Deformable Body Simulation on GP

Nuttapong Chentanez

— —

2/25

Why deformable bodies?

< Looks more real than rigid bodies

< Most objects in the real world deform, true rigid bodies don't
physically exist

< Open up new possibilities in gaming experiences

< GeForce 8800 can handle the computations necessary for
deformable body simulation entirely on the GPU

< Simulation
< Collision detection and response

< Rendering @?Z/_,
BVIDIA.

3/25

Previous works on “Real Time”
simulation of deformable bodies

< Physically based

< From Solid Mechanics
< Start from Stress-Strain relationship
< Derive governing Partial Differential Equation (PDE)

< Discretize to ODE and Solve
< Explicit Integration — Unstable for reasonable time step
< Implicit Integration — More complex to implement

< May perform dimension reduction to reduce run-time

complexity
< Very long pre-processing time
< Examples
< Modal Analysis [1]
< Interactive Virtual Materials [2] Q/g

< Reduced nonlinear model [3] ZVIDIA.

4/25

Previous works on “Real Time”
simulation of deformable bodies

< Non-physically based
< Ignore what really happens in the physical world
< Come up with a function for computing internal forces
< Based on current position and velocity
< Examples
< Mass-Spring Models [4]

< A Versatile and Robust Model for Geometrically Complex
Deformable Solids [9]

< Meshless Shape Matching [6] *

<
HVIDIA.

5/25

Pros and Cons

< Physically Based < Non-Physically Based

< Pros: < Pros:

2 More correct < Easier to implement
2 Can be used for prediction < Cheaper

< Parameters from real objects < Easier math

< Cons: < Cons:
< Messy math < Lots of parameters
< Hard to implement < Parameters make less sense
< More expensive < Can’t get parameters from

real objects
< Can’t use to predict

<
#VIDIA.

6/25

Meshless Shape Matching Basics

< Deformable Objects consist of lots of particles

< Match current object shape against the rest shape
< Start with best fit rigid transformation

< Pull particles toward the matched shape

< Can update a particle velocity and position independently
< Need not care about other particles

0 0 g, 5
:\..1. ._ _____ ?1.‘! 1_1 » _ #':E}."'; X_1 5
i : Et R} O .:?_-’4 Y o>, %
I % 5
: I t Y o5 @ o X .w
ﬂ" """ ‘ 0 LT g < L <
X, X .‘5 v 2
L| Ll

—O\
=
ZVIDIA.

7125

Best fit Rigid Transformation

</ Flnd R and t to m|n|m|ze error: Current position relative to t

% RO -xi) o
-) xiO — Rest pOSItlon Of partlcle\l Position relative to CM of

the best fit rigid transformation

[\)

< X; — Current position of particle i
< x%__— Center of mass of particles at rest configuration
< m, — Mass of particle i

< Bestfit t is just the center of mass of current particles’ position
< Match with intuition

¢ Zi m;X;
= X¢ —
cm Zi m @

ZVIDIA.

8/25

Best fit Rigid Transformation

< Computing R (Optimum Rotation)
< First, remove translation from consideration
< Rewrite the optimization equation
> m,(Aq,-p,)’
< Where, ’
< A'is a 3x3 matrix, a linear transformation

°oq =X, -x) , rest position relative to the rest center of mass
° p; =X, -X_ , current position relative to the current center of mass

< Compute best fit A
o Turnouttobe A = (Zm,-p,'ql-T)(zmiql'ql-T)—l = ApiAy
[[

< Extract Rotation Part
< Linear Transformation = Rotation + Scaling + Shear
2 A=RS, Risarotation mat, S isa symmetric mat @

RVIDIA.

9/25

Extracting Rotation

< We know that A = RS
< Can show that S = sqrt(ATA), eg. ATA=S8S
< We can then get R = AS-1
< Computing S-1
< Find Q = ATA
< Diagonalize Q, Q = J'DJ
< With Jacobi Rotation
< Compute S-1 = JTsqrt(D-1)J
< sgrt(D-1) is just matrix of 1/sqgrt of diagonal entries of D
< Paper suggests extracting R from A
< Bad idea because A is ill-conditioned

=2
< Plus we’re working with single precision float here -

RVIDIA.

Jacobi Rotation

10/25

void Jacobi(inout float3x3 mat, inout float3x3 jmat, in int j, in int k) {

Il First, check if entries (j,k) is too small or not, if so, do nothing

if (abs(mat[j][k]) > 1e-20) {
Il This is just some math to figure out cosine and sine necessary to zero out the two entries
float tau = (mat[j][j]-mat[k][k])/(2.0f*mat[j][k]);
float t = sign(tau) / (abs(tau) + sqrt(1 + tau*tau));
float c = 1/sqrt(1+t*t);
float s = c*t;
// Build the rotation matrix
float3x3 R = {1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f};
RG] = c; RIK][K] = c; R][K] = -s; RIK][] =s;

jmat = mul(jmat, R); mat = mat*R;
RIIK] = s; RIK][] = -s;
mat = R*mat;

}

float3x3 ComputeOptimumRotation(in float3x3 A) {
float3x3 jmat = {1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f};
float3x3 mat = mul(transpose(A), A);

/I Do 5 iterations of Jacobi rotation
[unroll(5)] for (int i = 0; i < 5; i++) {Jacobi(mat, jmat, 0, 1); Jacobi(mat, jmat, 0, 2);Jacobi(mat, jmat, 1, 2);}
/I AMA == jmat*t mat jmat
// OptimumR = A jmat*t sqrt(1/mat) jmat
float3x3 optimumR = transpose(mul(A, mul(transpose(jmat), float3x3(
jmat[0] / sqrt(mat[0][0]), jmat[1] / sqrt(mat[1][1]), jmat[2] /sqrt(mat[2][2])))));
const int first = 1, second = 2, third = 0;
optimumR[first] = normalize(optimumR[first]);
optimumR[third] = normalize(cross(optimumR[first], optimumR[second]));
optimumR[second] = cross(optimumR[third], optimumR[first]);
return transpose(optimumR);

Particles position and velocities update

11/25

< Compute intermediate position and velocity

V.=V . +ht /m
X, =X, +hv,
< f. is the force acting on particle i
< Eg. Gravity, Collision Force, User Specified Force
< Compute best fit rigid transformation of the intermediate position
< Update the position and velocity

gi = qu +icm q; = X? _X(c)m
vVi=v,+hf /m, +%(gi -X;)

X' =X, +hv/

< a control how fast the deformable body restore to rigid shape

< a =1 will make this a rigid body simulation @/j

—

ZVIDIA.

12/25

Extension

< So far, goal shape is always a rigid transformation

< Will support only small deformations
< To obtain a more interesting deformation:

< Want to make the goal shape be a deformed configuration

< Then slowly pull the goal shape towards the rigid transformation
< Blend rigid transformation with linear transformation

< Ais the best fit
< To conserve volume, divide A by /det(A)
< Use 3 A+ (1-B) Rin place of R in computing the goal position

8 = (/))A_l_(l — /)))R)qz + icm
< B must be < 1 so as to have tendency to restore to rest state

<

RVIDIA.

13/25

Extension

— AVIDIA.

14/25

More Extension

< Linear not good enough
< Use quadratic best fit!

15/25

Best Fit Quadratic Transformation

< Best fit quadratic transformation

= [AQM]E?)C{3><9
< A'is linear transformation
< Qis pure quadratic terms
< M is mixed quadratic terms

» Whenz m.(Aq, -p;)’ is minimized where
2 2 2 1x9
=19,.9,.9..9:.9,.9-.9,9,-9,4..9.9,] ER
< The minlmum turns out to be:

A=Y mpa)y, maa)" = Ay,

2 Then use & = (BA+(1-)R)q, +X,, to compute goal shape
< qu eR’* Can be pre-computed RER™ =[R00] Q/g
#ZVIDIA.

16/25

Cluster Based Deformation

< Deformation for large complex objects may not be well
fitted by a single quadratic deformation

< Cluster particles together
< Particles can be in several clusters
< Each cluster computes a separate goal shape

< Goal shapes from clusters are then averaged to form
final goal shape

ooooo

ooooo

ooooo

ooooo

ooooo

ooooo

ooooo

17/25

GeForce 8800 Implementation

< GGoals:

< Fast deformation physics for objects with multiple
clusters

< Perform collision detection and handling
<~ Done entirely on GPU
< Lots of objects in real time
< Support skinning
< Simulate low-resolution mesh
< Render high resolution mesh

<
HVIDIA.

18/25

Demo

< Falling Objects
< Varying a, 8

<

ZVIDIA.

19/25

Demo

< Collision with height map
< Varying q, B

<

ZVIDIA.

20/25

Demo

< Collision between objects

< Varying a, 8
<

ZVIDIA.

21/25

Considerations

< Need to perform computations in parallel manner
< Doing one pass for all objects before doing the next pass

< Balance between having small number of passes and
having redundant computations

<
#ZVIDIA.

22/25

Data Structure

< 3 types of Texture2Ds used
< For storing information about each particle

< For storing information about particles in each cluster
< A particle can belong to many clusters
< For storing information about clusters

< 2 types of usage
< Never changes during run-time
< Being updated and used dynamically

<
HVIDIA.

23/25

Data Structure

< Texture2Ds for storing information about particles,

< Current Position and Intermediate Position, xTex, xBarlex
< XYZ-> RGB, Mass—2>A
< Current Velocity, viex
< XYZ~-> RGB, #influenced cluster=>A
< Acceleration, alex

1 Cluster influence

2 XYZ> RGB 2clsers |
< Goal Position, glex 1

2> XYZ>RGB fluonces
< ¢, qBarTex

q,9,]

> 3Texels q=Iq,,9,,9,,4:14;,9;,9.9,,9,4,
< Particles are sorted

< Row major order @
=

< Based on number of clusters that influence them
#VIDIA.

9

24/25

Data Structure

< Texture2Ds for storing information
about particles in each cluster

< Pointer to xTex texture,
xAdrTex

< To specify which particles are
members of this cluster Cluster 2

< Position of particles, x\VValTex Cluster 3

< To reduce # of dependent
texture fetch

< Position of particles wrp to
cluster CM, pValTlex

< Each cluster corresponds to a quad
in the texture

Cluster 1

Cluster 4

A4

<

ZVIDIA.

Data Structure

25/25

< Texture2Ds for storing information about clusters

< Take up various number of texels

< CM, , takes 1 texel per cluster

2 X,Y,Z>RGB, Total Mass> A
) . takes 8 texels

< Packed 3x9 matrix
< Goal Transformation,

< Packed 3x9 matrix
< AqgbarTex, take 12 texels

< Packed symmetric 9x9 matrix

. takes 8 texels

Cluster 1

Cluster 4

Cluster 2

Cluster 3

Cluster N @_\J

ZVIDIA.

Texture Summary

26/25

< Particle info

)

© O O C

)

xTex — Current particle position
xBarTex — Intermediate particle position
vTex — Current particle’s velocity

alex — Current particle’s acceleration

g Tex — Particle’s goal position

gBarTex — Particle

< Particle in cluster info -

)

© O O C

q
xAdrTex — Pointer to fetch particle position

xValTex —=Cluster particle’s current position
gValTex — Cluster particle’s goal position
pValTex — Cluster particle’s position wrt to CM
aValTex — Cluster particle’s acceleration

< Cluster info

)

cmTex — Cluster’'s center of mass

< ApgbarTex - Cluster's ApqgBar

)

transformTex — Transformation for computing goal

< AqgbarTex - Cluster’'s AqgBar

<
HVIDIA.

Example

27/25

< 6 Particles
< 2 clusters

< Cluster 0 has particles 012 3
< Cluster 1 has particles 2345

xTex

x0

x1

x4

vTex

x5

X2

x3

vO0

v1

v4

cmTex

B

v5

v2

v3

xAdrTex

00 | 01 | 11 | 12

gBarTex
q‘BarO q‘Bar1 q‘Bar4
q‘BarS q‘BarZ q‘BarS
xValTex

x0 [x1 | x2 | x3

transformTex

Tr.

dNsS

forn

no

<

#VIDIA.

Overview of DX10 implementation

28/25

No collision

No skinning

Compute Intermediate
Position

!

Compute goal
transformation

'

Compute Goal Position

'

Compute Next Time Step
Velocity and Position

<
HVIDIA.

29/25

Computing Intermediate Position

< Input: Height Map
< Qutput: xBarTex x(t) = x(t) + hv(t), V(t) = v(t) + hfex(t)/m;
< Computation: PS

< Draw a quad

< First compute intermediate velocity

< Then compute intermediate position

< Acceleration includes:
< Gravity
< External force

< Collision force with height map
< Fetch height from height map (RGB encodes normal, A encodes

height)
< See if it penetrates ground or not
< If so, apply force in heightmap’s normal direction @/:l

< Collision force with other objects (later) ZVIDIA.

30/25

Computing Goal Transformation

Compute Clusters’
Particles |Position
v
Compute CM

v

Compute Clusters’
Particles Position relative
to CM

v

Compute ApgbarTex

v

Compute Goal
Transformation

<
RVIDIA.

31/25

Computing Clusters’ Particles Position

< Compute position of particles for each cluster
< Input: xBarTex, xAdrTex
< Output: xValTex
< Computation: PS
< Draw quads, one per cluster
< Fetch xAdrTex to get pointer to xBarlex
< Fetch xBarlex and output

<

ZVIDIA.

32/25

Computing CM

< Compute center of mass for each cluster
< Input: xValTex
< Output: cmTex
< Computation: VS, PS
< Draw points, several points per cluster xaltex

< Each point sum the position of M particles weighted by the
mass, fetched from x\Vallex

cmTex

< For points belonging to the same cluster, output to the same
pixel

< Use 32-Dbit float additive alpha blending
< GeForce 8800 has this functionality!

<
RVIDIA.

33/25

Computing positions relative to CM

< Input: xValTex, cmTex
< Output: pValTex

< Computation: GS, PS

< Draw points, one point per cluster
< GS:
< Fetches cmlex of the cluster

< Create a quad to cover portion of pValTex that
corresponds to the cluster

< PS fetches x\/alTex and subtract with CM

<
ZVIDIA.

Computing ApqgBarTex

34/25

pq

qu = E mipiqiT

X X X Xig| X Xag Xop Xy Xy,
= |[Xsr KXz Az Xza| [Xar Xag Xy Xag | Aoy
Xsp Xsg Xsp Xsa| [Xer Xeg Xop Xed X7p

pValTex

< Input: pValTex, gBarTex
< Output: ApgBarTex
< Computation: GS (can push up to VS)
< Draw points, several points per cluster

ApqgTex

2 Compute mipiﬁl.T, which is a 3x9 matrix in GS

< Sum contribution from M particles
< Output 7 adjacent points

< Use 32 bits float additive alpha blending to sum the sums

<
ZVIDIA.

Computing Goal Transformation

35/25

< Input: , AqgBarTex
< Output:
< Computation: GS (can push up to VS)
< Draw points, 1 point per cluster
> Compute A by multiplying A ,with A,
< Expand the packed Aqq
< Extract the 3x3 left sub matrix to get A
< Compute optimum rotation, R, with Jacobi Method
2 Compute T = BA +(1- B)R
< Output 7 points

<
HVIDIA.

36/25

Computing Goal Position

Compute clusters
particles’ goal
position

v

Compute particles’
goal position

<

ZVIDIA.

37/25

Computing Clusters Particles’ Goal
Position

< Compute the goal position of particles in each cluster
< |nput: transformTex, pValTex, cmTex, gBarTex
< Qutput: gValTex
< Computation: GS, PS

< Render quads, 1 quad per cluster

< Use GS to fetch cmmTex, transform Tex and generates quad

< Use PS to fetch gBarTex, multiply with the transformation
and add with CM

gi = qu + icm

<

ZVIDIA.

38/25

Computing Particles’ Goal Position

< Compute goal positions of particles

< Average the goal position of the
particle from the cluster it belongs to

< Input:
< Output:
< Computation: PS

< Draw quads and lines

< First quad and a line for all particles
with >=1 influence cluster

< Next quad and 2 lines for all particles
with >=2 influence clusters

. i u /
Quad 1 Quad 2 Quad 3
Line 1 Line 2 Line 3

< Do additive alpha blending @:Z/SJ
< This is why we sort the particles based ﬂVIDIA

on the number of influences

Compute Next Time Step Position &
Velocity

39/25

< Update the position and velocity of particles
< |nput: xTex, vTex, aTex, gTex, xBarTex
< Output: xTex’, viex
< Computation: PS
< Draw a quad
< Use MRT, for position and velocity
< Compute velocity first then use it to compute position

vt +h) = v (0)+ gf(t)f(t)+ g () m,

x,(t+h) = x,(y+hv,(t + h)

<
ZVIDIA.

40/25

Collision Handling

< Collision detection with depth cube map

< Detect if particles in a cluster penetrate through another
cluster or not

< If so, apply penalty force

< For a cluster,
< Need to check if particles collide with any other cluster or not
< Slow, O(N?) cube map look up
< Need some pruning
< Only check clusters whose bounding box overlaps with this

cluster @Z/_,
ZVIDIA.

41/25

Collision Detection with Depth Cube Map

< Create depth cube map for each cluster
< Centered at CM
< Update every frame
< Low Resolution, use 16x16 now

< Look into depth cube map in direction u

< If distance from CM < depth
< Apply force in direction of u
< Magnitude proportional to depth-distance from CM

+X -X +Y -Y +Z -Z

<
RVIDIA.

42/25

Cube Map Collision Detection
Implementation

< DX10 does not support array of cube maps
< |Instead flatten the cube map and stores the 6 faces in a Texture2D slice
< Store several cube maps per Texture2D slice

< Use a cube map atlas
< Store a 2D texture coordinate in the cube map
< Look up the cube map atlas to get (u,v)
< Offset u,v and choose slice # appropriately to fetch the correct cube map
< Fetch the corresponding position in the Texture2D slice @:Z/:J

RVIDIA.

43/25

Cube Map Creation

< DX10 allows only limited numbers of textures that can be used at a time
< Suppose there are N clusters and the Texture2DArray is of size S,
< Need N/S rendering passes

< Each pass create S cube map

< Use GS to output 6 triangles per each input triangle
< Output to 6 viewports of the same Texture2D slice
2 Choose Texture2D slice depending on which cluster the triangle bel@m

22
< Change viewport after every pass -
RVIDIA.

44/25

Pruning

< Don’t want to do O(N?) cube map lookup
< Compute Bounding Box of clusters

< Do cube map check only for pairs of clusters whose BBs
overlap

< Avoid checking pairs of clusters from the same object
< For each pair (i, j)

< For all particles in cluster i, lookup into the depth cube
map of cluster |

< Apply penalty force to particle i if found to penetrate

<

RVIDIA.

45/25

Collision Handling Overview

Compute CM

v

Compute bounding box

v

Compute potential collision
pair

|

Create Cube Map

v

Compute Collision Force
for particles in clusters

’

Sum collision force to
particles and add to aTex

Same as before

Similar to CM, but use Max, Min

Similar to averaging the goal position

<
BVIDIA.

46/25

Computing Potential Colliding Pairs

< Input: Bounding Boxes(Maxs and Mins of xyz of particles in each
cluster)

< Qutput: Potential Colliding Pairs
< Computation: GS stream out (can push to VS)
< Bind NULL vertex buffer
< Draw all possible (i, j) where cluster i and j do not come from the
same objectand i <j

< If bounding box of i, j overlap
< Stream out 2 points containing information about (i, j) and (j, i)

< Can later use more sophisticated pruning techniques

< We store the ID of the object each cluster belong to in a constant
buffer

#VIDIA.

47125

Computing Collision Force

< Input: Potential Colliding Pairs, ,

< Qutput:

< Computation: GS, PS
< Use DrawAuto to draw points of potentially colliding pairs (i,j)
< In GS,

< Turn a point to a quad covering particles in cluster i
< Fetch CM of cluster j and pass as a vertex attribute

< In PS, computation is done for each particles in i

< Look up cube map of j and check for penetration

< Apply force proportional to penetration depth
< In direction radially outward from CM of j

< Additive alpha blending to sum force (QZ»_,
BVIDIA.

48/25

Skinning

< Treat particles as control points

< Compute surface mesh’s vertices
based on control point position

< Barycentric interpolation for now
< Weights stored in a texture
< 4 control points per vertex

< Need tetrahedral mesh that encloses and
approximates the surface mesh

< Generate with NetGen

< Given a tetrahedral mesh and a surface
mesh:

Coarse Tetrahedral Mesh for
Simulation /

< Program will figure out which _
tetrahedron each of the vertices of the Détailed Surface Mes%@
surface mesh are in Rendering =

ZVIDIA.

49/25

Normal vector computation

< Use GS and Alpha blending
< Input: Deformed vertex positions as a texture
< Qutput: Normal vectors as a texture

< Computation:
< GS:
< Compute triangle’s area weighted normal

< Turn a triangle into 3 points each with normal as color

< Qutput 3 points to the corresponding vertices position. Use
additive alpha blending to accumulate vertex normal

< Normalize it before use
< Use vertex texture fetch to get the normal out

<

RVIDIA.

50/25

Automatic Cluster Generation

< Given the tetrahedral mesh,
< Compute K-Mean of the vertices . ;:f-,j‘. :,° y
< Partition the vertices into K groups SRR
< Make each group a cluster
< Also add 1-Ring neighbors to clusters

< Done in preprocessing step on the CPU e‘ﬁ"
-,

RVIDIA.

51/25

Current Status

< Currently 20 Computation Passes + 1 Rendering Pass
< Load X files and .mesh file (from NETGEN)
< Parameters for each obijects:

< qa, B for controlling softness

< Penalty force constant

< In collision event between (i, j), will take the max
< Number of clusters to use

#VIDIA.

52/25

Result

<

ZVIDIA.

53/25

Future

< Plastic deformation (permanent deformation)
< Need to update A on the fly

< Need 9x9 symmetric matrix inversion in GPU
< Gaussian Elimination in GS?

< Other solid simulation models
< FEM
< Need sparse linear system solver
< Smarter collision pruning
< More sophisticated collision handling
< Contact surface approximation with cube map?

<

RVIDIA.

54/25

References

< 1. Interactive Deformations Using Modal Analysis by
Hauser, K., Shen, C., O'Brien, J. F.

< 2. Interactive virtual materials, Matthias Muller, Markus
Gross

< 3. Real-Time Subspace Integration of St.Venant-
Kirchhoff Deformable Models, Jernej Barbic and Doug
L. James

< 4. Google “mass spring model”

< 5. A Versatile and Robust Model for Geometrically
Complex Deformable Solids, M. Teschner, B.
Heidelberger, M. Mueller, M. Gross

< 6. Meshless Deformations Based on Shape MatchingC~
M. Mueller, B. Heidelberger, M. Teschner, M. Gros%VIDIAC

