

Technical Report

Coverage Sampled
Antialiasing

Peter Young
pyoung@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

October 30, 2006

 i

Introduction

CSAA (Coverage Sampling Antialiasing) is one of the key new features of the GeForce 8
series GPU.

In summary, CSAA produces antialiased images that rival the quality of 8x or 16x MSAA,
while introducing only a minimal performance hit over standard (typically 4x) MSAA. It
works by introducing the concept of a new sample type: a sample that represents coverage.
This differs from previous AA techniques where coverage was always inherently tied to
another sample type. In supersampling for example, each sample represents shaded color,
stored color/z/stencil, and coverage, which essentially amounts to rendering to an oversized
buffer and downfiltering. MSAA reduces the shader overhead of this operation by
decoupling shaded samples from stored color and coverage; this allows applications using
antialiasing to operate with fewer shaded samples while maintaining the same quality
color/z/stencil and coverage sampling. CSAA further optimizes this process by decoupling
coverage from color/z/stencil, thus reducing bandwidth and storage costs.

On the GeForce 8800, the following CSAA modes are supported:

CSAA Mode # of Color/Z/Stencil
Samples

of Coverage Samples

8x 4 8

8xQ (Quality) 8 8

16x 4 16

16xQ (Quality) 8 16

 2

Figure 1: Color and coverage storage/layout in 16x CSAA

CSAA can be enabled in one of the two following scenarios:

• When the application specifically enables CSAA.

• When CSAA is turned on in the control panel by the end user. The control panel
offers users one of two options:

1. “Enhance” mode: All application-created MSAA surfaces are converted to
CSAA surfaces using the control panel-specified CSAA mode.

2. “Override” mode: The control panel forces a CSAA-enabled backbuffer.
Note that this mode only works for applications that render directly to the
backbuffer.

It is recommended that applications enable CSAA directly. The process of implementing
CSAA is incredibly simple (almost exactly the same as implementing MSAA), and the benefit
to your users is enormous; they get much higher image quality at almost zero performance
loss, without the fuss and hassle of manipulating the control panel.

 3

Implementation –
DirectX 10

Creating CSAA-compatible Surfaces
CSAA is invoked through the use of the Quality field in the multisample descriptor
structure:

typedef struct DXGI_SAMPLE_DESC {
 UINT Count;
 UINT Quality;
} DXGI_SAMPLE_DESC, *LPDXGI_SAMPLE_DESC;

Since this structure already provides a mechanism to specify the number of stored
color/z/stencil samples through the Count field, and the number of shaded color samples is
always 1 in a multisampled buffer, we can specify the number of coverage samples by setting
the Quality field to the desired value. Below is a table listing the various CSAA modes, and
the appropriate Count/Quality values used to enable them:

Table 1: CSAA modes and corresponding sample/coverage counts for
DX10

Desired CSAA Mode Count (# Color/z/stencil
samples)

QualityValue

8x 4 8
8xQ (Quality) 8 8

16x 4 16
16xQ (Quality) 8 16

Determining Hardware Support for CSAA
Checking for CSAA support is simple:

• Check the vendorid of the current device to ensure it is NVIDIA hardware

• Use CheckMultisampleQualityLevels() to check the max quality level.
Pass the desired color/z/stencil count as SampleCount, and if pNumQualityLevels is
greater than the desired Quality value, then CSAA is supported.

For example, if you pass a SampleCount of 4, a pNumQualityLevels value of 9 or greater
indicates that the 8x and 8xQ CSAA modes are available. A pNumQualityLevels value of 17 or
greater indicates that the 16x and 16xQ CSAA modes are available.

 4

Implementation –
DirectX 9

Creating CSAA-compatible Surfaces
The method of implementing CSAA in DX9 differs from DX10. This is due to a limitation
in the DX9 runtime, which prohibits the driver from exposing multisample quality values
greater than 7. For this reason, instead of specifying the number of coverage samples with
the quality value, we simply set quality to a predetermined value which will be interpreted as a
specific CSAA mode by the driver.

When creating a D3D device or render target, use the D3DMULTISAMPLE_TYPE
parameter to specify the number of color/z/stencil samples, and use the quality parameter to
set the CSAA mode. Refer to the following table:

Table 2: CSAA modes and corresponding sample/coverage counts for
DX9

Desired CSAA Mode Multisample Value Quality Value
8x D3DMULTISAMPLE_4_SAMPLES 2

8xQ (Quality) D3DMULTISAMPLE_8_SAMPLES 0
16x D3DMULTISAMPLE_4_SAMPLES 4

16xQ (Quality) D3DMULTISAMPLE_8_SAMPLES 2

Determining Hardware Support for CSAA
Checking for CSAA support is simple:

• Check the vendorid of the current device to ensure it is NVIDIA hardware

• Use CheckDeviceMultisampleType() to check the max quality level. Set
the MultiSampleType parameter to reflect the desired number of color/z/stencil
samples, and if pQualityLevels is greater than the desired Quality value, then CSAA is
supported.

For example, if you pass a sample count of 4, a pQualityLevels value of 5 or greater indicates
that both 8x and 16x CSAA modes are available.

Implementation -
OpenGL

Implementing CSAA in OpenGL is done through a new extension:

GL_NV_framebuffer_multisample_coverage

 5

When support for this extension is verified, you may use the following function to create
CSAA render buffers:

void RenderbufferStorageMultisampleCoverageNV(
 enum target, sizei coverageSamples,
 sizei colorSamples, enum internalformat,
 sizei width, sizei height);

Use of this function is identical to the older RenderbufferStorageMultisampleEXT(); the
only difference is the ability to specify distinct color/z/stencil sample counts and coverage
sample counts. Like DX10, the OpenGL function to specify color samples and coverage
samples takes exact sample counts as arguments. Refer to the table below:

CSAA Mode colorSamples value coverageSamples value

8x 4 8

8xQ (Quality) 8 8

16x 4 16

16xQ (Quality) 8 16

CSAA Guidelines

Performance
CSAA performance is generally very similar to that of typical MSAA performance, given the
same color/z/stencil sample count. For example, both the 8x and 16x CSAA modes (which
use 4 color/z/stencil samples) perform similarly or identical to 4x MSAA.

CSAA is also extremely efficient in terms of storage, as the coverage samples require very
little memory.

Transparency Antialiasing
Transparency AA is 100% compatible with CSAA. However, keep in mind that
transparency AA operates at a lower resolution; it works at color/stencil/z resolution instead
of coverage resolution, since transparency AA requires the color/z/stencil sample
information to work.

 6

Development Considerations
For best image quality results, try to avoid the following scenarios when implementing
CSAA:

• Avoid sharing z-buffers between different multisample render targets. This can
affect coverage information and potentially cause a loss in antialiasing quality. If
your application renders to multiple render targets, the following loop for each RT
is safe for CSAA:

o Clear depth and color

o Render to multisample target

o Blit to non-multisample target

• Avoid partial depth-clears, as they can affect coverage information. If a triangle edge
intersects the edge of the cleared region, antialiasing quality may be reduced at the
point of intersection.

• Try to avoid updating color and z independently, as CSAA coverage information is
only updated when z is being written. The exception to this is when the geometry
for each pass is identical (such as in typical z-only prepasses), in which case image
quality will be preserved.

CSAA – Results
Below are images highlighting the difference in quality between standard 4x MSAA and 16x
CSAA modes. Observe the improvement in image quality for 16x, and note the fact that
16x CSAA typically performs similarly to 4x MSAA.

 7

CSAA – 4x vs. 16x (note additional color samples in 16x)

 8

CSAA – 4x vs 16x (note tighter edge resolution in 16x)

 9

CSAA – 16xQ

 10

NVIDIA Corporation
2701 San Tomas Expressway

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, are trademarks of NVIDIA Corporation.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft
Corporation.

OpenGL is a trademark of SGI. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

Copyright NVIDIA Corporation 2002

Santa Clara, CA 95050
www.nvidia.com

	 Introduction
	Implementation – DirectX 10
	Creating CSAA-compatible Surfaces
	Determining Hardware Support for CSAA

	Implementation – DirectX 9
	Creating CSAA-compatible Surfaces
	Determining Hardware Support for CSAA

	Implementation - OpenGL
	CSAA Guidelines
	Performance
	Transparency Antialiasing
	Development Considerations

	CSAA – Results
	CSAA – 4x vs. 16x (note additional color samples in 16x)
	CSAA – 4x vs 16x (note tighter edge resolution in 16x)
	CSAA – 16xQ
	Trademarks
	Copyright

