GPU Image Processing

The cg _scotopic Demo

Frank Jargstorff
NVIDIA

March 15, 2004

Copyright (© 2004 by NVIDIA Corporation. All rights reserved.



1 Introduction

The fully programmable fragment shaders and long shader programs, as
supported by NVIDIA’s FX class of GPUs, enable simple implementation
of highly efficient GPU image processing.

The cg_scotopic demo showcases the underlying nv_image processing
framework (a C++ library part of the NVIDIA SDK 7.0) and how to extend
it.

2 Design

The framework is based on the concept of an image-filter graph where the
graph’s nodes are image filters. The images flow from source nodes through
filter nodes where they are processed to output nodes (e.g. display or save-
to-file).

— = SinkOperator

SourceOperator =

—=| Filter =

The SourceOperator, SinkOperator, ImageFilter, and Image classes
all function as proxies to objects living on the graphics card so that the image
once uploaded actually never leaves the card during processing.

The actual operator base classes are designed such that a derived class
needs to specify only minimal information in order to implement a new filter:

e A Cg fragment shader implementing the actual processing operation,
and

e some C++ code providing the fragment shader with the necessary
parameters (e.g. blur factor, ...).



The image class is based on 16bit floating point numbers for each of
the red, green, blue, and alpha channels (i.e. compatible to the OpenEXR
format [2]). Images are reference counted for automatic memory manage-
ment which allows image creation in source operators and deletion in sink
operators without having to keep track of additional references to the image
used for buffering results.

3 Implementation

The framework is implemented using the OpenGL API and NVIDIA’s Cg
programming language [1]. For optimum performance a variety of OpenGL
extensions were used:

WGL_ARB_pbuffer which allows rendering images into background buffers.

WGL_ARB_render_texture which allows to use pBuffers as textures.
For larger images this is a huge performance win over the alternative
method of copying the pBuffer content into a texture.

NV _texture_rectangle which allows textures with non-power-of-two sizes.
Traditionally OpenGL textures must conform to the number of pixels
along the edges begin a power of two (i.e. w,h € {2"|n =5,6,7,...}).

NV _half float for loading and storing 16bit OpenEXR images.

WGL_ARB _pixel format for querying the correct 16bit floating point
format.

4 Summary

For a more complete description of the design and implementation of the
framework and a variety of other articles on GPU image processing as well
as GPU use in general see [3]

References

[1] Fernando, R. & M.J. Kilgard, The Cg Tutorial, Addison-Wesley, 2003.
[2] www.OpenEXR.org, Industrial Light & Magic.

[3] Fernando, R. (ed.), GPU Gems, Addison-Wesley, 2004.



