

SDK White Paper

Improve Batching Using
Texture Atlases

WP-01387-001-v01
July 2004

WP-01387-001_v01 1
07/07/04

Motivation

Batching, or rather the lack of batching is a common problem for game developers.
A batch consists of a number of render-state changes followed by a draw-call.
Submitting hundreds or worse, thousands of batches per frame inevitably makes an
application CPU-limited due to inherent driver overhead. See [Wloka2003] for a
detailed characterization of this problem.

While game developers are aware of and understand this problem, it is nonetheless
difficult to avoid: most games require many objects of different characteristics to be
displayed, thus they typically require a significant number of render-state changes.
Therefore, game developers require practical techniques that allow them to eliminate
state-changes and merge batches.

An internal survey of a few recent DirectX9 titles reveals that the following render-
state changes occur most frequently: SetTexture(),
SetVertexShaderConstantF(), SetPixelShader(),
SetStreamSource(), SetVertexDeclaration(), and SetIndices().

SetTexture() is one of the most common batch-breakers. This paper describes a
technique for reducing batches caused by having to repeatedly bind different
textures, i.e., repeated calls to DirectX9’s SetTexture().

The technique copies multiple textures into one larger texture: we call this larger
texture an atlas (sometimes also called a texture page). Models using these packed
atlases need to remap their texture coordinates to access the relevant sub-rectangles
out of the texture atlas.

We describe this technique in practical detail in ‘How Batching via Texture Atlases
Works’. ‘Using Atlases in Everyday Life’ explains why atlas techniques work, despite
common misconceptions. Finally, the section ‘Conclusions’ sums up our findings.

 Batching Using Texture Atlases

WP-01386-001_v01 2
07/06/04

How Batching via Texture Atlases Works

The most straightforward way to render, say, two textured quads is to bind the
texture of the first quad (i.e., call SetTexture()), draw the first quad (i.e., call
DrawPrimitive()), then bind the texture for the second quad, and finally draw
the second quad:
SetTexture();
DrawPrimitive();
SetTexture();
DrawPrimitive();

This rendering technique requires two batches.

Figure 1: Combining two textures into an atlas. The texture coordinates for
accessing data out of an atlas are adjusted according to where the original texture is
in the atlas.

If we combine the two textures into a texture atlas, as shown in Figure 1, we no
longer need to call SetTexture() between drawing the two quads, and thus are
able to combine the two DrawPrimitive() calls into one. In other words, we
reduce batch-count from two to one:

 Batching Using Texture Atlases

WP-01386-001_v01 3
07/06/04

SetTexture();
DrawPrimitive();

To access the same texels out of an atlas instead of the original texture, however,
one has to modify the texture coordinates of the models referring to that texture.
For example, a quad displaying an entire texture uses texture coordinates (0, 0), (0,
1), (1, 0), and (1, 1). In contrast, a quad wanting to show the same texels, but
accessed out of an atlas, refers to the atlas’s sub-rectangle containing that texture.
Figure 1 shows the texture coordinates for the corner texels of textures A and B, as
well as the texture coordinates required to access the same information out of their
common atlas.

The following sequence of steps thus enables improved batching via texture atlases:

1. Select a collection of textures that are responsible for breaking batches.

2. Pack this texture collection into one or more texture atlases.

3. Update the texture coordinates of all models using any of the textures in
that collection to access the appropriate sub-rectangles of an atlas instead.

4. Ensure that sequential DrawPrimitive() calls that are uninterrupted by
state-changes issue as a single DrawPrimitive() call.

Ideally, steps 1-3 integrate into an existing tool chain, and step 4 is part of the
rendering engine.

Selecting a suitable collection of textures for step 1 could be as easy as grouping all
textures of the same format into an atlas. To help with steps 2 and 3 NVIDIA
provides free tools:

 The Atlas Creation Tool [AtlasCreation2004] is a command-line tool that
accepts a collection of textures and packs them into atlases. It also generates a
file describing how textures and texture coordinates map from the original
texture to a texture atlas. The accompanying user’s guide describes its options.

 The Atlas Comparison Viewer [AtlasViewer2004] reads and interprets these
mapping-files so as to correctly display textures out of atlases. The Atlas
Comparison Viewer also demonstrates the feasibility of texture atlases: it
provides a pixel-by-pixel comparison of the results of texturing out of textures
versus atlases.

A tool to re-map texture coordinates of general models, i.e., a solution to step 3
above, is not provided: game developers use a variety of model formats and their
tool-chains differ, so creating such a general tool is ambitious. But since the Atlas
Comparison Viewer performs a similar task (re-mapping of texture coordinates for
quads), and since its source code is included, we hope that game developers are able
to use the provided source as blueprints for their internal tools.

 Batching Using Texture Atlases

WP-01386-001_v01 4
07/06/04

Using Atlases in Everyday Life

Using Mipmaps with Atlases
Mipmapped textures are essential for achieving rendering performance. Packing
mipmapped textures into an atlas, however, seems to imply that the mipmaps of
these packed textures combine, until eventually the lowest mip-level of 1x1
resolution smears all textures of an atlas into a single texel. It thus seems that using
an atlas with mipmaps creates undesirable image-artifacts.

The truth is that the tool-chain generates (or should generate) the mipmaps for
individual textures before these are packed into an atlas. To obtain the highest
fidelity results a special-purpose mipmap filter should be used (see for example,
[TextureTools2000]).

When packing textures and their mip-chains into an atlas, the textures as well as
their mip-chains copy directly into their respective mipmap levels. Because we
never combine texels – we just copy them – no smearing or cross-pollution occurs.

Figure 2: The ‘8’, ‘4’, and ‘2’ power-of-two lines for a 16x16 atlas (note that only
vertical power-of-two lines are shown). A sub-texture of dimensions WxH cannot
cross ‘W’ power-of-two lines horizontally nor can it cross ‘H’ power-of-two lines
vertically.

 Batching Using Texture Atlases

WP-01386-001_v01 5
07/06/04

Even when generating a complete mipmap chain for an atlas on the fly, polluting
mipmaps with texels from neighboring textures is avoidable: the filter generating the
mipmaps should properly clamp at a texture’s borders, a requirement also common
when generating mipmaps for non-atlas textures.

Finally, even generating mipmap chains of atlases on the fly with a two-by-two box-
filter does not pollute mipmaps with neighboring texels if the atlas is a power-of-
two texture and contains only power-of-two textures that do not unnecessarily cross
power-of-two lines. For example, a 16x16 atlas containing one 8x8 texture and
twelve 4x4 textures must ensure that the 8x8 texture is in one of the four corners of
the atlas – for example, it cannot be in the center of the atlas (see Figure 2).

As we generate the various mip-levels for such an atlas, texels of separate textures
do not combine until the 2x2 level. In the 4x4 atlas-level, the 8x8 texture
corresponds to a 2x2 texel block and the 4x4 textures reduce to single texels each.
To be able to represent the 8x8 texture with a single texel, we also need to generate
the 2x2 level of the atlas. And thus the 2x2 level contains 1 texel representing the
8x8 texture and 3 texels representing the combination of 4 4x4 textures each:
pollution occurs (see Figure 3).

Figure 3: Texture pollution at the 2x2 mip-level for an atlas containing 8x8 and 4x4
textures.

Even when copying mip-chains into an atlas a similar problem occurs: because
textures can differ in size and large textures have longer mip-chains than smaller
textures, the largest texture packed into an atlas determines the minimum number of
mipmap levels in that atlas. The smaller textures thus have effectively longer than
necessary mip-chains whose bottom-most levels are uninitialized (see Figure 4).

Solution approaches might be to abridge an atlas’s mip-chain to the length of the
mip-chain of the smallest texture contained in the atlas – at the expense of
performance and image quality. Another approach is to limit only same or similar
size textures to pack into the same atlas. Luckily, these measures are uncalled for.

Because models using texture atlases use modified texture coordinates (see above
Section ’How Batching via Texture Atlases Works’), a triangle’s texture coordinates
never span across multiple atlas sub-rectangles containing separate textures. Thus,

 Batching Using Texture Atlases

WP-01386-001_v01 6
07/06/04

even when a single triangle spans an entire sub-texture in an atlas, and even if that
triangle maps to a single pixel on screen, then only the one-texel representation of
that texture is accessed. This one-texel representation is filled with valid non-
polluted data (see Figure 5). In other words, in order to be able to access the
bottom-most, uninitialized or polluted mip-levels, a sub-texture spanning triangle
would have to be smaller than half a pixel. DirectX’s rasterization rules make it
unlikely that such a triangle generates any pixels. Thus, corruption due to accessing
these bottom-most mip-levels does not occur. Using a positive mipmap LOD-bias
to artificially blur textures, however, forces access to these bottom-most mip-levels
and is thus to be avoided.

Figure 4: Uninitialized texels at the 2x2 and 1x1 mipmaps for an atlas containing
8x8 and 4x4 textures.

To save video-memory, it is nonetheless good practice to avoid storing completely
uninitialized mip-levels. For example, a 1kx1k atlas containing 16 256x256 textures
should only store eight mip-levels: the 2x2 and 1x1 levels do not contain relevant
data and are superfluous.

The Atlas Creation Tool [AtlasCreation2004] follows these principles and copies a
texture’s mip-chain into the generated atlas. For textures without complete mip-
chains it first generates the complete mip-chain and then copies the data. The
uninitialized texels of an atlas contain black. The Atlas Comparison Viewer
[AtlasViewer2004] shows no visible artifacts even at extreme viewing angles that
force access to the lowest mipmaps.

 Batching Using Texture Atlases

WP-01386-001_v01 7
07/06/04

Figure 5: Because all models have remapped texture coordinates to only access an
atlas’s sub-texture, even single-pixel quads that access an entire sub-texture only
access valid, initialized, and non-polluted texels.

Using Clamp, Wrap, or Mirror
Modes with Atlases

GPUs provide different address modes for when texture coordinates are outside the
zero to one range. In clamp mode, coordinates outside the [0, 1] interval clamp to
either zero or one. The visual effect of this mode is that a texture’s border texels
repeat indefinitely. Wrap mode discards the integer part of a texture coordinate and
just relies on the fractional part to address a texture. Mirror mode repeatedly
mirrors the texture image for texture coordinates outside the [0, 1] interval. Figure 6
illustrates these different texture addressing modes.

To access a texture packed into the center of an atlas one uses texture coordinates
that are a strict subset of [0,1], thus a GPU’s address modes never apply. Worse,
remapping texture coordinates outside of the [0, 1] range, i.e., texture coordinates
making use of address modes, results in atlas coordinates that access neighboring
textures in the atlas (see Figure 7).

A possible workaround is to replicate the same texture multiple times into an atlas.
For example, if a texture wraps up to five times, then this texture copies five times
into an atlas. This technique wastes large amounts of texture memory, especially
when address modes in the u- and v-dimensions are used simultaneously. It also
complicates the atlas-packing algorithm, as it now requires usage information about

 Batching Using Texture Atlases

WP-01386-001_v01 8
07/06/04

the textures: what address modes are particular textures using and what are their
minimum and maximum texture coordinates in use?

Figure 6: Clamp, wrap, and mirror address modes.

Figure 7: Original texture coordinates outside the [0, 1] range, i.e., coordinates
indicating the use of an address mode, map to atlas coordinates that access texels
outside the intended sub-texture.

Fortunately, replicating textures multiple times into an atlas is unnecessary. The
preferred solution is to tessellate models so that their texture coordinates are always

 Batching Using Texture Atlases

WP-01386-001_v01 9
07/06/04

in the [0, 1] range. These resulting additional vertices typically do not incur a
performance penalty as modern GPUs are rarely vertex-processing bound.

Another solution is to emulate these address modes with a pixel shader; the next
section provides the details.

Emulating Clamp, Wrap, and
Mirror Addressing with Pixel
Shaders

The Atlas Comparison Viewer [AtlasViewer2004] implements clamp, wrap, and
mirror addressing for textures that are part of an atlas. It uses pixel shaders to
emulate these addressing modes.

For example, to implement clamping, a shader modifies the texture coordinates used
to access an atlas. Instead of using the incoming texture coordinates directly to
access the atlas, the shader first clamps these coordinates to the maximum and
minimum values allowed for the given sub-rectangle that contains the relevant
texture in the atlas.

For wrapping and mirroring, shaders similarly transform the incoming texture
coordinates to emulate the respective address modes. In particular for wrapping,
care has to be taken to avoid skewing which mip-level is used for pixels at the wrap
borders. Using the newly wrapped texture coordinates directly via HLSL’s
tex2D(s, t) (assembly’s texld) call is inadvisable: tex2D(s, t) computes
which mip-level to use from the supplied texture coordinates. Pixels displaying
texels at the wrapping borders have texture coordinates that are discontinuous, i.e.,
jump from say 0.99 to 0.0 over the span of 1 pixel. The texture-coordinate
derivatives are thus very large, forcing use of lower mip-levels, and thus producing
wrong results (see Section ‘Using Mipmaps with Atlases’ above).

Instead, we avoid altering which mip-level is accessed. The HLSL call tex2D(s,
t, ddx, ddy) (assembly texldd) instructs GPUs to use particular derivatives to
decide which mip-level to use. We thus compute the arguments ddx and ddy in the
shader from the original texture coordinates using HLSL’s ddx() and ddy()
(assembly dsx, dsy) instructions and then use the results to access the atlas. See
also the source code for the Atlas Comparison Viewer [AtlasViewer2004], more
specifically the Wrap.ps pixel shader for how this technique works.

Emulating address modes in the pixel shader as described has drawbacks compared
to tessellating models to enforce texture coordinates in the [0, 1] range (see Section
’Using Clamp, Wrap, or Mirror Modes with Atlases‘s above). First, emulation
requires use of the pixel-shader assembly instructions dsx, dsy, which are only
supported by pixel shader profiles ps_2_a and later. Thus, it excludes GPUs that
only support ps_2_0 or ps_2_b profiles. Second, selecting which sub-rectangle of an
atlas to clamp, wrap, or mirror to has to be encoded in the vertex stream and passed
to the pixel-shader. Simply changing a pixel-shader constant as demonstrated in the
Atlas Comparison Viewer [AtlasViewer2004] is unacceptable as it would break the
batch. Thus, additional software work is required to integrate this feature into an
existing engine. Third and finally, modifying texture coordinates in the pixel shader

 Batching Using Texture Atlases

WP-01386-001_v01 10
07/06/04

costs pixel shader performance: a concern since today’s games are more likely pixel
shader bound than vertex shader bound.

Using Coordinates in the Zero
to One Range

DirectX defines texture coordinates zero and one to coincide, i.e., a vertex with
texture coordinates (0, 0) and a vertex with texture coordinates (1, 1) both access the
identical texel (irrespective of filtering mode) when using the wrap texture
addressing mode. To access all texels of a texture of dimensions width by height
once and only once, models need to reduce the addressable range of the texture by
using u-coordinates in the range









−
widthwidth 2
11,

2
1

 (1)

and v-coordinates in the range









−
heightheight 2
11,

2
1

. (2)

Most applications, however, use texture coordinates ranging from zero to one
inclusive, nonetheless. While such coordinates actually invoke wrap, clamp, or
mirror address modes, the benefit of being texture-dimension independent
outweighs the slight image-quality reduction.

Because texture coordinates in the inclusive [0, 1] interval thus address an area larger
than the actual texture, directly re-mapping these coordinates to atlas coordinates
also accesses an area larger than the texture’s assigned sub-rectangle. The Atlas
Creation Tool [CreationTool2004] offers several solutions to this problem.

The first option is to use the Atlas Creation Tool’s default setting. In that case, the
Atlas Creation Tool maps the coordinates directly. If the original texture
coordinates are in the range specified by equations (1) and (2), then the atlas
coordinates correctly access only texels of the original texture. The Atlas
Comparison Viewer’s [ComparisonViewer2004] display mode ‘Original Adjusted,
Atlas Adjusted’ demonstrates the resulting image quality.

If the original texture coordinates, however, range from zero to one inclusive, then,
yes, the atlas coordinates do access texels of neighboring textures. The resulting
image artifacts are, however, minimal as the Atlas Comparison Viewer demonstrates
via its ‘Original NOT adjusted, atlas NOT adjusted’ display mode.

A better solution is to specify the Atlas Creation Tool’s ‘–halftexel’ option. It
instructs the tool to rescale all texture coordinates to fit into the range specified by
equations (1) and (2). The corresponding Atlas Comparison Viewer’s display mode
‘Original NOT adjusted, atlas adjusted’ thus shows this scaling in the difference
view. If the intent of specifying zero to one inclusive coordinates is to refer to an
entire texture and no more, while maintaining texture-dimension independence,
then integrating the Atlas Creation Tool into the tool-chain realizes both intents.

 Batching Using Texture Atlases

WP-01386-001_v01 11
07/06/04

Applying the previous section’s pixel-shader to fix the one-texel wrapping,
clamping, or mirroring is another possible solution. This solution, however, is
heavy-weight and unnecessary as the Atlas Comparison Viewer’s display mode
‘Original NOT adjusted, atlas NOT adjusted’ demonstrates.

Applying Texture Filtering To
Atlases

Specifying coordinates in the range of equations (1) and (2) (see previous section)
samples texels at their exact center. Sampling a texel at its center means that only
that texel contributes to the filtered output, even when bilinear filtering is enabled.
Conversely, sampling a texel off-center and bilinearly filtering it, results in adjacent
texels to contribute. This behavior, however, is to be avoided for texels lining the
border of sub-textures in an atlas, as they are in danger of pulling in texels from
unrelated textures.

While bilinear filtering of the highest resolution mip-level is thus safe, anisotropic
filtering of the same mip-level does potentially access unrelated neighboring texels.
Worse, bilinear or anisotropic filtering of all lower mip-maps also access unrelated
neighboring texels, as Figure 8 demonstrates.

Figure 8: Bilinear filtering of lower mip-levels accesses texels from unrelated
neighboring textures.

Unfortunately, these artifacts are not easily overcome. While their overall effect on
image quality is small, they are nonetheless noticeable (see Atlas Comparison Viewer
[ComparisonViewer2004]). Experimentation with the Atlas Comparison Viewer
shows that enabling anisotropic filtering actually minimizes these errors. That
behavior seems counter-intuitive since an anisotropic filter penetrates deeper into a
bordering texture than a bilinear filter. Anisotropic filters, however, have by
definition narrower footprints than bilinear filters, and thus fewer unrelated texels
enter the equation.

Adding border texels to a texture is a possible solution to reducing artifacts due to
texture filtering. For example, to add an n-pixel border to a width x height texture,
one would rescale the original texture to dimensions width-2n x height-2n, place this
rescaled texture at the center of the new texture, and extend the scaled texture’s
border texels to the borders of the new texture. Rescaling textures is necessary to
maintain, for example, power-of-two restrictions on a texture’s dimensions.

 Batching Using Texture Atlases

WP-01386-001_v01 12
07/06/04

Placing textures with similar hues, similar border texels, or similar mipmaps into a
common atlas is another way to minimize texture-filtering artifacts.

Using Volume Textures as
Atlases

Volume textures are seemingly perfect for storing multiple textures: each slice of a
volume texture stores exactly one original texture. To access different textures one
only varies the third, i.e., w, texture-coordinate.

Clamp, wrap, or mirror address modes work correctly for the u- and v-dimensions
of each slice of the volume texture even without pixel-shader emulation, as long as
all textures stored in slices are of the same dimensions. If a texture is smaller than
the dimension of a slice, then texture memory is wasted and clamp, wrap, or mirror
only work correctly if the slice’s empty space duplicates texel data according to the
desired address mode.

Unfortunately, mipmaps of volume textures reduce in size in all dimensions, e.g., a
4x4x4 volume texture has mipmaps of dimension 2x2x2 and 1x1x1. Thus, storing
mipmapped textures in a volume texture proves impossible, as there is not enough
space available in a volume texture’s mip-chain.

Volume textures are nonetheless useful as texture atlases for textures guaranteed to
not need mipmaps, such as 2D user-interface textures. 2D user-interface textures
are always screen-aligned and maintain the same distance from the camera, i.e., they
do not minify. Thus, if they have a mip-chain, a GPU never accesses it; storing a
mip-chain for these textures is superfluous. These textures are therefore ideal for
storing into a non-mipmapped volume texture for batching purposes. To avoid
accessing data from neighboring volume slices, care has to be taken to only sample
at the center of w-slices when bilinear filtering is on. The Atlas Creation Tool
[AtlasCreation2004] supports volume textures via the ‘-volume’ option.

 Batching Using Texture Atlases

WP-01386-001_v01 13
07/06/04

Conclusions

Texture atlases are not a new technique; many games use them for specialized
situations, e.g., rendering text or sprite animations. Some games even use them as
described here.

As GPUs continue to follow Moore’s Law squared [Wloka2003] and GPUs thus
become comparatively faster than CPUs, it is important for game developers to
aggressively reduce batches. For a CPU-limited game fewer batches means higher
frame-rates or more eye-candy, physics, and AI CPU-computations.

The texture atlases technique is one tool that can reduce batch-counts. While texture
atlases have the stigma of producing lower image quality, the Atlas Comparison
Viewer [AtlasViewer2004] demonstrates this to be largely a misconception. This
paper explains how to use texture atlases and how to avoid common pitfalls. Where
appropriate we point out potential performance, visual quality, and programming
costs associated with atlases. Since the Atlas Comparison Viewer [AtlasViewer2004]
and the Atlas Creation Tool [AtlasCreation2004] are freely available (source code
inclusive), we hope game developers take a second look at texture atlases as a
technique to be integrated into their tool chains.

WP-01387-001_v01 14
07/07/04

Bibliography

[AtlasCreation2004] “Atlas Creation Tool User Guide,” NVSDK 7.0, March’04.

[AtlasViewer2004] “Atlas Comparison Viewer User Guide,” NVSDK 7.0, March’04.

[TextureTools2000] “Texture Tools User Guide,” NVSDK 7.0, March’04.

[Wloka2003] “Batch, Batch, Batch: What Does It Really Mean,” Matthias Wloka,
GDC 2003, San Jose, CA.
http://developer.nvidia.com/docs/IO/8230/BatchBatchBatch.ppt

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004, 2005 NVIDIA Corporation. All rights reserved

