

Month 2007

Rain

Sarah Tariq
stariq@nvidia.com

Month 2007 ii

Document Change History

Version Date Responsible Reason for Change
 Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract
Atmospheric effects such as rain and snow are important in creating realistic
immersive environments and setting a mood in story telling. Rendering these effects
realistically however is a hard problem, especially in real time.

This sample presents a particle system approach for animating and rendering rain
streaks that works entirely on the GPU, using features that have not existed before
Direct3D10. Rain particles are animated over time using Stream Out, and at each
frame they are expanded into billboards to be rendered using the Geometry Shader.
Finally, the rendering of the rain particles uses a library of textures stored in a
Texture Array, which encodes the appearance of different rain drops under different
viewpoint and lighting directions.

Figure 1.

Month 2007 2

Motivation
Rain is traditionally rendered in one of two ways; either as a particle system or as
camera-centered geometry with scrolling textures.

The technique using screen-centered geometry mapped with scrolling textures is
commonly used in real time applications; [Tatarchuk06] use a screen aligned quad
while [Wang04] use a camera centered cone. These methods are fast but the results
can look like they lack depth. It is also hard for these methods to exhibit complex
dynamics like stormy wind, or respond to local lighting like street lights in the scene.

Rain can also be animated as a particle system, but in the past this approach has
been considered slow for real time applications [Wang04], especially for scenes
depicting heavy rainfall. Rendering rain using a particle system requires three steps:

 Animate the particles over time, applying forces such as wind and gravity
 Expand the particles into sprites to be rendered at each frame
 Render the sprites

Traditionally the animation of particles and expansion of the sprites would either be
done on the CPU, or would have to be mapped to the GPU using methods like
render to texture combined with vertex texture fetch. With the advent of
Direct3D10 and the NVIDIA GeForce 8-series GPUs, this animation and sprite
creation can now be mapped intuitively and efficiently to the GPU.

How Does It Work?

Animating Rain
Rain is animated using two vertex buffers and Stream Out. Each vertex encodes a
particle. At each frame we bind one vertex buffer as input, animate the vertices in
the vertex shader, and then stream them out to the other vertex buffer. At the end
of the frame the buffers are swapped; see code listings 1 and 2.

 // Setup to render a list of points; each particle is
 // stored in a vertex
 pd3dDevice->IASetPrimitiveTopology(
 D3D10_PRIMITIVE_TOPOLOGY_POINTLIST);
 pd3dDevice->IASetInputLayout(g_pVertexLayoutRainVertex);

 // Decided which vertex buffer we are going to render from
 // If this is the first frame we render from a prepopulated
 // Vertex Buffer, g_pParticlesStart.
 static bool firstFrame = true;
 ID3D10Buffer *pBuffers[1];
 if(firstFrame)
 pBuffers[0] = g_pParticleStart;
 else

Month 2007 3

 pBuffers[0] = g_pParticleDrawFrom;

 pd3dDevice->IASetVertexBuffers(0, 1, pBuffers, stride,
 offset);

 // Point to the correct output buffer
 pBuffers[0] = g_pParticleStreamTo;
 pd3dDevice->SOSetTargets(1, pBuffers, offset);

 // draw: this technique is going to animate the particles
 D3D10_TECHNIQUE_DESC techDesc;
 g_pTechniqueAdvanceRain->GetDesc(&techDesc);
 g_pTechniqueAdvanceRain->GetPassByIndex(0)->Apply(0);
 pd3dDevice->Draw(g_numRainVertices , 0);

 // Get back to normal
 pBuffers[0] = NULL;
 pd3dDevice->SOSetTargets(1, pBuffers, offset);

 // Swap buffers
 ID3D10Buffer* pTemp = g_pParticleDrawFrom;
 g_pParticleDrawFrom = g_pParticleStreamTo;
 g_pParticleStreamTo = pTemp;

 firstFrame = false;

Code Listing 1. C++ code using Stream Out

// Construct Geometry shader with Stream Out from the
Vertex Shader
GeometryShader gsStreamOut = ConstructGSWithSO(
CompileShader(vs_4_0, VSAdvanceRain()), "POSITION.xyz;
RAND.x; TYPE.x ");

 // The technique to animate particles uses just a Vertex
 // Shader and Stream Out
 technique10 AdvanceParticles
 {
 pass p0
 {
 SetVertexShader(CompileShader(vs_4_0, VSAdvanceRain()));
 SetGeometryShader(gsStreamOut);
 SetPixelShader(NULL);

 SetDepthStencilState(DisableDepth, 0);
 }

}

Code Listing 2. HLSL code using Stream Out for animating
 particles

Month 2007 4

Rendering Rain

Expanding points into sprites using the Geometry shader
At each frame, after the particles are animated, they are expanded into sprites on the
GPU by using the geometry shader.

We bind the vertex buffer containing the particles to the GPU and then the
geometry shader in code listing 3 is use to expand each of these into a sprite. This
shader takes as input a single vertex, and outputs four vertices of the expanded
sprite (two triangles in a triangle list). These vertices are appended to the triangle
stream that was passed to the geometry shader.

 // GS for rendering rain as point sprites. Takes a point
 and turns it into 2 triangles.
 [maxvertexcount(4)]
 void GSRenderRain(point VSParticleIn input[1], inout
 TriangleStream<PSSceneIn> SpriteStream)
 {
 PSSceneIn output = (PSSceneIn)0;

 float3 worldPos = mul(input[0].pos, g_mWorld);
 output.type = input[0].Type;
 output.random = input[0].random;

 float3 pos[4];
 // Calculate the four vertices of the sprite
 ...

 // construct the first vertex
 output.pos = mul(float4(pos[0],1.0),g_mWorldViewProj);
 output.lightDir = g_lightPos - pos[0];
 output.pointLightDir = g_PointLightPos - pos[0];
 output.eyeVec = g_eyePos - pos[0];
 output.tex = g_texcoords[0];
 // append the vertex to the stream
 SpriteStream.Append(output);

 // construct and append the other three points similar
 // to the first
 ...
 //
 // restart the triangle strip
 SpriteStream.RestartStrip();
 }

Code Listing 3. HLSL code using the Geometry Shader
 for extruding points to sprites

Month 2007 5

Rendering the sprites

Rendering rain streaks is a complicated task; rain drops refract and reflect light and
undergo quick deformations as they fall. When these drops are motion blurred into
rain streaks by our visual systems the results are images exhibiting complex
brightness patterns [Garg06]. Traditionally however, rain streaks have either been
rendered as streaks of constant brightness, or using textures created by artists. Both
these approaches cannot respond realistically to changes in viewing or lighting
directions. [Garg06] presented a method of pre-calculating the appearance of
different rain drops under varying viewpoint and illumination directions. These
textures, available from
http://www1.cs.columbia.edu/CAVE/databases/rain_streak_db/rain_streak.php,
can be used to render raindrops under any given viewpoint and illumination
direction. Other variables, such as rain velocity, and camera exposure time, can also
be adjusted.

This texture database contains textures indexed by three different angles, Figure 2.

viewθ is the angle from the view vector to its projection onto the plane perpendicular

to the direction of the rain particle, lightθ is the angle from light vector to its

projection, and lightφ the angle between the projections of the view and light vectors.

Figure 2. Angles used to index into the rain textures

In the interest of space we chose to only use a subset of the texture database
available. Specifically, we forgo the variability in the viewθ dimension, and use only

Month 2007 6

the positive angles in the lightθ dimension (negative angles are mapped to their
absolute value).

The images are converted to L8 DDS textures to facilitate loading. At load time they
are normalized (by values encoded in a text file) and loaded sequentially into a 2D
texture array. Texture arrays, a new feature in Direct3D10, are very useful for
storing textures such as these. We have over 300 textures which are all distinct and
require mipmapping and anisotropic filtering. Storing these textures in a texture atlas
or a 3D texture would have resulted in artifacts at edges, and slower access times.

To render from these textures, in the pixel shader we use the interpolated vector to
the eye and vector to the light to construct the angles lightθ and lightφ . These are
used to index into the texture array to find the nearest 4 textures (2 nearest textures
in each dimension), which are then lerped to find the final pixel color.

Rendering Fog
To enhance the look of the rainy scene we also use an accurate analytical fog model.
[BoSun05]. This model correctly renders the glows around light sources, and takes
the fog into account when determining the reflectance of surfaces.

Running the Sample
The sample shows a bridge with two point lights and one directional light. Both the
scene and rain respond to these lights.

The directional light has no intensity falloff and its changeable parameters are the
direction of the light and its intensity. The direction of the light is controlled by the
left mouse button, and depicted by a small white arrow. The light response slider
lets the user control how much the rain drops respond to the directional light.

Both lamps in the scene are modeled by point lights. Controls are provided to
change the intensity of the point light and the range of its spotlight (if this option is
chosen by the Use Spotlight checkbox). The light response slider under these
controls lets the user control how much the rain drops respond to the point lights.

The rain can be frozen using the Move Particles checkbox to view the effect of
changing the viewpoint and light direction on the appearance of the particles. The
user can also choose not to render the particles or background, to see the speed of
the GPU particle animation. The use simple shader checkbox can be used to compare
how the streaks would look if rendered with constant brightness. The user can
choose to render only a fraction of all the particles being simulated by using the
Particles Drawn slider. Finally, the wind slider increases the influence of a global
wind direction on the motion of the particles.

Month 2007 7

Performance
For all numbers given below the configuration of the machine used is; Intel Core 2
CPU, 2.93 GHz, 2046 MB RAM, NVIDIA GeForce 8800 GTX. For table 2 the
camera is at the center of the particle system, with a field of view of 45 degrees, a
screen resolution of 1280 x 1024, and the simple shader turned on.

Table 1. Performance of Stream Out for animating particles

Number of particles 200,000 1,000,000 5,000,000

Frame rate 574 257 67

Table 2. Performance for extruding and rasterizing sprites

Number of particles 200,000 1,000,000 5,000,000

Frame rate 545 126 26

Integration
This technique is relatively easy to integrate into an engine, since it requires minimal
CPU intervention. The engine needs to supply the original particle positions, setup
the particle animation as shown in code listing 1, and then setup the particles to
render. If the rain is to follow the character, as in our demo, the engine also needs to
provide the location of the camera at each frame. This position is used to re-spawn
any rain particles that have fallen out of bounds.

To integrate this technique into a scene, we need to render the scene before and
render the sprites with depth testing and alpha blending.

In general, animating rain using a particle system is more useful for realistic looking
rain with lots of behavior (like changing wind). If a constant, light rain is desired
other approaches like [Tatarchuk06] or [Wang04] might be more feasible. Another
scenario where this particle system approach might not be preferable is where the
character can move quickly to very different parts of the scene, since in that case the
particle system might take some time to catch up to the camera.

References
 Photorealistic Rendering of Rain Streaks. Kshitiz Garg and Shree K. Nayar.

ACM Transactions on Graphics (SIGGRAPH) July 2006.
 A Practical Analytic Single Scattering Model for Real Time Rendering. Bo Sun

and Ravi Ramamoorthi and Srinivas G. Narasimhan and Shree K. Nayar. ACM

Month 2007 8

Transactions on Graphics (SIGGRAPH), August, 2005.
http://www1.cs.columbia.edu/~bosun/sig05.htm

 Artist-Directable Real-Time Rain Rendering in City Environments. Natalya
Tatarchuk and John Isidoro. Eurographics Workshop on Natural Phenomena
2006.

 Rendering Falling Rain and Snow. Niniane Wang and Bretton Wade. ACM
SIGGRAPH 2004 Sketches

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

