

SDK White Paper

Rainbows and Fogbows
Adding Natural Phenomena

WP-01410-001-v01
July 2004

WP-01410-001_v01 1
07/16/04

Abstract

This document describes a method to render
rainbows, coronas, fogbows, and halos realistically
with a 3D scene in real-time using pre-calculated
lookup textures. A summary of the basic physics of
rainbows and other atmospheric phenomena is also
provided.

Rainbows, fogbows, corona (around the sun) and
halos (around the moon) are each created when
small water droplets scatter light in a particular way
as it travels to your eye.

This whitepaper tells you how to create this effect in a 3D scene without computing
a complex equation for every pixel on the screen. It explains the basic optics behind
rainbows, fogbows, coronas and halos and tells you where to find out all the gritty
details behind the physics. It lists the steps to render a rainbow using lookup
textures. It discusses how to combine these light effects with the rest of your scene
and describes directions for future work. After reading this whitepaper you should
have all the info you need to add a realistic rainbow, fogbow, corona, or halo to
your game engine.

Clint Brewer
devrelfeedback@nvidia.com
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

WP-01410-001_v01 2
07/16/04

The Optics of Rainbows

Everyone since Aristotle has been trying to explain how rainbows work. For recent
treatments of the topic, look to The Rainbow Bridge, a book that covers just about
everything known and unknown about rainbows. This whitepaper concerns itself
with rendering realistic rainbows in an interactive environment, it does not provide
all the physical details. It provides enough information about the optics of rainbows
to make it possible to add believable-looking rainbow effects to games.

Rainbows appear when sunlight is separated into its component colors by spherical
droplets of water. Different wavelengths of light (red, orange, yellow, green, blue,
and violet) are refracted by different amounts as they enter and exit the water
droplet. Other aspects of rainbows include the following:

 Rainbows are circles of colored light centered on the anti-solar point. If you are
the viewer, then the anti-solar point is the shadow of your own head.

 Every person sees a unique rainbow. You can think of it as a cone of light
focused on your eye.

 Spherical water droplets refract and reflect light back to your eye
 Different wavelengths of light are refracted by different amounts
 Very tiny spherical water droplets reflect and diffract light causing fogbows

 Depth of Field

WP-01410-001_v01 3
07/14/04

Figure 1 illustrates how a ray of sunlight is refracted by a water droplet, is reflected
internally a single time, and is refracted on the way out as it goes to the viewer. The
figure shows the path of a ray of sunlight as it passes through the water droplet. The
ray refracts into the droplet at point a, reflects internally at point b, and refracts out
of the droplet at point c. Violet rays are not refracted as much as the other colors
so violet comes out on the bottom of a rainbow, while red is refracted the most and
comes out on top of a rainbow. This process shown in Figure 1 causes the bright
primary rainbow.

Figure 1. Primary Rainbow

 Depth of Field

WP-01410-001_v01 4
07/14/04

Figure 2 illustrates how a ray of sunlight is refracted by a water droplet, is reflected internally
two times, and is refracted on the way out as it goes to the viewer. In the figure, a ray of
sunlight refracts into the water droplet at point d, reflects internally once at point c and again
at point b, then finally refracts out of the droplet at point a. This two-reflection
phenomenon causes the lighter secondary rainbow which appears above the primary
rainbow on occasion. Note that the colors of the secondary rainbow are reversed from
those of the primary rainbow. That is violet on top and red on the bottom instead of the
other way around for a primary rainbow (see Figure 8).

The secondary rainbow is a rare event (even more rare than a primary rainbow). Even
though this paper does not address how to code the secondary rainbow effect, the
techniques discussed in this paper could be used to develop code that simulates the
secondary rainbow as well as the primary rainbow.

Figure 2. Secondary Rainbow

 Depth of Field

WP-01410-001_v01 5
07/14/04

You can see from the refraction of the sun ray in Figure 1 and Figure 2, the color of
light the viewer sees will depend on which color gets bent just enough to hit the
viewer’s eye. This depends on the viewer’s position, the radius and position of the
water drop, and the position and angle the sun ray intersects the drop.

We can simplify the problem to be a function of two values: the angle of deviation
and the radius of the water droplet. Figure 3 shows the angle of deviation which is the
total angle that light is bent back to the viewer.

Figure 3. Angle of Deviation

WP-01410-001_v01 6
07/16/04

Integrating a Rainbow
into a 3D Scene

Distinctive shape and color are well-known characteristics of rainbows. However,
rainbows rarely appear perfectly uniform rainbow in reality. Usually we see half a
rainbow, or just the top, or see it fade in and out as we watch it. To create a realistic
rainbow, these features of rainbows must be included.

This section describes the following characteristics of rainbows and how to integrate
them into a scene. Coronas, rings around the sun, are similar and are described in
the comments in the sample code found in the section called, “Source Code for
Rainbow and Corona Effects.”

 Color
 Moisture in the air
 Light added back to the background
 Light source color

Color
Rainbow light is caused by water drops in the atmosphere reflecting and refracting
sunlight in part of the sky. The previous section explains what causes the color of
the rainbow in very simple terms, but this section describes how to color a rainbow
in more detail.

The Airy light scattering equations in the article by Raymond Lee, “Mie Theory Airy
Theory and the Natural Rainbow,” and the details provided in the article by Phillip
Lavin, “The Optics of a Water Drop,” provide helpful models of water drops and
light form the colors of a rainbow.

 Depth of Field

WP-01410-001_v01 7
07/14/04

Texture Lookup
To create a color lookup texture for a sample rainbow, we will use a freely available
program Lavin created, called MiePlot. The program calculates the results of the
Airy light scattering equations that can be used in a graphics application.

MiePlot generates Lee diagrams. These diagrams show how the color of a rainbow
changes as the radius of a water droplet changes. Lee diagrams are 2D images in
which each pixel represents the color of scattered light corresponding to a given
angle of deviation on one axis and radius of water droplet on the other axis.

Figure 4 shows an example of a Lee diagram generated by Mr. Laven’s MiePlot.

Figure 4. Lee Diagram Generated by MiePlot

 Depth of Field

WP-01410-001_v01 8
07/14/04

In order to add a rainbow in a scene, we need to compute a function of two values:

 Angle of deviation
 Radius of a water droplet.

The Lee diagram gives provides exactly this information when the texture is indexed
with the coordinates [radius, angle of deviation].

Some manipulation of the Lee diagram is needed to create a useable lookup texture.
Since the primary rainbow is caused by an internal reflection, limit the angle of
deviation to be between 90 degrees and 180 degrees. If the angle of deviation is less
than 90 degrees then the light ray would not have reflected internally, but refracted
out of the water droplet at point b in Figure 1. If the angle of deviation is greater
than 180, then it mirrors the colors from 90 to 180.

The radii of water droplets varies, depending on the phenomenon. Water droplets
in rainbows are large compared to the water droplets in fogbows. To build a model
that can render both rainbows and fogbows, use a range 5 to 800 microns.

Lee, in his paper on Mie and Airy Theory, shows that the simplified Airy equations
produce very realistic results, even if they are not as accurate as Mie Theory. The
Airy Theory can be calculated relatively quickly in MiePlot. To get the final lookup
texture, set up MiePlot to generate a Lee diagram using Airy Theory with the desired
range of radius and angle of deviation. Since MiePlot does not provide a way to save
the texture, take a screenshot of the results and save the Lee diagram portion of the
screen.

To achieve more distinctive, brighter rainbow colors, make the bands of color
wider, as shown in Figure 5.

 Depth of Field

WP-01410-001_v01 9
07/14/04

In summary, the image in Figure 5, generated by MiePlot, has been hand-modified
to enhance width of color bands. The vertical axis is the angle of deviation from 180
to 90. The horizontal axis is the radius of a water droplet from 5 microns to 800
microns. It supplies the rainbow texture lookup.

Figure 5. Hand-Modified Lee Diagram

 Depth of Field

WP-01410-001_v01 10
07/14/04

Calculate Pixel Values
The next problem to solve is – given what we know about a 3D scene – how can we
calculate the color of the rainbow at a pixel on the screen?

Because the GPU is set up to access this texture with coordinates in the range
[0…1], we need to map angle of deviation and radius to these values. If for each
pixel on the screen, we know what the view vector is that passes through that pixel
and what the sun lights direction vector is, then we can use the dot product to get
the cosine of the angle between the vectors. The cosine is in the range [1…0] when
the angle is between 0 and 90 degrees and in the range [0…-1] when the angle is
between 90 and 180 degrees.

In all of the previous figures, the sun light vector points at the water droplet and the
view vector points at the viewer which is common in mathematical models of
rainbows. For this calculation, use the computer graphics convention that the light
vector points away from the water droplet towards the light source and the view
vector still points towards the viewer. Instead of the vertical axis ranging from 180
to 90 degrees, it ranges from 90 to 0 degrees. This change maps nicely onto the dot
product which ranges from 0 to 1 for an angle between 90 and 0 degrees.

To render the rainbow, use a screen-aligned quad and compute the color of
scattered light at each pixel on the screen.

Note: The screen-aligned quad view approach is not an efficient way to add
rainbows to a game. Options to improve the speed are discussed in the
section called, “Improvements and Other Uses.”

Given a screen-aligned quad, we need to find a view vector and sun ray vector at
each pixel. We know that all sun rays are roughly parallel at the earth’s surface, so
the direction of the sunlight is constant at each pixel. Use a vertex shader to
calculate the view vector at each vertex of the screen aligned quad and let it
interpolate across the triangles for each pixel. Then, use a pixel shader to calculate
the texture coordinates to index into the Lee diagram lookup texture for each pixel
on the screen.

To calculate the view vector per vertex, render the screen-aligned quad in
homogeneous clip space (which is a common way to render a full screen quad).
First, transform the vertex position by the inverse projection matrix to find the
position of the quad in eye space. Once the position of the vertex is in eye space,
the position of the eye in eye space is <0, 0, 0>. Simply subtract the two points to
get an unnormalized view vector at each vertex.

To compute the cosine of the angle of deviation using the dot product, normalize
the eye vector. Let the unnormalized vector interpolate. To get the eye space sun
ray vector, take the world-space sunlight vector and transform it by the view matrix.

Note: If you normalize the eye vector at the vertex level, the interpolated
vector will not be normalized and you will have to renormalize it in the
pixel shader.

 Depth of Field

WP-01410-001_v01 11
07/14/04

Every pixel has an unnormalized view vector and a normalized sun light vector. To
get a value in the range [-1…1], normalize the view vector and compute its dot
product with the sun light vector. For a rainbow, only use the range [0 …1]. Set the
texturing hardware to CLAMP the coordinate in the range [0....1]. Use the result of
the dot product as the t texture coordinate. Specify the radius of water droplets s
coordinate, then sample the Lee diagram lookup texture. This results in the color of
a perfect rainbow at each screen pixel. (See the section called, “Source Code for
Rainbow and Corona Effects” for a complete listing of vertex and pixel shaders.)

Moisture in the Air
The quality of a rainbow also depends on the amount of moisture in the sky. A thick
sheet of moisture will have more water droplets to refract and reflect more color
back to the viewer’s eye than a thin sheet of moisture will. More moisture produces
a brighter rainbow and the less moisture produces a dimmer rainbow. Use a
separate moisture texture when rendering the scene. Use the red color component to
store the amount of moisture in the scene at each pixel. The rainbow color can be
multiplied by this moisture factor (which ranges from [0..1]) to fade the rainbow in
and out.

To calculate the moisture factor, render the fog amount to the texture, and then
rendered the main skybox’s alpha component to represent the moisture/sun
interaction in the skybox. Finally, render another skybox with a noise texture
scrolling downward to simulate the far away sheets of rain and add a little dynamic
motion to the rainbow. The better the model the interaction of sunlight and
moisture in the atmosphere, the better the rainbow will look.

A model that encodes the water droplet radius into the moisture texture to simulate
clouds and rain in the scene that may cause different types of rainbows at the same
time is not effective. It does not work because, when the radius smoothly fades
from one value to another, the rainbow colors curve unrealistically. To achieve this
effect, it would be necessary to render the rainbow in multiple passes once for each
possible water droplet radius.

Light Added to the Background
Rainbows add to the light in the background. To computer added rainbow light, set
the source blend factor to one and use alpha blending, and set the destination blend
factor to invSrcColor. With a true high-dynamic range lighting engine, both blend
factors could be merged. However, a destination blend factor of invSrcColor
handles over-saturation better and the resulting rainbow looks appealing.

Light Source Color
Finally, apply the rainbow color from the Lee diagram lookup texture by the
sunlight color, since that light effects the possible rainbow color.

 Depth of Field

WP-01410-001_v01 12
07/14/04

Render the Rainbow
Figure 6 shows the important parts of rendering the rainbow.

 The top left shows the plain rainbow color as rendered on a full-screen quad.
 The top middle shows the moisture texture. Objects in the world are black and

the clouds in the sky are rendered in greyscale.
 The top right shows the moisture texture multiplied by the rainbow color.
 The bottom shows the 3D scene rendered normally without any rainbow
 The bottom middle, finally, combines of the 3D scene with the rainbow.

Figure 6. Integrate the Rainbow into a 3D Scene

WP-01410-001_v01 13
07/16/04

Improvements and Other Uses

This section covers the following topics:

 Optimizations and improvements to the rainbow demonstration
 Additional atmospheric water and light-based phenomena
 Other applications

Optimizations and
Improvements

Before using rainbows in a game, the technique described needs to become less
expensive to execute. The dependant texture cannot be read in real-time for every
single pixel of a 1600 x 1200 resolution screen. To use rainbows, fogbows, coronas
and halos in a game, we need an optimized version.

One optimization is to design the rainbow texture beforehand, then render it into a
cube-map texture. At runtime, simply render another skybox using this rainbow
cube-map and combine the rainbow color with the moisture texture as described.
As long as the water drop radius does not change, this base rainbow color cube-map
need not change. When the sun direction changes, you can rotate the rainbow
skybox so that the rainbow remains centered on the anti-solar point.

Another optimization is to render a half dome facing away from the sun with the
top of the dome at the anti-solar point. Then, map the texture coordinates to a 1D
slice of the Lee diagram lookup texture that corresponds to water drop radius. This
technique uses normal texture wrapping to smear the 1D slice in a circle. The angle
of deviation would not need to be computed at runtime and you could still change
the radius of water droplets causing the rainbow. The dome would need to be well-
tessellated in order to look good, but thanks to vertex processing, it would not
create a bottleneck.

The technique presented to add rainbows to 3D scenes uses simplified model of a
rainbow that has a constant intensity. In reality, the intensity varies greatly. MiePlot
graphs the intensity data in addition to the color. To add greater realism, this high-
dynamic range lighting data should be included in the model.

Another interesting improvement would be to port the Mie and Airy Theory
simulation onto the GPU to generate the Lee diagram lookup texture. This would
help it generate plots more quickly.

 Depth of Field

WP-01410-001_v01 14
07/14/04

Other Water- and
Light-Based Phenomena

The technique for rendering a rainbow can be used to render a corona around the
sun, a halo around a moon, and some of the halos caused by ice crystals around the
sun. The sample application included in this document implements both rainbows
and sun coronas. Coronas are based on the same optical effects effect as rainbows.
The difference is that, instead of being interested in the [0…1] range of the dot
product result, the corona is interested in the [0…-1] range that is around the sun.
Unfortunately Airy Theory could not be used to create a corona Lee diagram lookup
texture because it does not take that effect into account. However, Mie does include
that case. Use MiePlot to render a 1D lookup texture for the Corona.

Other Phenomena
Some odd results show up in the rainbow technique when the angle of deviation
used is less than 90 degrees and the rainbow light bends around as it goes from one
radius to another. The result looks surprisingly similar to the effect caused by
abalone and oyster shells. The internal lining of these shells is made up of tiny
crystals of calcite that reflect and refract light. Because the layers of calcite have
varying thickness, you could correlate the thickness to water droplet radius thus
using the same lookup textures to render various pearlescent materials.

Conclusion

WP-01410-001_v01 15
07/16/04

Source Code for
Rainbow and Corona Effects

/*
Rainbow.fx

rainbow simulation using precomputed light scattering and
interference.

*/

texture tRainbowLookup : DiffuseMap
<
 string name = "rainbow_Scatter_FakeWidet.tga";
 //I've manually tweaked this texture to widen the color bands,
 //not perfectly realistic, but looked better to me.
>;

texture tCoronaLookup : DiffuseMap
<
 string name = "rainbow_plot_i_vs_a_diffract_0_90_1024.tga";
>;

texture tMoisture : DiffuseMap
<
 string name = "env3_rainbow.bmp";
>;

float4x4 View : View;
float4x4 ProjInv: ProjectionInverse;

float3 LightVec : Direction
<
 string UIObject = "DirectionalLight";
 string Space = "World";
> = {1.0f, -1.0f, 1.0f};

half dropletRadius : Radius
<
 string UIType = "slider";
 float UIMin = 0.01;
 float UIMax = 0.99;
 float UIStep = 0.01;
 string UIName = "rainbow: droplet radius";

 Depth of Field

WP-01410-001_v01 16
07/14/04

> = 0.81;

half rainbowIntensity : Intensity
<
 string UIType = "slider";
 float UIMin = 0.0;
 float UIMax = 5.0;
 float UIStep = 0.1;
 string UIName = "rainbow: intensity";
> = 1.3;

struct VS_INPUT {
 float3 Position : POSITION;
 float4 vTexCoord : TEXCOORD0;
};

struct VS_OUTPUT {
 float4 vPosition : POSITION;
 half4 vTexCoord : TEXCOORD0;// quad texture coordinates
 float3 vEyeVec : TEXCOORD1;// eye vector
 float3 vLightVec: TEXCOORD2;// light vector
};

VS_OUTPUT VS_rainbow(VS_INPUT IN)
{
 VS_OUTPUT OUT;

 OUT.vTexCoord = IN.vTexCoord;
 // our input is a full screen quad in homogeneous-clip space
 OUT.vPosition = float4(IN.Position,1.0);

 //we need to unproject the position
 half4 tempPos = float4(IN.Position,1.0);
 tempPos = mul(tempPos, ProjInv);

 //while in homognenous clip space, the eye is at 0,0,0
 //vector from vertex to eye, no need to normalize here since we
 //will be normalizing in the pixel shader

 OUT.vEyeVec = float3(0.0, 0.0, 0.0) - tempPos;

 //transform light into eyespace
 float4 tempLightDir;
 tempLightDir = float4(-LightVec , 0.0);
 OUT.vLightVec = normalize(mul(tempLightDir, View).xyz);

 return OUT;
}

sampler LookupMap = sampler_state
{
 Texture = <tRainbowLookup>;

 Depth of Field

WP-01410-001_v01 17
07/14/04

 MinFilter = LINEAR;
 MagFilter = LINEAR;
 MipFilter = NONE;
 AddressU = CLAMP;
 AddressV = CLAMP;
};

sampler CoronaLookupMap = sampler_state
{
 Texture = <tCoronaLookup>;
 MinFilter = LINEAR;
 MagFilter = LINEAR;
 MipFilter = NONE;
 AddressU = CLAMP;
 AddressV = CLAMP;
};

sampler MoistureMap = sampler_state
{
 Texture = <tMoisture>;
 MinFilter = LINEAR;
 MagFilter = LINEAR;
 MipFilter = NONE;
 AddressU = CLAMP;
 AddressV = CLAMP;
};

void CalculateRainbowColor(VS_OUTPUT IN, out float d, out half4
scattered, out half4 moisture)
{
/*
 notes about rainbows

 -the lookuptexture should be blurred by the suns angular size 0.5
degrees.
 this should be baked into the texture

 -rainbow light blends additively to existing light in the scene.
 aka current scene color + rainbow color
 aka alpha blend, one, one

 -horizontal thickness of moisture,
 a thin sheet of rain will produce less bright rainbows than a
thick sheet
 aka rainbow color * water ammount, where water ammount ranges
from 0 to 1

 -rainbow light can be scattered and absorbed by other atmospheric
particles.
 aka simplified..rainbow color * light color

*/

 Depth of Field

WP-01410-001_v01 18
07/14/04

 d = dot(
 IN.vLightVec, //this can be
normalized per vertex
 normalize(IN.vEyeVec) //this must be normalized
per pixel to prevent banding
);

 //d will be clamped between 0 and 1 by the texture sampler
 // this gives up the dot product result in the range of [0 to 1]
 // that is to say, an angle of 0 to 90 degrees
 scattered = tex2D(LookupMap, float2(dropletRadius, d));
 moisture = tex2D(MoistureMap,IN.vTexCoord.xy);

}

float4 PS_rainbowOnly(VS_OUTPUT IN) : COLOR
{
 //note: I can use a half for d here, since there are no
corruptions
 half d;
 half4 scattered;
 half4 moisture;
 CalculateRainbowColor(IN, d, scattered, moisture);
 return scattered*rainbowIntensity*moisture.x;

}

half4 PS_rainbowAndCorona(VS_OUTPUT IN) : COLOR
{
/*
 Same as rainbow shader, but adds corona arround sun.
*/

 float d; //note: I use a float for d here, since a half corrupts
the corona
 half4 scattered;
 half4 moisture;

 CalculateRainbowColor(IN, d, scattered, moisture);

 //(1 + d) will be clamped between 0 and 1 by the texture sampler
 // this gives up the dot product result in the range of [-1 to
0]
 // that is to say, an angle of 90 to 180 degrees
 half4 coronaDiffracted = tex2D(CoronaLookupMap,
float2(dropletRadius, 1 + d));

 return (coronaDiffracted +
scattered)*rainbowIntensity*moisture.x;
}

technique Rainbow

 Depth of Field

WP-01410-001_v01 19
07/14/04

{

 pass P0
 <
 string geometry = "fullscreenquad";
 >
 {
 // Shaders
 VertexShader = compile vs_1_1 VS_rainbow();
 PixelShader = compile ps_2_0 PS_rainbowOnly();

 // Render states:
 lighting = false;
 zenable = false;
 alphablendenable = true;
 srcblend = one;
 destblend = invsrccolor;
 }

}

technique RainbowAndCorona
{

 pass P0
 <
 string geometry = "fullscreenquad";
 >
 {
 // Shaders
 VertexShader = compile vs_1_1 VS_rainbow();
 PixelShader = compile ps_2_0 PS_rainbowAndCorona();

 // Render states:
 lighting = false;
 zenable = false;
 alphablendenable = true;
 srcblend = one;
 destblend = invsrccolor;
 }

}

 Depth of Field

WP-01410-001_v01 20
07/14/04

Figure 7 shows a fogbow composed of large white bands. Fogbows are sometimes
also called cloudbows.

Figure 7. Simulation of Fogbow

 Depth of Field

WP-01410-001_v01 21
07/14/04

The photograph in Figure 8 shows primary and secondary rainbows in waterfall mist
in Iceland. Note the inversed colors of the secondary rainbow. Thanks to Orion
Elenzil who provided the photograph.

Figure 8. Primary and Secondary Rainbows in Waterfall Mist

WP-01410-001_v01 22
07/16/04

Bibliography

Cowley, L. 2004. “Atmospheric Optics.” Retrieved July on 19, 2004.
http://www.sundog.clara.co.uk/atoptics/phenom.htm

Dimasi, E., Jordan-Sweet, J. L., and Sarikaya M. 2000. “Orientation of Microcrystals in
Abalone Shell near the Nacre-Prismatic Boundary.” Retrieved on July 19, 2004.
http://www.solids.bnl.gov/~dimasi/bones/abalone/

Laven, P. 2004. “The Optics of a Water Drop: Mie Scattering and the Debye Series”
Retrieved July 19, 2004. http://www.philiplaven.com/index1.html

Lee, R. L. and Fraser, A. B. Fraser. 2001. The Rainbow Bridge: Rainbows in Art Myth, and Science.
University Park, Pennsylvania: Pennsylvania State University Press.

Lee, Raymond L. 1998. “Mie Theory Airy Theory and the Natural Rainbow.” Applied Optics,
37(9).

Wynn, C. 2004. “Real-Time BRDF-Based Lighting Using Cube-Maps.”
Retrieved on July 19, 2004. http://developer.nvidia.com/object/brdfs.html

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

