

Technical Report

Antialiasing with
Transparency

Antialiasing with Transparency

Introduction
Alpha testing is a simple and relatively easy way to simulate sparse geometry such as
vegetation without necessitating complex models. Geometric detail is encoded into a fourth
component of an RGBA texture to form a cutout of the pixels to be rendered. This allows
us to produce a complex image by just rendering a texture-mapped quad.

The problem with using alpha testing to virtually simulate geometry is the hard edge that is
produced where the test occurs. This is because the alpha test compares a fragment’s alpha
value against a reference value and either keeps or discards the fragment based on the test
result. What’s worse is that the granularity of the edge matches the size of the texels
displayed on the screen. Therefore, magnified textures will suffer horribly from this cookie
cutter approach.

The conventional solution for dealing with this problem is to use alpha blending. Instead of
using a single reference value to decide whether a pixel will be rendered or not, the alpha
value is used to decide how much the pixel being rendered will contribute to the final image.
The current pixel’s alpha value represents its own contribution whereas the inverse value
(one minus the current alpha) is considered what the previous rendered pixel’s contribution
will be. This is very effective at producing soft edges, but has the disadvantage of being
prohibitively slow. It also necessitates sorting all objects from back to front causing further
CPU intervention in the GPU’s work.

If we could render transparent objects with antialiasing, we would also achieve smooth
virtual edges. One approach would be to supersample the scene; this always works, but has
major disadvantages with respect to performance because four times the original number of
pixels are rendered.

Antialiasing with Post-Processing

Transparency
Supersampling

On GeForce 7800 GTX, NVIDIA has exposed a Supersample renderstate allowing individual
primitives to be supersampled (in combination with a multisampled backbuffer). This is
especially effective for textures with hard edges like a chain link fence or lattice work.

Transparency supersampling provides optimal flexibility: because transparency
supersampling can be controlled on a per-primitive basis, you get the advantage of extremely
high quality supersampling for alpha-tested textures but you can avoid this cost for other
geometry.

Transparency
Multisampling

Multisampling, on the other hand, is based on geometric pixel coverage, and will not work
with fragments where the underlying geometry does not match the actual pixel’s geometry.
Because multisampling computes coverage before the pixel shader is run we need a way to
indicate sample coverage based on a fragment’s alpha value. With GeForce 7800 GTX,
NVIDIA has exposed a render state that allows individual primitives to be multisampled.
Multisampling is accomplished by using the computed alpha as a measure of how many
samples the pixel will take. A texel with an alpha value of one will contribute to all samples
in the destination pixel, while texels with successively lower alpha values will contribute to
fewer samples. Transparency multisampling is especially effective for textures where soft
edges are desirable (as is the case with most vegetation).

When using transparency multisampling, your art assets must have a gradual falloff towards
their edges in the alpha channel. The alpha channel should be created or scaled in the shader
such the computed alpha goes from the alpha reference value to 0.0f at the boundaries. This
ensures that the coverage values will fall off nicely, producing smooth antialiased edges.

In Figure A we have an alpha tested leaf against a tan colored background. With 4x
supersampling, we will have 4 unique results as the pixel shader is run four times (since each
original pixel now becomes four pixels in the blown-up image for supersampling). With
MSAA, the results of all four samples will be dictated by the red sample point. This is
incorrect as the upper right sample is not covered by the leaf and should remain the
background color. The problem is that as far as the hardware is concerned all four samples
are covered since we are rendering an alpha tested quad. With transparency multisampling,
we still run the pixel shader once. However, the samples that are covered are computed
based on the computed alpha value and not geometric coverage.

 3
November 2004

Antialiasing with Post-Processing

The “Antialiasing with Transparency” sample that accompanies this whitepaper illustrates
how to use these new renderstates to effectively antialias textures that contain transparent
texels. The sample renders several thousand grass objects similar to those described by Kurt
Pelzer in his GPU Gems chapter entitled “Rendering Countless Blades of Waving Grass”.

Sample Code
For quick reference here is the bit of code that activates the two states:

To enable Transparency Multisampling in Direct3D first check if it is supported:

(pd3d->
CheckDeviceFormat(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,
 D3DFMT_X8R8G8B8, 0,D3DRTYPE_SURFACE,
 (D3DFORMAT)MAKEFOURCC('A', 'T', 'O', 'C'))) == S_OK);

When rendering alpha tested fragments multisampling can be turned on by setting:

pd3dDevice->
SetRenderState(D3DRS_ADAPTIVETESS_Y,
 (D3DFORMAT)MAKEFOURCC('A', 'T', 'O', 'C'));

 4
November 2004

Antialiasing with Post-Processing

To enable Transparency Supersampling first check if it is supported:

(pd3d->
CheckDeviceFormat(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,
 D3DFMT_X8R8G8B8, 0, D3DRTYPE_SURFACE,
 (D3DFORMAT)MAKEFOURCC('S', 'S', 'A', 'A'))) == S_OK);

When rendering alpha tested fragments supersampling can be turned on by setting:

pd3dDevice->
SetRenderState(D3DRS_ADAPTIVETESS_Y,
 (D3DFORMAT)MAKEFOURCC('S', 'S', 'A', 'A'));

Both modes can be turned off by setting:

pd3dDevice->SetRenderState(D3DRS_ADAPTIVETESS_Y,
 D3DFMT_UNKNOWN);

 5
November 2004

Antialiasing with Post-Processing

Bibliography

1. Kurt Pelzer “Rendering Countless Blades of Waving Grass” in “GPU Gems” ed.
Randima Fernando, Addison Wesley: 2004, ISBN 0-321-22832-4, p 343

 http://developer.nvidia.com/object/gpu_gems_home.html

 6
November 2004

http://developer.nvidia.com/object/gpu_gems_home.html

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2005 by NVIDIA Corporation. All rights reserved

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	Antialiasing with Transparency
	Introduction
	Transparency Supersampling
	Transparency Multisampling
	Sample Code

	�
	Bibliography

