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Abstract. Multiple instance learning (MIL) is a key algorithm for classifica-
tion of whole slide images (WSI). Histology WSIs can have billions of pixels,
which create enormous computational and annotation challenges. Typically,
such images are divided into a set of patches (a bag of instances), where
only bag-level class labels are provided. Deep learning based MIL methods
calculate instance features using convolutional neural network (CNN). Our
proposed approach is also deep learning based, with the following two con-
tributions: Firstly, we propose to explicitly account for dependencies between
instances during training by embedding self-attention Transformer blocks to
capture dependencies between instances. For example, a tumor grade may
depend on the presence of several particular patterns at different locations in
WSI, which requires to account for dependencies between patches. Secondly,
we propose an instance-wise loss function based on instance pseudo-labels.
We compare the proposed algorithm to multiple baseline methods, evaluate it
on the PANDA challenge dataset, the largest publicly available WSI dataset
with over 11K images, and demonstrate state-of-the-art results.

Keywords: multiple instance learning, histopathology, transformer, whole
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1 Introduction

Whole slide images (WSI) are digitizing histology slides often analysed for diagnosis of
cancer [3]. WSI can contain several billions pixels, and are commonly tiled into smaller
patches for processing to reduce the computational burden (Figure 1). Another reason
to use patches is because the area of interest (tumor cells) occupies only a tiny fraction
of the image, which impedes the performance of conventional classifiers, most of which
assume that the class object occupies a large central part of the image. Unfortunately,
patch-wise labels are usually not available, since the detailed annotations are too
costly and time-consuming. An alternative to supervised learning is weakly-supervised
learning, where only a single label per WSI is available.

Multiple Instance Learning (MIL) is a weakly supervised learning algorithms,
which aims to train a model using a set of weakly labeled data [5, 13]. Usually a single
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Fig. 1: An example of patch extraction from WSI from the PANDA challenge
dataset [2]. We tile the image and retain only the foreground patches, out of which
we take a random subset to form a bag.

class label is provided for a bag of many unlabeled instances, indicating that at least
one instance has the provided class label. It has many applications in computer vision
and language processing [4], however learning from bags raises important challenges
that are unique to MIL. In context of histopathology, a WSI represents a bag, and the
extracted patches (or their features) represent instances (we often use these notations
interchangeably).

With the advent of convolutional neural networks (CNN), deep learning based
MIL has become the mainstream methodological choice for WSI [10]. Campanella
et al. [3] was one of the first works to conduct a large study on over 44K WSI, laying
the foundation for MIL applications in clinical practise. Since the instance labels
are not known, classical MIL algorithm usually selects only one (or a few) instances
based on the maximum of the prediction probability at the current iteration. Such
approach is very time consuming, as all patches need to be inferenced, but only a
single patch contributes to the training of CNNs at each iteration. Ilse et al. [14]
proposed to use an attention mechanism (a learnable weights per instance) to utilize
all image patches, which we also adopt.

More recent MIL methods include works by Zhao et al. [18], who proposed to
pre-train a feature extractor based on the variational auto-encoder, and use a graph
convolutional network for final classification. Hashimoto et al. [7] proposed to combine
MIL with domain adverserial normalization and multiple scale learning. Lu et al. [11]
precomputed patch-level features (using pretrained CNN) offline to speed up training,
and proposed an additional clustering-based loss to improve generalization during MIL
training. Maksoud et al. [12] proposed to use a hierarchical approach to process the
down-scaled WSI first, followed by by high resolution processing when necessary. Such
approach demonstrated significant reduction in processing time, while maintaining
the baseline accuracy.

We observed that most MIL methods assume no dependencies among instances,
which is seldom true especially in histopathology [10]. Furthermore, a lack of instance-
level loss supervision creates more opportunities for CNNs to overfit. In this work,
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we propose a deep learning based MIL algorithm for WSI classification with the
following contributions:

– we propose to explicitly account for dependencies between instances during train-
ing. We embed transformer encoder [15] blocks into the classification CNN to
capture the dependencies between instances.

– we propose an instance-wise loss supervision based on instance pseudo-labels.
The pseudo-labels are computed based on the ensemble of several models, by
aggregating the attention weights and instance-level predictions.

We evaluate the proposed method on PANDA challenge [2] dataset, which is
currently the largest publicly available WSI dataset with over 11000 images, against
the baseline methods as well as against the Kaggle challenge leaderboard with over
1000 competing teams, and demonstrate state-of-the-art (SOTA) classification results.

2 Method

MIL aims to classify a bag of instancesH={h1,...,hK} as positive if at least one of the
instances hk is positive. The number of instancesK could vary between the bags. Indi-
vidual instance labels are unknown, and only the bag level label Y =[0,1] is provided:

Y =

{
0, iff all yk=0,

1, iff any yk=1.
(1)

which is equivalent to Y =maxk{yk} definition using a Max operator. Training a
model whose loss is based on the maximum over instance labels is problematic due
to vanishing gradients [14], and the training process becomes slow since only a single
patch contributes to the optimization. Ilse et al. [14] proposed to use all image patches
as linear combination weighted by attention weights. Consider H ∈RM×K to be
instance embeddings, e.g features of a CNN final layer after average pooling. Then a
linear combination of patch embeddings is

z=

K∑
k=1

akhk=Ha (2)

where the attention weights of patch embeddings are a= softmax
(
tanh

(
HV)w

)
,

where w∈RL×1 and V∈RM×L are parameters. The attention weights are computed
using a multilayer perceptron (MLP) network with a single hidden layer.

2.1 Dependency between instances

The assumption of no dependency between the bag instances often does not hold.
For example, for grading the severity of prostate cancer, pathologists need to find two
distinct tumor growth patterns in the image and assign Gleason scores to each [1].
Then the International Society of Urological Pathology (ISUP) grade is calculated,
based on the combination of major and minor Gleason patterns. ISUP grade indicates
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Fig. 2: Model architecture overview. The backbone CNN (blue) extracts features
at different scales, which are spatially averaged-pooled before feeding into the
transformer encoder layers (green), to account for dependencies between instances.
The input to the network is B×N×3×W×H. Where B is the batch size, N is
the number of instances (patches extracted from a single whole slide image), and
3×W×H is the spatial patch size.

a severity of the tumor and plays a crucial role in treatment planning. Here, we propose
to use the self-attention to account for dependencies between instances. In particular,
we adopt the transformer, which was initially introduced to capture long range
dependencies between words in sentences [15] and later applied to vision [6]. Whereas
traditional convolutions are local operation, the self-attention block of Transformers
computes attention between all combinations of tokens at a larger range directly.

A key component of transformer blocks is a scaled dot product self-attention
which is defined as softmax(QKT/

√
d)V , where queries Q, keys K, and values V

matrices are all derived as linear transformations of the input (in our case the instance
features space H). The self-attention is performed several times with different, learned
linear projections in parallel (multi-head attention). In addition to self-attention, each
of the transformer encoder layers also contains a fully connected feed-forward network
and layer normalization (see Figure 2) [15, 6].

We propose two variants of utilizing transformers. In the simplest case we attach
a transformer encoder block only to the end of the backbone classification CNN after
avg pooling. The idea is similar to the approach proposed in Visual transformers, but
before avg pooling [6]. The difference here is that in Visual transformers, the goal
was to account for dependencies between the spatial regions (16px×16px) of the same
patch. Whereas we want to account for the dependencies among the patches. Another
relevant work was proposed by Wang et al. [16] to utilize self-attention within MIL,
but for text-based disease symptoms classification. We maintain the dimensionality of
encoded data, so that the input, output and hidden dimensionality of the transformer
encoder are the same. We call it Transformer MIL.

We also consider a variant of a deeper integration of the transformer with the
backbone CNN. We attach separate transformer encoder blocks after each of the
main ResNet blocks [8] to capture the patch encodings at different levels of its feature
pyramid. The output of the first transformer encoder is concatenated with next
feature scale space of ResNet (after average pooling), and is fed into the next level
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transformer encoder, up until the final encoder layer, followed by the attention layer.
We want to capture dependencies between patches at multiple scales, since different
level of CNN output features include different semantic information. Such a Pyramid
Transformer MIL network is shown in Figure 2.

2.2 Instance level semi-supervision and pseudo-labeling

(a) (b)

Fig. 3: An example ISUP grade 5 prostate cancer WSI. (a) Green mask overlay shows
ground truth location of cancer regions (provided in the PANDA dataset [2]). (b) an
additional heat map overlay visualizes our pseudo-labels of ISUP 5 (weighted by atten-
tion), achieved from training on weak (bag-level) labels only. Notice the close agreement
between the dense pseudo-labels and the ground truth. In practice, pseudo-labels are
computed per patch; here we used a sliding-window approach for dense visualization.

One of the challenges of MIL training is the lack of instance labels to guide the
optimization process. A somewhat similar issue is encountered in semi-supervised
learning [17], where pseudo-labels are used either offline or on the fly based on some
intermediate estimates or another network’s predictions. Here, we propose to generate
pseudo-labels for each image patch and use the additional patch-wise loss to assist
the optimization process.

L=Lbag+λ
∑
k

Lpatch (3)

where the total loss L includes a bag-level loss Lbag (based on the ground truth labels)
and a patch level loss Lpatch (based on the pseudo-labels). We use cross-entropy loss
function for both bag-level and patch-level losses.

We opt for a simple approach to generate pseudo-labels based on ensembling
of several identical models trained from random initialization. The final ensembled
labels are hard label (rounded to the nearest classes). Consider a trained network, its
bag-level prediction output is based on the final output vector z (see Eq. 2), followed
by a linear projection onto the number of output classes:

c=sigm(Wz)=sigm(WHa) (4)
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Pseudocode 1: Pseudo-labels assignment

Train N MIL models (N=5)
for all patches in the bag do

Run inference on patches for each image
Ensemble predictions of attention weights a and instance classes ck
if bag label is not zero then

for patches with top 10%
of highest attention a weights, assign the ensembled labels as pseudo-label

for patches with top 10%
of lowest attention a weights, assign the zero labels as the pseudo-label

otherwise flag the patch as unknown pseudo-label

else
assign zero pseudo-labels
for all patches, since here we know that all patches must have zero labels

end

end

here we assumed a final sigmoid function (but the same holds with softmax). We
approximate the individual instance level prediction as

ck=sigm(Whk) (5)

Pseudocode 1 shows the algorithm to compute the pseudo-labels. For some
patches, whose ensembled attention weights are neither small nor large (defined by
10% threshold), we do not assign any pseudo-labels, and mark then and unknown
to exclude from the Lpatch loss. Given the pseudo-labels we re-optimize the model
using the additional patch-wise loss. The 10% heuristic was chosen to retain only
most confident patches, that contribute the most to the final bag-level classification.
A relevant approach was recently proposed by Lerousseau et al. [9]. However the
goal of their work is a dense segmentation map, and not the improvements to the
global classification accuracy, and the pseudo-labels are calculated differently, through
thresholding of current prediction probability estimates on the fly.

3 Experiments

We implemented our method in PyTorch 1 and trained it on 4 NVIDIA Tesla V100
16GB GPUs, batch size of 16. For the classification backbone, we use ResNet50 pre-
trained on ImageNet [8]. For the transformer layers, we keep a similar configuration
as in [15], with 4 stacked transformer encoder blocks. The lower pyramid level trans-
former has dimensionality of 256 for both input and hidden. The final transformer
encoder has input dimension of 2308 (a concatenation of ResNet50 output features
and the previous transformer outputs). We use Adam optimizer with initial learning
rate of α0=3e−4 for CNN parameters, and 3e−5 for transformer parameters, then

1 https://pytorch.org/
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gradually decrease it using cosine learning rate scheduler for 50 epochs. We use 5-fold
cross validations to tune the parameters. For transformer layers only, we use weight
decay of 0.1 and no dropout.

PANDA dataset Prostate cANcer graDe Assessment (PANDA) challenge dataset
consists of 11K whole-slide images from two centers [2]. Currently, this is the largest
public WSI dataset available. The grading process consisted of finding and classifying
cancer tissue into Gleason patterns based on the architectural growth patterns of the
tumor [1]. Consequently, it is converted into an ISUP grade on a 1-5 scale, based on
the presence of two distinct Gleason patterns. The dataset was provided as part of
the Panda kaggle challenge, which attracted more than 1000 teams, with the goal
to predict the most accurate ISUP grades. Each individual image on average is about
25,000px×25,000px RGB. The challenge also includes a hidden dataset, whose images
were graded by multiple pathologists. The private dataset labels are not publicly
available, but can be used to asses your model blindly via Kaggle website (invisible
to the public as the challenge is closed now). In our experiments, we use a medium
resolution input images (4x smaller than the highest resolution).

Patch selection To extract patches from WSI, we tile the the image into a grid of
224px×224px patches. At each iteration, the grid has a random offset from the top
left corner, to ensure randomness of the patches. We then retain only the foreground
patches. From the remaining patches, we maintain only a random subset (K=56),
which is a trade-off between covering the tissue content and GPU memory limits (see
Figure 1). We use batch size 16, which makes the data input size 16×K×3×224×224
at each iteration. During testing, inference is done using all foreground patches.

3.1 Results

Transformer MIL We evaluate and compare our method to the Attention MIL
and its Gated Attention MIL [14], as well as to a classical MIL with Max operator [3].
For evaluation metrics we use Accuracy, Area Under Curve (AUC) and Quadratic
Weighted Kappa (QWK) of ISUP grade prediction (see Table 1). QWK metric
measures the similarity between the predictions and targets, with a maximum value
of 1. QWK was chosen as the main metric during the PANDA challenge [2], since it is
more appropriate for the tasks with predicted classes being severity grades/levels. All
metrics are computed using our 5-fold (80%/20% training/validation) splits, except for
the Leaderboard column results, which come from the evaluation on kaggle challenge
hidden private test-set. Even though the challenge is closed now, it allows for blind
submission of the code snippet, which runs on the PANDA hidden set and outputs
the final QWK number. These results are not added to the kaggle leaderboard, and
are allowed only for post-challenge evaluations. Table 1 shows that the proposed
two transforms based approaches outperform other methods both in our validation
sets, and on the challenge hidden set. We have also inspected the self-attention
matrices and found that for many cases, they have have distinct off-diagonal high
value elements. In particular, instances with WSI tumor cells of different Gleason
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scores have higher off-diagonal values, indicating that such a combination is valuable
for the final classification, which was captured by the transformer self-attention.

Patch-wise pseudo-labels We train 5 models and ensemble their patch-level
predictions. We use λ=100. We show the performance of adding the pseudo-labels
supervision in Table 2. In all cases the performance has improved compared to the
baselines shown in Table 1 by∼1%. Table 2 also shows the QWK results of the winners
(top 3 places) of the PANDA kaggle challenge. Notice that our single model results are
on par with the winners of the challenge (who all use ensembling of several models). We
also experimented with ensembling, and the ensemble of our 10 models, achieves the
leaderboard QWK of 0.94136, which would have been the first place in the leaderboard.

We have also tried but found no benefit of repeating pseudo-labeling several
rounds, because the pseudo-label values almost do not change after the 1st round.

Table 1: Evaluations results on PANDA dataset. The Leaderboard column shows the
QWK results of the private leaderboard of Kaggle’s challenge, which allows direct
comparison to more then 1000 participants.

Accuracy AUC QWK Leaderboard

Attention MIL [14] 0.793±0.035 0.983±0.021 0.948±0.036 0.915±0.086
Gated attention MIL [14] 0.795±0.037 0.981±0.011 0.936±0.042 0.914±0.069
Max MIL [3] 0.770±0.055 0.973±0.048 0.910±0.053 0.868±0.091

Transformer MIL 0.801±0.014 0.988±0.015 0.960±0.034 0.930±0.012
Pyramid Transformer MIL 0.805±0.011 0.989±0.018 0.961±0.032 0.932±0.015

Table 2: Evaluation results of adding pseudo-labels to our baseline transformer MIL
approaches. We also include the results of the top three places of this challenge2(who
all use ensembling of several models). Our results indicate that pseudo-labeling
further improves the performance, with our single model providing results on par
with the top winning teams.

QWK (val) QWK (Leaderboard)

Attention MIL [14] + Pseudo-labels 0.9502±0.0319 0.9304±0.0542

Transformer MIL + Pseudo-labels 0.9614±0.0367 0.9347±0.0353
Pyramid Transformer MIL + Pseudo-labels 0.9652±0.0168 0.9365±0.0513

First place - Panda kaggle challenge [2] - 0.94085
Second place - Panda kaggle challenge [2] - 0.93768
Third place - Panda kaggle challenge [2] - 0.93480
Pyramid Transformer MIL (ours, ensemble of 10) - 0.94136

2 https://www.kaggle.com/c/prostate-cancer-grade-assessment/leaderboard
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4 Discussion and Conclusion

We proposed a new deep learning based MIL approach for WSI classification with
the following two main contributions: the addition of the transformer module to
account for dependencies among instances and the instance-level supervision loss using
pseudo-labels. We evaluated the method on PANDA challenge prostate WSI dataset,
which includes over 11000 images. To put in perspective, most recently published
SOTA methods evaluated their performance on datasets with the order of only several
hundred images [18, 7, 11, 12]. Furthermore, we compared our results directly to the
leaderboard of the PANDA kaggle challenge with over 1000 participating teams, and
demonstrated that our single model performance is on par with the top three winning
teams, as evaluated blindly on the same hidden private test-set. Finally, recently
proposed visual transformers [6] have shown a capability to replace the classification
CNN completely, allowing for the possibility to create deep learning based MIL model
solely based on the transformer blocks; we leave these investigations for future research.
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