

14 February 2007

Skinned
Instancing

Bryan Dudash
bdudash@nvidia.com

7/25/2007 ii

Document Change History
Version Date Responsible Reason for Change
1.0 2/14/07 Bryan Dudash Initial release

2.0 7/26/07 Bryan Dudash Update to new sample code and technique

Month 2007 1

 Abstract
With game rendering becoming more complex, both visually and computationally, it
is important to make efficient use of GPU hardware. Instancing allows you to
potentially reduce CPU overhead by reducing the number of draw calls, state
changes, and buffer updates. This technique shows how to use DX10 instancing,
and vertex texture fetches to implement instanced hardware palette-skinned
characters. The sample also makes use of constant buffers, and the SV_InstanceID
system variable to efficiently implement the technique. With this technique we are
able to realize almost ~10,000 characters, independently animating with different
animations and differing meshes at 30fps on an Intel Core 2 Duo GeForce
8800GTX system (see figure 1a and 1b).

Figure 1a. That’s a lot of animating dwarves!

 Skinned Instancing

7/25/2007 2

Motivation
Our goal with this technique is to efficiently use DirectX 10 to enable large scale
rendering of animated characters. This technique can be used for crowds, audiences,
etc. and is generally applicable for any situation where there is a need to draw a large
number of actors, each with a different animation, and different mesh variations.
Inherent in these situations is the idea that some characters will be closer than
others, and thus and LOD system is important. The technique can enable game
designers to realize large dynamic situations previously not possible without pre-
rendering, or severely limited uniqueness of the characters in the secne.

Figure 1b. Close-up shot. Detail changes as camera moves.

How Does It Work?
Traditionally instancing has not been able to render animated objects efficiently.
With the advent of DirectX10, efficient skinned animated instancing become
possible.

“Skinned Instancing” is an extension of regular instancing. It renders each character
using hardware palette skinning. Instead of the standard method of storing the
animation frame in shader constants, we encode all frames of all animations into a
texture and lookup the bone matrices from that texture in the vertex shader. Thus
we can have more than one animation, and each character can be in a different
frame of each animation.

 Skinned Instancing

7/25/2007 3

We encode the per-instance parameters into a constant buffer and index into that
array using the SV_InstanceID.

To achieve mesh variation per instance we break the character into sub-meshes
which are individually instanced. This would be meshes such as different heads, etc.

Finally, to avoid work for characters in the far distance we implement an LOD
system with lower poly mesh subsections. The decision of which LOD to use is
calculated per frame on a per instance basis.

A simple rendering flow is below. For details, please see the subsections.

CPU
 Perform game logic(animation time, AI, etc)
 Determine a LOD group for each instance and populate LOD lists.
 For each LOD

 For each sub-mesh
 Populate instance data buffers for each instanced draw call
 For each buffer

 DrawInstanced the sub-mesh
 GPU
 Vertex Shader

 Load per-instance data from constants using SV_InstanceID
 Load bone matrix of appropriate animation and frame
 Perform palette skinning

 Pixel Shader
 Apply per-instance coloration as passed down from vertex shader
 (optional) Read a custom texture per instance from a texture array.

 Skinned Instancing

7/25/2007 4

Constants Based Instancing
The technique does not use the traditional method of encoding the per-instance
data into a separate vertex stream. In testing we found that reading per-instance
data from constant buffer using an index per instance was faster due to better cache
utilization of the vertices. With the traditional method, vertex attributes increase by
the # of per-instance data attributes. We chose instead to put the low frequency
data into constant memory.

SV_InstanceID
Under DirectX10 there are a number of useful variables that can be automatically
generated by the GPU and passed into shader code. These variables are called
“system variables”. All these variables have a semantic that begins with “SV_”.
SV_InstanceID is a GPU generated value available to all vertex shaders. By binding
a shader input to this semantic, the variable will get an integral value corresponding
to the current instance. The first index will get 0 and subsequent instances will
monotonically increase this value. Thus every instance through the render pipeline
gets a unique value and every vertex for a particular instance shares a common
SV_InstanceID value.

This automatic system value allows us to store an array of instance information in a
constant buffer and use the ID to index into that array. Since we are injecting per-
instance data into constant buffers, we are limited in the number of instances we can
render per draw call by the size of the constant memory. In DirectX10 there is a
limit of 4096 float4 vectors per constant buffer. The number of instances you can
draw with this size depends on the size of the per-instance data structure. In this
sample we have the following per instance data:

Listing 1. Instance Data structure and constant buffer

struct PerInstanceData
{
 float4 world1;
 float4 world2;
 float4 world3;
 float4 color;
 uint4 animationData;
};

cbuffer cInstanceData
{
 PerInstanceData g_Instances[MAX_INSTANCE_CONSTANTS];
}

 Skinned Instancing

7/25/2007 5

As you can see, in this sample each instance takes up 5 float4 vectors of constant
memory, and so that means we can store a max of 819 instances. So we split each
group of instanced meshes into N buffers where N = Total Instances / 819. This is
a very acceptable number, and means that if we were to draw 10,000 meshes it
would take 13 draw calls. There is a difference in CPU overhead between 1 and 13
draw calls per frame, but the difference between 13 and 819 is much larger. Each
draw call removed allows a reduction in CPU overhead, and possible performance.
Thus, there is often little effective difference in final framerate between 1 and 13
draw calls.

On the CPU side, the data looks like the following:

Listing 2. C++ Side Instance data struct.

struct InstanceDataElement
{
 D3DXVECTOR4 world1;
 D3DXVECTOR4 world2;
 D3DXVECTOR4 world3;
 D3DXCOLOR color;

 // offset in vectors(texels) into the whole data stream
 // for the start of the animation playing
 UINT animationIndex;
 // offset in vectors(texels) into the animation stream
 // for the start of the frame playing
 UINT frameOffset;
 UINT unused1; // pad
 UINT unused2; // pad
};

Palette Skinning using an Animation Texture
In traditional matrix palette skinning, you encode the transform matrices into vertex
shader constants. In our case, each character has a different pose, and possible a
different animation. We use a texture to store the animation data since the amount
of data required for all animation frames is too large to fit into constant memory.
DirectX10 class hardware should all have sufficient vertex texture fetch capability to
make this a fast operation.

We save each bone matrix for each frame for each animation linearly into a texture,
and thus can read it out in the vertex shader.

 Skinned Instancing

7/25/2007 6

Figure 2. Animations Texture breakdown.

 Skinned Instancing

7/25/2007 7

Decode Matrices from a Texture
Below is the function in HLSL that loads the matrix from the animations texture
based on the animation offset and bone offset in texels. You can see that we divide
and modulus to determine a UV from a linear offset into the animation. Then we
point sample 3 rows of the matrix and construct a float4x4 (the translation is
encoded in w components or each row). The sampling from the animation texture
uses the HLSL Load() method, which returns the texel unfiltered, and takes an exact
pixel position as input, thus simplifying the lookup process.

Listing 3. loadBoneMatrix HLSL function
// Read a matrix(3 texture reads) from a texture containing animation data
float4x4 loadBoneMatrix(uint3 animationData,float bone)
{
 float4x4 rval = g_Identity;

 // if this texture were 1D, what would be the offset?
 uint baseIndex = animationData.x + animationData.y;

 // 4*bone is since each bone is 4 texels to form a float4x4
 baseIndex += (4 * bone);

 // Now turn that into 2D coords
 uint baseU = baseIndex % g_InstanceMatricesWidth;
 uint baseV = baseIndex / g_InstanceMatricesWidth;

 // Note that we assume the width of the texture
 // is an even multiple of the # of texels per bone,
 // otherwise we'd have to recalculate the V component per lookup.
 float4 mat1 = g_txAnimations.Load(uint3(baseU,baseV,0));
 float4 mat2 = g_txAnimations.Load(uint3(baseU+1,baseV,0));
 float4 mat3 = g_txAnimations.Load(uint3(baseU+2,baseV,0));

 // only load 3 of the 4 values, and deocde the matrix from them.
 rval = decodeMatrix(float3x4(mat1,mat2,mat3));

 return rval;
}

 Skinned Instancing

7/25/2007 8

Conditional Branching for Weights
As with regular palette skinning, vertices can have up to 4 bone weights, but not all
vertices have 4 bones active. Thus we make use of conditional branching in the vertex
shader to avoid unnecessary texture loads of matrices we won’t use.

Listing 4. Vertex Shader conditional branching
VS_to_PS CharacterAnimatedInstancedVS(A_to_VS input)
{
 VS_to_PS output;

 uint4 animationData = g_Instances[input.InstanceId].animationData;

 // Our per instance data is stored in constants
 float4 worldMatrix1 = g_Instances[input.InstanceId].world1;
 float4 worldMatrix2 = g_Instances[input.InstanceId].world2;
 float4 worldMatrix3 = g_Instances[input.InstanceId].world3;
 float4 instanceColor = g_Instances[input.InstanceId].color;

 float4x4 finalMatrix;
 // Load the first and most influential bone weight
 finalMatrix = input.vWeights.x *
 loadBoneMatrix(animationData,input.vBones.x);

 // Conditionally apply subsequent bone matrices if the weight is > 0
 if(input.vWeights.y > 0)
 {
 finalMatrix += input.vWeights.y *
 loadBoneMatrix(animationData,input.vBones.y);
 if(input.vWeights.z > 0)
 {
 finalMatrix += input.vWeights.z *
 loadBoneMatrix(animationData,input.vBones.z);
 if(input.vWeights.w > 0)
 finalMatrix += input.vWeights.w *
 loadBoneMatrix(animationData,input.vBones.w);
 }
 }

A Few Important Points:
• The animation texture must be a multiple of 4. This allows us to calculate

the row only once in the vertex shader and then simply offset along U to
get the 4 lines or each matrix.

• We actually encode the matrix into 3 lines to save a texture fetch, but to
avoid issues with non power of 2 textures, we add in a pad texel.

• The linear offset in texels to the active animation, and the linear offset
within the animation for the active frame are specified per instance.

• The bone index and bone weight information are stored (as normal) per
vertex for matrix palette skinning

 Skinned Instancing

7/25/2007 9

Geometry Variations
If all characters rendered had the exact same mesh geometry, the user would
immediately notice the homogeneousness of the scene and her disbelief would not
be suspended. In order to achieve more variation in character meshes, we break a
character into multiple pieces and provide alternate meshes. In the case of this
sample we have warriors with differing armor pieces, and weapons. The character
mesh is broken up into these separate pieces, and each piece is instanced separately.

The basic method for this is to understand which pieces each character instance
contains. Then, we can create a list of characters that use a given piece. At draw
time, we simply iterate over the pieces, inject proper position information into the
per-instance constant buffer, and draw the appropriate amount of instances.

Figure 3. Shot of mesh showing all mesh variations.
Figure 4 is where we can see that the source mesh contains all the mesh
permutations for each character. Notice that all the weapons are included in the
same file. They are exported as separate mesh objects but all bound to an identical
skeleton. This allows us to reuse the animations from the character for all the sub-
sections. On load time, the system will generate random permutations of the sub-
sections to give each character a different appearance. The technique supports as
many mesh variations as your artists can come up with. For a real game, you might
want to have finer artist control over this (as opposed to random generation) which
would require some work in tools or the export path.

 Skinned Instancing

7/25/2007 10

LOD System
Because characters in the distance take up fewer pixels on the screen, there is no
need for them to be as high poly as characters closer to the camera. In addition,
distant characters do not need to sample from the normal map, or calculate complex
lighting. Thus we implement an LOD system to improve performance. The
technique for instancing breaks each character into a collection of mesh pieces that
are instanced. An LOD system is easily implemented by simply adding more pieces
to the instancing system. Every frame, each character instance determines the LOD
group that it is in by its distance from the camera. This operation happens on the
CPU. Then at render time, collections of each mesh piece in each LOD group are
drawn. As we iterate through each LOD mesh piece, we consult which instances
are in that LOD group and use that piece. Thus we can update the instance data
buffers appropriately to render each character at the correct LOD level. We also
perform a simple view frustum culling on the CPU to avoid sending thousands of
characters behind the camera to the GPU.

Figure 4. LOD Data layout

An additional benefit of an LOD system is to reduce geometric aliasing, which would
result if you were to draw a high poly object in the far distance such that vertices
overlapped on a pixel.

 Skinned Instancing

7/25/2007 11

Implementation Details
The source code is divided into a few folders and cpp files:

• Character – contains basic classes for managing CPU side instance data.
This is sample specific, and not the most interesting.

• Materials – contains a class to act as a repository for textures

• MeshLoader – contains the black heart of evil. The mesh loader classes
are not pretty, formatted, or recommended in any way. Nothing to see here.

• SkinnedInstancing.cpp - contains all the basic framework wrapper
code to setup the device, etc. This is better explained by the basic tutorials
in Microsoft’

• ArmyManager.cpp - contains almost all of the interesting D3D10 code.
It creates and maintains all relevant D3D resources, and also has the render
code for both instancing and non-instancing cases.

• SkinnedInstancing.fx – contains all the shader code used in the sample.
It has the matrix palette skinning as well as all the shader side instancing
support.

Sample Implementation
Caveats

There are a number of things that this sample does that are sub-optimal, or
something that you would never do in a real game title. I list these below along with
some explanation of why they were implemented in this way.

File loading classes are a mess. This was mostly due to the fact there is no
robust animation support in D3DX for DirectX10 yet. The loader classes use a
DirectX9 device to load animations and mesh data from an .X file, and then create
DirectX10 buffers from that data. This is really a dirty bit of code, and in a real
game engine, you would have a established data loading path, and thus wouldn’t
have to worry about how to get access to the mesh and animation data. This
section of the sample should be avoided.

Mesh assignment to different attachment groups is based on a text parsing of
the mesh name. If the mesh was exported with an “attachment_” name, then it
gets flagged as an attachment and the bit flag for it is registered. In a real game
engine scenario, you might want to consider a more robust, and possibly artist
controlled system.

 Skinned Instancing

7/25/2007 12

Running the Sample
REF will be unusably slow for large numbers of instances.

There are no other special considerations when running the sample. There are some
keyboard shortcuts.

ESC – Exit

F1 – Display help

L – show lighting GUI to tweak constants.

Performance
As with any type of instancing, performance gains are seen on the CPU side. By
using instancing, you free up some CPU processing time for other operations, such
as AI, or physics. Thus performance of this technique depends on the CPU load of
your game.

Note: In general, any instancing technique will shift the load from the CPU to the GPU,
which is a good thing, since the CPU can always do more processing of your game
data.

Performance also depends on where you set the LOD levels. If all the characters
are rendered at the highest LOD, then you can render much less characters. But as
you bring the lines for far LODs closer to the camera, you may see artifacts. This is
a judgment call of the graphics programmer or designers.

Note: This is running on an Intel Core 2 2.93Ghz system and a GeForce 8800GTX.

You can gain more performance with more aggressive use of LOD, and you can
gain more quality with less aggressive use of LOD.

 Skinned Instancing

7/25/2007 13

Integration
Integration is more like integration of a new rendering type. Most likely you would
define a crowd, or background group of animated characters. The placement of the
characters in the group can be specified by artists, and used to populate the instance
data buffer. The mesh data and animation data is exactly the same as you would
expect for a normal hardware palette skinning implementation. The only difference
is that you need to preprocess the animation curves into a collection of bone
matrices per frame. This should most likely be a preprocessing step.

References
Carucci, Francesco. 2005. “Inside Geometry Instancing” In GPU Gems 2, edited by
Randima Fernando, pp XX-XX. Addison-Wesley Professional

Dudash, Bryan. 2005 “Technical Report: Instancing” In NVIDIA SDK 9.5,
http://developer.nvidia.com

Microsoft. 2007. “DirectX Documentation for C++” In Microsoft DirectX SDK
(February 2007). http://msdn.microsoft.com/directx

Dudash, Bryan. 2007. “Skinned Instancing” In NVIDIA SDK10,
http://developer.nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

