
Deformable Body Simulation on GPU

Nuttapong Chentanez

2/25

Why deformable bodies?

Looks more real than rigid bodies
Most objects in the real world deform, true rigid bodies don’t
physically exist

Open up new possibilities in gaming experiences

GeForce 8800 can handle the computations necessary for
deformable body simulation entirely on the GPU

Simulation
Collision detection and response
Rendering

3/25

Previous works on “Real Time”
simulation of deformable bodies

Physically based
From Solid Mechanics

Start from Stress-Strain relationship
Derive governing Partial Differential Equation (PDE)
Discretize to ODE and Solve

Explicit Integration – Unstable for reasonable time step
Implicit Integration – More complex to implement

May perform dimension reduction to reduce run-time
complexity

Very long pre-processing time

Examples
Modal Analysis [1]
Interactive Virtual Materials [2]
Reduced nonlinear model [3]

4/25

Previous works on “Real Time”
simulation of deformable bodies

Non-physically based
Ignore what really happens in the physical world
Come up with a function for computing internal forces

Based on current position and velocity
Examples

Mass-Spring Models [4]
A Versatile and Robust Model for Geometrically Complex
Deformable Solids [5]
Meshless Shape Matching [6] *

5/25

Pros and Cons

Physically Based
Pros:

More correct
Can be used for prediction

Parameters from real objects
Cons:

Messy math
Hard to implement
More expensive

Non-Physically Based
Pros:

Easier to implement
Cheaper
Easier math

Cons:
Lots of parameters
Parameters make less sense
Can’t get parameters from
real objects
Can’t use to predict

6/25

Meshless Shape Matching Basics

Deformable Objects consist of lots of particles
Match current object shape against the rest shape

Start with best fit rigid transformation
Pull particles toward the matched shape

Can update a particle velocity and position independently
Need not care about other particles

7/25

Best fit Rigid Transformation

Find R and t to minimize error:

xi
0 – Rest position of particle i

xi – Current position of particle i
x0

cm– Center of mass of particles at rest configuration
mi – Mass of particle i

Best fit t is just the center of mass of current particles’ position
Match with intuition

Current position relative to t

Position relative to CM of

the best fit rigid transformation

2
00)()(txxxR !!!" icmii

i

m

8/25

Best fit Rigid Transformation
Computing R (Optimum Rotation)

First, remove translation from consideration
Rewrite the optimization equation

Where,
A is a 3x3 matrix, a linear transformation
- , rest position relative to the rest center of mass
 , , current position relative to the current center of mass

Compute best fit A
Turn out to be

Extract Rotation Part
Linear Transformation = Rotation + Scaling + Shear
A = RS, R is a rotation mat, S is a symmetric mat

2)(
iii

i

pAqm !"

00

cmii
xxq !=

cmii
xxp !=

9/25

Extracting Rotation

We know that A = RS
Can show that S = sqrt(ATA), eg. ATA = SS
We can then get R = AS-1

Computing S-1

Find Q = ATA
Diagonalize Q, Q = JTDJ

With Jacobi Rotation
Compute S-1 = JTsqrt(D-1)J

sqrt(D-1) is just matrix of 1/sqrt of diagonal entries of D
Paper suggests extracting R from Apq

Bad idea because Apq is ill-conditioned
Plus we’re working with single precision float here

10/25

Jacobi Rotation
void Jacobi(inout float3x3 mat, inout float3x3 jmat, in int j, in int k) {

// First, check if entries (j,k) is too small or not, if so, do nothing
if (abs(mat[j][k]) > 1e-20) {

// This is just some math to figure out cosine and sine necessary to zero out the two entries
float tau = (mat[j][j]-mat[k][k])/(2.0f*mat[j][k]);
float t = sign(tau) / (abs(tau) + sqrt(1 + tau*tau));
float c = 1/sqrt(1+t*t);
float s = c*t;
// Build the rotation matrix
float3x3 R = {1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f};
R[j][j] = c; R[k][k] = c; R[j][k] = -s; R[k][j] = s;

jmat = mul(jmat, R); mat = mat*R;
R[j][k] = s; R[k][j] = -s;
mat = R*mat;

}
}

float3x3 ComputeOptimumRotation(in float3x3 A) {
float3x3 jmat = {1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f};
float3x3 mat = mul(transpose(A), A);

// Do 5 iterations of Jacobi rotation
[unroll(5)] for (int i = 0; i < 5; i++) {Jacobi(mat, jmat, 0, 1); Jacobi(mat, jmat, 0, 2);Jacobi(mat, jmat, 1, 2);}
// A^tA == jmat^t mat jmat
// OptimumR = A jmat^t sqrt(1/mat) jmat
float3x3 optimumR = transpose(mul(A, mul(transpose(jmat), float3x3(

jmat[0] / sqrt(mat[0][0]), jmat[1] / sqrt(mat[1][1]), jmat[2] /sqrt(mat[2][2])))));
 const int first = 1, second = 2, third = 0;

optimumR[first] = normalize(optimumR[first]);
 optimumR[third] = normalize(cross(optimumR[first], optimumR[second]));
 optimumR[second] = cross(optimumR[third], optimumR[first]);

return transpose(optimumR);
}

11/25

Particles position and velocities update
Compute intermediate position and velocity

fi is the force acting on particle i
Eg. Gravity, Collision Force, User Specified Force

Compute best fit rigid transformation of the intermediate position
Update the position and velocity

α control how fast the deformable body restore to rigid shape
α = 1 will make this a rigid body simulation

iiii
mh /fvv +=

iii
hvxx +=

)(/'
iiiiii

h
mh xgfvv !++=

"

iii
'hvxx +='

cmii
xRqg += 00

cmii
xxq !=

12/25

Extension

So far, goal shape is always a rigid transformation
Will support only small deformations

To obtain a more interesting deformation:
Want to make the goal shape be a deformed configuration
Then slowly pull the goal shape towards the rigid transformation

Blend rigid transformation with linear transformation
A is the best fit

To conserve volume, divide A by
Use β A + (1- β) R in place of R in computing the goal position

β must be < 1 so as to have tendency to restore to rest state

cmii
xqRAg +!+=))1((""

13/25

Extension

14/25

More Extension

Linear not good enough
Use quadratic best fit!

15/25

Best Fit Quadratic Transformation

Best fit quadratic transformation

A is linear transformation
Q is pure quadratic terms
M is mixed quadratic terms

When is minimized where

The minimum turns out to be:

Then use to compute goal shape
 Can be pre-computed

91222
]

xT

xzzyyxzyxzyx q,qq,qq,q,q,q,q,q,qq !"= [q

2)ii pqA(!" ii
m

93
][

!"#= MAQA

qqpqiii AAqqqpA ==
!"" 1))((T

i

i

T

ii

i

mm

[R00]R
93
=!" #99x

qq
!"A

cmii
xqRAg +!+=))1((""

16/25

Cluster Based Deformation

Deformation for large complex objects may not be well
fitted by a single quadratic deformation
Cluster particles together

Particles can be in several clusters
Each cluster computes a separate goal shape

Goal shapes from clusters are then averaged to form
final goal shape

17/25

GeForce 8800 Implementation

Goals:
Fast deformation physics for objects with multiple
clusters
Perform collision detection and handling
Done entirely on GPU
Lots of objects in real time
Support skinning

Simulate low-resolution mesh
Render high resolution mesh

18/25

Demo

Falling Objects
Varying α, β

19/25

Demo

Collision with height map
Varying α, β

20/25

Demo

Collision between objects
Varying α, β

21/25

Considerations

Need to perform computations in parallel manner
Doing one pass for all objects before doing the next pass

Balance between having small number of passes and
having redundant computations

22/25

Data Structure

3 types of Texture2Ds used
For storing information about each particle
For storing information about particles in each cluster

A particle can belong to many clusters
For storing information about clusters

2 types of usage
Never changes during run-time
Being updated and used dynamically

23/25

Data Structure

Texture2Ds for storing information about particles,
Current Position and Intermediate Position, xTex, xBarTex

XYZ RGB, MassA
Current Velocity, vTex

XYZ RGB, #influenced clusterA
Acceleration, aTex

XYZ RGB
Goal Position, gTex

XYZRGB
 , qBarTex

3 Texels
Particles are sorted

Row major order
Based on number of clusters that influence them

1 Cluster influence

2 Clusters

influences

3 Clusters

influences

T
]xzzyyx

2

z

2

y

2

xzyx qq,qq,qq,q,q,q,q,q,[qq =

q

24/25

Data Structure

Texture2Ds for storing information
about particles in each cluster

Pointer to xTex texture,
xAdrTex

To specify which particles are
members of this cluster

Position of particles, xValTex
To reduce # of dependent
texture fetch

Position of particles wrp to
cluster CM, pValTex

Each cluster corresponds to a quad
in the texture

Cluster 1

Cluster 2

Cluster 3

Cluster 4

25/25

Data Structure

Texture2Ds for storing information about clusters
Take up various number of texels

CM, cmTex, takes 1 texel per cluster
X,Y,ZRGB, Total Mass A

ApqbarTex, takes 8 texels
Packed 3x9 matrix

Goal Transformation, transformTex, takes 8 texels
Packed 3x9 matrix

AqqbarTex, take 12 texels
Packed symmetric 9x9 matrix …….

…….

Cluster 1 Cluster 2 Cluster 3

Cluster 4

Cluster N

26/25

Texture Summary
Particle info

xTex – Current particle position
xBarTex – Intermediate particle position
vTex – Current particle’s velocity
aTex – Current particle’s acceleration
gTex – Particle’s goal position
qBarTex – Particle

Particle in cluster info
xAdrTex – Pointer to fetch particle position
xValTex –Cluster particle’s current position
gValTex – Cluster particle’s goal position
pValTex – Cluster particle’s position wrt to CM
aValTex – Cluster particle’s acceleration

Cluster info
cmTex – Cluster’s center of mass
ApqbarTex - Cluster’s ApqBar
transformTex – Transformation for computing goal
AqqbarTex - Cluster’s AqqBar

q

27/25

Example

6 Particles
2 clusters

Cluster 0 has particles 0 1 2 3
Cluster 1 has particles 2 3 4 5

v0 v1 v4

v5 v2 v3

x0 x1 x2

x2 x3 x4

x3

x5

00 01 11 12

11 12 02 10

c1c0

x0 x1 x4

x5 x2 x3

Transform0 Transform1

qBar0 qBar1 qBar4

qBar5 qBar2 qBar3

xTex vTex qBarTex

xAdrTex xValTex

cmTex transformTex

28/25

Overview of DX10 implementation

Compute goal
transformation

Compute Goal Position

Compute Intermediate
Position

Compute Next Time Step
Velocity and Position

No collision

No skinning

29/25

Computing Intermediate Position
Input: xTex, vTex, aTex, Height Map
Output: xBarTex
Computation: PS

Draw a quad
First compute intermediate velocity
Then compute intermediate position
Acceleration includes:

Gravity
External force
Collision force with height map

Fetch height from height map (RGB encodes normal, A encodes
height)
See if it penetrates ground or not
If so, apply force in heightmap’s normal direction

Collision force with other objects (later)

30/25

Computing Goal Transformation

Compute Clusters’
Particles Position

Compute CM

Compute Clusters’
Particles Position relative

to CM

Compute ApqbarTex

Compute Goal
Transformation

31/25

Computing Clusters’ Particles Position

Compute position of particles for each cluster
Input: xBarTex, xAdrTex
Output: xValTex
Computation: PS

Draw quads, one per cluster
Fetch xAdrTex to get pointer to xBarTex
Fetch xBarTex and output

32/25

Computing CM

Compute center of mass for each cluster
Input: xValTex
Output: cmTex
Computation: VS, PS

Draw points, several points per cluster
Each point sum the position of M particles weighted by the
mass, fetched from xValTex
For points belonging to the same cluster, output to the same
pixel
Use 32-bit float additive alpha blending

GeForce 8800 has this functionality!

xValTex
cmTex

33/25

Computing positions relative to CM

Input: xValTex, cmTex
Output: pValTex
Computation: GS, PS

Draw points, one point per cluster
GS:

Fetches cmTex of the cluster
Create a quad to cover portion of pValTex that
corresponds to the cluster

PS fetches xValTex and subtract with CM

34/25

Computing ApqBarTex

Input: pValTex, qBarTex
Output: ApqBarTex
Computation: GS (can push up to VS)

Draw points, several points per cluster
Compute , which is a 3x9 matrix in GS

Sum contribution from M particles
Output 7 adjacent points
Use 32 bits float additive alpha blending to sum the sums

T

i
qpm ii

T

i

i

pq qpmA ii!=

!
!
!

"

#

$
$
$

%

&

=

babgrabgr

gabgrabgr

rabgrabgr

pq

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

766665555

744443333

722221111

A

pValTex
ApqTex

35/25

Computing Goal Transformation

Input: ApqBarTex, AqqBarTex
Output: transformTex
Computation: GS (can push up to VS)

Draw points, 1 point per cluster
Compute by multiplying with

Expand the packed
Extract the 3x3 left sub matrix to get A
Compute optimum rotation, R, with Jacobi Method
Compute
Output 7 points

A
pq

A qq
A

RAT)1(!! "+=

qq
A

36/25

Computing Goal Position

Compute clusters
particles’ goal

position

Compute particles’
goal position

37/25

Computing Clusters Particles’ Goal
Position

Compute the goal position of particles in each cluster
Input: transformTex, pValTex, cmTex, qBarTex
Output: gValTex
Computation: GS, PS

Render quads, 1 quad per cluster
Use GS to fetch cmTex, transformTex and generates quad
Use PS to fetch qBarTex, multiply with the transformation
and add with CM

cmii
xqTg +=

38/25

Computing Particles’ Goal Position

Compute goal positions of particles
Average the goal position of the
particle from the cluster it belongs to

Input: gValTex
Output: gTex
Computation: PS

Draw quads and lines
First quad and a line for all particles
with >=1 influence cluster
Next quad and 2 lines for all particles
with >=2 influence clusters
…..

Do additive alpha blending
This is why we sort the particles based
on the number of influences

3 Clusters

Quad 1

Line 1

Quad 2

Line 2

Quad 3

Line 3

39/25

Compute Next Time Step Position &
Velocity

Update the position and velocity of particles
Input: xTex, vTex, aTex, gTex, xBarTex
Output: xTex’, vTex’
Computation: PS

Draw a quad
Use MRT, for position and velocity
Compute velocity first then use it to compute position

iext
ii

ii mthf
h

txtg
tvhtv /)(

)()(
)()(+

!
+=+ "

)()()(hthvtxhtx
iii
++=+

40/25

Collision Handling

Collision detection with depth cube map
Detect if particles in a cluster penetrate through another
cluster or not
If so, apply penalty force

For a cluster,
Need to check if particles collide with any other cluster or not
Slow, O(N2) cube map look up
Need some pruning

Only check clusters whose bounding box overlaps with this
cluster

41/25

Collision Detection with Depth Cube Map

Create depth cube map for each cluster
Centered at CM
Update every frame
Low Resolution, use 16x16 now

Look into depth cube map in direction u
If distance from CM < depth

Apply force in direction of u
Magnitude proportional to depth-distance from CM

u

42/25

Cube Map Collision Detection
Implementation

DX10 does not support array of cube maps
Instead flatten the cube map and stores the 6 faces in a Texture2D slice
Store several cube maps per Texture2D slice

Use a cube map atlas
Store a 2D texture coordinate in the cube map
Look up the cube map atlas to get (u,v)
Offset u,v and choose slice # appropriately to fetch the correct cube map
Fetch the corresponding position in the Texture2D slice

+Y -Y-X +Z -Z+X

43/25

Cube Map Creation

DX10 allows only limited numbers of textures that can be used at a time
Suppose there are N clusters and the Texture2DArray is of size S,

Need N/S rendering passes
Each pass create S cube map

Use GS to output 6 triangles per each input triangle
Output to 6 viewports of the same Texture2D slice
Choose Texture2D slice depending on which cluster the triangle belongs to

Change viewport after every pass

+Y -Y-X +Z -Z+X

44/25

Pruning
Don’t want to do O(N2) cube map lookup

Compute Bounding Box of clusters
Do cube map check only for pairs of clusters whose BBs
overlap
Avoid checking pairs of clusters from the same object
For each pair (i, j)

For all particles in cluster i, lookup into the depth cube
map of cluster j
Apply penalty force to particle i if found to penetrate

45/25

Collision Handling Overview

Compute CM

Compute bounding box

Compute potential collision
pair

Create Cube Map

Compute Collision Force
for particles in clusters

Sum collision force to
particles and add to aTex

Same as before

Similar to CM, but use Max, Min

Similar to averaging the goal position

46/25

Computing Potential Colliding Pairs

Input: Bounding Boxes(Maxs and Mins of xyz of particles in each
cluster)
Output: Potential Colliding Pairs
Computation: GS stream out (can push to VS)

Bind NULL vertex buffer
Draw all possible (i, j) where cluster i and j do not come from the
same object and i < j
If bounding box of i, j overlap

Stream out 2 points containing information about (i, j) and (j, i)
Can later use more sophisticated pruning techniques
We store the ID of the object each cluster belong to in a constant
buffer

47/25

Computing Collision Force
Input: Potential Colliding Pairs, cmTex, pValTex
Output: aValTex
Computation: GS, PS

Use DrawAuto to draw points of potentially colliding pairs (i,j)
In GS,

Turn a point to a quad covering particles in cluster i
Fetch CM of cluster j and pass as a vertex attribute

In PS, computation is done for each particles in i
Look up cube map of j and check for penetration
Apply force proportional to penetration depth

In direction radially outward from CM of j

Additive alpha blending to sum force

48/25

Skinning

Treat particles as control points
Compute surface mesh’s vertices
based on control point position

Barycentric interpolation for now
Weights stored in a texture
4 control points per vertex

Need tetrahedral mesh that encloses and
approximates the surface mesh

Generate with NetGen
Given a tetrahedral mesh and a surface
mesh:

Program will figure out which
tetrahedron each of the vertices of the
surface mesh are in

Coarse Tetrahedral Mesh for

 Simulation

Detailed Surface Mesh for

Rendering

49/25

Normal vector computation

Use GS and Alpha blending
Input: Deformed vertex positions as a texture
Output: Normal vectors as a texture
Computation:

GS:
Compute triangle’s area weighted normal
Turn a triangle into 3 points each with normal as color
Output 3 points to the corresponding vertices position. Use
additive alpha blending to accumulate vertex normal

Normalize it before use
Use vertex texture fetch to get the normal out

50/25

Automatic Cluster Generation

Given the tetrahedral mesh,
Compute K-Mean of the vertices
Partition the vertices into K groups
Make each group a cluster
Also add 1-Ring neighbors to clusters

Done in preprocessing step on the CPU

51/25

Current Status

Currently 20 Computation Passes + 1 Rendering Pass
Load X files and .mesh file (from NETGEN)
Parameters for each objects:
α, β for controlling softness
Penalty force constant

In collision event between (i, j), will take the max
Number of clusters to use

52/25

Result

53/25

Future

Plastic deformation (permanent deformation)
Need to update on the fly
Need 9x9 symmetric matrix inversion in GPU

Gaussian Elimination in GS?
Other solid simulation models

FEM
Need sparse linear system solver

Smarter collision pruning
More sophisticated collision handling

Contact surface approximation with cube map?

qqA

54/25

References

1. Interactive Deformations Using Modal Analysis by
Hauser, K., Shen, C., O'Brien, J. F.
2. Interactive virtual materials, Matthias Muller, Markus
Gross
3. Real-Time Subspace Integration of St.Venant-
Kirchhoff Deformable Models, Jernej Barbic and Doug
L. James
4. Google “mass spring model”
5. A Versatile and Robust Model for Geometrically
Complex Deformable Solids, M. Teschner, B.
Heidelberger, M. Mueller, M. Gross
6. Meshless Deformations Based on Shape Matching
M. Mueller, B. Heidelberger, M. Teschner, M. Gross

