

February 2007
WP-03015-001_v01

White Paper

Texture Arrays
Terrain Rendering

White Paper

ii WP-03015-001_v01
 February 20, 2007

Document Change History

Version Date Responsible Reason for Change
_v01 February 20, 2007 BD, TS Initial release

_v02 October 30, 2007 BD Corrected misspelling of Matthias Wloka’s name in
references section. Sorry Matthias!!

Go to sdkfeedback@nvidia.com to provide feedback on Texture Arrays.

WP-03015-001_v01 1
February 20, 2007

Texture Arrays

Abstract
The appearance of terrain varies widely. When drawing large expansive terrain,
artists require many different textures. There are different ways to solve this,
including splitting the mesh into many pieces with different bound textures per
draw call. DirectX10 introduces the concept of texture arrays allowing an array of
textures to be bound to a shader as a single piece of state, dynamically indexed
within the shader. This allows a palette of textures to be applied to a terrain mesh,
which means we are able to draw the entire terrain section in a single draw call.

The equivalent in DirectX9 would require multiple draw calls which would reduce
efficiency. Alternatively, texture atlases are commonly used. However, atlases
require careful handling and impose restrictions on art content, so are not ideal (see
references).

Bryan Dudash
NVIDIA Corporation

White Paper

2 WP-03015-001_v01
 February 20, 2007

Figure 1. Terrain Mesh Rendered with Four Blended
Textures all Read from a Texture Array

Motivation
The motivation for the texture arrays technique is performance. In general,
reducing state changes and draw calls reduces the overhead on the CPU, which
provides more processing power to the application. CPU overhead is a common
bottleneck in modern 3D applications. This technique allows a developer to reduce
overhead while maintaining robustness and unique textures for rendered polygons.

A secondary motivation, compared with texture atlases, is to simplify a game’s art
pipeline. Use of an atlas requires changes to the model’s texture coordinates to
reflect a texture’s position within the atlas. This complicates the art pipeline. Also,
packing textures into adjacent space in an atlas leads to blending artifacts if handled
naively, and makes it difficult to support tiled textures. These issues all go away
when using texture arrays.

 Texture Arrays, Terrain Rendering

WP-03015-001_v01 3
February 20, 2007

How It Works
The way the sample makes use of texture arrays is quite simple. Each vertex of the
terrain mesh includes three texture coordinate vectors. Each of these coordinates is
a 4-component vector. This is in contrast to the standard 2-component UV. The
third component contains the array index into the texture array and the fourth
component contains an alpha blend value. Then at runtime, in the shader, we index
into the texture array to pull out the appropriate texture and use the alpha blend
value to blend together multiple layers.

Note: The sample does not provide a way to export or author multiple texture
coordinates into your vertex data. It is assumed that developers will have an
established tools pipeline and are able to implement that functionality themselves.

The three sets of coordinates give us support for blending of two base textures per
vertex as well as a decal texture to be overlaid on top of the blend result. The
equation for this is:
blendedColor = color1 * color1alpha + color2 * color2alpha;
if(decalAlpha > 0)
finalColor = decalColor * decalAlpha + blendedColor * (1-decalAlpha);
else
 finalColor = blendedColor;

The shader code calculating a finalColor is:
// Load the color values (3rd component is the slice of the aray from
which to sample)
// We multiply by the last component of the texcoord, which is set by
the application to be the blend weight
float4 albedo0 =
g_txTextures.Sample(g_samAniso,input.tex0.xyz)*input.tex0.w;
float4 albedo1 =
g_txTextures.Sample(g_samAniso,input.tex1.xyz)*input.tex1.w;

float4 bumps0 =
g_txNormals.Sample(g_samAniso,input.tex0.xyz)*input.tex0.w;
float4 bumps1 =
g_txNormals.Sample(g_samAniso,input.tex1.xyz)*input.tex1.w;

// combine using sampled alphas
float3 finalAlbedo = (albedo0.xyz * albedo0.w) + (albedo1.xyz *
albedo1.w);
float3 finalBumps = bumps0.xyz + bumps1.xyz;

// third texture is the decal, but is optional
if(input.tex2.w > 0)
{
 float4 decal = g_txTextures.Sample(g_samAniso,input.tex2.xyz);
 float4 decalBumps =
g_txTextures.Sample(g_samAniso,input.tex2.xyz);
 float decalAlpha = input.tex2.w * decal.w;
 finalAlbedo = finalAlbedo*(1-decalAlpha) + decal.xyz*decalAlpha;

White Paper

4 WP-03015-001_v01
 February 20, 2007

 finalBumps = normalize(finalBumps*(1-decalAlpha) +
decalBumps*decalAlpha);
}

We use a conditional since, in the general case, the decal texture will not be used.
Also, the decal might not even be needed depending on the application. Also,
notice that we multiply each diffuse color by its alpha value. This allows the artists
to have per-texel control over the coverage of a terrain texture. If the artist wants to
control the blending using the alpha value of the texture, they can.

Texture Arrays
The DirectX10 API for creating a texture array is similar to the one for creating a
regular texture. The difference is in the D3D10_TEXTURE2D_DESC structure where
the ArraySize element is set to the size of the array. Refer to the code block below
for an example of creating a texture array.
D3D10_TEXTURE2D_DESC desc;
desc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
desc.Width = iWidth;
desc.Height = iHeight;
desc.MipLevels = iMIPLevels;
desc.Usage = D3D10_USAGE_DEFAULT;
desc.BindFlags = D3D10_BIND_SHADER_RESOURCE;
desc.CPUAccessFlags = 0;
desc.ArraySize = iNumTextures;
pd3dDevice->CreateTexture2D(&desc, NULL, ppTex2D);

In the sample code, the function MultiTextureTerrain::loadTextureArray()
shows how to create a texture array and fill it with data from an array of DDS files.

Texture Ping Pong
An issue will arise with texture coordinates that is worth mentioning. If a mesh uses
three base textures—let’s say in a progressive blend from texture 0 thru 2 (see
Figure 2) then in order to get proper interpolation of the texture coordinated
between vertices you will need to swap the texture coordinate that the shader
texture is using as the texture changes. The system doesn’t understand which texture
will be read with each texcoord,

For this example, your textures are red brick, green grass and white snow. Your
mesh transitions from those in that order as shown in Figure 2. You need to be
careful that all meshes in the contiguous area of green assign the green texture to be
read from texcoord 1. This may seem obvious here, but if you adopt a strategy of
always putting the texture transitioning from in texcoord 0 and the texture
transitioning to into texcoord 1, then you will get improper blending at the
transition areas.

 Texture Arrays, Terrain Rendering

WP-03015-001_v01 5
February 20, 2007

Figure 2. Example of Texture Ping Pong

Implementation Details
This project is extremely simple. The source code is divided into two cpp files and
an fx file:

 TextureArrayTerrain.cpp: This is the standard sample DX10 setup code and
UI code. It simply creates a MultiTextureTerrain object and calls into it.

 MultiTextureTerrain.cpp: This file contains all the code to create and render
a terrain mesh. It loads the mesh file, and all relevant textures, and setups render
state.

 TextureArrayTerrain.fx contains the D3DX effect.

Running the Sample
The arrow keys move the camera around in a FPS-style control scheme. The mouse
rotates the camera view. Esc exits.

White Paper

6 WP-03015-001_v01
 February 20, 2007

Performance
The GPU load of this technique will be on par with separate draw calls for the
sample rendering. The performance difference here is in the fact that there are less
state changes and only a single draw call to render the whole terrain mesh.

Also note that we draw the terrain in two passes. The first pass is a Z only pass that
should run at blazing speeds. This engages the Z cull hardware of modern graphics
processor allowing the hardware to efficiently cull out occluded surfaces.

Integration
Using this technique in your game engine requires that your export tool path include
multiple texture coords for each terrain vertex, as well as moving to a float4
texcoord system. The tool should also support inserting the relevant index into a
texture array to allow selection of the proper texture.

In addition, similar to the process the sample uses, your codebase will need to load
all textures for the terrain palette and insert them into a texture array object. This
object can then be used instead of separate textures.

References
 NVIDIA SDK9.5 Texture Atlases Sample Whitepaper
 Improving Batching using Texture Atlases, Matthias Wloka

.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

