

February 2007
WP-03014-001_v01

White Paper

Solid Wireframe

White Paper

ii WP-03014-001_v01
 February 20, 2007

Document Change History

Version Date Responsible Reason for Change
_v01 February 20, 2007 SG, TS Initial release

Go to sdkfeedback@nvidia.com to provide feedback on SolidWireframe.

WP-03014-001_v01 1
February 20, 2007

SolidWireframe

Abstract
The SolidWireframe technique efficiently draws a high quality, anti-aliased
wireframe representation of a mesh (see Figure 1). Instead of using conventional
line primitives, the technique draws triangle primitives and displays only the
fragments on the edges of the triangles. Interior fragments are transparent.

The new Geometry Shader available on the GeForce 8800 with DirectX10 can
access all three vertex positions of a triangle, unlike previous Vertex Shaders, which
process only one vertex at a time. Thus the Geometry Shader can compute results
based on the edge information of a triangle. The fragment shader can then
appropriately color the fragments to draw only the edges of the triangle. For hidden
line removal, the depth test works with no error because the technique uses exactly
the same filled faces as the depth pass.

The effect is achieved with one pass requiring only the position attribute, thus
making it straight forward to insert in a graphics engine.

Samuel Gateau
NVIDIA Corporation

Figure 1. Mesh Rendered with the Solid Wireframe
Technique

White Paper

2 WP-03014-001_v01
 February 20, 2007

Motivation
The wireframe representation of a mesh is widely used when modeling in DCC,
CAD and 3D tools as it is the best way to visualize the layout of faces.

Previously, under DirectX this could be achieved using the line features of the API,
drawing the mesh with the fill mode set to D3DFILL_WIREFRAME. But the line
rendering has several limitations:

 The thickness of the line is always 1 pixel and cannot be modified
 The line is not anti-aliased
 The lines z-fight with triangles rendered using the same vertex positions.

To remove hidden lines, the classic procedure uses two passes. In the first pass, the
filled faces are rendered with color writes disabled, but z writes enabled. This fills
the z-buffer with depth data for the object’s triangles. In the second pass, the
wireframe is drawn with depth test enabled. The primitives used to draw the two
passes are different—filled triangles verses lines—thus the depth rasterized from the
two passes may be different which causes z fighting and incorrect occlusion of some
pixels of the wireframe. To compensate, using the depth bias offset feature, the
depth of the fragment rendered by the first pass can be slightly offset back to ensure
it is behind the depth of the fragment drawn by the wireframe. The displayed result
is good but this still causes issues because the mesh depth is not strictly correct.

In this sample, we implement, under DirectX10, a new technique which solves all
the issues of the classic approach. The method was presented in the SIGGRAPH
2006 sketch “Single-Pass Wireframe Rendering” [1].

The only drawback of this method is that the outline edges of the mesh look thinner
and are not anti-aliased on the outer side (because only one side of the edge is
rendered).

The performance of the technique is extremely good compared to the classic line
rendering approach.

Introducing this effect in an existing graphics engine is easy and straight forward as
it is a single pass and requires only the position attributes of the mesh.

The technique can be derived and enhanced to draw different patterns along the
edges or inside the triangles such as stippled lines; or only on specific edges for
different kinds of face outlining (quad, polygon).

How It Works
This new technique displays the wireframe of a mesh by drawing filled triangles,
coloring opaque only the fragments close to the edges of the triangles; hence its
name SolidWireframe. The main steps are:

1. Apply the standard model-to-projection transform to the input vertices of the
mesh

SolidWireframe

WP-03014-001_v01 3
February 20, 2007

2. Provide each fragment the geometric information from the triangle to permit
computation of the fragment’s distance to each edge in viewport space.

3. Compute the shortest distance to the edges of the triangle in viewport space for
each fragment of the triangle.

4. Use that distance to draw the fragment only if it is close enough to the edge to
represent the line.

Step 1 is trivial as it uses a standard vertex shader to transform the vertex positions
of the mesh from model space to projection space, ready for rasterization. Note that
mesh animation could be done naturally here.

Step 2, 3 and 4 are detailed in the following paragraphs; they rely on the geometry
and pixel shaders.

Using filled triangles to draw the wireframe produces exactly the same result for the
depth value as the standard depth pass. The depth test runs accurately without any z
fighting issues.

White Paper

4 WP-03014-001_v01
 February 20, 2007

Computing the Distance
Steps 2 and 3 of the technique compute for a fragment its distances to the three
edges of the triangle projected in viewport space.

d0

P0

P1

P2

d1

d2

F

e0
e1

e2

d0

P0

P1

P2

P0

P1

P2

d1

d2

F

e0
e1

e2

Figure 2. Distance From a Fragment to the Edges

The General Case
The algorithm is straightforward:

In the geometry shader, input the triangle:
 Project the three input vertex positions of the triangle to viewport space.
 Compute the three heights of the triangle in viewport space. These are the
minimum distances between each vertex and its opposite edge.

h0

P0

P1

P2

h1

h2

e0
e1

e2

h0

P0

P1

P2

P0

P1

P2

h1

h2

e0
e1

e2
 Output the same triangle as input but adding one more float3 output attribute
(Dis), the 3 distances between the vertex and the 3 edges:

 P0 would output its distances to e0, e1 and e2 which is (0, h1,0).

P0.Dis(0,h1,0)

P1.Dis(0,0,h2)

P2.Dis(h0,0,0)

F.Dis(d0,d1,d2)

P0.Dis(0,h1,0)

P1.Dis(0,0,h2)

P2.Dis(h0,0,0)

F.Dis(d0,d1,d2)

the distance expressed
in pixels between F and
each edges

d0, d1, d2

the projected point in
viewport space of the
vertices of the triangle

e0, e1, e2

the projected point in
viewport space of the
vertices of the triangle

P0, P1 P2

the fragment position in
viewport spaceF

the distance expressed
in pixels between F and
each edges

d0, d1, d2

the projected point in
viewport space of the
vertices of the triangle

e0, e1, e2

the projected point in
viewport space of the
vertices of the triangle

P0, P1 P2

the fragment position in
viewport spaceF

SolidWireframe

WP-03014-001_v01 5
February 20, 2007

 Dis is specified to be interpolated with no perspective correction.
 At the fragment level, after interpolation, we get exactly the expected
distances of the fragment to each edge in viewport space.

In the fragment shader
 Input the interpolated three distances to each edge. Get the minimum as the
shortest distance between the fragment and the edges of the triangle.

 Alter the output transparency of the fragment as a function of this minimum
distance to edge.

Issues
It is not always possible to project a vertex position into viewport space in the case
where the vertex is very close to, or behind, the viewpoint. In this case, the resulting
projected point makes it irrelevant to compute a corresponding height in viewport
space and the interpolation leads to incorrect values. This occurs only when a
triangle has at least one vertex visible, and at least one close to or behind the depth
of the viewpoint. For a vertex P expressed in the view frame that means, P.z ≤ 0.

Z

Y

Frustum

Viewpoint Z

Y

Frustum

Viewpoint

This situation can be avoided by never having any visible triangles with vertices too
far behind the viewpoint. If the average size of the triangles is smaller than the near
plane, then you would never see the issue.

However, in a professional application supporting arbitrary meshes, you cannot
assume that this will never happen. So we need to find a cleaner approach for these
cases.

White Paper

6 WP-03014-001_v01
 February 20, 2007

The Tricky Case
To solve this issue, the approach is to not compute the three heights of the
projected point because that is impossible, but rather to pass to the fragments the
geometric elements of the triangle required to compute the distances. Let’s first
describe the computation done in the fragment shader, to then deduce what the
geometry shader needs to do.

Fragment Shader
In the fragment shader, to compute its distances to the edges, we need to have the
definitions of the edges as lines in viewport space. Although the points cannot be
defined in the viewport space, the visible edges can. A line is defined by a point and
a direction (Figure 3).

A=B

A

B

Viewport space

Bdir

Adir

BdirAdir
AB

Figure 3. Two Triangles Projected in Viewpoint Space
Depending on how the triangle is projected:

 There are one or two vertices visible and thus well-defined in viewport space,
these are named A and B. When only one vertex is visible, A=B.

 There are two or three edges visible, whose direction can be defined in viewport
space:

 Two vectors named Adir and Bdir are issued from A and B to the invisible
vertices (or vertex) outside the viewport.
 AB from A to B, in the case where A≠B.

The fragment, knowing (A,Adir) and (B,Bdir) can then compute its distances to
each of the visible edges by doing a simple computation (assuming the vectors have
been normalized).

For example:
distance from F to line (A,Adir) = sqrt(dot(AF,AF) - dot(Adir, AF))

Depending on the case, two or three distances need to be computed. The minimum
distance is taken, as in the standard case.

The choice of case and the line elements needed at the fragment level are defined
per triangle. So, the branching depending on the case is coherent for all the
fragments rasterized in a triangle thus very efficient.

SolidWireframe

WP-03014-001_v01 7
February 20, 2007

Geometry Shader
The geometry shader detects the case of triangle projection, and appropriately
computes the two line definitions (A,Adir) and (B,Bdir) in viewport space.

Determining which case we are dealing with is based on the depth of each vertex. A
binary combination of the three independent tests, one for each vertex, produce an
index value in the range [0,7]. The different cases are Table 1:

Table 1. Triangle Projection Cases
P0.z > 0 True False

P1.z > 0 True False True False

P2.z > 0 True False True False True False True False

Case value 0 1 2 3 4 5 6 7

A/p P0 P0 P0 P1 P1 P2

B/p P1 P2 P0 P2 P1 P2

A’/p P2 P1 P1 P0 P0 P0

B’/p

Ea
sy

st

an
da

rd

ca
se

P2 P1 P2 P0 P2 P1 Tr
ia

ng
le

 n
ot

vi

si
bl

e

The table is implemented in the shader as a constant array of structures. For each
case, the structure contains indices to address from the three input vertices.

Four points expressed in projection space (/p) are defined as:

 Points A/p & B/p
 Points A’/p & B’/p, represent the non-projectable vertices (or vertex) used to

compute the direction vectors Adir & Bdir.
The computation of the line direction in viewport space (/v), for Adir is:
Adir = normalize(A/v - (A/p + A’A/p) /v)

Bdir is computed similarly using B and B’.

The definitions of the two lines are passed from the geometry shader to the
fragment shader through four float2 attributes. These values are constant over the
triangle.

Two in One
As just shown, there are two algorithms used to compute the minimum distance of a
fragment to the edges of the triangle.

Most of the triangles are entirely visible and require only the simple case. This case
is the most efficient because most computations are done in the geometry shader,
per triangle. In the rare case, the triangle will use the second more complex path
which has more work done in the pixel shader.

All the fragments rasterized will have coherent branching because the case is per
triangle, thus remaining extremely efficient in all cases.

White Paper

8 WP-03014-001_v01
 February 20, 2007

Both paths use the same attributes to communicate different values from the
geometry shader to the fragment shader

 In first path, three float distances are interpolated with no perspective correction.
 In second path, we pass four float2s which are constant over the triangle.

In the sample, we use two float4s with no perspective correction interpolation for
both cases.

Drawing the edge
At the fragment level, the shortest distance in screen space between the fragment
and the edges of the projected triangle is available, computed as explained above.

The shortest distance d of the three is compared to the expected thickness of the
line. If the distance is smaller than the line width then the fragment is rendered,
otherwise it is discarded.

Distance fragment to edge ≤ width
d’

F

d

F’

w

Distance fragment to edge ≤ width
d’

F

d

F’

w

d < w ⇒ F is displayed d’ > w ⇒ F’ is discarded

w the expected half width of the drawn line.

d < w ⇒ F is displayed d’ > w ⇒ F’ is discarded

w the expected half width of the drawn line.

To anti-alias the border of the line, we use the distance d as input of a smoothing
function |(x) which produces an intensity value used to fade out smoothly the
alpha of the output fragment.

Smoothing functions

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
x

I(x
)

I() = 2 (̂-2x 2̂)

I() = 2 (̂-2x 3̂)

I() = 2 (̂-2x 4̂)

I() = 2 (̂-2x 8̂)

A standard smoothing function used is |(x) = 2^(-2 x^2). As shown in the
graph, the intensity function is used for x in the range [0,2]. The distance d is
mapped according to the expected thickness w of the line so |(x) is applied on one
pixel around the line border.

SolidWireframe

WP-03014-001_v01 9
February 20, 2007

Outside this range but inside the line, the fragment is opaque; outside the line, the
fragment is discarded.

w

F.a = 1
F.a = I(x)
F.a = 0

F.a = 1
F.a = I(x)
F.a = 0

2 pixels

Running the Sample
To run the sample, launch the SolidWireframe.exe application from the bin
folder of the SDK (Figure 4).

Figure 4. SolidWireframe.exe at Launch
Figure 4 displays a mosaic of four views of four different techniques. The first view
displays, for comparison, the classic wireframe rendering supported natively by the
DirectX API. The others views display the SolidWireframe technique. There are
three variations in the final fragment shader.

 SolidWire is the exact implementation of the exposed technique.
 SolidWireFade fades the intensity of the wireframe pixel depending on the

depth of the fragment as suggested in [1].

White Paper

10 WP-03014-001_v01
 February 20, 2007

 SolidWirePattern demonstrates a real application use case where only quads
are displayed and the diagonal is displayed with a different dotted line pattern.
The test to know on which edge to apply the pattern is simply based on the
index of the edge in the primitive. For the model used it is always the first edge
defined (Figure 5).

Figure 5. Third Technique Representing the Dotted Pattern
on the First Edge of Each Primitive

All techniques include two optional passes; a depth pass and a flat-fill shading pass.

To interact with the SolidWireframe sample use the following key:

 Use the mouse; click-and-drag to manipulate the camera.
 Press F1 for help.
 Double click on one viewport to select it and make it fill the window; double

click again to go back to the four-viewport mosaic.

SolidWireframe

WP-03014-001_v01 11
February 20, 2007

Performance
This technique is much faster (by a factor of three) than the classic technique on
consumer cards.

Integration
The SolidWireframe technique is easy and straightforward to integrate into an
existing graphics engine.

It can directly replace classic wireframe methods. No special pre-processing of the
mesh data is required, so it can be applied to any mesh, without modification. It is
only one pass with a specific geometry shader and pixel shader. The only needed
attributes of the mesh are the vertex positions. The result is higher quality and
permits more flexible rendering of the wireframe.

As shown in the sample, the technique can be enhanced to achieve more
sophisticated patterns needed for real applications.

One limitation of the technique remains; it displays only half the wireframe line on
the silhouette of the mesh. This could be solved by isolating the silhouette edges of
the mesh in projection space and then using the geometry shader to draw extra
triangle fins. For an example, see the Fur effect in this SDK. This will be probably
a starting point for another sample…

References
1. Single-Pass Wireframe Rendering by Andreas Bærentzen, Steen Lund Nielsen, Mikkel
Gjael, Bent D. Larsen & Niels Jaergen Christensen, Siggraph 2006

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

