/std/eos.hpp

nvidia::gxf::Synchronization

Component to synchronize messages from multiple receivers based on the acq_time.
* Component ID: f1cb80d6-e5Sec-4dba-9f9e-b06b0def4443
* Base Type: nvidia::gxf::Codelet

Parameters

inputs

All the inputs for synchronization. Number of inputs must match that of the outputs.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

» Handle Type: nvidia::gxf::Receiver

outputs

All the outputs for synchronization. Number of outputs must match that of the inputs.
* Flags: GXF_PARAMETER_FLAGS_NONE
* Type: GXF_PARAMETER_TYPE_HANDLE

¢ Handle Type: nvidia::gxf::Transmitter

222 Chapter 18

. GXF User Guide

Holoscan SDK User Guide, Release 0.5.1

signed char

* Component ID:

unsigned char

e Component ID:

short int

e Component ID:

short unsigned int

* Component ID:

int

e Component ID:

unsigned int

e Component ID:

long int

* Component ID:

long unsigned int

e Component ID:

float

e Component ID:

double

e Component ID:

83905c6a-ca34-4f40-b474-cf2cde8274de

d4299¢e15-0006-d0bf-8cbd-9b743575e155

9e1dde79-3550-307d-e81a-b864890b3685

958cbdef-b505-bcc7-8a43-dcdb23f8cead

b557ec7f-49a5-08f7-a35e-086e9d1ea767

d5506b68-5¢86-fedb-a2a2-a7bae38ff3ef

c611627b-6393-365t-d234-1f26bfa8d28f

c4385£5b-6e25-01d9-d7b5-6e7cadc704e8

a81bf295-421f-49ef-f24a-f59¢9ea0d5d6

d57cee59-686f-e26d-95be-659¢126b02ea

18.11. StandardExtension

223

Holoscan SDK User Guide, Release 0.5.1

bool

* Component ID: c02f9e93-d01b-1d29-£523-78d2a9195128

224 Chapter 18. GXF User Guide

CHAPTER
NINETEEN

VIDEO PIPELINE LATENCY TOOL

The Holoscan Developer Kits excel as a high-performance computing platform by combining high-bandwidth video
I/O components and the compute capabilities of an NVIDIA GPU to meet the needs of the most demanding video
processing and inference applications.

For many video processing applications located at the edge—especially those designed to augment medical instruments
and aid live medical procedures—minimizing the latency added between image capture and display, often referred to as
the end-to-end latency, is of the utmost importance.

While it is generally easy to measure the individual processing time of an isolated compute or inference algorithm by
simply measuring the time that it takes for a single frame (or a sequence of frames) to be processed, it is not always
so easy to measure the complete end-to-end latency when the video capture and display is incorporated as this usually
involves external capture hardware (e.g. cameras and other sensors) and displays.

In order to establish a baseline measurement of the minimal end-to-end latency that can be achieved with the Holoscan
Developer Kits and various video I/O hardware and software components, the Holoscan SDK includes a sample latency
measurement tool.

19.1 Requirements

19.1.1 Hardware

The latency measurement tool requires the use of a Holoscan Developer Kit in dGPU mode, and operates by having
an output component generate a sequence of known video frames that are then transferred back to an input component
using a physical loopback cable.

Testing the latency of any of the HDMI modes that output from the GPU requires a DisplayPort to HDMI adapter
or cable (see Example Configurations, below). Note that this cable must support the mode that is being tested — for
example, the UHD mode will only be available if the cable is advertised to support “4K Ultra HD (3840 x 2160) at 60
Hz”.

Testing the latency of an optional AJA Video Systems device requires a supported AJA SDI or HDMI capture device
(see AJA Video Systems for the list of supported devices), along with the HDMI or SDI cable that is required for the
configuration that is being tested (see Example Configurations, below).

225

Holoscan SDK User Guide, Release 0.5.1

19.1.2 Software

The following additional software components are required and are installed either by the Holoscan SDK installation
or in the Installation steps below:

e CUDA 11.1 or newer (https://developer.nvidia.com/cuda-toolkit)

CMake 3.10 or newer (https://cmake.org/)

GLFW 3.2 or newer (https://www.glfw.org/)

» GStreamer 1.14 or newer (https://gstreamer.freedesktop.org/)

GTK 3.22 or newer (https://www.gtk.org/)
* pkg-config 0.29 or newer (https://www.freedesktop.org/wiki/Software/pkg-config/)
The following is optional to enable DeepStream support (for RDMA support from the GStreamer Producer):
* DeepStream 5.1 or newer (https://developer.nvidia.com/deepstream-sdk)
The following is optional to enable AJA Video Systems support:
* AJANTV2SDK 16.1 or newer (See AJA Video Systems for details on installing the AJA NTV2 SDK and drivers).

19.2 Installation

19.2.1 Downloading the Source

The Video Pipeline Latency Tool can be found in the loopback-1latency folder of the Holoscan Performance Tools
GitHub repository, which is cloned with the following:

$ git clone https://github.com/nvidia-holoscan/holoscan-perf-tools.git

19.2.2 Installing Software Requirements

CUDA is installed automatically during the dGPU setup. The rest of the software requirements are installed with the
following:

$ sudo apt-get update && sudo apt-get install -y \
cmake \
libglfw3-dev \
libgstreamerl.0-dev \
libgstreamer-plugins-basel.0-dev \
libgtk-3-dev \
pkg-config

226 Chapter 19. Video Pipeline Latency Tool

https://developer.nvidia.com/cuda-toolkit
https://cmake.org/
https://www.glfw.org/
https://gstreamer.freedesktop.org/
https://www.gtk.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://developer.nvidia.com/deepstream-sdk
https://github.com/nvidia-holoscan/holoscan-perf-tools

Holoscan SDK User Guide, Release 0.5.1

19.2.3 Building

Start by creating a build folder within the loopback-latency directory:

$ cd clara-holoscan-perf-tools/loopback-latency
$ mkdir build
$ cd build

CMake is then used to build the tool and output the loopback-1latency binary to the current directory:

$ cmake ..
$ make -j

Note: Ifthe error No CMAKE_CUDA_COMPILER could be found isencountered, make sure that the nvcc executable
can be found by adding the CUDA runtime location to your PATH variable:

$ export PATH=$PATH:/usr/local/cuda/bin

Enabling DeepStream Support

DeepStream support enables RDMA when using the GStreamer Producer. To enable DeepStream support, the
DEEPSTREAM_SDK path must be appended to the cmake command with the location of the DeepStream SDK. For
example, when building against DeepStream 5.1, replace the cmake command above with the following:

$ cmake -DDEEPSTREAM_SDK=/opt/nvidia/deepstream/deepstream-5.1 ..

Enabling AJA Support

To enable AJA support, the NTV2_SDK path must be appended to the cmake command with the location of the NTV2
SDK in which both the headers and compiled libraries (i.e. libajantv2) exist. For example, if the NTV2 SDK is in
/home/nvidia/ntv2, replace the cmake command above with the following:

$ cmake -DNTV2_SDK=/home/nvidia/ntv2 ..

19.3 Example Configurations

Note: When testing a configuration that outputs from the GPU, the tool currently only supports a display-less environ-
ment in which the loopback cable is the only cable attached to the GPU. Because of this, any tests that output from the
GPU must be performed using a remote connection such as SSH from another machine. When this is the case, make
sure that the DISPLAY environment variable is set to the ID of the X11 display you are using (e.g. in ~/.bashrc):

export DISPLAY=:0

It is also required that the system is logged into the desktop and that the system does not sleep or lock when the latency
tool is being used. This can be done by temporarily attaching a display to the system to do the following:

1. Open the Ubuntu System Settings

19.3. Example Configurations 227

Holoscan SDK User Guide, Release 0.5.1

2. Open User Accounts, click Unlock at the top right, and enable Automatic Login:

NVIDIA

Account Type Administrator

Language English (United States)

Login Options

Password seess

Automatic Login m:]

Last Login Today, 2:17

3. Return to All Settings (top left), open Brightness & Lock, and disable sleep and lock as pictured:

Turn screen off when inactive fFor: | Never *
Lock

[| oFfF]

Lock screen after: screen turns off =

Require my password when waking from suspend

Make sure that the display is detached again after making these changes.

See the Producers section for more details about GPU-based producers (i.e. OpenGL and GStreamer).

228 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

19.3.1 GPU To Onboard HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to the onboard HDMI capture card.
This configuration supports the OpenGL and GStreamer producers, and the V4L2 and GStreamer consumers.

Fig. 19.1: DP-to-HDMI Cable Between GPU and Onboard HDMI Capture Card

For example, an OpenGL producer to V4L2 consumer can be measured using this configuration and the following
command:

$./loopback-latency -p gl -c v4l2

19.3. Example Configurations 229

Holoscan SDK User Guide, Release 0.5.1

19.3.2 GPU to AJA HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to an HDMI input channel on an AJA
capture card. This configuration supports the OpenGL and GStreamer producers, and the AJA consumer using an AJA
HDMI capture card.

Fig. 19.2: DP-to-HDMI Cable Between GPU and AJA KONA HDMI Capture Card (Channel 1)
For example, an OpenGL producer to AJA consumer can be measured using this configuration and the following
command:

$./loopback-latency -p gl -c aja -c.device 0 -c.channel 1

19.3.3 AJA SDI to AJA SDI

In this configuration, an SDI cable is attached between either two channels on the same device or between two separate
devices (pictured is a loopback between two channels of a single device). This configuration must use the AJA producer
and AJA consumer.

For example, the following can be used to measure the pictured configuration using a single device with a loopback
between channels 1 and 2. Note that the tool defaults to use channel 1 for the producer and channel 2 for the consumer,
so the channel parameters can be omitted.

$./loopback-latency -p aja -c aja

If instead there are two AJA devices being connected, the following can be used to measure a configuration in which
they are both connected to channel 1:

230 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

Fig. 19.3: SDI Cable Between Channel 1 and 2 of a Single AJA Corvid 44 Capture Card

$./loopback-latency -p aja -p.device O -p.channel 1 -c aja -c.device 1 -c.
channel 1

19.4 Operation Overview

The latency measurement tool operates by having a producer component generate a sequence of known video frames
that are output and then transferred back to an input consumer component using a physical loopback cable. Timestamps
are compared throughout the life of the frame to measure the overall latency that the frame sees during this process,
and these results are summarized when all of the frames have been received and the measurement completes. See
Producers, Consumers, and Example Configurations for more details.

19.4.1 Frame Measurements

Each frame that is generated by the tool goes through the following steps in order, each of which has its time measured
and then reported when all frames complete.

1. CUDA Processing

In order to simulate a real-world GPU workload, the tool first runs a CUDA kernel for a user-specified amount
of loops (defaults to zero). This step is described below in Simulating GPU Workload.

2. Render on GPU

After optionally simulating a GPU workload, every producer then generates its frames using the GPU, either
by a common CUDA kernel or by another method that is available to the producer’s API (such as the OpenGL

19.4. Operation Overview 231

Holoscan SDK User Guide, Release 0.5.1

Producer

Consumer (1 ————
Read From HW | Copy To GPU

Process | Render | Copy To Host | Write To HW | VSync D

C Memory Space
. . GPU
Physical Wire
J Host / CPU
HW [FPGA

Fig. 19.4: Latency Tool Frame Lifespan (RDMA Disabled)

producer).
This step is expected to be very fast (<100us), but higher times may be seen if overall system load is high.
Copy To Host

Once the frame has been generated on the GPU, it may be necessary to copy the frame to host memory in order
for the frame to be output by the producer component (for example, an AJA producer with RDMA disabled).

If a host copy is not required (i.e. RDMA is enabled for the producer), this time should be zero.
Write to HW

Some producer components require frames to be copied to peripheral memory before they can be output (for
example, an AJA producer requires frames to be copied to the external frame stores on the AJA device). This
copy may originate from host memory if RDMA is disabled for the producer, or from GPU memory if RDMA
is enabled.

If this copy is not required, e.g. the producer outputs directly from the GPU, this time should be zero.
VSync Wait

Once the frame is ready to be output, the producer hardware must wait for the next VSync interval before the
frame can be output.

The sum of this VSync wait and all of the preceding steps is expected to be near a multiple of the frame interval.
For example, if the frame rate is 60Hz then the sum of the times for steps 1 through 5 should be near a multiple
of 16666us.

Wire Time

The wire time is the amount of time that it takes for the frame to transfer across the physical loopback cable. This
should be near the time for a single frame interval.

Read From HW

Once the frame has been transferred across the wire and is available to the consumer, some consumer compo-
nents require frames to be copied from peripheral memory into host (RDMA disabled) or GPU (RDMA enable)
memory. For example, an AJA consumer requires frames to be copied from the external frame store of the AJA
device.

If this copy is not required, e.g. the consumer component writes received frames directly to host/GPU memory,
this time should be zero.

232

Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

8. Copy to GPU

If the consumer received the frame into host memory, the final step required for processing the frame with the
GPU is to copy the frame into GPU memory.

If RDMA is enabled for the consumer and the frame was previously written directly to GPU memory, this time
should be zero.

Note that if RDMA is enabled on the producer and consumer sides then the GPU/host copy steps above, 3 and 8
respectively, are effectively removed since RDMA will copy directly between the video HW and the GPU. The following
shows the same diagram as above but with RDMA enabled for both the producer and consumer.

Producer
Process | Render | Write To Hw VSynD
--- Memory Space
(GPU
Physical Wire
J Host / CPU
HW / FPGA
Consumer (
Read From HW

Fig. 19.5: Latency Tool Frame Lifespan (RDMA Enabled)

19.4.2 Interpreting The Results

The following shows example output of the above measurements from the tool when testing a 4K stream at 60Hz from
an AJA producer to an AJA consumer, both with RDMA disabled, and no GPU/CUDA workload simulation. Note that
all time values are given in microseconds.

$./loopback-latency -p aja -p.rdma 0 -c aja -c.rdma 0 -f 4k

19.4. Operation Overview 233

Holoscan SDK User Guide, Release 0.5.1

While this tool measures the producer times followed by the consumer times, the expectation for real-world video
processing applications is that this order would be reversed. That is to say, the expectation for a real-world application
is that it would capture, process, and output frames in the following order (with the component responsible for measuring
that time within this tool given in parentheses):

1. Read from HW (consumer)

2. Copy to GPU (consumer)

3. Process Frame (producer)

4. Render Results to GPU (producer)
5. Copy to Host (producer)

6. Write to HW (producer)

— Read From HW | Copy To GPU | Process | Render | Copy To Host | Write To HW —

Fig. 19.6: Real Application Frame Lifespan

To illustrate this, the tool sums and displays the total producer and consumer times, then provides the Estimated
Application Times as the total sum of all of these steps (i.e. steps 1 through 6, above).

(continued from above)

234 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

Once a real-world application captures, processes, and outputs a frame, it would still be required that this final output
waits for the next VSync interval before it is actually sent across the physical wire to the display hardware. Using this
assumption, the tool then estimates one final value for the Final Estimated Latencies by doing the following:

1. Take the Estimated Application Time (from above)
2. Round it up to the next VSync interval

3. Add the physical wire time (i.e. a frame interval)

Application Time VSync To Next Frame
r 5 i " !
[
Read | Copy | Process | Renlder | Copy | Write | VSync Physical Wire

Frame Intervals

Fig. 19.7: Final Estimated Latency with VSync and Physical Wire Time
Continuing this example using a frame interval of 16666us (60Hz), this means that the average Final Estimated La-
tency is determined by:
1. Average application time = 26772
2. Round up to next VSync interval = 33332
3. Add physical wire time (+16666) = 49998

These times are also reported as a multiple of frame intervals.

(continued from above)

19.4. Operation Overview 235

Holoscan SDK User Guide, Release 0.5.1

Using this example, we should then expect that the total end-to-end latency that is seen by running this pipeline using

these components and configuration is 3 frame intervals (49998us).

19.4.3 Reducing Latency With RMDA

The previous example uses an AJA producer and consumer for a 4K @ 60Hz stream, however RDMA was disabled
for both components. Because of this, the additional copies between the GPU and host memory added more than
10000us of latency to the pipeline, causing the application to exceed one frame interval of processing time per frame
and therefore a total frame latency of 3 frames. If RDMA is enabled, these GPU and host copies can be avoided so the
processing latency is reduced by more than 10000us. More importantly, however, this also allows the total processing

time to fit within a single frame interval so that the total end-to-end latency can be reduced to just 2 frames.

RDMA Disabled (3 Frames)

]
]
Read| Copy |Process|Render :Copy Write VSync Physical Wire
i i
RDMA Enabled (2 Frames) Memory Space
! ! GPU
Read|Process Render|Write| V Physical Wire Host/ CPU
. ' HW | FPGA

Fig. 19.8: Reducing Latency With RDMA

The following shows the above example repeated with RDMA enabled.

$./loopback-latency -p aja -p.rdma 1 -c aja -c.rdma 1 -f 4k

236

Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

19.4. Operation Overview

Holoscan SDK User Guide, Release 0.5.1

19.4.4 Simulating GPU Workload

By default the tool measures what is essentially a pass-through video pipeline; that is, no processing of the video frames
is performed by the system. While this is useful for measuring the minimum latency that can be achieved by the video
input and output components, it’s not very indicative of a real-world use case in which the GPU is used for compute-
intensive processing operations on the video frames between the input and output — for example, an object detection
algorithm that applies an overlay to the output frames.

While it may be relatively simple to measure the runtime latency of the processing algorithms that are to be applied
to the video frames — by simply measuring the runtime of running the algorithm on a single or stream of frames —
this may not be indicative of the effects that such processing might have on the overall system load, which may further
increase the latency of the video input and output components.

In order to estimate the total latency when an additional GPU workload is added to the system, the latency tool has an
-s {count} option that can be used to run an arbitrary CUDA loop the specified number of times before the producer
actually generates a frame. The expected usage for this option is as follows:

1. The per-frame runtime of the actual GPU processing algorithm is measured outside of the latency measurement
tool.

2. The latency tool is repeatedly run with just the -s {count} option, adjusting the {count} parameter until the
time that it takes to run the simulated loop approximately matches the actual processing time that was measured
in the previous step.

$./loopback-latency -s 2000

3. The latency tool is run with the full producer (-p) and consumer (-c) options used for the video I/O, along with
the -s {count} option using the loop count that was determined in the previous step.

Note: The following example shows that approximately half of the frames received by the consumer
were duplicate/repeated frames. This is due to the fact that the additional processing latency of the
producer causes it to exceed a single frame interval, and so the producer is only able to output a new
frame every second frame interval.

$./loopback-latency -p aja -c aja -s 2000

238 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

19.4. Operation Overview 239

Holoscan SDK User Guide, Release 0.5.1

Tip: To get the most accurate estimation of the latency that would be seen by a real world application, the best thing
to do would be to run the actual frame processing algorithm used by the application during the latency measurement.
This could be done by modifying the SimulateProcessing function in the latency tool source code.

19.5 Graphing Results

The latency tool includes a -o {file} option that can be used to output a CSV file with all of the measured times for
every frame. This file can then be used with the graph_results.py script that is included with the tool in order to
generate a graph of the measurements.

For example, if the latencies are measured using:
$./loopback-latency -p aja -c aja -o latencies.csv

The graph can then be generated using the following, which will open a window on the desktop to display the graph:
$./graph_results.py --file latencies.csv

The graph can also be output to a PNG image file instead of opening a window on the desktop by providing the --png
{file} option to the script. The following shows an example graph for an AJA to AJA measurement of a 4K @ 60Hz
stream with RDMA disabled (as shown as an example in Interpreting The Results, above).

240 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

Frame Measurements: AJA to AJA, RDMA Disabled, 4K @ 60Hz

Copy to GPU
Read from HW
Wire

VSync

Write to HW
Copy To 5YS
Render

. S o \ Process
40000 Read from HW: 6632us (40010us total) =

Copy to GPU: 4137154414715 total)

Wire: 1672

30000 A

Time (ps)

20000

10000 A

Copy To SYS: 5819ps (5945ys total)

Note that this is showing the times for 600 frames, from left to right, with the life of each frame beginning at the bottom
and ending at the top. The dotted black lines represent frame VSync intervals (every 16666us).

The above example graphs the times directly as measured by the tool. To instead generate a graph for the Final Esti-
mated Latencies as described above in Interpreting The Results, the --estimate flag can be provided to the script.
As is done by the latency tool when it reports the estimated latencies, this reorders the producer and consumer steps
then adds a VSync interval followed by the physical wire latency.

The following graphs the Final Estimated Latencies using the same data file as the graph above. Note that this shows
a total of 3 frames of expected latency.

19.5. Graphing Results 241

Holoscan SDK User Guide, Release 0.5.1

Final Estimated Latencies: AJA to AJA, RDMA Disabled, 4K @ 60Hz

. \Wire
50000 Wire " 16666|s (49999115 total) L] VSWC ul
H \Write to HW
BN Copy To SYS
B Render
HEE Process
mmm Copy to GPU
B Read from HW
40000 4
30000
w
=2
8]
£
=
20000
Copy To SYS: 5819ps (16715us total)
Copy to GPU: 4137us (107
10000
Read from HW: 6632us (6632ps total)
0 A

For the sake of comparison, the following graph shows the same test but with RDMA enabled. Note that the Copy To
GPU and Copy To SYS times are now zero due to the use of RDMA, and this now shows just 2 frames of expected
latency.

242 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

Final Estimated Latencies: AJA to AJA, RDMA Enabled, 4K @ 60Hz

. \Wire
Wire:16666 | VS¥nc o
B \Write to HW
BN Copy To SYS
B Render
N Process
30000 + mmm Copy to GPU
B Read from HW
25000 A
20000
o
=2
8]
E S
=
15000 4
10000 +
Read from HW: 5666ps (5666s total)
5000
0 A

As a final example, the following graph duplicates the above test with RDMA enabled, but adds roughly 34ms of
additional GPU processing time (-s 1000) to the pipeline to produce a final estimated latency of 4 frames.

19.5. Graphing Results 243

Holoscan SDK User Guide, Release 0.5.1

Final Estimated Latencies: AJA to AJA, RDMA Enabled, 4K @ 60Hz, s=1000 Loops

Wire
VSync
Write to HW
Copy To 5Y5
Render
Process

Copy to GPU
Read from HW

Wire: 1666615 (66 -

60000

Time (ps)

30000 -

20000 -

10000 -

19.6 Producers

There are currently 3 producer types supported by the Holoscan latency tool. See the following sections for a description
of each supported producer.

244 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

19.6.1 OpenGL GPU Direct Rendering (HDMI)

This producer (gl) uses OpenGL to render frames directly on the GPU for output via the HDMI connectors on the
GPU. This is currently expected to be the lowest latency path for GPU video output.

OpenGL Producer Notes:

* The video generated by this producer is rendered full-screen to the primary display. As of this version, this
component has only been tested in a display-less environment in which the loop-back HDMI cable is the only
cable attached to the GPU (and thus is the primary display). It may also be required to use the xrandr tool to
configure the HDMI output — the tool will provide the xrandr commands needed if this is the case.

* Since OpenGL renders directly to the GPU, the p.rdma flag is not supported and RDMA is always considered
to be enabled for this producer.

19.6.2 GStreamer GPU Rendering (HDMI)

This producer (gst) uses the nveglglessink GStreamer component that is included with Holopack in order to render
frames that originate from a GStreamer pipeline to the HDMI connectors on the GPU.

GStreamer Producer Notes:

e The tool must be built with DeepStream support in order for this producer to support RDMA (see Enabling
DeepStream Support for details).

* The video generated by this producer is rendered full-screen to the primary display. As of this version, this
component has only been tested in a display-less environment in which the loop-back HDMI cable is the only
cable attached to the GPU (and thus is the primary display). It may also be required to use the xrandr tool to
configure the HDMI output — the tool will provide the xrandr commands needed if this is the case.

* Since the output of the generated frames is handled internally by the nveglglessink plugin, the timing of
when the frames are output from the GPU are not known. Because of this, the Wire Time that is reported by this
producer includes all of the time that the frame spends between being passed to the nveglglessink and when
it is finally received by the consumer.

19.6.3 AJA Video Systems (SDI)

This producer (aja) outputs video frames from an AJA Video Systems device that supports video playback.
AJA Producer Notes:

* The latency tool must be built with AJA Video Systems support in order for this producer to be available (see
Building for details).

* The following parameters can be used to configure the AJA device and channel that are used to output the frames:
-p.device {index}
Integer specifying the device index (i.e. O or 1). Defaults to 0.
-p.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies NTV2_CHANNEL_1). Defaults
to 1.

e The p.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the producer. If RDMA is to be
used, the AJA drivers loaded on the system must also support RDMA.

e The only AJA device that have currently been verified to work with this producer is the Corvid 44 12G BNC
(SDI).

19.6. Producers 245

https://www.aja.com/products/corvid-44-12g-bnc

Holoscan SDK User Guide, Release 0.5.1

19.7 Consumers

There are currently 3 consumer types supported by the Holoscan latency tool. See the following sections for a descrip-
tion of each supported consumer.

19.7.1 V4L2 (Onboard HDMI Capture Card)

This consumer (v412) uses the V4L2 API directly in order to capture frames using the HDMI capture card that is
onboard the Holoscan Developer Kits.

V4L2 Consumer Notes:

* The onboard HDMI capture card is locked to a specific frame resolution and and frame rate (1080p @ 60Hz),
and so 1080 is the only supported format when using this consumer.

e The -c.device {device} parameter can be used to specify the path to the device that is being used to capture
the frames (defaults to /dev/video®).

e The V4L2 API does not support RDMA, and so the c.rdma option is ignored.

19.7.2 GStreamer (Onboard HDMI Capture Card)

This consumer (gst) also captures frames from the onboard HDMI capture card, but uses the v4d12src GStreamer
plugin that wraps the V4L2 API to support capturing frames for using within a GStreamer pipeline.

GStreamer Consumer Notes:

* The onboard HDMI capture card is locked to a specific frame resolution and and frame rate (1080p @ 60Hz),
and so 1080 is the only supported format when using this consumer.

e The -c.device {device} parameter can be used to specify the path to the device that is being used to capture
the frames (defaults to /dev/video®).

* The v412src GStreamer plugin does not support RDMA, and so the c.rdma option is ignored.

19.7.3 AJA Video Systems (SDI and HDMI)

This consumer (aja) captures video frames from an AJA Video Systems device that supports video capture. This can
be either an SDI or an HDMI video capture card.

AJA Consumer Notes:

 The latency tool must be built with AJA Video Systems support in order for this producer to be available (see
Building for details).

» The following parameters can be used to configure the AJA device and channel that are used to capture the
frames:

-c.device {index}
Integer specifying the device index (i.e. O or 1). Defaults to 0.
-c.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies NTV2_CHANNEL_1). Defaults
to 2.

* The c.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the consumer. If RDMA is to
be used, the AJA drivers loaded on the system must also support RDMA.

246 Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

* The only AJA devices that have currently been verified to work with this consumer are the KONA HDMI (for
HDMI) and Corvid 44 12G BNC (for SDI).

19.8 Troubleshooting

If any of the loopback-latency commands described above fail with errors, the following steps may help resolve the
issue.

1. Problem: The following error is output:

ERROR: Failed to get a handle to the display (is the DISPLAY environment variable.
—set?)

Solution: Ensure that the DISPLAY environment variable is set with the ID of the X11 display you are using;
e.g. for display ID @:

$ export DISPLAY=:0

If the error persists, try changing the display ID; e.g. replacing ® with 1:

$ export DISPLAY=:1

It might also be convenient to set this variable in your ~/.bashrc file so that it is set automatically whenever
you login.

2. Problem: An error like the following is output:

ERROR: The requested format (1920x1080 @ 60Hz) does not match
the current display mode (1024x768 @ 60Hz)
Please set the display mode with the xrandr tool using
the following command:

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60

But using the xrandr command provided produces an error:

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60
xrandr: cannot find mode 1920x1080

Solution: Try the following:
1. Ensure that no other displays are connected to the GPU.

2. Check the output of an xrandr command to see that the requested format is supported. The following shows
an example of what the onboard HDMI capture card should support. Note that each row of the supported
modes shows the resolution on the left followed by all of the supported frame rates for that resolution to the

right.

$ xrandr

Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 X 32767
DP-0 disconnected (normal left inverted right x axis y axis)

DP-1 disconnected (normal left inverted right x axis y axis)

DP-2 disconnected (normal left inverted right x axis y axis)

DP-3 disconnected (normal left inverted right x axis y axis)

DP-4 disconnected (normal left inverted right x axis y axis)

(continues on next page)

19.8. Troubleshooting 247

https://www.aja.com/products/kona-hdmi
https://www.aja.com/products/corvid-44-12g-bnc

Holoscan SDK User Guide, Release 0.5.1

(continued from previous page)

DP-5 connected primary 1920x1080+0+0 (normal left inverted right x axis y axis).
—1872mm x 1053mm

19201080 60.00*+ 59.94 50.00 29.97 25.00 23.98

1680x1050 59.95

1600x900 60.00

1440x900 59.89

1366x768 59.79

1280x1024 75.02 60.02

1280x800 59.81

1280x720 60.00 59.94 50.00

1152x864 75.00

1024x768 75.03 70.07 60.00

800x600 75.00 72.19 60.32

720x576 50.00

720x480 59.94

640x480 75.00 72.81 59.94
DP-6 disconnected (normal left inverted right x axis y axis)
DP-7 disconnected (normal left inverted right x axis y axis)
USB-C-0 disconnected (normal left inverted right x axis y axis)

3. If a UHD or 4K mode is being requested, ensure that the DisplayPort to HDMI cable that is being used
supports that mode.

4. If the xrandr output still does not show the mode that is being requested but it should be supported by the
cable and capture device, try rebooting the device.

Problem: One of the following errors is output:

ERROR: Select timeout on /dev/video®

ERROR: Failed to get the monitor mode (is the display cable attached?)

ERROR: Could not find frame color (0,0,0) in producer records.

These errors mean that either the capture device is not receiving frames, or the frames are empty (the producer
will never output black frames, (0,0,0)).

Solution: Check the output of xrandr to ensure that the loopback cable is connected and the capture device
is recognized as a display. If the following is output, showing no displays attached, this could mean that the
loopback cable is either not connected properly or is faulty. Try connecting the cable again and/or replacing the
cable.

$ xrandr

Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x 32767
DP-0 disconnected (normal left inverted right x axis y axis)

DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 disconnected (normal left inverted right x axis y axis)
DP-3 disconnected (normal left inverted right x axis y axis)

DP-4 disconnected (normal left inverted right x axis y axis)

DP-5 disconnected primary 1920x1080+0+0 (normal left inverted right x axis y axis).
—0mm x Omm

DP-6 disconnected (normal left inverted right x axis y axis)

DP-7 disconnected (normal left inverted right x axis y axis)

248

Chapter 19. Video Pipeline Latency Tool

Holoscan SDK User Guide, Release 0.5.1

4. Problem: An error like the following is output:

ERROR: Could not find frame color (27,28,26) in producer records.

Colors near this particular value (27,28, 26) are displayed on the Ubuntu lock screen, which prevents the latency
tool from rendering frames properly. Note that the color value may differ slightly from (27,28,26).

Solution:

Follow the steps provided in the note at the top of the Example Configurations section to enable automatic login
and disable the Ubuntu lock screen.

19.8. Troubleshooting 249

	Overview
	Relevant Technologies
	Rivermax and GPUDirect RDMA
	Graph Execution Framework
	TensorRT Optimized Inference
	Interoperability between CUDA and rendering frameworks
	Accelerated Image Transformations

	SDK Installation
	Development Software Stack
	Prerequisites
	Install the SDK

	Deployment Software Stack

	Additional Setup
	Setting-up GPUDirect RDMA
	Testing with Rivermax

	Enabling G-SYNC
	Disabling Variable Backlight
	Enabling Exclusive Display Mode
	Use both Integrated and Discrete GPUs on Holoscan developer kits

	Third Party Hardware Setup
	AJA Video Systems
	Installing the AJA Hardware
	Installing the AJA Software
	Downloading the AJA NTV2 SDK Source
	Building the AJA NTV2 Drivers
	Loading the AJA NTV2 Drivers
	Building and Installing the AJA NTV2 SDK
	Testing the AJA Device

	Using AJA Devices in Containers
	Troubleshooting

	Emergent Vision Technologies (EVT)
	Installing EVT Hardware
	Installing EVT Software
	Post EVT Software Installation Steps
	Testing the EVT Camera
	Troubleshooting

	Holoscan Core Concepts
	Holoscan by Example
	Hello World
	Defining the HelloWorldApp class
	Defining the HelloWorldApp workflow
	Running the Application

	Ping Simple
	Operators and Workflow
	Connecting Operators
	Running the Application

	Ping Custom Op
	Operators and Workflow
	Configuring Operator Input and Output Ports
	Configuring Operator Parameters
	Message Data Types
	Running the Application

	Ping Multi Port
	Operators and Workflow
	User Defined Data Types
	Defining an Explicit Number of Inputs and Outputs
	Receiving Any Number of Inputs
	Running the Application

	Video Replayer
	Operators and Workflow
	Video Stream Replayer Operator
	Holoviz Operator
	Application Configuration File (YAML)
	Running the Application

	Bring Your Own Model (BYOM)
	Operators and Workflow
	Prerequisites
	Input video
	Input model

	Understanding the Application Code
	Modifying the Application for Ultrasound Segmentation
	Running the Application
	Customizing the MultiAI Inference Operator
	Common Pitfalls Deploying New Models
	Color Channel Order
	Normalizing Your Data
	Network Output Type

	Creating an Application
	Defining an Application Class
	Configuring an Application
	YAML Configuration support
	Loading GXF extensions
	Configuring operators
	Configuring operator parameters
	Configuring operator conditions
	Configuring operator resources

	Application Workflows
	One-operator Workflow
	Linear Workflow
	Complex Workflow (Multiple Inputs and Outputs)

	Building and running your Application

	Creating Operators
	C++ Operators
	Native C++ Operators
	Operator Lifecycle (C++)
	Creating a custom operator (C++)
	Specifying operator parameters (C++)
	Specifying operator inputs and outputs (C++)
	Receiving any number of inputs (C++)
	Building your C++ operator
	Using your C++ Operator in an Application

	GXF Operators
	Operator definition
	Setting up parameter specifications
	Initializing the operator
	Building your GXF operator
	Using your GXF Operator in an Application

	Interoperability between GXF and native C++ operators

	Python Operators
	Native Python Operator
	Operator Lifecycle (Python)
	Creating a custom operator (Python)
	Specifying operator parameters (Python)
	Specifying operator inputs and outputs (Python)
	Receiving any number of inputs (Python)

	Python wrapping of a C++ operator
	Interoperability between wrapped and native Python operators

	Built-in Operators and Extensions
	Operators
	Extensions
	Bayer Demosaic
	GXF Holoscan Wrapper
	OpenGL
	Stream Playback
	TensorRT
	V4L2
	HoloHub

	Logging
	Defining the log level
	Calling the logger

	Visualization Module
	Overview
	Concepts
	Usage
	Layers
	Image Layers
	Geometry Layers
	ImGui Layers
	Depth Map Layers

	Using a display in exclusive mode
	Configure a display for exclusive use
	Enable exclusive display in Holoviz

	Cuda streams
	Reading the framebuffer

	Inference Module
	Overview
	Parameters and related Features
	Usage
	Parameter Specification
	Inference workflow
	Application creation
	Application Execution

	GXF Core concepts
	Holoscan and GXF
	Design differences
	Holoscan SDK v0.2
	Holoscan SDK v0.3
	Holoscan SDK v0.4
	Holoscan SDK v0.5

	Current limitations

	GXF by Example
	Innerworkings of a GXF Entity
	Data Flow and Triggering Rules
	Creating a GXF Extension
	Extension Lifecycle
	Implementing an Extension
	Declare the Class That Will Implement the Extension Functionality
	Declare the Parameters to Expose at the Application Level
	Implement the Lifecycle Methods
	Register the Extension as a Holoscan Component

	Creating a GXF Application
	Running the GXF Recorder Application

	Using Holoscan Operators in GXF Applications
	1. Creating compatible Holoscan Operators
	2. Creating the GXF extension that wraps the operator
	3. Using your wrapped operator in a GXF application

	GXF User Guide
	Graph Specification
	Concepts
	Graph
	SubGraph
	Node
	Components
	Edges
	Extension

	Graph File Format

	Graph Execution Engine
	Graph Specification TimeStamping
	Message Passing

	The GXF Scheduler
	Greedy Scheduler
	Greedy Scheduler Configuration

	Multithread Scheduler
	Multithread Scheduler Configuration

	Epoch Scheduler
	SchedulingTerms
	PeriodicSchedulingTerm
	CountSchedulingTerm
	MessageAvailableSchedulingTerm
	MultiMessageAvailableSchedulingTerm
	BooleanSchedulingTerm
	AsynchronousSchedulingTerm
	DownsteamReceptiveSchedulingTerm
	TargetTimeSchedulingTerm
	ExpiringMessageAvailableSchedulingTerm
	AND Combined
	BTSchedulingTerm

	Behavior Trees
	General Concept
	Behavior Tree Codelets
	Constant Behavior
	Parallel Behavior
	Repeat Behavior
	Selector Behavior
	Sequence Behavior
	Switch Behavior
	Timer Behavior

	GXF Core C APIs
	Context
	Create context
	Create a context from a shared context
	Destroy context

	Extensions
	Load Extensions from a file
	Load Extension libraries
	Load Metadata files
	Register component

	Graph Execution
	Loads a list of entities from YAML file
	Set the root folder for searching YAML files during loading
	Loads a list of entities from YAML text
	Activate all system components
	Deactivate all System components
	Starts the execution of the graph asynchronously
	Interrupt the execution of the graph
	Waits for the graph to complete execution
	Runs all System components and waits for their completion

	Entities
	Create an entity
	Activate an entity
	Deactivate an entity
	Destroy an entity
	Find an entity
	Find all entities
	Increase reference count of an entity
	Decrease reference count of an entity
	Get status of an entity
	Get state of an entity
	Notify entity of an event

	Components
	Get component type identifier
	Get component type name
	Get component name
	Get unique identifier of the entity of given component
	Add a new component
	Add component to entity interface
	Find a component in an entity
	Get type identifier for a component
	Gets pointer to component

	Primitive Parameters
	64-bit floating point
	Set
	Get

	64-bit signed integer
	Set
	Get

	64-bit unsigned integer
	Set
	Get

	32-bit signed integer
	Set
	Get

	String parameter
	Set
	Get

	Boolean
	Set
	Get

	Handle
	Set
	Get

	Vector Parameters
	Set 1-D Vector Parameters
	Set 2-D Vector Parameters
	Get 1-D Vector Parameters
	Get 2-D Vector Parameters

	Information Queries
	Get Meta Data about the GXF Runtime
	Get description and list of components in loaded Extension
	Get description and list of parameters of Component
	Get parameter type description
	Get flag type description
	Get parameter description
	Redirect logs to a file

	Miscellaneous
	Get string description of error

	CudaExtension
	Components
	nvidia::gxf::CudaStream
	nvidia::gxf::CudaStreamId
	nvidia::gxf::CudaEvent
	nvidia::gxf::CudaStreamPool
	Parameters

	nvidia::gxf::CudaStreamSync
	Parameters

	MultimediaExtension
	Components
	nvidia::gxf::AudioBuffer
	nvidia::gxf::VideoBuffer

	NetworkExtension
	Interfaces
	Components
	nvidia::gxf::TcpClient
	Parameters

	nvidia::gxf::TcpServer
	Parameters

	SerializationExtension
	Interfaces
	nvidia::gxf::ComponentSerializer

	Components
	nvidia::gxf::EntityRecorder
	Parameters

	nvidia::gxf::EntityReplayer
	Parameters

	nvidia::gxf::StdComponentSerializer
	Parameters

	StandardExtension
	Interfaces
	nvidia::gxf::Codelet
	nvidia::gxf::Clock
	nvidia::gxf::System
	nvidia::gxf::Queue
	nvidia::gxf::Router
	nvidia::gxf::Transmitter
	nvidia::gxf::Receiver
	nvidia::gxf::Scheduler
	nvidia::gxf::SchedulingTerm
	nvidia::gxf::Allocator
	nvidia::gxf::Monitor

	Components
	nvidia::gxf::RealtimeClock
	Parameters

	nvidia::gxf::ManualClock
	Parameters

	nvidia::gxf::SystemGroup
	nvidia::gxf::MessageRouter
	nvidia::gxf::RouterGroup
	nvidia::gxf::DoubleBufferTransmitter
	Parameters

	nvidia::gxf::DoubleBufferReceiver
	Parameters

	nvidia::gxf::Connection
	Parameters

	nvidia::gxf::PeriodicSchedulingTerm
	Parameters

	nvidia::gxf::CountSchedulingTerm
	Parameters

	nvidia::gxf::TargetTimeSchedulingTerm
	Parameters

	nvidia::gxf::DownstreamReceptiveSchedulingTerm
	Parameters

	nvidia::gxf::MessageAvailableSchedulingTerm
	Parameters

	nvidia::gxf::MultiMessageAvailableSchedulingTerm
	Parameters

	nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
	Parameters

	nvidia::gxf::BooleanSchedulingTerm
	nvidia::gxf::AsynchronousSchedulingTerm
	nvidia::gxf::GreedyScheduler
	Parameters

	nvidia::gxf::MultiThreadScheduler
	Parameters

	nvidia::gxf::BlockMemoryPool
	Parameters

	nvidia::gxf::UnboundedAllocator
	Parameters

	nvidia::gxf::Tensor
	nvidia::gxf::Timestamp
	nvidia::gxf::Metric
	Parameters

	nvidia::gxf::JobStatistics
	Parameters

	nvidia::gxf::Broadcast
	Parameters

	nvidia::gxf::Gather
	Parameters

	nvidia::gxf::TensorCopier
	Parameters

	nvidia::gxf::TimedThrottler
	Parameters

	nvidia::gxf::Vault
	Parameters

	nvidia::gxf::Subgraph
	Parameters

	nvidia::gxf::EndOfStream
	nvidia::gxf::Synchronization
	Parameters

	signed char
	unsigned char
	short int
	short unsigned int
	int
	unsigned int
	long int
	long unsigned int
	float
	double
	bool

	Video Pipeline Latency Tool
	Requirements
	Hardware
	Software

	Installation
	Downloading the Source
	Installing Software Requirements
	Building
	Enabling DeepStream Support
	Enabling AJA Support

	Example Configurations
	GPU To Onboard HDMI Capture Card
	GPU to AJA HDMI Capture Card
	AJA SDI to AJA SDI

	Operation Overview
	Frame Measurements
	Interpreting The Results
	Reducing Latency With RMDA
	Simulating GPU Workload

	Graphing Results
	Producers
	OpenGL GPU Direct Rendering (HDMI)
	GStreamer GPU Rendering (HDMI)
	AJA Video Systems (SDI)

	Consumers
	V4L2 (Onboard HDMI Capture Card)
	GStreamer (Onboard HDMI Capture Card)
	AJA Video Systems (SDI and HDMI)

	Troubleshooting

