

SDK White Paper

Normalization Heuristics
Performance vs. Quality on
GeForce FX

WP-01164-001-v03
July 2004

WP-01164-001_v03 1
7/15/2004

Abstract

About Normalization Heuristics
This white paper answers the question, “When is cube-map normalization
faster than normalize()?” It describes experiments performed with a non-
trivial pixel shader, and uses the experimental results to derive useful rules of
thumb regarding the performance and quality of normalization in pixel
shaders. These heuristics provide tuning dials that developers can use to trade
quality for performance, and vice versa, in 3D applications. To gain an
intuitive understanding of these performance-quality tradeoffs, a
demonstration application is provided so that the user has access to the
experiments described in this white paper.

Mark J. Harris
mharris@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

WP-01164-001_v03 2
7/15/2004

Normalization in a Pixel Shader

Discussion
NVIDIA often encourages developers to use cube-map normalization in pixel
shaders on GeForce FX. Although this is often faster than the standard
normalize() pixel shader function, there are cases where it is not. This white
paper addresses the question of when to choose cube-map normalization over
normalize() and vice versa for faster performance. With the help of experiments,
this paper presents two heuristics—one based on performance and one on quality—
for the use of normalization cube maps.

Consider a non-trivial per-pixel lighting skin shader with tangent-space bump
mapping as shown in Error! Reference source not found.. This pixel shader is
described later on in Appendix A and consists of the following four normalize
operations:

1. Normalize the eye space position of the fragment. This gives the V vector.
2. Normalize the eye space light vector, L.
3. Compute the half angle vector, H = normalize(V + L).
4. Normalize the normal vector, N after it is scaled and transformed into eye space.
These normalizations are all essential1. You cannot compute H from non-

normalized vectors because if V and L have
different lengths, then their sum has a
different direction than the sum of the
normalized vectors2.

The standard normalize() pixel shader
function compiles to three instructions on
GeForce FX GPUs: dp3, rsq, and mul
which requires multiple cycles. The goal is to
determine if and when a cube map lookup is
faster but not at the expense of quality;
indiscriminate use of cube-map normalization
can result in shading artifacts.

Figure 1. Model, Shader, and
View Used in Experiments

1 See Appendices B and C for a discussion of situations where normalization may not be
necessary.
2 Even with the optimization at the end of Appendix B, this shader requires four square
roots.

 Normalization Heuristics

WP-01164-001_v03 3
7/15/2004

Exhaustive tests of different configurations of the pixel shader are performed. The
first test performs all normalization using normalize(); the last test performs all
normalization using cube map lookups with the remaining 14 tests covering other
combinations of normalize() and cube map lookups. A single 8-bit RGBA
normalization cube map with face resolution of 256x256 is used. A discussion of how
cube-map normalization affects rendering quality follows.

Performance
You might assume that the slowest case would be four calls to normalize(), and
the fastest to be four cube map lookups. These are both incorrect assumptions!
Table 1 shows performance for all 16 combinations of normalization methods on
three GPUs: GeForce FX 5200, 5700, and 5950. The leftmost four columns indicate
which of V, L, H, and N are normalized with a cube map in each test.

Table 1. Performance Comparison for all Combinations of
Normalize() and Normalization via Cube Map Lookups

Active Cube Maps Performance (FPS)

N H L V # inst FX 5950 FX 5700 FX 5200 Comment
 34 132.5 61.4 17.7 No cube maps

 33 132.3 61.4 18.6

 32 137.3 63.4 18.2

 31 146.8 68.2 21.6 Speed / quality sweet spot

 32 138.6 68.0 19.3

 31 145.2 71.1 21.5

 30 142.0 66.1 19.9

 29 155.9 75.9 23.4 Highest performance

 32 119.3 57.9 18.2 Lowest performance

 31 121.4 60.3 18.9

 30 118.3 57.6 18.0

 29 130.0 63.9 20.6

 30 129.3 60.5 17.9

 29 133.3 62.9 19.3

 28 134.2 63.3 19.5

 27 148.3 68.8 22.1 All cube maps

Table 1 yields the following observations:

1. The shortest shader is not the fastest, and the longest shader is not the slowest

2. Performance when using a cube map to normalize N is always lower than the
corresponding case using normalize().

 Normalization Heuristics

WP-01164-001_v03 4
7/15/2004

The second observation is important; the cause is texture cache incoherence. The
cube map is used to normalize the normal obtained from the normal map, which
contains detailed regions over which the surface normal varies rapidly. This causes
large strides across the normalization cube map, resulting in many texture cache
misses. You can be verify this by reducing the resolution of the cube map textures.
With a cube map composed of 1x1 textures, cube-map normalization always
increases performance over normalize(). However, low-resolution cube maps
can cause blocky lighting.

The fastest shader uses normalization cube maps for all vectors except N. This is
because the first three vectors vary smoothly (because the polygonal surface is not
as rough as the normal map), meaning that the lookups have good spatial locality in
the cube map texture. This results in more texture cache hits and better
performance. This leads to the first normalization heuristic.

Normalization Performance Heuristic: If a vector to be normalized varies smoothly, it
is generally faster to use cube-map normalization than to call normalize(). If the
vector varies rapidly, normalize() is likely to be faster.

Quality
If all four normalization cube maps are used, there are noticeable artifacts. There are
two sources of these artifacts. The first is precision. The 8-bit RGBA textures used
in the cube maps result in only 256 different values for each normal component.
This results in visible bands in smooth gradients in the lighting3. This is most
noticeable in specular highlights. The second problem is the resolution of the cube
map. A lower resolution cube map tends to be faster because more of it can fit in
the texture cache. However, lower resolution maps represent fewer vectors resulting
in blocky artifacts in the lighting. These artifacts are most noticeable in variable, high
frequency lighting, such as view-dependent specular highlights. In the shader used
here, these artifacts show when a cube map is used to normalize the halfway vector,
H, as demonstrated by the picture on the right in Figure 2.

Normalization Quality Heuristic: If a vector to be normalized is used for view-
dependent or time-varying lighting or other effects, low-precision cube-map normalization
is likely to result in visible artifacts.

3 It is possible to use cube maps that have two 16-bit channels for higher-precision
normalization. Unfortunately, this requires two cube map lookups per normalization: one for
x and y, the other for z. See Table 6 and Table 7.

 Normalization Heuristics

WP-01164-001_v03 5
7/15/2004

Figure 2. Artifacts (right) caused by cube-map normalization of H

Mipmapping
The strong dependence of performance on texture cache coherence leads to
Mipmapping as another option for balancing performance and quality. Mipmapping is a
practice commonly used to reduce texture aliasing, but its benefits extend to
performance, too. Texture minification without mipmapping leads to samples falling far
apart in the texture and poor cache coherence which in turn means reduced
performance. Textures that will undergo minification should almost always be
mipmapped.

This leads to the question, “Why not mipmap the normalization cube maps?” They will
undergo minification as well, and you want to avoid texture cache thrashing. Before you
pursue this approach, however, you should think about the purpose of the cube map.
The goal is to replace an expensive normalize()computation with a cheaper texture
access, while keeping the error in the normalization to a minimum. As mentioned in the
previous section lower-resolution cube maps can represent fewer vectors because the
sphere of directions is sampled in fewer directions. When you use mipmaps, you are
effectively using a lower-resolution cube map in areas of texture minification.
Neighboring vectors in lower-resolution maps will point in significantly different
directions. Bilinear filtering of these vectors can result in significant denormalization
(shortening) of the vectors resulting in vectors that were intended to be normalized not
being normalized at all.

Nonetheless, that makes for an interesting experiment. Using the same shader, you can
normalize N, L, and V using cube maps, because this configuration maintains high
rendering quality, and has a lot to gain from mipmapping due to the poor texture cache
coherence of normalizing N. The results are shown in Table 2.

 Normalization Heuristics

WP-01164-001_v03 6
7/15/2004

Table 2. Performance Comparison using Mipmapped
Normalization Cube Maps for N, L, and V Vectors

Performance (FPS)

Max Mip Level FX 5950 FX 5700 FX 5200
0 130 61.8 20.6

1 143.3 64.5 21.6

2 145.8 66 22.3

3 152.2 67 22.8

4 152.2 67.7 23

5 152.2 67.9 23

6 152.2 68 23

7 152.2 68 23

8 152.2 68 23

The next experiment enables mipmapping on the normalization cube map, but the
maximum mip level accessed4 is limited. Table 2 shows that performance increases
up to 17 percent as the maximum mip level is raised, but only up to a point.
Beyond level 3, the performance gain is negligible. Equally of interest is that in this
experiment, most of the visible error introduced by mipmapping occurs after level 3.
Figure 3 shows the results of error introduced by mipmapping on a model viewed at
a distance, so that it projects to an area of roughly 50 pixels square. With a
maximum mip level of 3 there is very little visible error, whereas, the error is quite
noticeable at a mip level of 8.

This experiment shows that you can use mipmapping to squeeze more performance
out of normalization cube maps, as long as you are careful to constrain the error by
limiting the maximum mipmap level. Table 3 is a revision of Table 1, with the
normalization cube map mipmapped to a maximum level of 3.

4 The maximum mipmap level is controlled in OpenGL by setting the
GL_TEXTURE_MAX_LOD texture parameter, and in DirectX by setting the
D3DSAMP_MAXMIPLEVEL sampler state.

 Normalization Heuristics

WP-01164-001_v03 7
7/15/2004

Figure 3. Comparison of Error Induced by using Maximum
Mipmap Levels of 3 (bottom left) and 8 (bottom right)

 Normalization Heuristics

WP-01164-001_v03 8
7/15/2004

The Speed/Quality Sweet Spot
The best quality is obtained by using normalize()for all normalization. These
experiments show that using cube maps to normalize the light, view, and normal
vectors results in very little visible difference. The half angle vector H on the other
hand, directly affects specular lighting. Artifacts are noticeable due to the higher
frequency and view dependence of specular lighting. Performance when using cube
maps for only the view and light vectors is nearly as good as when using them for
view, light, and half angle vectors, so this is a good balance between performance
and quality. You can get even higher performance by also normalizing N with a
mipmapped cube map, but you must be careful to clamp the maximum mipmap
level used to avoid noticeable artifacts.

A working application with OpenGL source code is available at
http://developer.nvidia.com. Appendix A details the Cg shader source code used
in these experiments. Appendices B and C provide additional information about
normalization. Appendix D contains detailed tables of all results obtained from
these experiments, including a 16-bit HILO cube map experiment not described
here.

Table 3 Performance Comparison for all Combinations of
normalize() and Normalization via Mipmapped Cube Map
Lookups

Note: The maximum mipmap level is constrained to 3 (32x32).

Active Cube Maps Performance (FPS)

N H L V # inst FX 5950 FX 5700 FX 5200 Comment
 34 132.5 61.4 17.7 Lowest performance

 33 132.3 61.4 18.6

 32 137.3 63.4 18.2

 31 146.8 68.2 21.6

 32 138.6 68 19.3

 31 145.2 71.1 21.5

 30 142 66.1 19.9

 29 155.9 75.9 23.4

 32 139.3 63.5 19.9

 31 142.3 66.4 20.8

 30 139 63.8 19.7

 29 152.2 70.9 22.8 Speed / quality sweet spot

 30 105.9 66.9 19.6

 29 150.3 69.2 21

 28 152.5 70.3 21.4

 27 172.9 76.8 24.5 Highest Performance

WP-01164-001_v03 9
7/15/2004

Appendix A
Cg / HLSL Shader Source

// Note: this code depends on the use of signed RGB textures
// for normalization cube maps. These are available on
// NVIDIA GeForce 3 and higher GPUs, through the GL_SIGNED_RGB_NV
// texture internal format (The DirectX equivalent is
// D3DFMT_Q8W8V8U8). If unsigned textures are used, care must be
taken
// to range expand the vectors obtained from the cube map lookups:
// vec = 2 * h3texCUBE() – 1.

struct fragin
{
 half2 texcoords : TEXCOORD0;
 half4 shadowcoords : TEXCOORD1;
 half4 tangentToEyeMat0 : TEXCOORD4;
 half3 tangentToEyeMat1 : TEXCOORD5;
 half3 tangentToEyeMat2 : TEXCOORD6;
 half3 eyeSpacePosition : TEXCOORD7;
};

half4 main(fragin In,
 uniform sampler2D normalTexture,
 uniform sampler2D diffuseTexture,
 uniform sampler2D glossyTexture,
 uniform samplerCUBE normCubeTexture,
 uniform half3 eyeSpaceLightPosition) : COLOR
{
 // diffuse and specular colors
 half4 kd = h4tex2D(diffuseTexture, In.texcoords);
 half4 ks = h4tex2D(glossyTexture, In.texcoords);

 half3 n,h,l,v;

 // Get eye-space eye vector.
#ifdef CUBEMAP_V
 v = h3texCUBE(normCubeTexture, -In.eyeSpacePosition);
#else
 v = normalize(-In.eyeSpacePosition);
#endif

 // Get eye-space light and halfangle vectors.
#ifdef CUBEMAP_L
 l = h3texCUBE(normCubeTexture,
 eyeSpaceLightPosition -
In.eyeSpacePosition);
#else
 l = normalize(eyeSpaceLightPosition - In.eyeSpacePosition);

 Normalization Heuristics

WP-01164-001_v03 10
7/15/2004

#endif

#ifdef CUBEMAP_H
 h = h3texCUBE(normCubeTexture, v + l);
#else
 h = normalize(v + l);
#endif

 // Get tangent-space normal vector from normal map.
 half3 bumpScale = {In.tangentToEyeMat0.ww, 1};
 half3 tangentSpaceNormal = bumpScale *
 h3tex2D(normalTexture, In.texcoords);

 // Transform it into eye-space.
 n.x = dot(In.tangentToEyeMat0.xyz, tangentSpaceNormal);
 n.y = dot(In.tangentToEyeMat1, tangentSpaceNormal);
 n.z = dot(In.tangentToEyeMat2, tangentSpaceNormal);

#ifdef CUBEMAP_N
 n = h3texCUBE(normCubeTexture, n);
#else
 n = normalize(n);
#endif

 static const half m = 34; // specular exponent
 half4 coeffs;
 coeffs.y = dot(n,l);
 coeffs.z = dot(n,h);
 coeffs = lit(coeffs.y, coeffs.z, m);

 // Compute lighting.
 return coeffs.y * kd + coeffs.z * ks;
}

WP-01164-001_v03 11
7/15/2004

Appendix B
When to Normalize

Depending on the situation, normalization may not always be necessary. In the
lighting example given in this white paper, all four normalizations are essential.
Because the vectors are used for lighting, they must have unit length or the results
of the lighting computation will be incorrect. In the case of environment mapping,
however, normalization is sometimes overused. The formula typically given for the
reflection vector is:

R = 2 * dot(N,V) * N – V,

where N is the unit-length normal vector, and V is the vector from the viewpoint to
the reflection point.

Textbooks sometimes claim that V must be normalized, too. In the common case
of hardware cube map reflection, this is not true; texture coordinates for cube map
lookups can represent any three-dimensional vector. Only N need be unit length to
get the correct reflected value. In the case of a non-unit-length N, you can use
another formulation of reflection:

R = 2 * dot(N,V) * N – dot(N,N) * V.

This formulation results in an R with the correct direction, regardless of the lengths
of N and V. Note, however that R and V do not necessarily have the same length. If
preserving the length of V is necessary, then the following formulation can be used.

R = (2 * dot(N,V) * N) / dot(N,N) – V.

Dot Product Optimization
In lighting computations, vectors are typically used to compute dot products. There
is a trick that can sometimes be used to reduce the computational cost of
normalizing vectors. To compute diffuse lighting you must compute the dot
product of the unit-length normal and light vectors. This typically requires two
reciprocal square roots instructions:

dot(N / ||N||,L / ||L||) = dot(N * rsq(dot(N,N)), L * rsq(dot(L,L))).

However, you can reduce this to a single reciprocal square root because

dot(N / ||N||, L / ||L||) = dot(N,L) / (||N|| * ||L||).

Thus, a more efficient computation is

dot(N/||N||, L/||L||) = dot(N,L) * rsq(dot(N,N) * dot(L,L)).

WP-01164-001_v03 12
7/15/2004

Appendix C
Approximate Normalization

A useful optimization for normalization is based on the fact that vectors to be
interpolated are usually close to unit length. For a nearly-unit-length vector V, you
can approximate 1 / ||V|| by the first terms of the Taylor expansion of
 1 / sqrt(x) at x = 1:

1 / sqrt(x) ≈ 1 + (1 - x) / 2.

The approximation for V is therefore

V / || V || = V / sqrt(||V||2) ≈ V + V * (1 - ||V||2) / 2.

This computation can be implemented using the following two assembly
instructions.
dp3_sat r1, r0, r0

mad_d2 r1, r0, 1-r1, r0_d2

WP-01164-001_v03 13
7/15/2004

Appendix D
Results

Table 4 contains the complete performance comparison for all configurations with
signed RGB cubemaps, float (32-bit) registers, with and without mipmaps. In the
mipmap case, the maximum mipmap level is set to 3

Table 4. Signed RGB Cube Maps, 32-bit Float Registers

FX 5950 Performance FX 5700 Performance FX 5200 Performance
Active
Cubemaps

inst

R
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps*

N H L V

0 0 0 0 34 4 94.2 fps 94.2 fps 44.1 fps 44.1 fps 17.9 fps 17.9 fps

0 0 0 1 33 3 97.1 fps 97.1 fps 45.6 fps 45.6 fps 19.1 fps 19.1 fps

0 0 1 0 32 5 100 fps 100 fps 47.9 fps 47.9 fps 19.1 fps 19.1 fps

0 0 1 1 31 4 107.3 fps 107.3 fps 50.5 fps 50.5 fps 20.7 fps 20.7 fps

0 1 0 0 32 5 98.3 fps 98.3 fps 46.5 fps 46.5 fps 19.1 fps 19.1 fps

0 1 0 1 31 4 103.1 fps 103.1 fps 48.9 fps 48.9 fps 20.6 fps 20.6 fps

0 1 1 0 30 5 103.7 fps 103.7 fps 49 fps 49 fps 21.2 fps 21.2 fps

0 1 1 1 29 5 112.8 fps 112.8 fps 53.7 fps 53.7 fps 22.2 fps 22.2 fps

1 0 0 0 32 5 87.6 fps 98.2 fps 42.5 fps 45.8 fps 17.2 fps 18.7 fps

1 0 0 1 31 4 93.5 fps 104.4 fps 45.5 fps 49.8 fps 18.2 fps 19.9 fps

1 0 1 0 30 6 94.2 fps 103.2 fps 44 fps 48 fps 18.3 fps 20.1 fps

1 0 1 1 29 5 97.6 fps 110.5 fps 47.8 fps 52.6 fps 19.8 fps 21.9 fps

1 1 0 0 30 5 90.5 fps 102.2 fps 44.2 fps 47.7 fps 18.4 fps 20.3 fps

1 1 0 1 29 5 97.7 fps 107.7 fps 47.6 fps 51.5 fps 19.6 fps 21.7 fps

1 1 1 0 28 5 96.5 fps 108.4 fps 47 fps 51.1 fps 20.3 fps 22.3 fps

1 1 1 1 27 5 103.8 fps 116.5 fps 51.3 fps 55.6 fps 21.1 fps 23.3 fps

 Normalization Heuristics

WP-01164-001_v03 14
7/15/2004

Table 5 contains the complete performance comparison for all configurations with
signed RGB cubemaps, half (16-bit) registers, with and without mipmaps. In the
mipmap case, the maximum mipmap level is set to 3.

Table 5. Signed RGB Cube Maps 16-bit Half Registers

FX 5950 Performance FX 5700 Performance FX 5200 Performance
Active
Cubemaps

inst

R
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps*

N H L V

0 0 0 0 34 4 132.5 fps 132.5 fps 61.4 fps 61.4 fps 17.7 fps 17.7 fps

0 0 0 1 33 3 132.3 fps 132.3 fps 61.4 fps 61.4 fps 18.6 fps 18.6 fps

0 0 1 0 32 5 137.3 fps 137.3 fps 63.4 fps 63.4 fps 18.2 fps 18.2 fps

0 0 1 1 31 4 146.8 fps 146.8 fps 68.2 fps 68.2 fps 21.6 fps 21.6 fps

0 1 0 0 32 5 138.6 fps 138.6 fps 68.0 fps 68.0 fps 19.3 fps 19.3 fps

0 1 0 1 31 4 145.2 fps 145.2 fps 71.1 fps 71.1 fps 21.5 fps 21.5 fps

0 1 1 0 30 5 142.0 fps 142 fps 66.1 fps 66.1 fps 19.9 fps 19.9 fps

0 1 1 1 29 5 155.9 fps 155.9 fps 75.9 fps 75.9 fps 23.4 fps 23.4 fps

1 0 0 0 32 5 119.3 fps 139.3 fps 57.9 fps 63.5 fps 18.2 fps 19.9 fps

1 0 0 1 31 4 121.4 fps 142.3 fps 60.3 fps 66.4 fps 18.9 fps 20.8 fps

1 0 1 0 30 6 118.3 fps 139 fps 57.6 fps 63.8 fps 18 fps 19.7 fps

1 0 1 1 29 5 130 fps 152.2 fps 63.9 fps 70.9 fps 20.6 fps 22.8 fps

1 1 0 0 30 5 129.3 fps 105.9 fps 60.5 fps 66.9 fps 17.9 fps 19.6 fps

1 1 0 1 29 5 133.3 fps 150.3 fps 62.9 fps 69.2 fps 19.3 fps 21 fps

1 1 1 0 28 5 134.2 fps 152.5 fps 63.3 fps 70.3 fps 19.5 fps 21.4 fps

1 1 1 1 27 5 148.3 fps 172.9 fps 68.8 fps 76.8 fps 22.1 fps 24.5 fps

 Normalization Heuristics

WP-01164-001_v03 15
7/15/2004

Table 6 contains the complete performance comparison for all configurations with
signed HILO cube maps, float (32-bit) registers, with and without mipmaps. In the
mipmap case, the maximum mipmap level is set to 3.

Table 6. Signed HILO Cube Maps, 32-bit float registers

FX 5950 Performance FX 5700 Performance FX 5200 Performance
Active
Cubemaps

inst

R
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps*

N H L V

0 0 0 0 34 4 94.2 fps 94.2 fps 44.1 fps 44.1 fps 17.9 fps 17.9 fps

0 0 0 1 35 5 97.7 fps 97.7 fps 47.4 fps 47.4 fps 18 fps 18 fps

0 0 1 0 34 5 92.8 fps 92.8 fps 45.7 fps 45.7 fps 18.3 fps 18.3 fps

0 0 1 1 35 5 92.9 fps 92.9 fps 43.7 fps 43.7 fps 18.4 fps 18.4 fps

0 1 0 0 34 5 98.6 fps 98.6 fps 42.7 fps 42.7 fps 18.3 fps 18.3 fps

0 1 0 1 35 5 96.3 fps 96.3 fps 43.5 fps 43.5 fps 18.5 fps 18.5 fps

0 1 1 0 34 5 88.5 fps 88.5 fps 40.2 fps 40.2 fps 18.6 fps 18.6 fps

0 1 1 1 35 5 89.2 fps 89.2 fps 44.1 fps 44.1 fps 18.7 fps 18.7 fps

1 0 0 0 34 5 71.2 fps 85.8 fps 36.9 fps 40.3 fps 15.3 fps 17.4 fps

1 0 0 1 36 5 75.1 fps 88.8 fps 37.8 fps 40.9 fps 15.4 fps 17.4 fps

1 0 1 0 34 5 68.9 fps 81.2 fps 38.2 fps 41.5 fps 15.5 fps 17.6 fps

1 0 1 1 36 5 74.1 fps 87.2 fps 37.4 fps 40.7 fps 16.0 fps 18.2 fps

1 1 0 0 34 5 70.5 fps 84.1 fps 37.8 fps 40.9 fps 15.7 fps 17.8 fps

1 1 0 1 37 5 65 fps 76.5 fps 39.4 fps 43.3 fps 15.9 fps 18.1 fps

1 1 1 0 34 5 69.8 fps 80.4 fps 34.9 fps 41.0 fps 15.8 fps 18 fps

1 1 1 1 37 5 72.3 fps 83.2 fps 41.3 fps 45.5 fps 16.3 fps 18.5 fps

 Normalization Heuristics

WP-01164-001_v03 16
7/15/2004

Table 7 contains the complete performance comparison for all configurations with
signed HILO cube maps, half (16-bit) registers, with and without mipmaps. In the
mipmap case, the maximum mipmap level is set to 3.

Table 7. Signed HILO Cube Maps, 16-bit half registers

FX 5950 Performance FX 5700 Performance FX 5200 Performance
Active
Cubemaps

inst

H
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps*

N H L V

0 0 0 0 34 4 132.5 fps 132.5 fps 61.4 fps 61.4 fps 17.7 fps 17.7 fps

0 0 0 1 35 5 126.6 fps 126.6 fps 56.7 fps 56.7 fps 17.7 fps 17.7 fps

0 0 1 0 34 5 130 fps 130 fps 59.7 fps 59.7 fps 17.6 fps 17.6 fps

0 0 1 1 35 5 129.3 fps 129.3 fps 61.1 fps 61.1 fps 19.3 fps 19.3 fps

0 1 0 0 34 5 133 fps 133 fps 59.6 fps 59.6 fps 19.2 fps 19.2 fps

0 1 0 1 35 5 128.8 fps 128.8 fps 58 fps 58 fps 17.3 fps 17.3 fps

0 1 1 0 34 5 135.7 fps 135.7 fps 58 fps 58 fps 17.7 fps 17.7 fps

0 1 1 1 35 5 128.2 fps 128.2 fps 59.3 fps 59.3 fps 19.7 fps 19.7 fps

1 0 0 0 34 5 90.5 fps 114.4 fps 52.1 fps 58.7 fps 15.3 fps 17.3 fps

1 0 0 1 36 5 100.1 fps 124.6 fps 48.1 fps 54 fps 15 fps 16.9 fps

1 0 1 0 34 5 101.7 fps 127.9 fps 49.4 fps 55.2 fps 15 fps 17 fps

1 0 1 1 36 5 86.9 fps 107.5 fps 49.1 fps 55 fps 16.7 fps 19.1 fps

1 1 0 0 34 5 94.4 fps 120 fps 50.8 fps 57 fps 16.6 fps 19 fps

1 1 0 1 37 5 88.5 fps 110.3 fps 51 fps 57.2 fps 15.9 fps 18 fps

1 1 1 0 34 5 91.3 fps 114.8 fps 44.4 fps 52.6 fps 16.5 fps 18.8 fps

1 1 1 1 37 5 95.2 fps 120.3 fps 48.8 fps 53.9 fps 16.2 fps 18.4 fps

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

