

SDK White Paper

Fresnel Reflection

WP-01401-001-v01
July 2004

WP-01401-001_v01 1
07/14/04

Abstract

About Fresnel Reflections
When light strikes a material boundary, Fresnel reflection describes how much light
reflects at that boundary versus how much refracts and transmits. Fresnel reflection
occurs commonly in nature and is thus important for realistic real-time graphics.
This paper describes how to implement Fresnel reflection efficiently on DirectX 8.1
hardware such as NVIDIA’s GeForce 3. It provides the source for vertex and pixel
shaders implementing various approximations, shows the resulting screenshots, and
briefly discusses how to choose the most appropriate approximation.

Matthias Wloka
mwloka@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

WP-01401-001_v01 2
07/14/04

Fresnel Reflection

Introduction
When light strikes a material boundary, for example, crossing from air into glass,
only some of the light transmits into the new material; some light reflects at the
boundary. The name for this effect is Fresnel reflection. Fresnel reflection is most
visible when viewing semi-transparent material such as water, window-glass, skin, or
car-paint. Fresnel reflection also occurs when viewing opaque materials such as
metal or paper.

The commonness of Fresnel reflection makes it important for real-time rendering.
This paper explores how to render Fresnel reflection on DirectX 8.1 graphics
hardware, GeForce 3 and later.

The discussion of Fresnel reflection here is restricted to single-material boundaries,
specifically, single boundaries of less dense to more dense materials. Thus, correct
rendering of window panes requires more work, since light hitting a window
typically traverses two boundaries: air-glass upon entering and glass-air on exiting.
This paper covers the correct rendering of a lake, for example, since a lake presents
only a single, less-to-more dense boundary (air-water), as long as the viewer is above
water. If the viewer is underwater, the material boundary is more-to-less dense
(water-air) and beyond the scoop of this paper. The reader may want to consult a
textbook on Optics for ideas on how to render these cases; see Eugene Hecht,
"Optics,” Addison-Wesley, 1987, pp 94-104.

 Fresnel Reflection

WP-01401-001_v01 3
07/14/04

Fresnel’s Formula
Figure 1 depicts the scenario that this paper addresses—material i has an index of
refraction ni which is less than nt, the index of refraction for material t. The angle θ
ranges from zero, when the ray of light is normal to the surface, to θ = π/2, when
the ray of light is incident to the surface.

Figure 1. A ray of light traveling through material i and
striking denser material t.

Fresnel’s formula describes how much light reflects at the material boundary. The
amount of reflection depends on the angle of incidence θ, the polarization of the
light, the ratio of indices of refraction nt/ni, and since the index of refraction
depends on wavelength, the light’s wavelength. The formula is:

Equation 1. R(θ) = ½ (R⊥(θ) + R║(θ))

R⊥ and R║ describe the reflectance for light polarized perpendicular to the plane of
incidence and parallel to it, respectively:

Equation 2. θt = arcsin(ni/nt sin(θ))

Equation 3. R⊥(θ) = sin2(θ - θt) / sin2(θ + θt)

Equation 4. R║(θ) = tan2(θ - θt) / tan2(θ + θt)

Since R⊥ and R║ are undefined for θ = 0, the following limit applies:

Equation 5. R⊥(0) = R�(0) = (ni - nt)2/(ni + nt)2

material i
(with index of refraction ni)

refracted light

reflected light
surface normal

light ray

angle θ

material t
(with index of refraction nt)

 Fresnel Reflection

WP-01401-001_v01 4
07/14/04

Figure 2 plots Fresnel’s formula given by Equation 1 as well as its two components
R⊥ and R║ , given by Equations 3 and 4 respectively. Figure 3 shows a family of
curves for various indices of refraction.

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

angle θ

R(θ)

Figure 2. The graphs for R (black, center), R⊥ (green, top),
and R║ (blue, bottom).

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1
I I c c e
W W a a t t e e r r
P P l l e e x x i i g g l l a a s s
Q Q u u a a r r t t z z
D D e e n n s s e e F F l l i i n n t t g g l l aassss
Z Z i i r r c c o o n n
D D i i a a m m o o n n d d

R(θ)

angle θ

Figure 3. Fresnel's formula for a variety of indices of
refraction.

 Fresnel Reflection

WP-01401-001_v01 5
07/14/04

Substituting Equations 2 through 4 into Equation 1 yields the following:

Equation 6.

R(θ) = ½ (sin2(θ-θt) / sin2(θ+θt)) (1 + cos2(θ+θt) / cos2(θ-θt))

Define c and g as shown in Equations 6 and 7.

Equation 7. c = cos(θ) ni/nt

Equation 8. g = sqrt(1 + c2 - (ni/nt)2)

Substituting c and g into Equation 6 simplifies the formula to:

Equation 9.

R(θ) = ½ ((g-c)/(g+c))2 (1 + [(c(g+c)-(ni/nt)2)/(c(g-c)+ (ni/nt)2)]2)

Rendering with Fresnel’s
Formula

For DirectX 8.1 hardware, computing Fresnel’s formula is possible on either a per-
vertex or a per-pixel basis. The choice largely depends on whether the surface
normals of a model are specified per-vertex or per-pixel. If specified per-pixel, then
Fresnel’s formula needs to be computed per-pixel. If specified per-vertex,
computing Fresnel’s formula per-vertex is sufficient. Computing the formula per-
pixel is only insignificantly more accurate than using the interpolated per-vertex
quantities (assuming reasonable tessellation). The following pages have screenshots
and more details.

Choosing to compute Fresnel’s formula per-pixel, even though normals are
specified per-vertex, may make sense, if an application is heavily vertex-processing
bound. In that case, offloading per-vertex work to a per-pixel level rebalances the
rendering pipeline and increases overall rendering throughput.

The following approximations greatly improve rendering efficiency:

 Assume all light is non-polarized.
 Assume all light is of the same wavelength.

Neither one of these assumptions is generally true. For example, skylight is strongly
polarized, and reflected light is generally multi-colored. These are good
approximations nonetheless, since their effect on Fresnel’s formula is small. This
paper assumes these approximations.

 Fresnel Reflection

WP-01401-001_v01 6
07/14/04

Per-Vertex
While encoding Equation 9 as a DirectX 8.1 vertex-shader is possible, it is also
highly inefficient due to the required number of instructions. Approximating
Equation 9 yields:

Equation 10. R(θ) ≈ Ra(θ) = R(0) + (1-R(0)) (1-cos(θ))5

This approximation yields good results; and it introduces less error than the above
non-polarized light approximation. Figure 4 compares Equation 9 to its
approximation— Equation 10, as well as to a more simplistic approximation to (1-
cos(θ)).

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

RR ((θ)) ffoorr ww aatteerr
RR aa((θ)) ffoorr ww aatteerr

RR ((θ)) ffoorr dd iiaamm oonndd
RR aa((θ)) ffoorr dd iiaamm oonndd

11--ccooss((θ)

angle θ

Figure 4. Fresnel reflection and its approximations for
indices of refraction of water and diamond.

Figure 5 lists a HLSL/Cg code fragment that implements Equation 10. Supplying
R(0) to the shader instead of the refraction-index ratio, avoids computing the
constant R(0) on the fly and therefore shortens and optimizes the shader. Figure 6
shows the VS 1.0 assembly for the same vertex-shader fragment. Figure 7 shows a
result of using this vertex shader approximation.

float fresnel(float3 light, float3 normal, float R0)
{
 // Note: compute R0 on the CPU and provide as a
 // constant; it is more efficient than computing R0 in
 // the vertex shader. R0 is:
 // float const R0 = pow(1.0-refractionIndexRatio, 2.0)
 // / pow(1.0+refractionIndexRatio, 2.0);

 Fresnel Reflection

WP-01401-001_v01 7
07/14/04

 // light and normal are assumed to be normalized
 return R0 + (1.0-R0) * pow(1.0-dot(light, normal), 5.0);
}

Figure 5. HLSL/Cg shader fragment implementing Fresnel’s
formula per-vertex.
; c[0] contains [R(0), 1-R(0), 0, 1]
; r0 contains normalized surface normal
; r1 contains normalized direction from light
vs.1.0
dp3 r0.w, r0, r1
add r0.w, c[0].w, -r0.w
mul r1.w, r0.w, r0.w // squared
mul r1.w, r1.w, r1.w // quartic
mul r1.w, r1.w, r0.w // quintic
mad oD0.a, r1.w, c[0].y, c[0].x

Figure 6. Vertex shader assembly implementing Fresnel’s
formula per-vertex.

Figure 7. Screenshot of per-vertex Fresnel reflection.

Per-Pixel
The per-vertex polynomial approximation used in Equation 10 also applies to
computing Fresnel’s formula per- pixel. Figure 8 shows a HLSL/Cg pixel shader
that implements this per- pixel approximation. Figure 9 lists the corresponding
ps.1.1 assembly code and Figure 12 shows a screenshot of the effect.

Using a texture to encode Fresnel’s formula is another way to compute it per-pixel.
The pixel shader computes N•L = cos(θ) and passes the result as a texture
coordinate for a dependent read on a texture encoding R(arcos(x)). Figure 10
shows a HLSL/Cg pixel shader implementing this technique. Figure 11 lists
corresponding ps.1.3 assembly code and Figure 13 shows a resulting screenshot.

 Fresnel Reflection

WP-01401-001_v01 8
07/14/04

This last approach is the most accurate. Only texture resolution introduces potential
computation errors. Visually comparing the two pixel-shader solutions shows little
difference. Therefore, choosing between these two solutions depends more on a
particular shader having texture stages or register combiners available for
implementing Fresnel’s formula.

float fresnel(float3 light, float3 normal, float R0)
{
 float const cosAngle = 1-saturate(dot3(light, normal));

 float result = cosAngle * cosAngle;
 result = result * result;
 result = result * cosAngle;
 result = saturate(mad(result, 1-saturate(R0), R0));

 return result;
}

Figure 8. HLSL/Cg shader fragment implementing Fresnel’s
formula per-pixel through register-combiner math.

ps.1.1
def c0, 1.0, 0.0, 0.0, R(0)

tex t0 // normal map
texm3x3pad t1, t0 // reflect eye-vector around
texm3x3pad t2, t0 // normal in t0 and use result
texm3x3vspec t3, t0 // to look up reflection color

// dot eye-vector with per-pixel normal from t0
dp3_sat r1.rgba, v0_bx2, t0

// run Fresnel approx. on it: R0 + (1-R0) (1-cos(q))^5
mul r0.a, 1-r1.a, 1-r1.a // squared
mul r0.a, r0.a, r0.a // quartic
mul r0.a, r0.a, 1-r1.a // quintic
mad r0.a, r0.a, 1-c0.a, c0.a // r0.a is Fresnel factor
lrp r0, r0.a, t3, v1 // blend based on Fresnel

Figure 9. Pixel shader assembly implementing Fresnel’s
formula per-pixel through register-combiner math.

fragout main(vpconn IN,
 uniform samplerCUBE EnvironmentMap,
 uniform sampler2D NormalMap,
 uniform sampler2D FresnelFunc)
{
 fragout OUT;

 float3 environColor = texCUBE(EnvironmentMap).xyz;
 float4 normal = 2*(tex2D(NormalMap)-0.5);
 float fresnelValue = saturate(tex2D_dp3x2(FresnelFunc,
 IN.TexCoord2,
 normal).w);

 Fresnel Reflection

WP-01401-001_v01 9
07/14/04

 float3 litColor = IN.Color.xyz + IN.Specular.xyz;

 OUT.col.xyz = lerp(litColor, environColor, fresnelValue);
 return OUT;
}

Figure 10. HLSL/Cg shader fragment implementing Fresnel’s
formula per-pixel through a texture lookup.

ps.1.3

tex t0 // model color-map
tex t1 // reflection color
tex t2 // normal map
texdp3 t3, t2 // Fresnel look-up function R(arcos(x))

// t3.a is Fresnel: blend between no and full reflection
mad t0, t0, v0, v1
lrp r0.rgb, t3.a, t1, t0

Figure 11. Pixel shader assembly implementing Fresnel’s
formula per-pixel through texture lookup.

Figure 12. Screenshot of Fresnel reflection using per-pixel
register-combiner math.

 Fresnel Reflection

WP-01401-001_v01 10
07/14/04

Figure 13. Screenshot of Fresnel reflection using per-pixel
texture lookups.

 Fresnel Reflection

WP-01401-001_v01 11
07/14/04

Results
Figures 14 and 15 show screenshots of the same scene without Fresnel reflection
and with the simplistic 1-cos(θ) approximation, respectively. The effect “Fresnel
Reflection” generated these screenshots. It is available for download from:
http://developer.nvidia.com/view.asp?PAGE=nvsdk.
This effect implementation is invaluable for evaluating visual differences between
the various approximations described here. In particular, it should clarify that adding
Fresnel-based reflection adds important visual detail. Furthermore, the simplistic 1-
cos(θ) approximation is visually unacceptable. Better approximations are available at
little to no added performance expense. Finally, the per-vertex and per-pixel
approximations are visually distinguishable only through A/B-style comparisons.

Figure 14. Screenshot of the test scene without Fresnel
reflection.

Figure 15. Screenshot approximating Fresnel reflection
through 1-cos(θ).

 Fresnel Reflection

WP-01401-001_v01 12
07/14/04

Appendix:
Indices of Refraction

Table 1. Selected indices of refraction.

Material Index of Refraction
Vacuum 1.0 (min. index of refraction)

Air 1.000293

Ice 1.31

Water 1.333333

Ethyl Alcohol 1.36

Fluorite 1.43

Poppy Seed Oil 1.469

Olive Oil 1.47

Linseed Oil 1.478

Plexiglas 1.51

Immersion Oil 1.515

Crown Glass 1.52

Quartz 1.54

Salt 1.54

Light Flint Glass 1.58

Dense Flint Glass 1.66

Tourmaline 1.62

Garnet 1.73-1.89

Zircon 1.923

Cubic Zirconia 2.14-2.20

Diamond 2.417

Rutile 2.907

Gallium Phosphide 3.5 (max. index of refraction)

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

