
Micro-Mesh Asset Pipeline
Toolkit

DISCLAIMER

Please refer to “Micro-Mesh Basics” slide-deck first

https://developer.download.nvidia.com/ProGraphics/nvpro-samples/
slides/Micro-Mesh_Basics.pdf

https://developer.download.nvidia.com/ProGraphics/nvpro-samples/slides/Micro-Mesh_Basics.pdf
https://developer.download.nvidia.com/ProGraphics/nvpro-samples/slides/Micro-Mesh_Basics.pdf

Extended Content Pipeline

Opacity and Displacement micromaps operate in barycentric space following a spatial curve
(“bird curve”), rather than uv/texture space. Maps are indexed directly and not sampled!

New barycentric data exchange file format (~= textures)
• Container for many triangles’ data
• Per-micro-vertex (displacement) or per-micro-triangle (visibility) data
• Support uncompressed and hw-compressed formats

New properties in 3d model files
• Per-triangle data to map mesh to appropriate bary lookup
• Per-vertex displacement directions (fp16)
• Extend mesh with barycentric opacity / displacement

New support in tooling /micromesh sdk
• Generate/exchange above 3d model properties
• Generate/exchange barycentric files

3

File formats

Barycentric data containers:

• BARY container
• Refined for needs, target quick loading in APIs
• Compressed and uncompressed data (per micro vertex / triangle)

3D scene formats

• GLTF extension for displacement directions & barycentric mapping
• Focus on quick loading for APIs as well
• Lightweight easy to integrate loader/savers for internal tests/prototyping

• USD schemas for editor / tool exchange
• Self-contained MicromeshAPI schema embeds DMM properties
• BarycentricFileAPI schema allows referencing .bary files

BARY

4

Micro-Mesh Asset

5

⧅ Base Mesh + Displacement Micromap

Micromap::Triangles
△ Subdivision Level
⇶ Displacement Values
🗜 Compression Blockformat

→ ▩ Displaced Micro-Mesh+ Displacement Attributes

Vertex Direction Vectors
Vertex Direction Bounds
Triangle Primitive Flags
Triangle Mapping Index

b010

[0,1,2]

⭦
↹

Model courtesy of threedscans.com

Micro-Mesh Subdivision

6

Base triangle subdivision levels 0, 1 and 2

△ Subdivision Level Triangles Vertices

0 1 3

1 4 6

2 16 15

3 64 45

4 256 153

5 1024 561

Displacement supports up to level 5 in the
raytracing APIs

A micromesh is the result of subdividing a base
triangle in power of twos along all edges
uniformly.

Micro-Mesh Adaptive Subdivision

7

7

Base triangle B:
Subdivision level 1

Base triangle A:
Subdivision level 2

Triangle Primitive Flag (u8) provides information for watertight intersections if
one subdivision level difference exists between adjacent triangles.

Triangle Primitive Flag:
bits 000 = 0
(no reduced neighbor)

Triangle Primitive Flag:
bits 010 = 2
(second edge needs reduction)

A0 A1

A2

Micro-Mesh Adaptive Subdivision

8

Micromap Values

9

microvertexmicrotriangle

The micromap values are ordered along a spatial curve (“bird-curve”) based on integer UV
coordinates within triangle. The values are fetched/indexed and not sampled.

W U

V

Displacement Micromap: per microvertex scalar displacement values
Opacity Micromap: per microtriangle opacity

Micromap Values

Texture sampling is invariant to object-space orientation and triangle winding due to texture coords.

Micromap fetching is always in barycentric space.

10

Micromap Indexing

Base triangles can use Triangle Mapping Index (u32) to reuse Micromap values.
It is a bit like UV-coordinates allowing to reuse sections of a texture.
Caveat: triangle vertex ordering matters!

Without mapping index a 1:1 mapping between base triangle and micromap triangle is effective.

11

Micromap Triangles 0, 1, 2

1
0

0

0
1

1
0

Mapping Index Buffer [0,1,1,0,2,1,0,0]

2

Micromap Applied to MeshBase Triangles

Micromap Compression

12

The displacement values are UNORM11 and block compressed.
The micromap must be compressed for RT APs.

🗜 Block Format Microtriangles

64_MTRIS_512BIT
(3-45 x uncompressed unorm11)

1-64

256_MTRIS_1024BIT
(delta compression scheme)

256

1024_MTRIS_1024BIT
(delta compression scheme)

1024

Example compression result:

base triangle (256 microtriangles)

→ split by compressor →

4 x 64_MTRIS_512BIT

blocks follow “bird-curve”
64

256 = 4 x 64

64

64

64

Micro-Mesh Displacement

13

Vertex directions
Linear
interpolated
directions

Base vertex positions

Displaced surface is within
min and max triangles’
shell volume

Vertex positions define the local minimum triangle

Vertex directions yield local maximum triangle

Vertex directions are linearly interpolated over base triangle and their length matters.

Each microvertex has a displacement value in range of [0,1] and therefore lies within a min and
max triangle. The tighter this shell volume, the faster hw can raytrace (integer factors faster!).

Micro-Mesh Displacement

14

⭦ Vertex Direction Vectors

Displaced
Surface

↹ Vertex Direction Bounds

This cross section shows importance of computing vertex direction bounds (bias & scale).
The shell volume is smaller with per-vertex bias & scale, than global bias & scale.

Minimum Triangles

Maximum Triangles

Direction Bounds Fitting

15

Per-base-vertex bias &
scale yields a ¼ of the
original total shell
volume

Approximately 5 x
speed-up for primary
rays (different view
angle, many instances)

Shell volume using
global bias & scale

Yellow: max triangle
Cyan: min triangle

Model courtesy of Autodesk, armor part from “Turtle Barbarian” by Jesse Sandifer

Direction Bounds Fitting

16

The fitting improves the effective value ranges, therefore precision used
for UNORM11 as well

Color-coded value range
with global bias & scale with vertex bias & scale

Micro-Mesh Asset Data Flow

17

Micro-Mesh Asset Data Flow

18

Reference Mesh
Typically hi-resolution,
or mid-resolution with
heightmap displacement
(“substances”)

Runtime Mesh
Raytracing API
objects

Load baked data
directly into RT
APIs.

Displacement Toolkit
Generates all required
data for rendering.

Can operate beyond
RT-API feature set
(higher subdiv levels,
float data, microvertex
normals…)

Baked Mesh
Base Mesh,
Displacement
Attributes,
Displacement
Micromap

VkAcceleration
 StructureKHR
 +
VkAcceleration
 Structure
 Triangles
 Displacement
 MicromapNV

Rendered Mesh
Ada:
hardware interprets data
directly

previous gen:
driver-side intersection
shader

VkMicromapEXT

Micro-Mesh Processing Pipeline

19

Micro-Mesh Asset

20

⧅ Base Mesh + Displacement Attributes

Vertex Direction Vectors
Vertex Direction Bounds
Triangle Primitive Flags
Triangle Mapping Index

→ Displaced Micro-Mesh

b010

[0,1,2]

+ Displacement Micromap

Micromap::Triangle
△ Subdivision Level
⇶ Displacement Values
🗜 Compression Blockformat

⭦

Currently not fully supported by all operations
in toolkit → always uses 1:1 mapping

↹

21

Mesh Topology

The MeshTopology data structure provides connectivity information within a mesh.

Several operations require it to ensure the overall mesh adheres to certain consistency rules.

Allows non-manifold inputs. SDK can build it, or its provided by user.

Triangle Vertices [3]

Triangle Edges [3]

Vertex Edges []

Vertex Triangles []

Edge Vertices [2]

Edge Triangles []

22

▩ Reference Mesh
 (optionally displaced by heightmap texture)Setup Input

1.

Pre-Tessellation Add triangles due to subidv 5 limit.

⭦ Vertex Direction Vectors ◬ Subdivision Level Hints

⧅ Base Mesh2.

Subdivision Levels & Heightmaps

Increasing subdivision level lowers aliasing artefacts.

But we are limited to level 5 (1024 per input triangle), equivalent to 32 x 32.

A simple quad with a 4096 x 4096 displacement map needs at least level 12

23

Model courtesy of Adobe
and Jonathan BENAINOUS

Pre-Tessellation

Pre-Tessellation tessellates the reference mesh where the reference triangle would be under
served with subdiv level 5.

24

Reference mesh has
▦ Heightmap resolution
of 128 x 128

△ Subdiv Level 7 per
triangle

Base mesh is
pre-tessellated

△ Subdiv Level 5 per
triangle

Note: changing the mesh is invasive, what about vertex skinning information, morph targets…

Pre-Tessellation

25Model courtesy of Adobe and Jonathan BENAINOUS

Only
illustrative
white
wireframe
of original
reference
mesh

Pre-Tessellation Caveats

26

What about non-square areas?

Uniform tessellation would yield long
skinny triangles for the upper trim
quad.

→ Needs quad detection (we
experimented with this)

Model courtesy of Adobe and Jonathan BENAINOUS

Pre-Tessallation Caveats

What if UV edge needs non power of 2?
What if adjacent quad is a different mesh…
What if the DCC tool shows no gap, but micro-mesh
does?

→ We stuck to simple triangle subdivision

Note: non-power of 2 texture may not be that
common, but artist can build an atlas and use UV
coordinates however they see fit

27

128 x 128 texture

128 x 32 texture

128 x 96 texture

With uniform power of 2 subdivision
both edges end up 128

Vertex Directions

Many applications use vertex normals, however these can
cause cracking artefacts along edges. Some applications
close these afterwards through strips, or other means.

28

We use smooth normals for vertex directions as they
ensure watertightness is preserved.

Vertex Directions & Heightmaps

When heightmaps are used,
we can use more advanced
interpolation, including
normalization, since it will
be resampled into linear
Micro-Mesh space.

29

Both rendered as Micro-Mesh
with linear directions

Heightmap was sampled
using linear directions

… using PN-triangle
directions

Substance material courtesy of Adobe

30

▩ Reference Mesh
 (optionally displaced by heightmap texture)Setup Input

1.

Pre-Tessellation

Remeshing ⭦ Vertex Direction Vectors ◬ Subdivision Level Hints

⧅ Base MeshAdd triangles due to subidv 5 limit.

Reduce number of triangles.

2.

Remeshing

Micro-Mesh is mostly about compressing high-detail.

Remeshing turns the high resolution reference mesh into a lower resolution base mesh.

31

Reference mesh with millions of triangles Remeshed base mesh with typically
0.1 % to 1 % of triangles.

Remeshing (Early Test)

Standard mesh simplifiers tend to introduce anisotropic (long/skinny) triangles, as texture detail can
still be projected well. Not good for Micro-Mesh. Remeshing provides lots of challenges.

32

Decimation
increased
anisotropy

Detail too low
in other regions

Hi-res mesh with heightmap Traditionally decimated

Remeshing

GPU-based remesher to overcome the performance bottleneck with high complexity models. This
became our toolkit solution. Warning: currently not deterministic, results will vary

33

GPU remesher: 2.4 M to 20 K triangles in 160 ms, with micro-mesh metadata

34

Pre-Tessellation

Remeshing ⭦ Vertex Direction Vectors ◬ Subdivision Level Hints

▩ Reference Mesh
 (optionally displaced by heightmap texture)Setup Input

⧅ Base MeshAdd triangles due to subidv 5 limit.

Reduce number of triangles.

1.

2.

Raw Displacements
Micromap Baking
w. Bounds Fitting

(w. Texture
Resampling)

↹ Vertex Direction Bounds

↑
↗↑

Raytrace from base to reference.
Adjust directions / fit bounds to
displacement values.

4.

3.

Subdiv - Sanitization Triangle Primitive Flagsb010Enforce +/- 1 subdiv level
difference between triangles.

△ Subdivision Level

Baking

The baker uses raytracing to generate the micromap displacement values.

Baking causes a lot of tricky situations, commercial tools expose several means for artist to get
desired result.

35

Picking closest?
Overhangs challenging

Original displacements
can be signed

Rays generated for each microvertex
from base mesh triangles
to the reference mesh

Accidentally
picking a closer
detached surface

Remesher can help by providing bounds from reference mesh within the rays can stay. But still
just ray ranges.

Baking

Some artefacts are intentional, e.g. “floater” geometry to add
detail cheaply, as it works well for normal maps.

36

Direction Bounds Fitting

During baking process retrieve per-triangle min/max and atomically distribute to per-vertex min/max.
Use this to create vertex direction bounds (bias = min & scale = max-min).

Might need to iterate as bounds do change ray directions (unless all parallel, i.e. planar heightmap)

3737

Original base
direction vectors

Fitted direction
vector bounds

Original
hitpoint

New
hitpoint

Direction Bounds Fitting

38

Global bias & scale Simple triangle min/max to
per-vertex min/max

(was most robust on
real-world data)

Plane upper and lower
fitting per triangle to
per-vertex min/max

(a bit brittle on real-world
data, often worse)

Texture Resampling

Remeshing and bounds fitting makes original
texture coordinates less usable. As a result
old textures will show artefacts. Need to
resample textures or create an indirection /
UV offset texture.

39

Reference (hi-res)

Baked without resampling

Baked with resampling

Texture Resampling

Resampling rasterizes texture coordinates of base mesh as positions so that each pixel
represents a texel of the destination texture. Uses raytracing like baking.

40

Base triangle rastered into texture grid

Reference mesh

Reference texture is resampled based
on its texture coordinates

For normal maps, also need to account for tangent space in both reference and base mesh.

Texture Resampling

New textures are processed through pull-push filter, so that they create better mip-maps and no
sampling artefacts along texture coordinates seams / between UV islands.

41

42

Raw Displacements

Pre-Tessellation

Remeshing

Subdiv - Sanitization

Micromap Baking
w. Bounds Fitting

(w. Texture
Resampling)

⭦ Vertex Direction Vectors ◬ Subdivision Level Hints

Triangle Primitive Flagsb010

↹ Vertex Direction Bounds

↑
↗↑

▩ Reference Mesh
 (optionally displaced by heightmap texture)Setup Input

⧅ Base MeshAdd triangles due to subidv 5 limit.

Reduce number of triangles.

Enforce +/- 1 subdiv level
difference between triangles.

Raytrace from base to reference.
Adjust directions / fit bounds to
displacement values.

1.

2.

3.

4.

Value - Sanitization ⇶ Displacement Values
Ensure values along edges between
triangles match bit exactly.

5.

Optimization &
Compression

🗜 Compression BlockformatBlock compress value based on
user’s quality settings.

6.

△ Subdivision Level

Compression

43

Compression library must ensure that values along edges between triangles match as well as edges
between the block triangles. Consumes UNORM11 displacements and uses direction magnitude to
guide quality metric to pick one block format per micromap triangle.

64

256 = 4 x 64_MTRIS_512BIT (lossless)

64

64

64

1024 = 1 x 1024_MTRIS_1024BIT (lossy)

1024

Edges between
inner blocks

Edges between
outer blocks

18 : 1
Model courtesy of the Smithsonian Institution
Digitization Program Office

Finalization

44

Some extra data should be computed at the end for the final baked asset:

→ A blockformat & subdiv level histogram which the raytracing APIs require.

→ Triangle min/max displacement values are useful for culling & LoD in rasterization.

→ Uncompressed displacement values for level 0 to 2 speed up sw-decoding in rasterization

shaders.

Content

45

Photogrammetry Scans

→ Less aliasing artefacts due to typically organic / noisy surfaces
→ Hi-res texture inputs tolerant to resampling
→ Challenge is cleanup to have well behaved meshes (non-manifolds,

self overlapping etc.)

Traditional Heightmaps

→ Can work well with pre-tessellation / flat surfaces
→ Problematic can be modularized assets, combining quads with different

heightmaps etc.
→ In general displacement / height maps not as well standardized in behavior

(cracks between seam edges, interpolation behavior, directions etc.)
Substance material courtesy of Adobe

Model courtesy of the
Smithsonian Institution
Digitization Program
Office

Content

Hardsurface Modelling / CAD

→ Triangle orientation influences sampling grid, prone to aliasing for
artificial / machined objects

→ Scalar displacement insufficient for sharp edges
→ CAD typically has shading normals not provided as normalmap textures,

can be significant amount of microvertex data / requiring shader-based
compression scheme at render time.

46

Game Content

→ Micro-Mesh displacement is not an “added detail effect”, the content is changed
significantly to make it work. Having two separate sets of assets is a no go.

→ Too invasive as afterthought, developer must opt-in early to just have micromesh assets

Micro-Mesh SDK & Toolkit

47

48

Micro-Mesh SDK Components (some TBD)

micromesh_core

micromesh_displacement_remeshing

bary_core

micromesh_displacement_compression

micromesh_tool

micromesh_toolbox

gltf 2.0 extensions

(samples)

Provides most functionality to generate or process
micromaps (barycentric data) with 3d meshes.

C-ish APIs for easy integration and multi-threaded.
Pointer & stride interfaces to avoid memory allocation.
All inputs and outputs strictly allocated outside API.
CPU & GPU processing with API agnostic interface.

UI and console apps.
Serves as sample code for tool
developers.
Showcases rendering
integrations.

Basic file container to exchange
micromaps.
Extensions to 3D file formats.

Python binding

USD schema

Toolkit Design

The current toolkit is designed to use a layered approach

Toolkit
applications

meshops libraries bary libraries

micromesh libraries

High-level libraries to process
meshes. Implemented using
Vulkan and the low-level SDK
libraries. Reference pipeline,
internal use

Libraries designed to be
embedded in third party
tools

Python/numpy
binding

Viewer in the loop, to check results during process

Input Asset Remeshing

Texture
Resampling

Displacement
Baking

Displacement
Optimization &
Compression &

Meta Data

Base MeshOriginal Mesh

Original
Textures

Displacement
Directions

Triangle Subdiv
Levels

Base Mesh

Displacement Directions

Micromesh Asset

Resampled / Original
Textures

Compressed Micromaps

Displacement
Heightmaps
(optional)

Uncompressed
Micromaps Compressed

Micromaps

Resampled Textures
(tangent-space…)

Triangle Primitive
Flags

Triangle Primitiven Flags

RT API
BLAS

RT API
MICROMAP

Micro-Mesh SDK Operations

RASTER
CUSTOM
SHADERS

Runtime / API Operations

Asset-independent
pre-computed dataViewer

● New .bary file format for micromaps
● New mesh properties in gtlf, usd…

Micro-Mesh SDK Components

micromesh_core

• Core API to work with Micromap data
• Provides most data types also used by other micromesh component libraries
• Utility classes and functions to sanitize values for watertight behavior or perform other typical

operations for micromaps and micromeshes (e.g. tessellation, type conversions etc.)
• micromesh::OpContext class wraps managing some basic multi-threading for bigger operations.

• C-ish API design
• All input & output allocation done by developer
• Storage agnostic, uses pointer & stride interface (micromesh::ArrayInfo)
• Does not define / contain file format related code
• Does not depend on any file formats either

51

Micro-Mesh SDK Components

micromesh_displacement_compression

• Takes 11 bit unorm displacement inputs and compresses them into barycentric displacement
blocks of 512 or 1024 bits.

• Uses provided mesh topology information to preserve a watertight representation
• Exposes a few control parameters to control quality

micromesh_remeshing

• Remeshing / mesh simplification algorithm that targets micromesh representations (favors
isometric triangles)

52

Auxiliar Components

bary_core / bary_utils libraries

• bary_core, C-ish, pointer-based api, defines core of BARY file format definitions and io agnostic
helpers

• bary_utils contains utilities using stl to load/save and work with data. Use as starting point for
integrations

• Apache 2.0 License

53

Toolkit Components

meshops_core

• Utility library that provides an easier to use, higher level C++ interface to the micromesh sdk
• Central data structures are the meshops::MeshView related classes
• Provides CPU implementation for many basic operations

meshops_baker

• Features GPU-based micromap baking of displacement data and texture resampling

meshops_remesher

• GPU-based remeshing

meshops_optimizer

• TBD, optimize and compress displacement micromaps (currently implemented within
micromesh_tool)

54

Micromap Data Structure

55

Micromap & BARY

The micromesh SDK uses pointer & stride interfaces to access data stored elsewhere

micromesh::Micromap can be extracted from a bary file

The following illustrations can therefore be easily applied to the format’s data structures.

These illustrations are similar to the ones from the basic slide-deck, they make use of “bary”
namespace types where applicable. They do not introduce new concepts.

Micromap & BARY

Micromaps

Mesh Triangle Mapping

Value Fetching (uncompressed)

57

bary::ContentView {
 bary::Triangle triangles[];
 ValueType values[];

 ... // some more meta info
};

bary::Triangle {
 U32 valuesOffset; // starting location of values for this triangle
 U16 subdivisonLevel; // resolution of this triangle
 U16 blockFormat; // only relevant for compressed values
};

 // optional mapping buffer allows re-use of map data for different mesh triangles

bary::Triangle micromapTriangle = mappings ? micromap.triangles[mappings [meshTriangleIndex]]

 : meshTriangleIndex;

ValueType* triangleValues = micromap.values[micromapTriangle.valuesOffset];

// index into triangleValues using the spatial storage layout based on microVertex coordinates

ValueType microVertexValue = triangleValues[computeStorageLayoutIndex(microVertex.barycentricIntegerUV)];

Pseudo code for illustrative purposes

Micromap & BARY

Micromaps

Value Fetching (compressed)

58

// compressed or specially packed values operate with byte offsets
Bytes* triangleValues = µmap.valuesCompressedBytes[micromapTriangle.valuesOffset];

// find which block
blockIndex = computeBlockIndex(micromapTriangle.subdivisionLevel, micromapTriangle.blockFormat, microvertex.barycentricIntegerUV);
// BlockTriangle gives us information about the local position of the block within the base triangle, as well as byte offsets
BlockTriangle blockTriangle = computeBlockTriangle(micromapTriangle.subdivisionLevel, micromapTriangle.blockFormat, blockIndex);

ValueType uncompressedBlock[];

decompress(uncompressedBlock, micromapTriangle.subdivisionLevel, micromapTriangle.blockFormat, triangleValues + blockTriangle.byteOffset);

// use blockTriangle.vertexUVs[3] etc. to convert between map and block triangle coordinate space
ValueType microVertexValue = uncompressedBlock[computeBlockUncompressedIndex(blockTriangle, microvertex.barycentricIntegerUV)];

Pseudo code for illustrative purposes

bary::ContentView {
 bary::Triangle triangles[];
 ValueType values[];

 ... // some more meta info
};

bary::Triangle {
 U32 valuesOffset; // starting location of values for this triangle
 U16 subdivisonLevel; // resolution of this triangle
 U16 blockFormat; // only relevant for compressed values
};

1. Mesh per-vertex uv-coordinates
2. UV-space triangle (winding invariant)
3. Texture sampling point/area
4. Filtered texture lookup

Texture Data Flow

3D Mesh File

Texture File

contains

● Grid of texels

UV-projection & filtered texture lookup

Micromap Uncompressed Data

3D Mesh File 1. Mesh per-triangle mapping index
2. Micromesh base triangle info
3. Microvertex or -triangle address

(winding dependent)
4. Unfiltered data fetch

Barycentric File contains many triangles

● Buffer for all values
(per micro-vertex or triangle)

● Buffer for base triangle information
(subdiv level, values start offset)

Direct addressing based on indexing

Micromap Uncompressed Data
3D Mesh File Barycentric File

mesh.triangleFlags buffer
● stores edge decimate flags

mesh.triangle

bary.triangle
(e.g. subdiv 3,
64 microtris)

1 2

3 3 2 2
2 0

A

B

C

Triangle (A,B,C) = 2 (2nd bit set)
2nd edge (B,C) has half-res neighbor
and therefore needs decimation
(only relevant for displacement
water-tightness)

bary.triangle buffer
● subdivision level
● values start byte offset.. ..

bary.values buffer
● supports various data formats
● values within triangle ordered along

spatial curve

61

mesh.triangleMappings buffer
● stores bary triangle index to

instance the same bary values
● if omitted 1:1 mapping

Micromap Compressed Data

Displacement Compression

Compression may cause a split of the
base-triangle into sub-triangles, each
represented by a compressed block

Sub-triangles are ordered through the split logic
and depth-first

A single block compression format is used
within a base-triangle. However, currently three
block formats exist, and so a file in total can use
many formats.

62

Base triangle (e.g. 1024 microtris)
== developer choice

sub-triangles of equal
resolution
== e.g. 256 microtris
== compressed block
 (1024 bits)256

Micromap Compressed Data

3D Mesh File 1. Mesh per-triangle mapping index
2. Micromesh base triangle info
3. Descend split-hierarchy &

decompress appropriate data
(winding dependent)

4. Unfiltered data use

Barycentric File contains many triangles

● Buffer for compressed blocks

● Buffer for base triangle infos
(subdiv level, compression format
and blocks start offset)

512 or
1024 bit

Illustration uses microtriangle values, though displacement is per microvertex

Direct addressing based on indexing

Micromesh Compressed Data
bary.triangle

5

bary.values buffer
● 512 and 1024 bit blocks
● Blocks for a single base triangle follow the “bird

curve” ordering rules

Split larger resolution into block-triangles.
These follow spatial, depth-first curve.

bary::BlockFormatDispC1::
eR11_unorm_lvl3_pack512

256

512e.g.
1024 bit

256256

64

bary.triangle buffer
● subdivision level
● compressed blocks start byte offset
● compression format (implies subdivision level of a block

and how many blocks exist)

128 bytes

256

…

Micromap Mesh Triangle Mapping

65

Triangle Mapping

Most content will use a unique mapping, so that each
mesh.triangle has its own displacement to capture
unique detail.

However, in some occasions it might be useful to re-use
displacement data.

For example to save memory when detail is cloned /
instanced a lot within a bigger mesh (leaves in a tree,
modular pieces creating a super-structure, …)

WARNING: not yet implemented in tools

3D Mesh
Data

Bary Data
Container

mesh.triangle

bary.triangle
(micro-triangles)

↓ mapping

66

UV to Micromap Index Idea

1,1

0,0

Box uvs are degenerate dot, so it
gets unique per-triangle mapping

Sort explicit uvs along
spatial curve within
rectangle, then across
rectangles (for sake of
determinism only)

Mesh to micromap mapping is a per-mesh.triangle index

↯ Ugly to manage manually, editors use ngons…

↯ Dependency on triangle winding

Need something stable and ideally leveraging existing editor features

→ use 3 uv values of triangle as hash key to detect sharing of data or unique index gen.

→ use tri coordinates for deterministic value ordering in bary containers

Two cylinders re-use same uvs, so
they will re-use mapping index

3D Mesh
Data

Bary Data
Container

mesh.triangle

bary.triangle
(micro-triangles)

↓ mapping

67

Additional Links & Information

These slides are part of the NVIDIA Micro-Mesh SDK
https://developer.nvidia.com/rtx/ray-tracing/micro-mesh

Relevant Repositories
https://github.com/NVIDIAGameWorks/Opacity-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-BaryFile

Support Contacts for SDK
opacitymicromap-sdk-support@nvidia.com
DisplacedMicroMesh-SDK-support@nvidia.com

68

https://developer.nvidia.com/rtx/ray-tracing/micro-mesh
https://github.com/NVIDIAGameWorks/Opacity-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-SDK
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-BaryFile
mailto:opacitymicromap-sdk-support@nvidia.com
mailto:DisplacedMicroMesh-SDK-support@nvidia.com

