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Note: Introduction to Micro-Meshes

Please refer to Micromesh Basics slide-deck first

This document focuses solely on the rasterization of displacement 
micromaps.

https://developer.download.nvidia.com/ProGraphics/nvpro-samples/slides/Micro-Mesh_Basics.pdf


Micro-Mesh - Rasterization
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Micro-Mesh Rasterization

New feature is primarily aimed at Ray Tracing hardware to reduce memory footprint.

Feasible to use current Mesh Shaders or Compute Shaders for rasterization

Displaced Micro-Meshes rasterization in games

• A lot of games use raster for primary visibility, this work allows matching rasterization with 
ray-tracing if desired. Or rendering displaced micromap assets without ray tracing.

• Works on various hardware in the market today
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Displaced Micro-Meshes rasterization in professional space

• Sub pixel triangles are often a performance issue (wasteful geometry work if only a tiny fraction 
of triangles on sampling grid) → dynamic subdivision can help speed up rendering

This work also serves as a showcase how to do custom tessellation using mesh/compute-shaders beyond 
tessellation shaders



Micro-Mesh Rasterization Overview

Data Preparation

• Compute easy to look up values for each base-triangle
• Pre-compute reusable vertex and index tables for various subdivision / lod / edge-decimation 

permutations

Task Shading

• Coarse Culling: Simple frustum and occlusion culling based on base-triangle bounding sphere.
• Dynamic Level of Detail: Adjust target subdivision level based on projected bounding sphere.
• Bin Packing: Optimize the output of meshlets to contain base-triangles or parts of base-triangles 

with equal subdivision level. Pack multiple low subdivision levels together.

Mesh Shading / Mesh Generation 

• Triangle Topology: Based on target subdivision level and edge decimation setup triangle indices.

• Micro-Vertex Displacement Decoding: Fetch or decode the displacement values and compute the 
final transformed vertices.
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Mesh Shader Pipeline

Task / Amplification Shader

• Each workgroup can generate up to 2M-1 mesh workgroups
• Each child workgroup has read access to task output payload

Mesh Shader

• Each workgroup can fill its pre-allocated meshlet (max 256 vertices, 256 triangles)

Draw Call Task / Amplification 
Shader

Mesh 
Shader VPC Raster Fragment / Pixel

Shader

In pipeline on-chip producer / consumer data

ROP
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Optimal performance on current NVIDIA hardware in 2023

• Workgroup size matches one warp (32 threads)
• Meshlet size should not be max but ideally less (64 vertices, 84/126 triangles)
• Avoid shared memory usage, prefer subgroup/wave intrinsics and use NV_mesh_shader rather 

than EXT for more efficient primitive culling



Compute vs Mesh Shader

While the next slides mostly describe the mesh-shader solution. The compute solution works fairly 
similar. The decoder logic is the same, and the dynamic lod bin packing as well.

Compute-shaders also operate in units of 32 threads (warp/subgroup/wave) to make use of shuffle 
instructions (shared memory for decoding was slower), that is why the code-sharing is easy.

However, the workgroup size sometimes is increased to work on multiple jobs at once (a single warp 
workgroup can be inefficient for compute). As result, one compute-shader may do the same work as a 
task/mesh-shader, but we let multiple warps / independent jobs run in a single workgroup.

Further details about how the task/mesh-shader phases are mapped to compute are towards the end.
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Triangle Splits for Rasterization
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Base-triangle
(e.g. 1024 microtris) 
== source content
artist / tooling

256

Sub-triangle
(e.g. 256 microtris) 
== hw encoded block 
512 or 1024 bits represent 64, 256 
or 1024 microtris

Split by 
compressor 64

Part-triangle
(up to 64 microtris)
== meshlet 
mesh-shader decodes 
displacements for up to
60 microvertices &
64 microtris

Split by 
task-shader

64

Decode microvertices and 
setup microtriangles

Multiple parts can be 
worked on in one 
workgroup, see dynamic 
lod & binning later)

Decoded by
mesh-shader

16

1 x 64
or

4 x 16
or

8 x 4
or

16 x 1
4

1



Rasterization Renderers

Common Optimization

• Mesh Shader doesn’t output all interpolants 
(texcoords, tangents etc.) to save output space 
(improves occupancy)

• Pixel/Fragment Shader uses hw- interpolated 
micro-vertex barycentrics and base triangle 
vertex indices to compute shading attributes

Can even use hw-barycentrics for per 
micro-vertex attribute interpolation
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C (base vertex index)

A B

hw-rastered 
microtriangle

b.w        b.u

microvertex 
barycentric coords 
within base triangle 

gl_BaryCoordNV
barycentric within 
microtriangle

b.v 



Rasterization Renderers

uncompressed renderers

• Task shader operates on
1 base triangle per thread
computes number of child-meshlets based on 
warp’s base-triangles subdivision

• Mesh shader fetches pre-computed uv 
locations and indices of barycentric triangles 
and uncompressed data based on relative 
position within base-triangle

Mesh Shaders always operate in 64 vertices / 64 triangles

Task Shader: 
1 base-triangle 
per thread 

Mesh shader:
64 vertices
64 triangles
32 threads

(1024 micro triangles 
== 561 x 11 bits displacement data)

64

Base-triangle (e.g. 1024 microtris) 
== source content
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Part-triangle
== meshlet 
(up to 64 microtris)



Rasterization Renderers

compressed renderers (block-compressed data)

• Multiple implementations but similar principle
• Task shader:

1 base-triangle per thread. 
Computes number of child-meshlets based on 
warp’s base-triangles subdivision

• Mesh shader also uses several pre-computed 
permutations for indices and uvs. Operates on sub- 
or base-triangle in full or partial.

Single meshlet is limited to 64 triangles, but hw 
block may also represent more triangles, therefore 
additional splitting is done.

Base-triangle (e.g. 1024 microtris) 
== source content

Sub-triangle (e.g. 256 
microtris) 
== hw encoded block 
(512 / 1024 bits)

Task shader:
1 base-triangle per thread

Part-triangle
== meshlet 
(up to 64 microtris)

256

64
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Displacement Decoder Implementations
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Decoder Implementations

Micromeshes use block-compressed displacements, which leaves us two options to get displaced 
micro-vertices:

Intrinsic-based Decompression

There are intrinsics for mesh and compute shader that allow fetching micro-vertex attributes based 
on: sceneTLAS, instanceID, geometryID, primitiveID, integer microVertexUV

• Fetch float uv coordinates (edge decimation can cause micro-vertices to snap to different UV)

• Fetch object-space position

References directly the memory that the ray tracing scene uses, at reduced peak performance.

Manual Shader-based Decompression

The decompression is handled in the shader code by developers. There is sample code for this and 
following slides illustrate the process. Faster performance, but requires data next to ray tracing.
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Manual Decoder Implementation

Principal Operations

• Fetch correction values based on compression format
• Get parent displacements, predict and apply signed correction if applicable. 

• Anchor verts and the entire 512-bit 64 micromap block are uncompressed unsigned.
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Signed correction

parent / final 
displacement

Vertex Subdiv Level: 0 2 1 2 0

prediction



Manual Decoder Implementation

Gather-based Algorithm

• Iterate subdiv levels, increase number of vertex threads, write into 
displacement register, but keep old threads active for read access

• Use shuffle to access decoded displacement registers of parents 
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1 5 11

Compressed Block / Vertices mapped to threads

Write Displacement

Write Displacement

Write Displacement

Shuffle Read Access

Shuffle Read Access

Level 0:

Level 1:

Level 2:

Signed correction

Prediction based on final 
displacements

shuffle indices pre-computed as 2 x 4bitAnchors use 
correction as is

115 1



Manual Decoder Implementation

Meshlet Caveats

• Meshlet limited to max 64 micro triangles / 45 vertices with 32 threads
• Use two iterations for 45 vertices, and directly write vertices 
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Write DisplacementShuffle Read Access
Level 2:

Write Final VertexShuffle Read Access
Level 3 (1st)

Write Final Vertex

Shuffle Read Access

Level 3 (2nd)

0...5 6...14

0...14 15..31

0...14

0...12 ( representing vtx 32..44)



Manual Decoder Implementation

Meshlet Caveats

• Meshlet limited to max 64 micro triangles / 45 vertices (subdiv level 3)
• Sub-triangles/blocks with 256 or more microtris are split into multiple meshlets
• extra mip-block with uncompressed data (what the sample does) or

descend hierarchy for local anchors, using pre-computed paths (illustrated below)
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64
Write Displacement

Shuffle Read Access

Level 0:
0...2

Write Displacement
Level 1:

0...2

Original Anchors

Adjusted local 
anchors

Level 2..4:

Example: 
1 x Level 4 block with 256 triangles split into
4 x Level 3 meshlets with 64 trianglesProceed as before, behaves like level 3



Decoding and Mesh Generation

Initial Decode Phase

• 3 Threads = meshlet part-triangle: descend hierarchy or mip load initial anchor registers
• Iterate subdiv levels (excluding last, final vertex level),

• N Threads = micro-vertex: computes displacement, saves in displacement register

18

Vertex Phase (requires 2 iterations: 32 threads for 45 vertices)

• V Threads = micro-vertex: compute last iteration displacement based on displacement registers 
and compute final vertex position. 
Also compute other vertex outputs (barycentric coord for shading etc.)

Primitive Phase (requires 2 iterations, 32 threads for 64 triangles)

• P Threads = micro-triangle: fetch pre-computed indices based on LoD level and relevant 
edge-decimation permutation, adjust primitive indices / winding.



Decoder Implementations

Multiple decoders exist for the compressed renderers

For research purposes multiple decoders for the compressed data were implemented during 
prototyping.

The next table shows those available in the open-source sample, as they gave best results.
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Decoder Implementations

compressed rasterization renderers (block-compressed data)
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Decoder Input 
Frequency

Auxiliar Data
(+ 128-bit for precomputed 
cull/lod sphere is common)

Decoding Logic Performance Re-use 
Raytracing Data 
Directly

Base-Triangle w. 
Mip

base-triangles 64-bit per input 
AND
192-bit mip-block for each 
base-triangle that uses 256 
or 1024 microtris 
blockformats

Gather-based decode via 
shuffle across subgroup

++ -

Micro-Triangle base-triangles 64-bit per input Decodes micro-triangle 
per-thread, picks 
micro-vertex from 
micro-triangle corner

-- -

Micro-Triangle
Intrinsic

base-triangles 64-bit per input Fetches micro-vertex 
through intrinsic

o x



Base Triangle Properties
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Common inputs

• All inputs are always flattened so no indirection is used
• Base triangles are allowed 1 level of subdivision 

difference
• Stored into header to avoid indirections
• micromesh topology encodes local permutation for the 

watertightness handling

bits

base topology 3

Subdiv 
Level L

Subdiv 
Level L-1

Per edge set bit if 
half-resolution 
neighbor exists

Topology value (0..7) encodes 
index buffer permutation



Base Triangle Properties
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Dynamic lod inputs

• Bounding sphere helps frustum culling and LoD 
computation

• max displacement in primary header is meant for 
animated content where sphere is computed on-the-fly

• Extra 128-bit stores pre-computed sphere (no special 
fitting, just triangle center) for static content. Avoids 
indirections. 

bits

max displacement 8

bits

sphere position 96

sphere radius 32



Base-Triangle w. Mip Decoder

• Inputs are base-triangles, works very similar to the 
“uncompressed”, pre-computes meshlets for different 
LoD levels and compression formats

• Task shader 1 base-triangle per thread
• Mesh shader operates on parts of 64 triangles (or less)
• Dynamic-lod within base-triangle
• Shuffle and pre-computed Mip-triangle to decode 

displacements from blocks
• Can get close to uncompressed renderer.
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Base-triangle (e.g 1024) 

256

Sub-triangle == 
compressed block

Uniformly split using same 
block format.

Mip-triangle == 
192-bit block, uncompressed 
11-bit values

Stores uncompressed 
displacement of first 2 levels 
when 256 or 1024 microtris 
block formats are used16 



Base-Triangle w. Mip Decoder
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Input

• 64-bit information per base-triangle
• All sub-triangles have same format / 

subdivision
• 192-bit mip-triangle, only if base-triangle uses 

256 or 1024 microtris blocks

bits

base subdiv level 3

block format 2

base topology 3

max displacement 8

mip data offset 22

compressed data offset 26

TOTAL 64

1024

256

16 microtris
uncompressed



Micro-Triangle Decoder

• Inputs are base-triangles, works very similar to the 
“uncompressed”, pre-computes meshlets for different 
LoD levels and compression formats

• Task shader 1 base-triangle per thread
• Mesh shader operates on parts of 64 triangles (or less)
• Dynamic-lod within base-triangle
• Brute-force decodes microvertex per-thread

• Use pre-computed table to find which microtris 
and sub-triangle block it belongs to

• Decode microtri by descending hierarchy 
• Microvertex is one corner of microtri

• Descending is very slow for both implemented versions:
• Pre-computed decoding path (faster)
• Full ALU-based solution (slower)
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Base-triangle (e.g 256) 

64

Sub-triangle == 
compressed block

Uniformly split using same 
block format.

Descend triangle decoding 
within block to target 
micro-triangle
Fetch microvertex 
displacement from it



Micro-Triangle Intrinsic Decoder

• Inputs are base-triangles, works very similar to the 
“uncompressed”, pre-computes meshlets for different 
LoD levels and compression formats

• Task shader 1 base-triangle per thread
• Mesh shader operates on parts of 64 triangles (or less)
• Dynamic-lod within base-triangle
• Fetches microvertex per-thread

• Use pre-computed table to get micro vertex UV
• Fetch object-space position using intrinsic
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Base-triangle (e.g 256) 

Reference opaque 
micromap data of BLAS 
indirectly through
  
        instanceID,
        geometryID,
        primitiveID,
        microVertexUV



Rasterization Inputs Overview
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compressed renderer inputs

Data-independent 

• Pre-computed vertices (uv and decompression info)
• Triangle indexbuffers for various topology / edge decimation permutations (heavily re-used)
• Other information that aids decoding (descending paths, etc.)
• Several of these tables are pre-computed for multiple subdivision level, dynamic lod and 

block format permutations



Rasterization Inputs Overview
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compressed renderer inputs

Mesh-dependent

• Base mesh index & vertex buffer
• Base mesh direction buffer (fp16)

Displacement-dependent

• (Base mesh direction bounds buffer (fp16 or fp32), optional)

• Compressed displacement buffer (u32)
• 64-bit per base-triangle
• 128-bit per base-triangle LoD pre-computed sphere buffer
• (192-bit mip-triangle for some base-triangles for the “base w. MIP” decoder)f



Dynamic Level of Detail and Bin Packing

29



Dynamic LoD

Micro-Meshes subdivision scheme allows by design dynamic level of detail
Watertight representations are crucial in high quality rendering. 

To avoid cracks, dynamic LoD can be adjusted with a bias limit of up to 3 levels on a 
per-instance level. Further levels could break watertightness within a micromesh.

Raytracing

Does not expose dynamic LoD control

Rasterization

The use of LoD bias is up to the developer’s implementation, though it can create a 
mismatch compared to the raytracer. 

For rasterization performance and visual quality it is beneficial to make LoD bias 
decisions unlimited and per base-triangle, rather than per instance. LoD transitions in 
sub-pixel space and anti-aliasing techniques can hide watertightness issues. 
Alternatively more sophisticated per-edge LoD schemes would be required.
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Dynamic LoD

Renderer with dynamic lod

• Compute LoD subdiv per base-triangle (projected 
sphere size to drive dynamic LoD)

• Currently not watertight / no per-edge LoD (getting 
away with it, being mostly sub-pixel)

• No backface-cluster cull in sample (may benefit 
hardsurface models/CAD)

• Task Shader bins & packs multiple low subdiv 
sub-triangle/blocks into a single meshlet

• Mesh shader unpacks and may decode entire, partial 
or multiple blocks at once

256 16

Original Subdiv →   Dynamic Subdiv

16
4 64

31

16

16
4 64

16
16

64

64

Batch multiple blocks in single mesh shader 
invocation (e.g. total of five here)

16

16

16

16

64

64

644



Dynamic LoD

Task shader needs to cull, bin & pack base-triangles

• Bin by same effective subdivision level (0..3) (higher levels are rendered as multiple 
part-triangles with 64 microtris) into meshlets.

• The packing should be tight, so that mesh shader makes best use of the meshlet space it 
allocates

• Ideally minimize task shader output space

Mesh shader may need do decode multiple sub- or base-triangles within same warp

• Unpack the decoder state from task shaders output.
• For best packing efficiency must handle level > 3 next to regular level <= 3 triangles
• Effectively less threads and no longer fully uniform code-path
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Bin Packing

Packing Configurations

• Multiple input triangles of same subdiv level fit in single meshlet
(may under-utilize output space a bit)

• Decoder state is same for group of threads working on same input triangle
(mesh shader is limited to single warp in total, compute shader wouldn’t, but didn’t benefit)

subd 
level

vertices per 
micromesh

triangles per 
micromesh

packed 
micromeshes

threads per 
micromesh

total 
vertices

total 
triangles

0 3 1 16 2 48 16

1 6 4 8 4 48 32

2 15 16 4 8 60 64

3 45 64 1 32 45 64

Mesh shader packing configurations
(always 64 v, 64 t, 32 threads)
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Bin Packing Example
Example for task shader workgroup of six triangles

(binning is indifferent to connectivity among triangles)

4

4

34

2

5

4

1

256

16
16

16

Base-triangle IDs

3

Target micro triangles Target bins = total 3

0
2

20

1
1

1

0 1 2 3 4 5 256 16 4 4 16 16 0 1 2 2 1 1

Bin meshlets = total 4 + 1 + 1

4 1 1 1 1 1

4 packs 1 x 64

1 pack 3 x 16

1 pack 2 x 4

0 1 4 5 2 3
Task shader output is tightly 

packed by bin and ID

Task output IDs



Bin Packing

Task shader output

• Common start ID
• Per output triangle there is various 

information about the block and the 
bin/packing configuration

Reminder: One mesh-shading workgroup can 
process only up to subdiv 3 at a time. Need 
multiple workgroups for more.

The sample used a few more bits than shown 
here and as result 32 bit per triangle + 32 bit 
base ID.

output bits count

start triangle ID 32 1

relative triangle ID 5  (fits 0..31) 32

target subdiv level 3  (fits 0..5) 32

bin.meshlets.start
(first linear meshlet index 
of this bin)

9  (fits 31 x 16) 32

bin.pack size 2  (represents 1,4,8,16) 32

bin.offset
(where in output bin 
starts)

5  (fits 0..31) 32

TOTAL 32 + 8 x 32 + 16 x 32 = 100 bytes
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Bin Packing

Task shader bins 32 micromeshes

• Computes target subdiv level or culls
• Uses subgroupPartitionNV instruction to 

match and bin meshes of same target subdiv

target subdiv 4 (as 3) 2 1 1 2: 16 tris 2

subdiv match 100000 010011 001100 001100 010011 010011

bin.size 1 3 2 2 3 3

0 1 2 3 4 5

Task shader micromesh threads

36

0 1 2 3 4



Bin Packing

Task shader bins 32 micromeshes

• Computes target subdiv level or culls
• Uses subgroupPartitionNV instruction to 

match and bin meshes of same target subdiv

target subdiv 4 (as 3) 2 1 1 2: 16 tris 2

subdiv match 100000 010011 001100 001100 010011 010011

bin.size 1 3 2 2 3 3

0 1 2 3 4 5

Task shader micromesh threads

bin.pack size 1 4 8 8 4 4

bin.meshlets 4 (4 x 
subiv 3)

1 1 1 1 1

bin.msh.start 0 4 5 5 4 4

37

• Computes number of meshlets each bin 
needs and can pack base-triangles into 
single meshlet
(1,4,8,16 x base-triangles)

0 1 2 3 4



Bin Packing

Task shader bins 32 micromeshes

• Computes target subdiv level or culls
• Uses subgroupPartitionNV instruction to 

match and bin meshes of same target subdiv

target subdiv 4 (as 3) 2 1 1 2: 16 tris 2

subdiv match 100000 010011 001100 001100 010011 010011

bin.size 1 3 2 2 3 3

bin.offset 0 1 4 4 1 1

match.offset 0 0 0 1 1 2

out.offset 0 1 4 5 2 3

0 1 2 3 4 5

task output.
triangle
relative ID

0 1 4 5 2 3

Task shader micromesh threads

bin.pack size 1 4 8 8 4 4

bin.meshlets 4 (4 x 
subiv 3)

1 1 1 1 1

bin.msh.start 0 4 5 5 4 4
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• Computes number of meshlets each bin 
needs and can pack base-triangles into 
single meshlet
(1,4,8,16 x base-triangles)

• Computes bin offsets and writes out triangle 
infos grouped by bins 

0 1 2 3 4



Bin Unpacking Example
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0 1 4 5 2 3triangleID

Unpacking happens in the Mesh Shader.

The Task shader emitted 6 Mesh Shader workgroups (0...5) in total.

The Mesh shader workgroup index for the highlighted meshlet is 4 and packs up to 4 x 16 microtriangles.

At the start of mesh shader we need to figure out where its bin starts in the task output data.

The bin.meshlet.start values are ascending (prefix sum). We load them across the mesh shader warp and each 

thread runs a comparison (meshletIndex >= bin.meshlet.start). With subgroup/wave intrinsics we broadcast the 

first winner thread index, which then is equivalent to our start index into the output data (here 1).

Task shader output data

0 4 4 4 5 5bin.meshlet.start

1 4 4 4 8 8bin.packsize 0

1

2

3

4

5

Task shader output meshlets



Bin Unpacking Example
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Task shader output data

1 4 4 4 8 8bin.packsize

Divide the mesh shader warp in packsize many regions, each operates on one micromesh.

Discard micromeshes that differ from first thread’s packsize or exceed task output.

0..7 8..15 15..23 24..32

0..7

0 1 2 3

0..7 0..7 0..7

warp threadID

pack threadID

packID

Mesh shader workgroup

Use “pack threadIDs” instead of regular thread IDs. Rest of decoding works the same.

We still use two iterations for the vertices and primitives.

In this example we have 15 vertices per micromesh but only 8 threads. Shuffle access still works, because previous 

subdiv level required 6 vertices/threads, though shuffle indices need to be adjusted for the thread region.



Bin Unpacking

Mesh shader computes triangles & vertices

• Figures out bin config (pack size)
and active micromesh ids

Determine task output micromeshes to work on 
in mesh shader warp based on meshlet index
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Bin Unpacking

Mesh shader computes triangles & vertices

• Figures out bin config (pack size)
and active micromesh ids

micromesh relative 
ID

1 4 5 2

pack size 4 4 4 1

subdiv 2 2 2 3

valid:
pack size == first

true true true false

Determine task output micromeshes to work on 
in mesh shader warp based on meshlet index

0..7 8..15 16..23 24..32

Distribute micromesh threads evenly across warp

42

• Each micromesh uses even distribution of threads 
within warp

• Setup per micromesh decoder configs



Bin Unpacking

Mesh shader computes triangles & vertices

• Figures out bin config (pack size)
and active micromesh ids

micromesh relative 
ID

1 4 5 2

pack size 4 4 4 1

subdiv 2 2 2 3

valid:
pack size == first

true true true false

Determine task output micromeshes to work on 
in mesh shader warp based on meshlet index

0..7 8..15 16..23 24..32

Distribute micromesh threads evenly across warp

1st vertices / tris 0..7 0..7 0..7 0..7

2nd … 7..15 7..15 7..15 7..15

43

• Each micromesh uses even distribution of threads 
within warp

• Setup per micromesh decoder configs

• Two warp iterations to process all micro vertices 
/ triangles
(e.g. single triangle: 16 x 2 threads, 3 vertices 
max)



Dynamic LoD Caveats

Open Issues

• Renderer looks at base-triangles individually, therefore no 
“vertex re-use” for connected base-triangles when they are 
all subdiv 0. One should switch to traditional pre-computed 
meshlets in this case.

• To get deeper ranging LoD for minification, multiple 
traditional LoD models for the same object could be used 
and swapped out, or a hierarchical cluster LoD scheme that 
operates at finer granularity across the object.

Base triangles
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Dynamic LoD Outlook

Potential Improvements

• When base-triangles’ dynamic lod predominantly is level 0 (i.e. one output triangle 
per base-triangle) should render model with traditional index-buffers or via 
meshlets, both improve vertex re-use among connected base-triangles

• No research yet for models with multiple LoD models spanning different detail levels
• LoD Model 0: dynamic reduction of up to 1024 triangles 
• LoD Model 1: another dynamic reduction… could use hierarchical LoD etc.
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Level of Detail

• Dynamic LoD can greatly improve performance and mostly hide transitions subpixel
• Current implementation is not water-tight, simple logic
• Still may need multiple LoD models / schemes for background minification



Compute Shader Rasterization
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Compute Shader Rasterization

The compute shader rasterization in this sample is rather basic and not specifically 
tuned. Vertices are transformed across the warp and stored in shared memory. Each 
thread then operates on one triangle:

● Pulls the relevant vertices
● Compute the screen-space rectangle for visible triangles
● Loop over rectangle pixels, test the sampling point against the triangle
● If the triangle is covered, write out pixel via atomic 64-bit min operation, where 

upper bits store depth and lower bits the payload

Given we mostly have smaller triangle sizes these simple loops work good enough.

When triangles would require clipping, they are currently discarded. The better approach 
is to leave more complex triangles to hardware rasterization.
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Compute Shader Rasterization
DUAL PASS: First pass does task-shading, then second pass does mesh-shading phase

Task shading pass

• Handles LoD bin packing and culling, writes to global memory
• ! Needs upper-bound of visible bins for scratch buffer (12 bytes per visible meshlet)

Mesh shading pass

• DispatchIndirect based on task phase results
• Same single warp decoders as mesh-shader
• Rasterize micro triangle via atomic 64 bit (payload & depth) directly per thread. 
• May want to store barycentric coordinate via second 64-bit atomic, to avoid recalculation, at 

risk of some errors/contention on identical z values and extra memory.

Pixel shading pass

• Unpack payload information per-pixel for gbuffer fill
• The sample doesn’t implement any proper shading, so the payload usage is not realistic.
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Compute Shader Rasterization
DUAL PASS SPLIT: task-shading pass can also rasterize smaller bins immediately, then second pass to 
rasterize larger subdivisions in mesh-shading phase

Task shading pass

• Handles LoD bin packing and culling, 
• Splits bins depending on local subdivision level

• Writes big (subdiv == 3) bins to global memory
• Rasterizes smaller packed bins directly, these handle multiple basetriangles at once

• ! Needs upper-bound of visible bins for scratch buffer (12 bytes per visible big meshlet)
This bound is typically lower than the previous technique, as we don’t need to output those 
smaller bins.

Mesh shading pass

• (same decoding and rasterization as before)

Pixel shading pass

• Unpack payload information per-pixel for gbuffer fill
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Compute Shader Rasterization
SINGLE PASS (slower): Collapse task and mesh-shading into single workgroup.
(was removed from sample due to slower performance)

Combined pass:

Task shading phase (outputs to shared memory)

Mesh shading phase

• Workgroup uses 4 warps (128 threads) and therefore needs to loop over the total amount of 
work that the task shading phase generated. Where a task-shader spawned N mesh-shader 
warps, compute distributes these across 4 within workgroup and loops.

• (otherwise similar decoding as previous slides)

Pixel shading pass

• Unpack payload information per-pixel for gbuffer fill
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Basic Performance Tests
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Performance Test Description 

The shading is very basic phong, no textures and we measure two variants

● Shaded with micro-vertex normals

○ This looks a bit nicer than just flat-shading, it does add a bit of extra work

● Flat-shaded colored triangle IDs (to mimic a visibility buffer like scenario)

○ This is the only variant supported by compute-shader rasterization in this sample

We do not compare to rendering the hi-res model by traditional means as it is typically slower and 
would require more sophisticated cluster schemes, vertex quantization etc. to be sped up.

However, in a scenario where low or no subdivision is applied, those techniques would be better, as 
was discussed earlier for dynamic LoD.
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Performance Test Description 
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Murex Romosus from Three D Scans

Mesh Stats:

Basemesh: 19 K Triangles

Displaced mesh: 3.8 M Triangles  ( <= subdiv level 4 average)

144 Instances ~ 540 M Triangles

Micromap Data:

Uncompressed displacement (densely packed 11 bit): ~ 3.1 MB

Block compressed displacement:  ~ 2.4 MB

Block compressed displacement w. mips:  ~ 2.7 MB

32 bit octant microvertex normals:  ~ 9 MB

Micro-Mesh model from Micro-Mesh Construction - Example of results (unimi.it)

https://micromesh.di.unimi.it/micromesh_construction_results.html


Performance Test Description 
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Both images show the base-triangle subdivision level. 
Level 0 is red, Level 5 is dark blue.

Dynamic LoD is activated in the lower image and 
significantly reduces number of rendered triangles.

No LoD: 540 M triangles

LoD: 25 M triangles

LoD + occlusion culling: 15 M triangles

Dynamic LoD
Enabled

Subdivision 
Levels



Performance Test Description 

Occlusion Culling

Very simple occlusion culling was implemented. It is only correct on a static frame as it uses the 
previous frame depth buffer. A HiZ mipmap chain is built and the bounding spheres of displaced 
base-triangle is tested against it. This hasn’t been tuned much yet. For example ideally some coarser 
level occlusion culling should be done on groups of base-triangles.

Primitive Culling

The mesh-shaders can do per-triangle culling. However, depending on the hardware and shading 
complexity this may speed things up or actually slow down. We use NV_mesh_shader rather than 
EXT_mesh_shader due to the ability to implement primitive culling more efficiently.
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Shaded Results
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M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 9.61 1.12 0.79

compressed ms mip decoder 12.75 1.21 0.85

compressed ms intrinsic decoder 18.41 1.56 1.07

compressed raytracing 1.35

With LoD enabled the compressed data can be rendered at similar speeds to the uncompressed data. 
Without LoD the impact of using the hardware intrinsic decoding is substantial.

Raytracing is quite competitive for primary visibility due to “perfect” triangle occlusion culling. 

4096 x 2048
RTX 6000 Ada



Shaded Results
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M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 55.14 2.90 1.98

compressed ms mip decoder 57.30 3.25 2.24

compressed ms intrinsic decoder 72.52 4.54 3.00

compressed raytracing 4.73

(same principle behavior as previous hardware configuration) 

4096 x 2048
RTX 4060 Ti



Visibility Results
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M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 8.54 0.87 0.59

compressed ms mip decoder 10.14 0.92 0.63

compressed ms intrinsic decoder 13.02 0.97 0.66

compressed raytracing 1.29

4096 x 2048
RTX 6000 Ada

In the “id buffer” generation scenario the impact of the hardware intrinsic is lower and especially 
with LoD both decoder types are closer. This allows using the opaque data from the raytracing 
representation directly.



Visibility Results
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M Triangles 540 25 15

Render time [ms] no LoD LoD LoD + occ culling

uncompressed ms 55.33 2.62 1.77

compressed ms mip decoder 56.07 2.72 1.87

compressed ms intrinsic decoder 56.41 3.00 2.09

compressed raytracing 4.55

4096 x 2048
RTX 4060 Ti

(same principle behavior as previous hardware configuration) 



Compute vs Mesh Shader
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Whether software rasterization (compute) or 
hardware rasterization (mesh shader) is faster, 
depends on the number of sub-pixel triangles.

LoD 1x targets around 1 pixel per triangle and on 
NVIDIA hardware is still pretty fast to be rastered 
via hardware units using mesh shaders. LoD 2x 
means we push the LoD decision further out, so 
more sub-pixel triangles, while 1/2 x means 
earlier, larger triangles (this risks visible cracks).

Compressed data was a tad slower than 
uncompressed but had similar behavior.

4096 x 2048
RTX 6000 Ada

Occlusion culling disabled for more rasterization load



Compute vs Mesh Shader
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4096 x 2048

Occlusion culling disabled for more rasterization load



Performance Conclusions

Data Representation

• Uncompressed is faster, but “base w. mip decoder” can be close when using dynamic lod.

• 64-block format is 45 x uncompressed unorm11, easy to fetch (no special decoding/encoding)

• Hardware intrinsics are an option if visibility pass in combination with dynamic LoD is used or if memory 
constrained.

Compute vs Mesh-Shading

• Depending on dynamic LoD usage can yield slightly larger triangles which favors mesh-shaders

• May want to use 2x 64-bit atomics, as reconstruction of base-triangle barycentric UVs would be ugly.

• Dual pass compute needs a lot transient data between task and mesh pass. “Split” variant needs less.
(12 bytes per visible rasterization warp = 64 micro triangles max, {u32 instanceID, baseID, binPackInfo})

Dynamic LoD

• Higher subdivision levels allow more LoD and enable more vertex re-use, better utilization

• If subdivision is very low (1 or 4 micro-triangles per base-triangle), it’s better to render mesh by other means

• Bin packing is great for perf, half performance when disabling it and handling base-triangles one warp at a time.
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Backup



Note: Naming Issue

There was a bit of renaming in the documentation and code, so the use of the words “bary” vs 
“umesh” are described here, in case you stumble upon them.

bary == uncompressed: rendering the uncompressed values of a base-triangle as they are generated 
from baking. Serves as reference to benchmark decoding performance.

Example: for 256 micro triangles = 153 values (typically 16 bit unorm displacements) = 2448 bit

umesh == compressed: rendering the block-compressed representation where a base-triangle is split 
into sub-triangles . Each sub-triangle is represented by a single compressed block of 1024 or 512 bit.

Example: for 256 micro triangles =  4 x 512 bit (each 64 microtris) or 1 x 1024 bit.
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Manual Decoder Implementation

• Iterate subdiv levels, shift active threads, read previous, write new

1 5 11

Bird-Curve Vertices mapped to threads

Write Displacement

Write Displacement

Write Displacement

Shuffle Read Access

Shuffle Read Access

Level 0:

Level 1:

Level 2:

Signed correction

Prediction based on final 
displacements

shuffle indices pre-computed as 2 x 4bitAnchors use 
correction as is

Get Final VertexShuffle Read AccessLevel 3 (1st):

0...14 15..31

Get Final Vertex

Shuffle Read AccessLevel 3 (2nd):
0...12 ( representing vtx 32..44)

115 1

Level 3: 45 vertices need 
2 iterations for 32 
threads


