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Shadow maps are a very popular technique to obtain realistic shadows in game engines. 
When trying to use them for large spaces, shadow maps get harder to tune and will be more 
prone to exhibit surface acne and aliasing. Cascaded Shadow maps (CSM) is a know 
approach that helps to fix the aliasing problem by providing higher resolution of the depth 
texture near the viewer and lower resolution far away. This is done by splitting the camera 

view frustum and creating a 
separate depth-map for each 
partition in an attempt to make 
the screen error constant. 

CSM are usually used for 
shadows cast by the sun over a 
large terrain. Capturing 
everything in a single shadow 
map would require very high and 
impractical resolution. Thus, 
several shadow maps are used - a 
shadow map that covers only 
nearby objects so that each casts 
a detailed shadow; another 
shadow map that captures 
everything in the distance with 
coarse resolution and optionally 
some more shadow maps in 
between. This partitioning is 
reasonable because objects that 
are far away cast shadows that in 
screen space occupy just a few 

pixels and close-by objects might cast shadows that occupy a significant part of the screen. 

 

Figure 1-1 shows a schematic of parallel split CSM, where the splits are planes parallel to the 
near and far planes and each slice is a frustum itself. The sun is a directional light, so the 
associated light frusta are boxes (shown in red and blue). 

The algorithm proceeds as follows: 

•  For every light’s frustum, render the scene depth from the lights point of view. 

•  Render the scene from the camera’s point of view. Depending on the 
fragment’s z-value, pick an appropriate shadow map to the lookup into. 
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Figure 1-1. The right-most tree is captured in the near shadow-map and the other two are in the 
left. As seen from a viewer on the side, the left shadows are blocky, however, the camera would 

perceive all 3 shadows with approximately the same aliasing. 

Related Work 
There are several other popular approaches try to improve the screen-space aliasing 
error. The ones mentioned here traditionally work on the whole view frustum. Although 
these techniques can be applied to every frustum slice of CSM, this would not improve 
significantly the visual quality and comes with the expense of much greater algorithm 
complexity. In fact, CSM can be thought of a discretization of Perspective Shadow 
Maps. 

Perspective Shadow Maps (PSM) [2] – Figure 1-1 shows that part of the light’s frustum 
doesn’t contain potential occluders and is outside of the camera view frustum and this 
part of the shadow map is wasted. The idea behind PSM is to wrap the light frustum to 
exactly coincide with the view frustum. Roughly, this is achieved by applying standard 
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shadow mapping in post-perspective space of the current camera. A drawback of this 
method is that position and type of the light sources changes not intuitively and thus this 
method is not very common in computer games.  

Light Space Perspective Shadow Maps (LiPSM) [4] wrap the camera frustum in a way 
that doesn’t change the directions of light sources. A new light frustum is built that has a 
viewing ray perpendicular to the light’s direction (parallel to the shadow map). The 
frustum is sized appropriately to inclue the camera frustum and potential shadow 
casters. Compared to PSM, LiPSM doesn’t have as many special cases, but doesn’t use 
the shadow map texture fully. 

Trapezoidal Shadow Maps (TSM) [5] build a bounding trapezoid (instead of the frustum 
in LiPSM) of the camera frustum as seen from the light. The algorithm proceeds 
similarly to the other approaches. 

 

Detailed Overview 
The following discussion is based on the OpenGL SDK demo on cascaded shadow 
maps and will explain the steps taken in detail. 

The shadow maps are best stored in texture arrays with each layer holding a separate 
shadow map. This allows for efficient addressing in the pixel shader and is reasonable 
since all layers are treated essentially in the same way. 

Shadow-map generation 
By looking at figure 1-1, it can be noticed that everything outside the current light frustum 
(box) should not be rendered, provided that all shadow casters and the camera frustum slice 
are contained within it. In a way, the light’s frustum is a bounding box of the camera frustum 
slice, with near side extended enough to capture all possible occluders. If there were an 
occluder B (a bird, for example) above the trees, the boxes should be extended appropriately, 
or B wouldn’t cast a shadow. 

 
Figure 2-1. Camera frustum splits 

The first step of the algorithm is to compute the z-values of the splits of the view frustum in 
camera eye space. Assume a pixel of the shadow map has a side length ds. The shadow it 
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casts occupies a fraction dp of the screen which depends on the normal and position of the 
object being shadowed. Referring to diagram 2-1, 

θ
ϕ

cos
cos

zds
dzn

ds
dp =  

where n is the near distance of the view frustum. 

In theory, to provide exactly the same error on the screen, dp/ds should be constant. In 
addition, we can treat the cosine dependent factor also as a constant because we minimize 
only the perspective errors and it is responsible for projection errors. Thus, 

)/ln(, nf
zds
dz == ρρ  

where the value of ρ is enforced by the constraint ]1;0[∈s . 

Solving the above equation for z and discretizing, (assuming the number of splits N is large), 
the split points should be exponentially distributed, with: 

Ni
i nfnz /)/(=  

where N is the total number of splits. Please refer to [1] for a more detailed derivation. 

 

Figure 2-2. Light frusta from light directly above the viewer 
 

However, since typically N is between 1 and 4, the equation makes the split points visible 
because the shadow resolution changes sharply. Figure 2-2 shows the reason for the 
discrepancy: the area outside the view frustum, but inside the light frusta is wasted because it 
is not visible; however as N → ∞ this area goes to 0. 
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To counter this effect, a linear term in i is added and the difference is hardly visible anymore: 

( )))(/()1()/( / nfNinnfnz Ni
i −+−+= λλ  

where λ controls the strength of the correction. 

After the splits in z are known, the corner points of the current frustum slice are computed 
from the field of view and aspect ratio of the screen. Refer to [3] for details. 

 
Figure 2-3. Effect of the crop matrix and z-bounds change 

 

Meanwhile, the modelview matrix M of the light is set to look into the light’s direction and a 
generic orthogonal projection matrix P=I is set. Then, each corner point p of the camera’s 
frustum slice is projected into ph = PMp in the light’s homogeneous space. The minimum 
mi and maximum Mi values in each direction form a bounding box, aligned with the light 
frustum (box), from which we determine a scaling and offset to make the generic light 
frustum exactly coincide with it. This in effect makes sure that we get the best precision in z 
and loose as little as possible in x and y and is achieved by building a crop matrix C. Finally, 
the projection matrix P of the light is modified to P=CPz, with Pz an orthogonal matrix with 
near and far planes at mz and Mz and  
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Note that we can make the light’s frustum exactly coincide with the frustum slice, but this 
changes the light’s direction and type as in perspective shadow maps 
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The scene is also frustum culled for each frustum slice i and everything is rendered into a 
depth layer using (CPfM)i as modelview and projection matrices and the whole procedure is 
repeated for every frustum partition. 

Final scene rendering 
In the previous step, the shadow maps 1…N were generated and are now used to determine 
if an object is in shadow. For every pixel rendered, its z-value should be compared to the N 
z-ranges computed before. For the following, assume it falls into the i-th range. Note that 
the pixel shader receives this value in post-projection space, while it was originally computed 
in eye space. 

 

Then, the fragment’s position is transformed into world space, using the camera inverse 
modelview matrix Mc-1 (which need not be a full inverse – the top 3x3 portion could be 
transposed only if scaling is not used). Afterwards, it is multiplied by the matrices of the light 
for slice i. The transformation is captured in the following composite matrix (CPfM)i Mc-1  . 
Finally, the projected point is linearly scaled from [-1; 1] to [0; 1]. After all this transforms, 
the fragment’s (x,y) position is actually a texture coordinate of the i-th depth map and the z-
coordinate tells the distance from the light to the particle. By doing the lookup we see the 
distance from the light to the nearest occluder in the same direction. Comparing these two 
values tells whether the fragment is in shadow. 
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Figure 2-4. A triangle casting a shadow in multiple depth maps 

 

Code Overview 
The accompanying OpenGL SDK sample contains the following source files: 

•  terrain.cpp – contains function definitions for loading and rendering the 
environment. The only method needed for the shadow mapping algorithm is 
Draw(), while  Load() and GetDim() are called during initialization to load and 
set the bounding box of the world properly. 

•  utility.cpp – contains many helper functions in order to make the main code 
more readable. These include a shader loader; camera handling; menu, keyboard 
and mouse handling, etc. 

•  shadowmapping.cpp – this file contains the main core code of the presented 
algorithm and contains all code for creating and drawing the shadow maps and 
the final image to the screen. 

Roughly, terrain.cpp and utility.cpp provide the framework needed to run the sample 
which in real games is provided by the game engine. In this analogy, display() is a part of 
the rendering loop, which in this sample calls makeShadowMap() and renderScene(). 
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Listing 3-1. An excerpt from makeShadowMap() (Slightly modified) 

void makeShadowMap() 
{ 
 /* ... */ 
 

// set the light’s direction 
 gluLookAt(0,   0,    0, 

light_dir[0],  light_dir[1],  light_dir[2], 
1.0f,    0.0f,    0.0f); 

 
 /* ... */ 
 
 // compute the z-distances for each split as seen in camera space 
 updateSplitDist(f, 1.0f, FAR_DIST); 
 
 // for all shadow maps: 
 for(int i=0; i<cur_num_splits; i++) 
 { 
  // compute the camera frustum slice boundary points 
  // in world space 
  updateFrustumPoints(f[i], cam_pos, cam_view); 
  // adjust the view frustum of the light, so that 
  // it encloses the camera frustum slice fully. 
  applyCropMatrix(f[i]); 
  // make the current depth map a rendering target 
  glFramebufferTextureLayerEXT(GL_FRAMEBUFFER_EXT,   
    GL_DEPTH_ATTACHMENT_EXT, depth_tex_ar, 0, i); 
  // clear the depth texture from last time 
  glClear(GL_DEPTH_BUFFER_BIT); 
 
  // draw the scene 
  terrain->Draw(minZ); 
   
  /* ... */ 
 } 
 
 /* ... */ 
} 

 

renderScene() sets the shader uniforms (see listing 3-2) and then renders the scene as it 
would do without CSM. The important for CSM piece of code is in the pixel shader that 
is applied during this pass. 
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Listing 3-2. shadow_single_fragment.glsl (Slightly modified)  

 
uniform sampler2D tex;    // terrain texture 
uniform vec4 far_d;   // far distances of 
      // every split 
varying vec4 vPos;  // fragment’s position in 
 // view space 
uniform sampler2DArrayShadow stex; // depth textures 
 
float shadowCoef() 
{ 
 int index = 3; 
 // find the appropriate depth map to look up in 

// based on the depth of this fragment 
 if(gl_FragCoord.z < far_d.x) 
  index = 0; 
 else if(gl_FragCoord.z < far_d.y) 
  index = 1; 
 else if(gl_FragCoord.z < far_d.z) 
  index = 2; 
  
 // transform this fragment's position from view space to 

// scaled light clip space such that the xy coordinates 
// lie in [0;1]. Note that there is no need to divide by w 
// for othogonal light sources 

 vec4 shadow_coord = gl_TextureMatrix[index]*vPos; 
 

// set the current depth to compare with 
 shadow_coord.w = shadow_coord.z; 
  
 // tell glsl in which layer to do the look up 
 shadow_coord.z = float(index); 
  
 // let the hardware do the comparison for us 
 return shadow2DArray(stex, shadow_coord).x; 
} 
 
void main() 
{ 
 vec4 color_tex = texture2D(tex, gl_TexCoord[0].st); 
 float shadow_coef = shadowCoef(); 
 float fog_coef = clamp(gl_Fog.scale*(gl_Fog.end + vPos.z), 
0.0, 1.0); 
 gl_FragColor  = mix(gl_Fog.color, (0.9 * shadow_coef * 
gl_Color * color_tex + 0.1), fog_coef); 
} 

Results 
This sections shows a few screenshots of large scale terrain rendering with 4-splits CSM, 
where each shadow map is 1024x1024. 
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Figure 3-1. Large scale terrain rendering with 4-splits CSM 

 
Figure 3-2. Texture look ups from different shadow maps are highlighted 
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Figure 3-3. CSM with 1 split (note that CSM with 1 split provides better resolution than 
standard shadow mapping because of the ‘zooming in’ by the crop matrix as explained 

above) 

 
Figure 3-4. CSM with 3 splits of the same scene 
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Figure 3-5. Another screenshot of the demo 

 

Conclusion 
Cascaded Shadow Maps are a promising approach for large scale environment shadows. 
They do not suffer from many special cases and difficulties in treatment compared to other 
warping methods and provide relatively uniform under-sampling error in screen space. Thus, 
just by increasing the shadow map resolution, the jagged edges of shadows can be 
significantly reduced for all objects in the scene, almost independent from their distance to 
the viewer. 
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Terrain Reference 
http://www.cc.gatech.edu/projects/large_models/gcanyon.html 

Palm Tree Reference 
http://telias.free.fr/zipsz/models_3ds/plants/palm1.zip



 

NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or 
registered trademarks of NVIDIA Corporation in the United States and other countries. Other 
company and product names may be trademarks of the respective companies with which they 
are associated. 

 

Copyright 

© 2007 NVIDIA Corporation. All rights reserved.  


