
Micro-Mesh - Rasterization
Christoph Kubisch - ckubisch@nvidia.com

1

Note: Introduction to Micro-Meshes

Please refer to Micromesh Basics slide-deck first

This document focuses solely on the rasterization of displacement
micromaps.

https://developer.download.nvidia.com/ProGraphics/nvpro-samples/slides/Micro-Mesh_Basics.pdf

Micro-Mesh - Rasterization

3

Micro-Mesh Rasterization

New feature is primarily aimed at Ray Tracing hardware to reduce memory footprint.

Feasible to use current Mesh Shaders or Compute Shaders for rasterization

Displaced Micro-Meshes rasterization in games

• A lot of games use raster for primary visibility, this work allows matching rasterization with
ray-tracing if desired. Or rendering displaced micromap assets without ray tracing.

• Works on various hardware in the market today

4

Displaced Micro-Meshes rasterization in professional space

• Sub pixel triangles are often a performance issue (wasteful geometry work if only a tiny fraction
of triangles on sampling grid) → dynamic subdivision can help speed up rendering

This work also serves as a showcase how to do custom tessellation using mesh/compute-shaders beyond
tessellation shaders

Micro-Mesh Rasterization Overview

Data Preparation

• Compute easy to look up values for each base-triangle
• Pre-compute reusable vertex and index tables for various subdivision / lod / edge-decimation

permutations

Task Shading

• Coarse Culling: Simple frustum and occlusion culling based on base-triangle bounding sphere.
• Dynamic Level of Detail: Adjust target subdivision level based on projected bounding sphere.
• Bin Packing: Optimize the output of meshlets to contain base-triangles or parts of base-triangles

with equal subdivision level. Pack multiple low subdivision levels together.

Mesh Shading / Mesh Generation

• Triangle Topology: Based on target subdivision level and edge decimation setup triangle indices.

• Micro-Vertex Displacement Decoding: Fetch or decode the displacement values and compute the
final transformed vertices.

5

Mesh Shader Pipeline

Task / Amplification Shader

• Each workgroup can generate up to 2M-1 mesh workgroups
• Each child workgroup has read access to task output payload

Mesh Shader

• Each workgroup can fill its pre-allocated meshlet (max 256 vertices, 256 triangles)

Draw Call Task / Amplification
Shader

Mesh
Shader VPC Raster Fragment / Pixel

Shader

In pipeline on-chip producer / consumer data

ROP

6

Optimal performance on current NVIDIA hardware in 2023

• Workgroup size matches one warp (32 threads)
• Meshlet size should not be max but ideally less (64 vertices, 84/126 triangles)
• Avoid shared memory usage, prefer subgroup/wave intrinsics and use NV_mesh_shader rather

than EXT for more efficient primitive culling

Compute vs Mesh Shader

While the next slides mostly describe the mesh-shader solution. The compute solution works fairly
similar. The decoder logic is the same, and the dynamic lod bin packing as well.

Compute-shaders also operate in units of 32 threads (warp/subgroup/wave) to make use of shuffle
instructions (shared memory for decoding was slower), that is why the code-sharing is easy.

However, the workgroup size sometimes is increased to work on multiple jobs at once (a single warp
workgroup can be inefficient for compute). As result, one compute-shader may do the same work as a
task/mesh-shader, but we let multiple warps / independent jobs run in a single workgroup.

Further details about how the task/mesh-shader phases are mapped to compute are towards the end.

7

Triangle Splits for Rasterization

8

Base-triangle
(e.g. 1024 microtris)
== source content
artist / tooling

256

Sub-triangle
(e.g. 256 microtris)
== hw encoded block
512 or 1024 bits represent 64, 256
or 1024 microtris

Split by
compressor 64

Part-triangle
(up to 64 microtris)
== meshlet
mesh-shader decodes
displacements for up to
60 microvertices &
64 microtris

Split by
task-shader

64

Decode microvertices and
setup microtriangles

Multiple parts can be
worked on in one
workgroup, see dynamic
lod & binning later)

Decoded by
mesh-shader

16

1 x 64
or

4 x 16
or

8 x 4
or

16 x 1
4

1

Rasterization Renderers

Common Optimization

• Mesh Shader doesn’t output all interpolants
(texcoords, tangents etc.) to save output space
(improves occupancy)

• Pixel/Fragment Shader uses hw- interpolated
micro-vertex barycentrics and base triangle
vertex indices to compute shading attributes

Can even use hw-barycentrics for per
micro-vertex attribute interpolation

9

C (base vertex index)

A B

hw-rastered
microtriangle

b.w b.u

microvertex
barycentric coords
within base triangle

gl_BaryCoordNV
barycentric within
microtriangle

b.v

Rasterization Renderers

uncompressed renderers

• Task shader operates on
1 base triangle per thread
computes number of child-meshlets based on
warp’s base-triangles subdivision

• Mesh shader fetches pre-computed uv
locations and indices of barycentric triangles
and uncompressed data based on relative
position within base-triangle

Mesh Shaders always operate in 64 vertices / 64 triangles

Task Shader:
1 base-triangle
per thread

Mesh shader:
64 vertices
64 triangles
32 threads

(1024 micro triangles
== 561 x 11 bits displacement data)

64

Base-triangle (e.g. 1024 microtris)
== source content

10

Part-triangle
== meshlet
(up to 64 microtris)

Rasterization Renderers

compressed renderers (block-compressed data)

• Multiple implementations but similar principle
• Task shader:

1 base-triangle per thread.
Computes number of child-meshlets based on
warp’s base-triangles subdivision

• Mesh shader also uses several pre-computed
permutations for indices and uvs. Operates on sub-
or base-triangle in full or partial.

Single meshlet is limited to 64 triangles, but hw
block may also represent more triangles, therefore
additional splitting is done.

Base-triangle (e.g. 1024 microtris)
== source content

Sub-triangle (e.g. 256
microtris)
== hw encoded block
(512 / 1024 bits)

Task shader:
1 base-triangle per thread

Part-triangle
== meshlet
(up to 64 microtris)

256

64

11

Displacement Decoder Implementations

12

Decoder Implementations

Micromeshes use block-compressed displacements, which leaves us two options to get displaced
micro-vertices:

Intrinsic-based Decompression

There are intrinsics for mesh and compute shader that allow fetching micro-vertex attributes based
on: sceneTLAS, instanceID, geometryID, primitiveID, integer microVertexUV

• Fetch float uv coordinates (edge decimation can cause micro-vertices to snap to different UV)

• Fetch object-space position

References directly the memory that the ray tracing scene uses, at reduced peak performance.

Manual Shader-based Decompression

The decompression is handled in the shader code by developers. There is sample code for this and
following slides illustrate the process. Faster performance, but requires data next to ray tracing.

13

Manual Decoder Implementation

Principal Operations

• Fetch correction values based on compression format
• Get parent displacements, predict and apply signed correction if applicable.

• Anchor verts and the entire 512-bit 64 micromap block are uncompressed unsigned.

14

Signed correction

parent / final
displacement

Vertex Subdiv Level: 0 2 1 2 0

prediction

Manual Decoder Implementation

Gather-based Algorithm

• Iterate subdiv levels, increase number of vertex threads, write into
displacement register, but keep old threads active for read access

• Use shuffle to access decoded displacement registers of parents

15

1 5 11

Compressed Block / Vertices mapped to threads

Write Displacement

Write Displacement

Write Displacement

Shuffle Read Access

Shuffle Read Access

Level 0:

Level 1:

Level 2:

Signed correction

Prediction based on final
displacements

shuffle indices pre-computed as 2 x 4bitAnchors use
correction as is

115 1

Manual Decoder Implementation

Meshlet Caveats

• Meshlet limited to max 64 micro triangles / 45 vertices with 32 threads
• Use two iterations for 45 vertices, and directly write vertices

16

Write DisplacementShuffle Read Access
Level 2:

Write Final VertexShuffle Read Access
Level 3 (1st)

Write Final Vertex

Shuffle Read Access

Level 3 (2nd)

0...5 6...14

0...14 15..31

0...14

0...12 (representing vtx 32..44)

Manual Decoder Implementation

Meshlet Caveats

• Meshlet limited to max 64 micro triangles / 45 vertices (subdiv level 3)
• Sub-triangles/blocks with 256 or more microtris are split into multiple meshlets
• extra mip-block with uncompressed data (what the sample does) or

descend hierarchy for local anchors, using pre-computed paths (illustrated below)

17

64
Write Displacement

Shuffle Read Access

Level 0:
0...2

Write Displacement
Level 1:

0...2

Original Anchors

Adjusted local
anchors

Level 2..4:

Example:
1 x Level 4 block with 256 triangles split into
4 x Level 3 meshlets with 64 trianglesProceed as before, behaves like level 3

Decoding and Mesh Generation

Initial Decode Phase

• 3 Threads = meshlet part-triangle: descend hierarchy or mip load initial anchor registers
• Iterate subdiv levels (excluding last, final vertex level),

• N Threads = micro-vertex: computes displacement, saves in displacement register

18

Vertex Phase (requires 2 iterations: 32 threads for 45 vertices)

• V Threads = micro-vertex: compute last iteration displacement based on displacement registers
and compute final vertex position.
Also compute other vertex outputs (barycentric coord for shading etc.)

Primitive Phase (requires 2 iterations, 32 threads for 64 triangles)

• P Threads = micro-triangle: fetch pre-computed indices based on LoD level and relevant
edge-decimation permutation, adjust primitive indices / winding.

Decoder Implementations

Multiple decoders exist for the compressed renderers

For research purposes multiple decoders for the compressed data were implemented during
prototyping.

The next table shows those available in the open-source sample, as they gave best results.

19

Decoder Implementations

compressed rasterization renderers (block-compressed data)

20

Decoder Input
Frequency

Auxiliar Data
(+ 128-bit for precomputed
cull/lod sphere is common)

Decoding Logic Performance Re-use
Raytracing Data
Directly

Base-Triangle w.
Mip

base-triangles 64-bit per input
AND
192-bit mip-block for each
base-triangle that uses 256
or 1024 microtris
blockformats

Gather-based decode via
shuffle across subgroup

++ -

Micro-Triangle base-triangles 64-bit per input Decodes micro-triangle
per-thread, picks
micro-vertex from
micro-triangle corner

-- -

Micro-Triangle
Intrinsic

base-triangles 64-bit per input Fetches micro-vertex
through intrinsic

o x

Base Triangle Properties

21

Common inputs

• All inputs are always flattened so no indirection is used
• Base triangles are allowed 1 level of subdivision

difference
• Stored into header to avoid indirections
• micromesh topology encodes local permutation for the

watertightness handling

bits

base topology 3

Subdiv
Level L

Subdiv
Level L-1

Per edge set bit if
half-resolution
neighbor exists

Topology value (0..7) encodes
index buffer permutation

Base Triangle Properties

22

Dynamic lod inputs

• Bounding sphere helps frustum culling and LoD
computation

• max displacement in primary header is meant for
animated content where sphere is computed on-the-fly

• Extra 128-bit stores pre-computed sphere (no special
fitting, just triangle center) for static content. Avoids
indirections.

bits

max displacement 8

bits

sphere position 96

sphere radius 32

Base-Triangle w. Mip Decoder

• Inputs are base-triangles, works very similar to the
“uncompressed”, pre-computes meshlets for different
LoD levels and compression formats

• Task shader 1 base-triangle per thread
• Mesh shader operates on parts of 64 triangles (or less)
• Dynamic-lod within base-triangle
• Shuffle and pre-computed Mip-triangle to decode

displacements from blocks
• Can get close to uncompressed renderer.

23

Base-triangle (e.g 1024)

256

Sub-triangle ==
compressed block

Uniformly split using same
block format.

Mip-triangle ==
192-bit block, uncompressed
11-bit values

Stores uncompressed
displacement of first 2 levels
when 256 or 1024 microtris
block formats are used16

Base-Triangle w. Mip Decoder

24

Input

• 64-bit information per base-triangle
• All sub-triangles have same format /

subdivision
• 192-bit mip-triangle, only if base-triangle uses

256 or 1024 microtris blocks

bits

base subdiv level 3

block format 2

base topology 3

max displacement 8

mip data offset 22

compressed data offset 26

TOTAL 64

1024

256

16 microtris
uncompressed

Micro-Triangle Decoder

• Inputs are base-triangles, works very similar to the
“uncompressed”, pre-computes meshlets for different
LoD levels and compression formats

• Task shader 1 base-triangle per thread
• Mesh shader operates on parts of 64 triangles (or less)
• Dynamic-lod within base-triangle
• Brute-force decodes microvertex per-thread

• Use pre-computed table to find which microtris
and sub-triangle block it belongs to

• Decode microtri by descending hierarchy
• Microvertex is one corner of microtri

• Descending is very slow for both implemented versions:
• Pre-computed decoding path (faster)
• Full ALU-based solution (slower)

25

Base-triangle (e.g 256)

64

Sub-triangle ==
compressed block

Uniformly split using same
block format.

Descend triangle decoding
within block to target
micro-triangle
Fetch microvertex
displacement from it

Micro-Triangle Intrinsic Decoder

• Inputs are base-triangles, works very similar to the
“uncompressed”, pre-computes meshlets for different
LoD levels and compression formats

• Task shader 1 base-triangle per thread
• Mesh shader operates on parts of 64 triangles (or less)
• Dynamic-lod within base-triangle
• Fetches microvertex per-thread

• Use pre-computed table to get micro vertex UV
• Fetch object-space position using intrinsic

26

Base-triangle (e.g 256)

Reference opaque
micromap data of BLAS
indirectly through

 instanceID,
 geometryID,
 primitiveID,
 microVertexUV

Rasterization Inputs Overview

27

compressed renderer inputs

Data-independent

• Pre-computed vertices (uv and decompression info)
• Triangle indexbuffers for various topology / edge decimation permutations (heavily re-used)
• Other information that aids decoding (descending paths, etc.)
• Several of these tables are pre-computed for multiple subdivision level, dynamic lod and

block format permutations

Rasterization Inputs Overview

28

compressed renderer inputs

Mesh-dependent

• Base mesh index & vertex buffer
• Base mesh direction buffer (fp16)

Displacement-dependent

• (Base mesh direction bounds buffer (fp16 or fp32), optional)

• Compressed displacement buffer (u32)
• 64-bit per base-triangle
• 128-bit per base-triangle LoD pre-computed sphere buffer
• (192-bit mip-triangle for some base-triangles for the “base w. MIP” decoder)f

Dynamic Level of Detail and Bin Packing

29

Dynamic LoD

Micro-Meshes subdivision scheme allows by design dynamic level of detail
Watertight representations are crucial in high quality rendering.

To avoid cracks, dynamic LoD can be adjusted with a bias limit of up to 3 levels on a
per-instance level. Further levels could break watertightness within a micromesh.

Raytracing

Does not expose dynamic LoD control

Rasterization

The use of LoD bias is up to the developer’s implementation, though it can create a
mismatch compared to the raytracer.

For rasterization performance and visual quality it is beneficial to make LoD bias
decisions unlimited and per base-triangle, rather than per instance. LoD transitions in
sub-pixel space and anti-aliasing techniques can hide watertightness issues.
Alternatively more sophisticated per-edge LoD schemes would be required.

30

Dynamic LoD

Renderer with dynamic lod

• Compute LoD subdiv per base-triangle (projected
sphere size to drive dynamic LoD)

• Currently not watertight / no per-edge LoD (getting
away with it, being mostly sub-pixel)

• No backface-cluster cull in sample (may benefit
hardsurface models/CAD)

• Task Shader bins & packs multiple low subdiv
sub-triangle/blocks into a single meshlet

• Mesh shader unpacks and may decode entire, partial
or multiple blocks at once

256 16

Original Subdiv → Dynamic Subdiv

16
4 64

31

16

16
4 64

16
16

64

64

Batch multiple blocks in single mesh shader
invocation (e.g. total of five here)

16

16

16

16

64

64

644

Dynamic LoD

Task shader needs to cull, bin & pack base-triangles

• Bin by same effective subdivision level (0..3) (higher levels are rendered as multiple
part-triangles with 64 microtris) into meshlets.

• The packing should be tight, so that mesh shader makes best use of the meshlet space it
allocates

• Ideally minimize task shader output space

Mesh shader may need do decode multiple sub- or base-triangles within same warp

• Unpack the decoder state from task shaders output.
• For best packing efficiency must handle level > 3 next to regular level <= 3 triangles
• Effectively less threads and no longer fully uniform code-path

32

Bin Packing

Packing Configurations

• Multiple input triangles of same subdiv level fit in single meshlet
(may under-utilize output space a bit)

• Decoder state is same for group of threads working on same input triangle
(mesh shader is limited to single warp in total, compute shader wouldn’t, but didn’t benefit)

subd
level

vertices per
micromesh

triangles per
micromesh

packed
micromeshes

threads per
micromesh

total
vertices

total
triangles

0 3 1 16 2 48 16

1 6 4 8 4 48 32

2 15 16 4 8 60 64

3 45 64 1 32 45 64

Mesh shader packing configurations
(always 64 v, 64 t, 32 threads)

33

Bin Packing Example
Example for task shader workgroup of six triangles

(binning is indifferent to connectivity among triangles)

4

4

34

2

5

4

1

256

16
16

16

Base-triangle IDs

3

Target micro triangles Target bins = total 3

0
2

20

1
1

1

0 1 2 3 4 5 256 16 4 4 16 16 0 1 2 2 1 1

Bin meshlets = total 4 + 1 + 1

4 1 1 1 1 1

4 packs 1 x 64

1 pack 3 x 16

1 pack 2 x 4

0 1 4 5 2 3
Task shader output is tightly

packed by bin and ID

Task output IDs

Bin Packing

Task shader output

• Common start ID
• Per output triangle there is various

information about the block and the
bin/packing configuration

Reminder: One mesh-shading workgroup can
process only up to subdiv 3 at a time. Need
multiple workgroups for more.

The sample used a few more bits than shown
here and as result 32 bit per triangle + 32 bit
base ID.

output bits count

start triangle ID 32 1

relative triangle ID 5 (fits 0..31) 32

target subdiv level 3 (fits 0..5) 32

bin.meshlets.start
(first linear meshlet index
of this bin)

9 (fits 31 x 16) 32

bin.pack size 2 (represents 1,4,8,16) 32

bin.offset
(where in output bin
starts)

5 (fits 0..31) 32

TOTAL 32 + 8 x 32 + 16 x 32 = 100 bytes

35

Bin Packing

Task shader bins 32 micromeshes

• Computes target subdiv level or culls
• Uses subgroupPartitionNV instruction to

match and bin meshes of same target subdiv

target subdiv 4 (as 3) 2 1 1 2: 16 tris 2

subdiv match 100000 010011 001100 001100 010011 010011

bin.size 1 3 2 2 3 3

0 1 2 3 4 5

Task shader micromesh threads

36

0 1 2 3 4

Bin Packing

Task shader bins 32 micromeshes

• Computes target subdiv level or culls
• Uses subgroupPartitionNV instruction to

match and bin meshes of same target subdiv

target subdiv 4 (as 3) 2 1 1 2: 16 tris 2

subdiv match 100000 010011 001100 001100 010011 010011

bin.size 1 3 2 2 3 3

0 1 2 3 4 5

Task shader micromesh threads

bin.pack size 1 4 8 8 4 4

bin.meshlets 4 (4 x
subiv 3)

1 1 1 1 1

bin.msh.start 0 4 5 5 4 4

37

• Computes number of meshlets each bin
needs and can pack base-triangles into
single meshlet
(1,4,8,16 x base-triangles)

0 1 2 3 4

Bin Packing

Task shader bins 32 micromeshes

• Computes target subdiv level or culls
• Uses subgroupPartitionNV instruction to

match and bin meshes of same target subdiv

target subdiv 4 (as 3) 2 1 1 2: 16 tris 2

subdiv match 100000 010011 001100 001100 010011 010011

bin.size 1 3 2 2 3 3

bin.offset 0 1 4 4 1 1

match.offset 0 0 0 1 1 2

out.offset 0 1 4 5 2 3

0 1 2 3 4 5

task output.
triangle
relative ID

0 1 4 5 2 3

Task shader micromesh threads

bin.pack size 1 4 8 8 4 4

bin.meshlets 4 (4 x
subiv 3)

1 1 1 1 1

bin.msh.start 0 4 5 5 4 4

38

• Computes number of meshlets each bin
needs and can pack base-triangles into
single meshlet
(1,4,8,16 x base-triangles)

• Computes bin offsets and writes out triangle
infos grouped by bins

0 1 2 3 4

Bin Unpacking Example

39

0 1 4 5 2 3triangleID

Unpacking happens in the Mesh Shader.

The Task shader emitted 6 Mesh Shader workgroups (0...5) in total.

The Mesh shader workgroup index for the highlighted meshlet is 4 and packs up to 4 x 16 microtriangles.

At the start of mesh shader we need to figure out where its bin starts in the task output data.

The bin.meshlet.start values are ascending (prefix sum). We load them across the mesh shader warp and each

thread runs a comparison (meshletIndex >= bin.meshlet.start). With subgroup/wave intrinsics we broadcast the

first winner thread index, which then is equivalent to our start index into the output data (here 1).

Task shader output data

0 4 4 4 5 5bin.meshlet.start

1 4 4 4 8 8bin.packsize 0

1

2

3

4

5

Task shader output meshlets

Bin Unpacking Example

40

Task shader output data

1 4 4 4 8 8bin.packsize

Divide the mesh shader warp in packsize many regions, each operates on one micromesh.

Discard micromeshes that differ from first thread’s packsize or exceed task output.

0..7 8..15 15..23 24..32

0..7

0 1 2 3

0..7 0..7 0..7

warp threadID

pack threadID

packID

Mesh shader workgroup

Use “pack threadIDs” instead of regular thread IDs. Rest of decoding works the same.

We still use two iterations for the vertices and primitives.

In this example we have 15 vertices per micromesh but only 8 threads. Shuffle access still works, because previous

subdiv level required 6 vertices/threads, though shuffle indices need to be adjusted for the thread region.

Bin Unpacking

Mesh shader computes triangles & vertices

• Figures out bin config (pack size)
and active micromesh ids

Determine task output micromeshes to work on
in mesh shader warp based on meshlet index

41

Bin Unpacking

Mesh shader computes triangles & vertices

• Figures out bin config (pack size)
and active micromesh ids

micromesh relative
ID

1 4 5 2

pack size 4 4 4 1

subdiv 2 2 2 3

valid:
pack size == first

true true true false

Determine task output micromeshes to work on
in mesh shader warp based on meshlet index

0..7 8..15 16..23 24..32

Distribute micromesh threads evenly across warp

42

• Each micromesh uses even distribution of threads
within warp

• Setup per micromesh decoder configs

Bin Unpacking

Mesh shader computes triangles & vertices

• Figures out bin config (pack size)
and active micromesh ids

micromesh relative
ID

1 4 5 2

pack size 4 4 4 1

subdiv 2 2 2 3

valid:
pack size == first

true true true false

Determine task output micromeshes to work on
in mesh shader warp based on meshlet index

0..7 8..15 16..23 24..32

Distribute micromesh threads evenly across warp

1st vertices / tris 0..7 0..7 0..7 0..7

2nd … 7..15 7..15 7..15 7..15

43

• Each micromesh uses even distribution of threads
within warp

• Setup per micromesh decoder configs

• Two warp iterations to process all micro vertices
/ triangles
(e.g. single triangle: 16 x 2 threads, 3 vertices
max)

Dynamic LoD Caveats

Open Issues

• Renderer looks at base-triangles individually, therefore no
“vertex re-use” for connected base-triangles when they are
all subdiv 0. One should switch to traditional pre-computed
meshlets in this case.

• To get deeper ranging LoD for minification, multiple
traditional LoD models for the same object could be used
and swapped out, or a hierarchical cluster LoD scheme that
operates at finer granularity across the object.

Base triangles

44

Dynamic LoD Outlook

Potential Improvements

• When base-triangles’ dynamic lod predominantly is level 0 (i.e. one output triangle
per base-triangle) should render model with traditional index-buffers or via
meshlets, both improve vertex re-use among connected base-triangles

• No research yet for models with multiple LoD models spanning different detail levels
• LoD Model 0: dynamic reduction of up to 1024 triangles
• LoD Model 1: another dynamic reduction… could use hierarchical LoD etc.

45

Level of Detail

• Dynamic LoD can greatly improve performance and mostly hide transitions subpixel
• Current implementation is not water-tight, simple logic
• Still may need multiple LoD models / schemes for background minification

Compute Shader Rasterization

46

Compute Shader Rasterization

The compute shader rasterization in this sample is rather basic and not specifically
tuned. Vertices are transformed across the warp and stored in shared memory. Each
thread then operates on one triangle:

● Pulls the relevant vertices
● Compute the screen-space rectangle for visible triangles
● Loop over rectangle pixels, test the sampling point against the triangle
● If the triangle is covered, write out pixel via atomic 64-bit min operation, where

upper bits store depth and lower bits the payload

Given we mostly have smaller triangle sizes these simple loops work good enough.

When triangles would require clipping, they are currently discarded. The better approach
is to leave more complex triangles to hardware rasterization.

47

Compute Shader Rasterization
DUAL PASS: First pass does task-shading, then second pass does mesh-shading phase

Task shading pass

• Handles LoD bin packing and culling, writes to global memory
• ! Needs upper-bound of visible bins for scratch buffer (12 bytes per visible meshlet)

Mesh shading pass

• DispatchIndirect based on task phase results
• Same single warp decoders as mesh-shader
• Rasterize micro triangle via atomic 64 bit (payload & depth) directly per thread.
• May want to store barycentric coordinate via second 64-bit atomic, to avoid recalculation, at

risk of some errors/contention on identical z values and extra memory.

Pixel shading pass

• Unpack payload information per-pixel for gbuffer fill
• The sample doesn’t implement any proper shading, so the payload usage is not realistic.

48

Compute Shader Rasterization
DUAL PASS SPLIT: task-shading pass can also rasterize smaller bins immediately, then second pass to
rasterize larger subdivisions in mesh-shading phase

Task shading pass

• Handles LoD bin packing and culling,
• Splits bins depending on local subdivision level

• Writes big (subdiv == 3) bins to global memory
• Rasterizes smaller packed bins directly, these handle multiple basetriangles at once

• ! Needs upper-bound of visible bins for scratch buffer (12 bytes per visible big meshlet)
This bound is typically lower than the previous technique, as we don’t need to output those
smaller bins.

Mesh shading pass

• (same decoding and rasterization as before)

Pixel shading pass

• Unpack payload information per-pixel for gbuffer fill

49

Compute Shader Rasterization
SINGLE PASS (slower): Collapse task and mesh-shading into single workgroup.
(was removed from sample due to slower performance)

Combined pass:

Task shading phase (outputs to shared memory)

Mesh shading phase

• Workgroup uses 4 warps (128 threads) and therefore needs to loop over the total amount of
work that the task shading phase generated. Where a task-shader spawned N mesh-shader
warps, compute distributes these across 4 within workgroup and loops.

• (otherwise similar decoding as previous slides)

Pixel shading pass

• Unpack payload information per-pixel for gbuffer fill

50

Basic Performance Tests

51

Performance Test Description

The shading is very basic phong, no textures and we measure two variants

● Shaded with micro-vertex normals

○ This looks a bit nicer than just flat-shading, it does add a bit of extra work

● Flat-shaded colored triangle IDs (to mimic a visibility buffer like scenario)

○ This is the only variant supported by compute-shader rasterization in this sample

We do not compare to rendering the hi-res model by traditional means as it is typically slower and
would require more sophisticated cluster schemes, vertex quantization etc. to be sped up.

However, in a scenario where low or no subdivision is applied, those techniques would be better, as
was discussed earlier for dynamic LoD.

52

Performance Test Description

53

Murex Romosus from Three D Scans

Mesh Stats:

Basemesh: 19 K Triangles

Displaced mesh: 3.8 M Triangles (<= subdiv level 4 average)

144 Instances ~ 540 M Triangles

Micromap Data:

Uncompressed displacement (densely packed 11 bit): ~ 3.1 MB

Block compressed displacement: ~ 2.4 MB

Block compressed displacement w. mips: ~ 2.7 MB

32 bit octant microvertex normals: ~ 9 MB

Micro-Mesh model from Micro-Mesh Construction - Example of results (unimi.it)

https://micromesh.di.unimi.it/micromesh_construction_results.html

Performance Test Description

54

Both images show the base-triangle subdivision level.
Level 0 is red, Level 5 is dark blue.

Dynamic LoD is activated in the lower image and
significantly reduces number of rendered triangles.

No LoD: 540 M triangles

LoD: 25 M triangles

LoD + occlusion culling: 15 M triangles

Dynamic LoD
Enabled

Subdivision
Levels

Performance Test Description

Occlusion Culling

Very simple occlusion culling was implemented. It is only correct on a static frame as it uses the
previous frame depth buffer. A HiZ mipmap chain is built and the bounding spheres of displaced
base-triangle is tested against it. This hasn’t been tuned much yet. For example ideally some coarser
level occlusion culling should be done on groups of base-triangles.

Primitive Culling

The mesh-shaders can do per-triangle culling. However, depending on the hardware and shading
complexity this may speed things up or actually slow down. We use NV_mesh_shader rather than
EXT_mesh_shader due to the ability to implement primitive culling more efficiently.

55

Shaded Results

56

M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 9.61 1.12 0.79

compressed ms mip decoder 12.75 1.21 0.85

compressed ms intrinsic decoder 18.41 1.56 1.07

compressed raytracing 1.35

With LoD enabled the compressed data can be rendered at similar speeds to the uncompressed data.
Without LoD the impact of using the hardware intrinsic decoding is substantial.

Raytracing is quite competitive for primary visibility due to “perfect” triangle occlusion culling.

4096 x 2048
RTX 6000 Ada

Shaded Results

57

M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 55.14 2.90 1.98

compressed ms mip decoder 57.30 3.25 2.24

compressed ms intrinsic decoder 72.52 4.54 3.00

compressed raytracing 4.73

(same principle behavior as previous hardware configuration)

4096 x 2048
RTX 4060 Ti

Visibility Results

58

M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 8.54 0.87 0.59

compressed ms mip decoder 10.14 0.92 0.63

compressed ms intrinsic decoder 13.02 0.97 0.66

compressed raytracing 1.29

4096 x 2048
RTX 6000 Ada

In the “id buffer” generation scenario the impact of the hardware intrinsic is lower and especially
with LoD both decoder types are closer. This allows using the opaque data from the raytracing
representation directly.

Visibility Results

59

M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 55.33 2.62 1.77

compressed ms mip decoder 56.07 2.72 1.87

compressed ms intrinsic decoder 56.41 3.00 2.09

compressed raytracing 4.55

4096 x 2048
RTX 4060 Ti

(same principle behavior as previous hardware configuration)

Compute vs Mesh Shader

60

Whether software rasterization (compute) or
hardware rasterization (mesh shader) is faster,
depends on the number of sub-pixel triangles.

LoD 1x targets around 1 pixel per triangle and on
NVIDIA hardware is still pretty fast to be rastered
via hardware units using mesh shaders. LoD 2x
means we push the LoD decision further out, so
more sub-pixel triangles, while 1/2 x means
earlier, larger triangles (this risks visible cracks).

Compressed data was a tad slower than
uncompressed but had similar behavior.

4096 x 2048
RTX 6000 Ada

Occlusion culling disabled for more rasterization load

Compute vs Mesh Shader

61

4096 x 2048

Occlusion culling disabled for more rasterization load

Performance Conclusions

Data Representation

• Uncompressed is faster, but “base w. mip decoder” can be close when using dynamic lod.

• 64-block format is 45 x uncompressed unorm11, easy to fetch (no special decoding/encoding)

• Hardware intrinsics are an option if visibility pass in combination with dynamic LoD is used or if memory
constrained.

Compute vs Mesh-Shading

• Depending on dynamic LoD usage can yield slightly larger triangles which favors mesh-shaders

• May want to use 2x 64-bit atomics, as reconstruction of base-triangle barycentric UVs would be ugly.

• Dual pass compute needs a lot transient data between task and mesh pass. “Split” variant needs less.
(12 bytes per visible rasterization warp = 64 micro triangles max, {u32 instanceID, baseID, binPackInfo})

Dynamic LoD

• Higher subdivision levels allow more LoD and enable more vertex re-use, better utilization

• If subdivision is very low (1 or 4 micro-triangles per base-triangle), it’s better to render mesh by other means

• Bin packing is great for perf, half performance when disabling it and handling base-triangles one warp at a time.

62

63

Backup

Note: Naming Issue

There was a bit of renaming in the documentation and code, so the use of the words “bary” vs
“umesh” are described here, in case you stumble upon them.

bary == uncompressed: rendering the uncompressed values of a base-triangle as they are generated
from baking. Serves as reference to benchmark decoding performance.

Example: for 256 micro triangles = 153 values (typically 16 bit unorm displacements) = 2448 bit

umesh == compressed: rendering the block-compressed representation where a base-triangle is split
into sub-triangles . Each sub-triangle is represented by a single compressed block of 1024 or 512 bit.

Example: for 256 micro triangles = 4 x 512 bit (each 64 microtris) or 1 x 1024 bit.

64

Manual Decoder Implementation

• Iterate subdiv levels, shift active threads, read previous, write new

1 5 11

Bird-Curve Vertices mapped to threads

Write Displacement

Write Displacement

Write Displacement

Shuffle Read Access

Shuffle Read Access

Level 0:

Level 1:

Level 2:

Signed correction

Prediction based on final
displacements

shuffle indices pre-computed as 2 x 4bitAnchors use
correction as is

Get Final VertexShuffle Read AccessLevel 3 (1st):

0...14 15..31

Get Final Vertex

Shuffle Read AccessLevel 3 (2nd):
0...12 (representing vtx 32..44)

115 1

Level 3: 45 vertices need
2 iterations for 32
threads

