
313

Fast Third-Order Texture
Filtering
Christian Sigg
ETH Zurich

Markus Hadwiger
VRVis Research Center

Chapter 20

Current programmable graphics hardware makes it possible to implement general con-
volution filters in fragment shaders for high-quality texture filtering, such as cubic fil-
ters (Bjorke 2004). However, several shortcomings are usually associated with these
approaches: the need to perform many texture lookups and the inability to antialias
lookups with mipmaps, in particular. We address these issues in this chapter for filter-
ing with a cubic B-spline kernel and its first and second derivatives in one, two, and
three dimensions.

The major performance bottleneck of higher-order filters is the large number of input
texture samples that are required, which are usually obtained via repeated nearest-neighbor
sampling of the input texture. To reduce the number of input samples, we perform cubic
filtering building on linear texture fetches, which reduces the number of texture accesses
considerably, especially for 2D and 3D filtering. Specifically, we are able to evaluate a tricu-
bic filter with 64 summands using just eight trilinear texture fetches.

Approaches that perform custom filtering in the fragment shader depend on knowledge
of the input texture resolution, which usually prevents correct filtering of mipmapped
textures. We describe a general approach for adapting a higher-order filtering scheme to
mipmapped textures.

Often, high-quality derivative reconstruction is required in addition to value recon-
struction, for example, in volume rendering. We extend our basic filtering method to

Introduction

320_gems2_ch20_good.qxp 1/27/2005 8:50 PM Page 313

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

314 Chapter 20 Fast Third-Order Texture Filtering

reconstruction of continuous first-order and second-order derivatives. A powerful appli-
cation of these filters is on-the-fly computation of implicit surface curvature with tricu-
bic B-splines, which have been applied to offline high-quality volume rendering,
including nonphotorealistic styles (Kindlmann et al. 2003).

20.1 Higher-Order Filtering
Both OpenGL and Direct3D provide two different types of texture filtering: nearest-
neighbor sampling and linear filtering, corresponding to zeroth and first-order filter
schemes. Both types are natively supported by all GPUs. However, higher-order filter-
ing modes often lead to superior image quality. Moreover, higher-order schemes are
necessary to compute continuous derivatives of texture data.

We show how to implement efficient third-order texture filtering on current program-
mable graphics hardware. The following discussion primarily considers the one-dimen-
sional case, but it extends directly to higher dimensions.

To reconstruct a texture with a cubic filter at a texture coordinate x, as shown in Figure
20-1a, we have to evaluate the convolution sum

of four weighted neighboring texels fi. The weights wi(x) depend on the filter kernel
used. Although there are many types of filters, we restrict ourselves to B-spline filters in
this chapter. If the corresponding smoothing of the data is not desired, the method can
also be adapted to interpolating filters such as Catmull-Rom splines.

w x f w x f w x f w x fi i i i0 1 1 2 1 3 2()× + ()× + ()× + ()×− + + (1)

Figure 20-1. The Cubic B-Spline and Its Derivatives
(a) Convolution of input samples fi with filter weights wi(x). First-order (b) and second-order (c)
derivatives of the cubic B-spline filter for direct reconstruction of derivatives via convolution.
(For purposes of illustration, the scale of the vertical axes varies.)

320_gems2_ch20_good.qxp 1/27/2005 9:19 PM Page 314

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

315

Note that cubic B-spline filtering is a natural extension of standard nearest-neighbor
sampling and linear filtering, which are zeroth and first-degree B-spline filters. The de-
gree of the filter is directly connected to the smoothness of the filtered data. Smooth data
becomes especially important when we want to compute derivatives. For volume render-
ing, where derivatives are needed for shading, it has become common practice to store
precomputed gradients along with the data. Although this leads to a continuous approx-
imation of first-order derivatives, it uses four times more texture memory, which is often
constrained in volume-rendering applications. Moreover, this approach becomes imprac-
tical for second-order derivatives because of the large storage overhead. On the other
hand, on-the-fly cubic B-spline filtering yields continuous first-order and second-order
derivatives without any storage overhead.

20.2 Fast Recursive Cubic Convolution
We now present an optimized evaluation of the convolution sum that has been tuned
for the fundamental performance characteristics of graphics hardware, where linear
texture filtering is evaluated using fast special-purpose units. Hence, a single linear
texture fetch is much faster than two nearest-neighbor fetches, although both opera-
tions access the same number of texel values. When evaluating the convolution sum, we
would like to benefit from this extra performance.

The key idea is to rewrite Equation 1 as a sum of weighted linear interpolations be-
tween every other pair of function samples. These linear interpolations can then be
carried out using linear texture filtering, which computes convex combinations denoted
in the following as

where i = ⎣x⎦ is the integer part and α = x − i is the fractional part of x. Building on
such a convex combination, we can rewrite a general linear combination a × fi + b × fi+1

with general a and b as

as long as the convex combination property 0 ≤ b/(a + b) ≤ 1 is fulfilled. Thus, rather
than perform two texture lookups at fi and fi+1 and a linear interpolation, we can do a
single lookup at i + b/(a + b) and just multiply by (a + b).

a b f i b a b+()× +() +() (3)

f f fx i i= −()× + × +1 1α α , (2)

20.2 Fast Recursive Cubic Convolution

320_gems2_ch20_good.qxp 1/31/2005 2:24 PM Page 315

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

316

The combination property is exactly the case when a and b have the same sign and are
not both zero. The weights of Equation 1 with a cubic B-spline do meet this property,
and therefore we can rewrite the entire convolution sum:

introducing new functions g0(x), g1(x), h0(x), and h1(x) as follows:

Using this scheme, the 1D convolution sum can be evaluated using two linear texture
fetches plus one linear interpolation in the fragment program, which is faster than a
straightforward implementation using four nearest-neighbor fetches. But most impor-
tant, this scheme works especially well in higher dimensions; and for filtering in two
and three dimensions, the number of texture fetches is reduced considerably, leading to
much higher performance.

The filter weights wi(x) for cubic B-splines are periodic in the interval x ∈ [0, 1]:
wi(x) = wi(α), where α = x − ⎣x⎦ is the fractional part of x. Specifically,

As a result, the functions gi(x) and hi(x) are also periodic in the interval x ∈ [0, 1] and
can therefore be stored in a 1D lookup texture.

We now discuss some implementation details, which include (1) transforming texture
coordinates between lookup and color texture and (2) computing the weighted sum of
the texture fetch results. The Cg code of the fragment program for one-dimensional
cubic filtering is shown in Listing 20-1. The schematic is shown in Figure 20-2.

w w

w

0
3 2

1
3 2

2
3 2

1

6
3 3 1

1

6
3 6 4

1

6
3 3

α α α α α α α

α α α

() = − + − +() () = − +()

() = − + + 33 1
1

63
3α α α+() () =w

(6)

g x w x w x h x
w x

w x w x
x

g x w x w x

0 0 1 0
1

0 1

1 2 3

1() = () + () () = −
()

() + ()
+

() = () + (() () = +
()

() + ()
−h x

w x

w x w x
x1

3

2 3

1

(5)

w x f w x f w x f w x f

g x f g
i i i i

x h x

0 1 1 2 1 3 2

0 0

()× + ()× + ()× + ()× =

()× +
− + +

− () 11 1
x f x h x()× + () ,

(4)

Chapter 20 Fast Third-Order Texture Filtering

320_gems2_ch20_good.qxp 1/27/2005 9:19 PM Page 316

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

Listing 20-1. Cubic B-Spline Filtering of a One-Dimensional Texture

float4 bspline_1d_fp(float coord_source : TEXCOORD0,

uniform sampler1D tex_source, // source texture

uniform sampler1D tex_hg, // filter offsets and weights

uniform float e_x, // source texel size

uniform float size_source // source texture size

) : COLOR

{

// calc filter texture coordinates where [0,1] is a single texel

// (can be done in vertex program instead)

float coord_hg = coord_source * size_source – 0.5f;

// fetch offsets and weights from filter texture

float3 hg_x = tex1D(tex_hg, coord_hg).xyz;

// determine linear sampling coordinates

float coord_source1 = coord_source + hg_x.x * e_x;

float coord_source0 = coord_source - hg_x.y * e_x;

// fetch two linearly interpolated inputs

float4 tex_source0 = tex1D(tex_source, coord_source0);

float4 tex_source1 = tex1D(tex_source, coord_source1);

20.2 Fast Recursive Cubic Convolution 317

Figure 20-2. Cubic Filtering of a One-Dimensional Texture
To reconstruct a color texture of size N, we first perform a linear transformation of the reconstruction
position x (∗). This gives us the texture coordinates for reading offsets hi(x) and weights gi(x) from a
lookup texture. Second, two linear texture fetches of the color texture are carried out at the offset
positions (•). Finally, the output color is computed by a linear combination of the fetched colors
using the weights gi(x).

320_gems2_ch20_good.qxp 1/27/2005 9:19 PM Page 317

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

Copyright © NVIDIA
Corporation 2004

The full chapter appears in GPU Gems 2:

GPU Gems 2 GPU Gems 2
Programming Techniques for HighProgramming Techniques for High--Performance Performance
Graphics and GeneralGraphics and General--Purpose ComputationPurpose Computation

880 full-color pages, 330 figures
Hard cover
$59.99
Available at GDC 2005 (March 7, 2005)
Experts from universities and industry

Geometric Complexity
Shading, Lighting, and Shadows
High-Quality Rendering

General Purpose Computation
on GPUs: A Primer
Image-Oriented Computing
Simulation and Numerical
Algorithms

Graphics ProgrammingGraphics Programming GPGPU ProgrammingGPGPU Programming

For more information, please visit:
http://developer.nvidia.com/object/gpu_gems_2_home.html

http://developer.nvidia.com/object/gpu_gems_2_home.html
http://developer.nvidia.com/object/gpu_gems_2_home.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

