

August 2007 1

Cascaded Shadow
Maps

Rouslan Dimitrov

NVIDIA Corporation

 Cascaded Shadow Maps

Document Change History

Version Date Responsible Reason for Change
1.0 Rouslan Dimitrov Initial release

1.1 Miguel Sainz Figures and minor editorial fixes

 Cascaded Shadow Maps

Shadow maps are a very popular technique to obtain realistic shadows in game engines.
When trying to use them for large spaces, shadow maps get harder to tune and will be more
prone to exhibit surface acne and aliasing. Cascaded Shadow maps (CSM) is a know
approach that helps to fix the aliasing problem by providing higher resolution of the depth
texture near the viewer and lower resolution far away. This is done by splitting the camera

view frustum and creating a
separate depth-map for each
partition in an attempt to make
the screen error constant.

CSM are usually used for
shadows cast by the sun over a
large terrain. Capturing
everything in a single shadow
map would require very high and
impractical resolution. Thus,
several shadow maps are used - a
shadow map that covers only
nearby objects so that each casts
a detailed shadow; another
shadow map that captures
everything in the distance with
coarse resolution and optionally
some more shadow maps in
between. This partitioning is
reasonable because objects that
are far away cast shadows that in
screen space occupy just a few

pixels and close-by objects might cast shadows that occupy a significant part of the screen.

Figure 1-1 shows a schematic of parallel split CSM, where the splits are planes parallel to the
near and far planes and each slice is a frustum itself. The sun is a directional light, so the
associated light frusta are boxes (shown in red and blue).

The algorithm proceeds as follows:

• For every light’s frustum, render the scene depth from the lights point of view.

• Render the scene from the camera’s point of view. Depending on the
fragment’s z-value, pick an appropriate shadow map to the lookup into.

 Cascaded Shadow Maps

Figure 1-1. The right-most tree is captured in the near shadow-map and the other two are in the
left. As seen from a viewer on the side, the left shadows are blocky, however, the camera would

perceive all 3 shadows with approximately the same aliasing.

Related Work
There are several other popular approaches try to improve the screen-space aliasing
error. The ones mentioned here traditionally work on the whole view frustum. Although
these techniques can be applied to every frustum slice of CSM, this would not improve
significantly the visual quality and comes with the expense of much greater algorithm
complexity. In fact, CSM can be thought of a discretization of Perspective Shadow
Maps.

Perspective Shadow Maps (PSM) [2] – Figure 1-1 shows that part of the light’s frustum
doesn’t contain potential occluders and is outside of the camera view frustum and this
part of the shadow map is wasted. The idea behind PSM is to wrap the light frustum to
exactly coincide with the view frustum. Roughly, this is achieved by applying standard

 Cascaded Shadow Maps

shadow mapping in post-perspective space of the current camera. A drawback of this
method is that position and type of the light sources changes not intuitively and thus this
method is not very common in computer games.

Light Space Perspective Shadow Maps (LiPSM) [4] wrap the camera frustum in a way
that doesn’t change the directions of light sources. A new light frustum is built that has a
viewing ray perpendicular to the light’s direction (parallel to the shadow map). The
frustum is sized appropriately to inclue the camera frustum and potential shadow
casters. Compared to PSM, LiPSM doesn’t have as many special cases, but doesn’t use
the shadow map texture fully.

Trapezoidal Shadow Maps (TSM) [5] build a bounding trapezoid (instead of the frustum
in LiPSM) of the camera frustum as seen from the light. The algorithm proceeds
similarly to the other approaches.

Detailed Overview
The following discussion is based on the OpenGL SDK demo on cascaded shadow
maps and will explain the steps taken in detail.

The shadow maps are best stored in texture arrays with each layer holding a separate
shadow map. This allows for efficient addressing in the pixel shader and is reasonable
since all layers are treated essentially in the same way.

Shadow-map generation
By looking at figure 1-1, it can be noticed that everything outside the current light frustum
(box) should not be rendered, provided that all shadow casters and the camera frustum slice
are contained within it. In a way, the light’s frustum is a bounding box of the camera frustum
slice, with near side extended enough to capture all possible occluders. If there were an
occluder B (a bird, for example) above the trees, the boxes should be extended appropriately,
or B wouldn’t cast a shadow.

Figure 2-1. Camera frustum splits

The first step of the algorithm is to compute the z-values of the splits of the view frustum in
camera eye space. Assume a pixel of the shadow map has a side length ds. The shadow it

 Cascaded Shadow Maps

casts occupies a fraction dp of the screen which depends on the normal and position of the
object being shadowed. Referring to diagram 2-1,

θ
ϕ

cos
cos

zds
dzn

ds
dp =

where n is the near distance of the view frustum.

In theory, to provide exactly the same error on the screen, dp/ds should be constant. In
addition, we can treat the cosine dependent factor also as a constant because we minimize
only the perspective errors and it is responsible for projection errors. Thus,

)/ln(, nf
zds
dz == ρρ

where the value of ρ is enforced by the constraint]1;0[∈s .

Solving the above equation for z and discretizing, (assuming the number of splits N is large),
the split points should be exponentially distributed, with:

Ni
i nfnz /)/(=

where N is the total number of splits. Please refer to [1] for a more detailed derivation.

Figure 2-2. Light frusta from light directly above the viewer

However, since typically N is between 1 and 4, the equation makes the split points visible
because the shadow resolution changes sharply. Figure 2-2 shows the reason for the
discrepancy: the area outside the view frustum, but inside the light frusta is wasted because it
is not visible; however as N → ∞ this area goes to 0.

 Cascaded Shadow Maps

To counter this effect, a linear term in i is added and the difference is hardly visible anymore:

()))(/()1()/(/ nfNinnfnz Ni
i −+−+= λλ

where λ controls the strength of the correction.

After the splits in z are known, the corner points of the current frustum slice are computed
from the field of view and aspect ratio of the screen. Refer to [3] for details.

Figure 2-3. Effect of the crop matrix and z-bounds change

Meanwhile, the modelview matrix M of the light is set to look into the light’s direction and a
generic orthogonal projection matrix P=I is set. Then, each corner point p of the camera’s
frustum slice is projected into ph = PMp in the light’s homogeneous space. The minimum
mi and maximum Mi values in each direction form a bounding box, aligned with the light
frustum (box), from which we determine a scaling and offset to make the generic light
frustum exactly coincide with it. This in effect makes sure that we get the best precision in z
and loose as little as possible in x and y and is achieved by building a crop matrix C. Finally,
the projection matrix P of the light is modified to P=CPz, with Pz an orthogonal matrix with
near and far planes at mz and Mz and

yyyy

xxxx

yy
y

xx
x

yy

xx

SmMO
SmMO

mM
S

mM
S

OS
OS

C

)(5.0
)(5.0

2

2

,

1000
0100

00
00

+−=
+−=

−
=

−
=

=

Note that we can make the light’s frustum exactly coincide with the frustum slice, but this
changes the light’s direction and type as in perspective shadow maps

 Cascaded Shadow Maps

The scene is also frustum culled for each frustum slice i and everything is rendered into a
depth layer using (CPfM)i as modelview and projection matrices and the whole procedure is
repeated for every frustum partition.

Final scene rendering
In the previous step, the shadow maps 1…N were generated and are now used to determine
if an object is in shadow. For every pixel rendered, its z-value should be compared to the N
z-ranges computed before. For the following, assume it falls into the i-th range. Note that
the pixel shader receives this value in post-projection space, while it was originally computed
in eye space.

Then, the fragment’s position is transformed into world space, using the camera inverse
modelview matrix Mc-1 (which need not be a full inverse – the top 3x3 portion could be
transposed only if scaling is not used). Afterwards, it is multiplied by the matrices of the light
for slice i. The transformation is captured in the following composite matrix (CPfM)i Mc-1 .
Finally, the projected point is linearly scaled from [-1; 1] to [0; 1]. After all this transforms,
the fragment’s (x,y) position is actually a texture coordinate of the i-th depth map and the z-
coordinate tells the distance from the light to the particle. By doing the lookup we see the
distance from the light to the nearest occluder in the same direction. Comparing these two
values tells whether the fragment is in shadow.

 Cascaded Shadow Maps

Figure 2-4. A triangle casting a shadow in multiple depth maps

Code Overview
The accompanying OpenGL SDK sample contains the following source files:

• terrain.cpp – contains function definitions for loading and rendering the
environment. The only method needed for the shadow mapping algorithm is
Draw(), while Load() and GetDim() are called during initialization to load and
set the bounding box of the world properly.

• utility.cpp – contains many helper functions in order to make the main code
more readable. These include a shader loader; camera handling; menu, keyboard
and mouse handling, etc.

• shadowmapping.cpp – this file contains the main core code of the presented
algorithm and contains all code for creating and drawing the shadow maps and
the final image to the screen.

Roughly, terrain.cpp and utility.cpp provide the framework needed to run the sample
which in real games is provided by the game engine. In this analogy, display() is a part of
the rendering loop, which in this sample calls makeShadowMap() and renderScene().

 Cascaded Shadow Maps

Listing 3-1. An excerpt from makeShadowMap() (Slightly modified)

void makeShadowMap()
{
 /* ... */

// set the light’s direction
 gluLookAt(0, 0, 0,

light_dir[0], light_dir[1], light_dir[2],
1.0f, 0.0f, 0.0f);

 /* ... */

 // compute the z-distances for each split as seen in camera space
 updateSplitDist(f, 1.0f, FAR_DIST);

 // for all shadow maps:
 for(int i=0; i<cur_num_splits; i++)
 {
 // compute the camera frustum slice boundary points
 // in world space
 updateFrustumPoints(f[i], cam_pos, cam_view);
 // adjust the view frustum of the light, so that
 // it encloses the camera frustum slice fully.
 applyCropMatrix(f[i]);
 // make the current depth map a rendering target
 glFramebufferTextureLayerEXT(GL_FRAMEBUFFER_EXT,
 GL_DEPTH_ATTACHMENT_EXT, depth_tex_ar, 0, i);
 // clear the depth texture from last time
 glClear(GL_DEPTH_BUFFER_BIT);

 // draw the scene
 terrain->Draw(minZ);

 /* ... */
 }

 /* ... */
}

renderScene() sets the shader uniforms (see listing 3-2) and then renders the scene as it
would do without CSM. The important for CSM piece of code is in the pixel shader that
is applied during this pass.

 Cascaded Shadow Maps

Listing 3-2. shadow_single_fragment.glsl (Slightly modified)

uniform sampler2D tex; // terrain texture
uniform vec4 far_d; // far distances of
 // every split
varying vec4 vPos; // fragment’s position in
 // view space
uniform sampler2DArrayShadow stex; // depth textures

float shadowCoef()
{
 int index = 3;
 // find the appropriate depth map to look up in

// based on the depth of this fragment
 if(gl_FragCoord.z < far_d.x)
 index = 0;
 else if(gl_FragCoord.z < far_d.y)
 index = 1;
 else if(gl_FragCoord.z < far_d.z)
 index = 2;

 // transform this fragment's position from view space to

// scaled light clip space such that the xy coordinates
// lie in [0;1]. Note that there is no need to divide by w
// for othogonal light sources

 vec4 shadow_coord = gl_TextureMatrix[index]*vPos;

// set the current depth to compare with
 shadow_coord.w = shadow_coord.z;

 // tell glsl in which layer to do the look up
 shadow_coord.z = float(index);

 // let the hardware do the comparison for us
 return shadow2DArray(stex, shadow_coord).x;
}

void main()
{
 vec4 color_tex = texture2D(tex, gl_TexCoord[0].st);
 float shadow_coef = shadowCoef();
 float fog_coef = clamp(gl_Fog.scale*(gl_Fog.end + vPos.z),
0.0, 1.0);
 gl_FragColor = mix(gl_Fog.color, (0.9 * shadow_coef *
gl_Color * color_tex + 0.1), fog_coef);
}

Results
This sections shows a few screenshots of large scale terrain rendering with 4-splits CSM,
where each shadow map is 1024x1024.

 Cascaded Shadow Maps

Figure 3-1. Large scale terrain rendering with 4-splits CSM

Figure 3-2. Texture look ups from different shadow maps are highlighted

 Cascaded Shadow Maps

Figure 3-3. CSM with 1 split (note that CSM with 1 split provides better resolution than
standard shadow mapping because of the ‘zooming in’ by the crop matrix as explained

above)

Figure 3-4. CSM with 3 splits of the same scene

 Cascaded Shadow Maps

Figure 3-5. Another screenshot of the demo

Conclusion
Cascaded Shadow Maps are a promising approach for large scale environment shadows.
They do not suffer from many special cases and difficulties in treatment compared to other
warping methods and provide relatively uniform under-sampling error in screen space. Thus,
just by increasing the shadow map resolution, the jagged edges of shadows can be
significantly reduced for all objects in the scene, almost independent from their distance to
the viewer.

 Cascaded Shadow Maps

References
[1] Fan Zhang , Hanqiu Sun , Leilei Xu , Lee Kit Lun, Parallel-split shadow maps for large-scale
virtual environments, Proceedings of the 2006 ACM international conference, June 14-April 17,
2006, Hong Kong, China

[2] Marc Stamminger , George Drettakis, Perspective shadow maps, Proceedings of the 29th
annual conference on Computer graphics and interactive techniques, July 23-26, 2002, San
Antonio, Texas

[3] António Ramires Fernandes, View Frustum Culling Tutorial,
http://www.lighthouse3d.com/opengl/viewfrustum/
[4] Michael Wimmer, Daniel Scherzer, Werner Purgathofer. Light Space Perspective Shadow
Maps. Eurographics Symposium on Rendering 2004

[5] Tobias Martin, Tiow-Seng Tan. Anti-Aliasing and Continuity with Trapezoidal Shadow Maps.
Proceedings of Eurographics Symposium on Rendering, 21-23 June 2004, Norrköping,
Sweden

Terrain Reference
http://www.cc.gatech.edu/projects/large_models/gcanyon.html

Palm Tree Reference
http://telias.free.fr/zipsz/models_3ds/plants/palm1.zip

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

