
Micro-Mesh - Basics

1

2

Opacity & Displacement Micro-Meshes

Micromeshes and Micromaps

3

Micromeshes and Micromaps

Micromeshes

Micromeshes are created through fixed subdivision of input triangles.

Each level evenly splits a triangle into 4 triangles.

Micromaps

Micromaps store per-microvertex or per-microtriangle values for these
subdivided triangles. The values can be block-compressed.

Each subdivided input triangle has its own set of values, there is no
values sharing between the coarse input triangles (aka base triangles).

There is no need for UV coordinates as the mapping from the triangle UV
to the storage index is handled through a spatial curve. But it is sensitive
to triangle vertex ordering.

4

Micromesh result for
subdivision level 0, 1 and 2

microvertexmicrotriangle

Micromeshes and Micromaps

“Bird curve” a new spatial indexing curve in barycentric space

Here we focus on the ordering of microtriangles, later in the displacement compression chapter the
microvertex ordering is illustrated. The center image shows the recursive nature of the winding and
orientation changes as well.

5
W U

V

Micromeshes and Micromaps

“Bird curve” Recursive Splitting Rule

An input triangle is split into four sub-triangles with the
following logic (this can be recursive / hierarchical):

0: W, WU, VW
1: VW, UV, WU (flips source winding)

2: WU, U, UV
3: UV, VW, V (flips source winding)

6

WU

UVVW

W U

V

0

1

2

3
Arrows indicate
vertex order of
split triangle

Triangle (W,U,V) is split into four children

Flipped winding

Micromaps

Micromaps

Micromaps represent scalar values stored on a barycentric grid for each triangle. It is a per-triangle
map that isn’t sampled (i.e. not like a texture) but uses unfiltered fetches. The triangle’s vertex
ordering is critical to this addressing, given it is based on barycentric coordinates.

Mesh Triangle Mapping

Each mesh-triangle is mapped to a micromap-triangle

This is typically 1:1 mapping, although a dedicated mapping buffer can exist to allow re-use

7

3D Mesh contains mesh triangles,
mapped to micromap triangle

Micromap contains subdivision info and
values for the subdivided triangles

Microtriangle (or microvertex) addressing
based on barycentric UV on spatial curve
(UV is sensitive to triangle winding…)

Micromaps

Micromap Storage
Micromap storage contains
information for many
triangles and their values

8

Micromap {
 MicromapTriangle triangles[];
 ValueType values[];

 ValueFormat valueFormat;
 // per-microvertex / microtriangle
 ValueFrequency valueFrequency;
 // value layout within triangle
 ValueLayout valueLayout;

 ...
};

Micromap Triangles Buffer

Micromap Values Buffer

MicromapTriangle {
 // starting location
 U32 valuesOffset;
 // resolution of this triangle
 U16 subdivisonLevel;
 // only for compression
 U16 blockFormat;
};

Offset into values buffer
(index for uncompressed,
byte offset for compressed)

Value layout (spatial
curve) determines index
within triangle
(layout is implicit for
compression)

Micromap Value Illustration

Micromaps

Micromaps

Mesh Triangle Mapping

Value Fetching for a provided microvertex (uncompressed)

9

Micromap {
 MicromapTriangle triangles[];
 ValueType values[];

 ... // some more meta info
};

MicromapTriangle {
 U32 valuesOffset;
 U16 subdivisonLevel;
 U16 blockFormat;
};

 // optional mapping buffer allows re-use of map data for different mesh triangles

MicromapTriangle micromapTriangle = mappings ? micromap.triangles[mappings [meshTriangleIndex]]

 : micromap.triangles[meshTriangleIndex];

ValueType* triangleValues = micromap.values[micromapTriangle.valuesOffset];

// index into triangleValues using the spatial storage layout based on microvertex coordinates

ValueType microVertexValue = triangleValues[getLayoutIndex(micromap.valueLayout, microvertex.barycentricIntegerUV)];

Pseudo code for illustrative purposes only

Micromaps

Micromap Block Compression

Values can be compressed. In this case the triangle is
split into block triangles, each using one compressed
block. The ordering of blocks and the splitting is part
of the compression scheme (see later)

10

MicromapTriangle {
 // starting location
 U32 valuesOffset;
 // resolution of this triangle
 U16 subdivisonLevel;
 // only for compression
 U16 blockFormat;
};

Micromap Triangles Buffer

Micromap Values Buffer

Byte offset into
values buffer

Ordering of blocks
depends on compression
scheme

Micromap Triangle split into one or more compressed
blocks / block triangles

// implicit information based on
// compression scheme, not stored

BlockTriangle {
 // position within parent triangle
 BaryUV vertexUVs[3];
 // block start within parent values
 U32 byteOffset;
 ... // some more meta info
};

Micromaps

Micromaps

Value Fetching for a provided microvertex (compressed)

11

Micromap {
 MicromapTriangle triangles[];
 Byte values[];

 ... // some more meta info
};

MicromapTriangle {
 U32 valuesOffset;
 U16 subdivisonLevel;
 U16 blockFormat;
};

// compressed or specially packed values operate with byte offsets
Bytes* triangleValues = µmap.values[micromapTriangle.valuesOffset];

// find which block based on microvertex uv
// BlockTriangle gives us information about the local position of the block within the base triangle, as well as byte offsets
BlockTriangle blockTriangle = getBlockTriangle(micromapTriangle.subdivisionLevel, micromapTriangle.blockFormat,

 microvertex.barycentricIntegerUV);

ValueType uncompressedBlock[];

decompress(uncompressedBlock, micromapTriangle.subdivisionLevel, micromapTriangle.blockFormat, triangleValues + blockTriangle.byteOffset);

// use blockTriangle.vertexUVs to convert between map and block triangle coordinate space
ValueType microVertexValue = uncompressedBlock[getLocalBlockIndex(blockTriangle, microvertex.barycentricIntegerUV)];

Pseudo code for illustrative purposes only

BlockTriangle {
 BaryUV vertexUVs[3]; // position within parent map triangle
 U32 byteOffset; // block start within parent values
 ... // some more meta info
};

Micromaps Conclusion

Micromaps

The values stored in micromaps can be per-microvertex or per-microtriangle (result of subdivision).

The ordering of values within a triangle is defined through a layout (we standardized two for now)

The raytracing APIs will support:

• Displacement Micromap (DMM) per-microvertex scalar displacement
• Opacity Micromap (OMM) per-microtriangle opacity

The containers and operations of the SDK are versatile enough to store any other attributes. This is
useful to experiment with storing other shading attributes, such as normals in micromaps, and
fetching them in shaders manually.

However, compression/special packing only exists for scalar displacement (unorm11) and opacity (mix
of uint1/uint2) and raytracing APIs only accept those special formats.

12

Opacity Micromaps

13

Opacity

Opacity Micromap

Accelerate ray-tracing of transparent surfaces by
reducing any-hit shader invocations and use
micromeshes as visibility mask (independent of
displacement, can use much higher subdivisions)

Encode visibility per Microtriangle (1 or 2 bits)

• values stored along “bird curve”
• 1 bit: 0 miss, 1 hit
• 2 bit: 0 miss, 1 and 2 “unknown states”, 3 hit

Micromesh
subdivision

Reduced 2 bit visibility
(effective 2x2 bits per low-res texel)

Original
Texture

Transparent

Unknown Transparent

Unknown Opaque

Opaque

Opacity

Opacity Micromap

Dynamically map the “unknowns” to either
any-hit shader, miss or hit at trace time.

Reduced 2 bit visibility can
be dynamically mapped

Transparent

Unknown Transparent

Unknown Opaque

Opaque

Soft shadow trace
uses binary mapping

Reflection trace maps
unknowns to any-hit shader

Displacement Micromaps

16

Displacement

New representation of high geometric detail

Uses fixed power of two subdivision pattern on
base-triangles and scalar displacements in barycentric
space

Encodes the scalar values hierarchically along a spatial
curve to get good compression and locality

Reduces BVH build time (lo-res base mesh, mostly static
pre-computed displacement data) and memory
consumption significantly

17

Model courtesy of threedscans.com

Displacement

Geometry representation

Each base triangle has a user-defined power of two
fixed subdivision. An adjacent triangle may differ in
subdivision by a factor of two along the edge and
watertightness can still be preserved.

Corner displacement directions are provided as fp16
vectors per base vertex and are linearly interpolated
across.

Scalar displacements are provided in barycentric space
per micro vertex

18

Base Triangle
(64 micro tris)

Base Directions

Interpolated
Directions

Base
Vertex

Micro Triangle w.
Micro Vertices

Adjacent Base Triangle
(e.g. could be 256, 64 or
16 micro tris)

Displacement

19

Base Mesh

Displaced Micromeshes

Micromeshes

Model courtesy of Autodesk, armor part from
“Turtle Barbarian” by Jesse Sandifer

Displacement

Geometry representation

The API will support base triangle subdivision of up to level 5 == 1024 Micro Triangles for displacement

20

Subdivision Level Micro Triangles Micro Vertices

0 1 3

1 4 6

2 16 15

3 64 45

4 256 153

5 1024 561

Displacement

Watertight representation

For each base triangle the edges that require
decimation can be marked using one uint8.

The first three bits represent
the edges (v0, v1) (v1,v2) (v2,v0)
for a triangle defined as (v0,v1,v2).

The intersection will perform as if triangles along
the edge are adjusted accordingly, or by other
means in the hw that ensure watertight results.

The baker and the encoder ensure that
appropriate scalar values match

21

Basetriangle B
subdiv level 1

Basetriangle A
subdiv level 2

A0 A1/B0 B1

A2/B2
Edge decimate flag:
b000 = 0 (no reduced
neighbor)

Edge decimate flag:
b010 = 2 (second edge
needs reduction)

Intersection behavior
(or equivalent means)

Displacement

Watertight representation

For each base triangle the edges that require
decimation can be marked (one uint8 per
triangle, first 3 bits used).

The intersection will perform as if triangles
along the edge are adjusted accordingly

The baker and the encoder ensure that
appropriate scalar values match

22

Linear Displacement

microvertex.position =

 interpolate(base.positions[], microvertex.barycentric) +
 // note, no normalization of directions!

 interpolate(base.directions[], microvertex.barycentric)
 // unorm11 displacement value in [0,1]

 * (microvertex.displacement);

As result all displacements are within a prismoid shape
(shell volume) that is created by the minimum (position)
and maximum (position + direction) triangle.

23

Displaced surface
within min and
max triangles’
shell volume

vertex base.positions define
the local min triangle

vertex base.directions yield
local max triangle

Displacement - Fitting

Global bias/scale can be suboptimal

Spikes in the displacement value range mean less
precision of unorm11 overall and larger shell volume.

Larger shell volume affects tracing performance
negatively.

24

Simplified 2D section view of connected triangles,
illustrates reduced shell volume by fitted bounds

Base direction
vectors

Base vertices
and triangles

Hi-res
surface

Min triangles,
using global bias/scale

Max triangles,
using global bias/scale

Max triangles, influenced
by local bias/scale

Min triangles, influenced
by local bias/scale

Fitted direction
vector bounds

Local per-vertex bias/scale preferred

Compute per-vertex direction bounds (bias, scale)
along the original vectors that fit the data. They
allow adjusting position & direction vectors.

These bounds can be provided at BLAS buildtime:

blas_position = position + direction * bounds.bias

blas_direction = direction * bounds.scale

Caveat: the BLAS returns the adjusted values in intrinsics

Displacement - Fitting

25

Per-base-vertex bias &
scale yields a ¼ of the
original total shell
volume

Approximately 5 x
speed-up for primary
rays (different view,
many instances)

Shell volume using
global bias & scale

Yellow: max triangle
Cyan: min triangle

Displacement - Fitting Side Effect

26

Original base
direction vectors

Base
vertices
and
triangles

Fitted direction
vector bounds
and shell volume

The fitting process requires
resampling of displacements as
positions and directions are affected
by the fitted bounds.

barycentric midpoints

The projected point onto base triangle might drift, changing UV/texcoord
interpolation a bit. The result benefits from rebaking of textures or use
of indirection textures… Content dependent issue. If done early in asset
pipeline, no need to rebake etc.

Hi-res surface

Displacement Compression

27

Displacement Compression

Hierarchical Delta Compression

Reconstruction of displacement:

- Predict via averaging of split edge vertices
- Apply signed delta correction value.

28

Signed correction

parent / final
displacement

Vertex Subdiv Level: 0 2 1 2 0

prediction

Microvertex Order

29

Vertex order within subdivided triangle

The “bird curve” order for
microvertices is also based on
hierarchical splitting, and stores
vertices in groups of triplets.

Triplets are ordered breadth first by subdivision level.
Within a level they follow the bird curve order.

Microvertex values are
stored in triplets.

0 1 2 3 4 5 14

Resulting microvertex ordering 0...14.
Ordered by subdivision level in which they were added

0 1

2

143 4

5

Example for subdivision level 2:
16 microtriangles, 15 microvertices

0 1

2Microvertex Order

30

3

5

4

6 7

8

Level 1 triplet: vertex 3,4,5

Level 2 triplets: vertex 6,7,8
 vertex 9,10,11
 vertex 12,13,14

Level 0 triplet: vertex 0,1,2

11

9 10

12 13

14

W U

V Triangle WUV

Within a level
“bird curve”
order

Vertex order within subdivided triangle

The “bird curve” order for
microvertices is also based on
hierarchical splitting, and stores
vertices in groups of triplets.

0 1

2Compression

Hierarchical Delta Compression

Correction values are stored in “bird
curve” order within compressed
block.

Reconstruction of displacement:

- Predict via averaging of split
edge vertices

- Apply signed delta correction
value.

31

3

5

4

6 7

8 11

9 10

12 13

14

d(4) = (d(2) + d(1) + 1) / 2
+ correction(4)

d(7) = (d(5) + d(3) + 1) / 2
+ correction(7)

d(2) = correction(2)
Initial anchors are lossless

W U

V Triangle WUV

Displacement Compression

Block Layout

Correction values are stored in 512 or 1024 bit blocks.

Blockformat-dependent width of bits per subdivision

“shift bits” allow to adjust the amplitude of corrections (similar to shared exponent, see next slide)

32

512 or 1024 bits

Lossless
displacements first
(11 bits unsigned)

Displacement corrections
with fewer bits
(e.g. 8 bits signed)

Shift bits for some
subdiv levels and
vertex types (e.g. 4 bits signed)

values shaded
by triplets

Displacement Compression

Block Layout

Vertices are classified as interior or on micromesh edges and shift
bits are used to adjust their correction value:

correction(vtx)
 = correction(vtx) << shiftBits[vtxSubdivLevel][vtxType];

33

Different shift values for
each vertex type

Shift Bits …. 1023 / 511 bit

1 2 30

vtxType 1:
Edge 0

vtxType 2:
Edge 1

vtxType 3:
Edge 2

vtxType 0:
InteriorStored reversed, highest

level in lower bits

Example for highlighted vertices
with vtxSubdivLevel 2

Displacement Compression

Illustration Guide

The next slides will use illustrations around
base-triangles and sub-triangles.

We previously used the data structure called
BlockTriangle (slide 11).

Sub-Triangles == Block-Triangles, terms can be used
interchangeably. One sub-triangle is always
represented by one compressed block.

34

W U

V

The base-triangle is defined from three
vertices in order (W,U,V)

Arrows
indicate
winding order

Number of
microtriangles
in base
triangle

The base-triangle is split
into 4 sub-triangles each
with 64 microtris

64

1024

Displacement Compression

Compression & Sub-Triangles

Similar to BCx compression we establish block-compressed
formats that can represent displaced micro triangles at
different fidelity in 512 or 1024 bits. Decoded to unorm11.

enum BlockFormatDispC1 { // displacement for

eR11_unorm_lvl3_pack512 = 1, // 64 microtriangles (45 x uncompressed u11)

eR11_unorm_lvl4_pack1024 = 2, // 256 microtriangles

eR11_unorm_lvl5_pack1024 = 3, // 1024 microtriangles

};

Base-triangles can be split uniformly into many sub-triangles
to represent larger resolutions or higher quality formats.

One sub-triangle is represented by one compressed block.

35

Example base-triangles each
with 1024 microtris

Sub-triangles have equal
resolutions

64

256

eR11_unorm_lvl4_pack1024

4 x 256 microtris blocks
each 1024 bits

eR11_unorm_lvl3_pack512

16 x 64 microtris blocks
each 512 bits

1024

1024

Displacement Compression

Compression Efficiency

Each block stores displacement values for its
microtriangles independent of other blocks.

This can reduce overall compression a bit.

Favorable to attempt to use a single block per
base-triangle.

The smallest block format is 512 bit and allows storing
the 45 displacement values for 64 microtriangles in
uncompressed unorm11.

That means using less subdivision than level 3 (equivalent
to 64 microtriangles) will waste memory.

36

Base-triangle (1024 microtris)

256

256

256

256

4 blocks each 256
microtriangles

Displacement values
along edges are stored
redundantly in
adjacent blocks (inner
and outer edges)

Base-triangle (4 microtris)

64

Smallest blockformat offers 64
microtris, but base-triangle uses
less, means we waste memory

1024

4

Displacement Compression

Compression & Sub-Triangles

Triangles are split using the “bird curve” rule seen before.

They are stored hierarchically in depth first order:

0: W, WU, VW
1: VW, UV, WU (flips source winding)

2: WU, U, UV
3: UV, VW, V (flips source winding)

These winding and orientation changes add a bit of complexity
in the encoding/decoding process

37

1 Input triangle

W U

V

WU

UVVW

0

1

2

3

4 sub-triangles

Example

38

Example

Facet-shaded and

colored by
sub-triangle

24 % compared to
16-bit uncompressed
input

Different compression
formats are used

Wireframe:
Lo-res base mesh

1024 x expansion:

7.5 K triangles to 7.7 M

Content-dependent
compression:

White: 512bit per 64
mictrotriangles

Green: 1024bit per 256
microtriangles

Orange: 1024 bit per
1024 microtriangles

39

Additional Links & Information

These slides are part of the NVIDIA Micro-Mesh SDK
https://developer.nvidia.com/rtx/ray-tracing/micro-mesh

Relevant Repositories
https://github.com/NVIDIAGameWorks/Opacity-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-BaryFile

Support Contacts for SDK
opacitymicromap-sdk-support@nvidia.com
DisplacedMicroMesh-SDK-support@nvidia.com

40

https://developer.nvidia.com/rtx/ray-tracing/micro-mesh
https://github.com/NVIDIAGameWorks/Opacity-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-BaryFile
mailto:opacitymicromap-sdk-support@nvidia.com
mailto:DisplacedMicroMesh-SDK-support@nvidia.com

