D?O

INTRODUCTIO

_THE NEXT GENERATION SHADING LANGUAGE
e T s \ \ 1 L A rrey L

NIA BICKFORD, CHRIS HEBERT, AND TRISTAN LORACH
NVIDIA

APH. ALL RIGHTS RESERVED

Hello and welcome to our Slang workshop!

In today’s lab session, Chris Hebert and | are going to show you how to use Slang, the next-generation
shading language.

Since this lab is interactive, we’ll have you write and compile Slang programs on the computers in front of
you, and give you a few coding puzzles to solve.

Through this, you'll learn how Slang can help you write fast, cross-platform shaders, and we’ll even cover
some advanced language features like modules and autodifferentiation.

PRESENTER SETUP:

Silence all notifications
Clear desktop; place vk_slang_editor and other resources in the same locations as on the Docker image.

Launch a text editor. Load in the file containing command lines for the slangc lab. In another tab, load in
the GLSL file for the GLSL -> Slang demo. Switch back to the slangc tab and minimize the editor.

Launch RenderDoc and fill in the path to simple_polygons (compiled for Vulkan 1.3), but don’t capture it
yet. Minimize RenderDoc.

Open Slang Playground in a browser window; minimize the browser window.
Open Visual Studio Code with both of Chris’s notebooks. Minimize VS Code.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

But you might find that if you know a shading language like GLSL or HLSL, you can probably write Slang
already!

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

[shader("compute")]
[numthreads (16, 16, 1)]
void clear(uint2 thread: SV_DispatchThreadID)
{
float4 color = float4(0.1, 0.75, 0.8, 1.0);
texFrame[thread] = color;

Here’s an example of a shader that clears an image, texFrame, to a solid color. Let’s walk through it, line by
line, and you’ll probably recognize the parts.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

First, we define a 2D texture, named texFrame. The “RW” stands for “read” and “write”, and we’ll write RGBA
colors to it using vectors of 4 floats.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

[shader("compute")]
[numthreads (16, 16, 1)]
void clear(uint2 thread: SV_DispatchThreadID)

Then we define the shader entrypoint, which is a function. Above it, we have two attributes.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

—— [shader("compute")]
[numthreads (16, 16, 1)]
void clear(uint2 thread: SV_DispatchThreadID)

This first one says it’s a compute shader,

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

[shader("compute")]
—— [numthreads(16, 16, 1)]

void clear(uint2 thread: SV_DispatchThreadID)

and this one says the compute shader covers the image using threads in 2D blocks of 16x16.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

[shader("compute")]
[numthreads (16, 16, 1)]
» void clear(uint2 thread: SV_DispatchThreadID)

Our shader’s input is the index of the thread in the compute shader dispatch. It’s a vector of 2 unsigned
integers, x and y. That’s the pixel we’re writing to.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

[shader("compute")]
[numthreads (16, 16, 1)]
void clear(uint2 thread: SV_DispatchThreadID)

{
— float4 color = float4(e.1, ©.75, 0.8, 1.90);

Then we define a variable called “color’, which is a vector of 4 floats. We set it to an RGBA color.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

[shader("compute")]
[numthreads (16, 16, 1)]
void clear(uint2 thread: SV_DispatchThreadID)
{

float4 color = float4(e.1, ©.75, 0.8, 1.0);
e texFrame[thread] = color;

And finally, we write it into the texture at the given pixel.

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

—— [shader("compute")]
[numthreads (16, 16, 1)]
void clear(uint2 thread: SV_DispatchThreadID)
{
float4 color = float4(e.1, ©.75, 0.8, 1.0);
texFrame[thread] = color;

If you’ve programmed shaders before, probably the only new thing here is this [shader(“compute”)]
attribute.

This allows you to define multiple shaders in a single file. The rest probably looks pretty familiar!

IF YOU KNOW HLSL, YOU CAN WRITE SLANG

RWTexture2D<float4> texFrame;

[shader("compute")]
[numthreads (16, 16, 1)]
void clear(uint2 thread: SV_DispatchThreadID)
{
float4 color = float4(0.1, 0.75, 0.8, 1.0);
texFrame[thread] = color;

In exchange...

In exchange for compiling this with Slang, you get a /ot of features.

CROSS-PLATFORM

GPRrR. — QYgian.

Microsoft*

HLSL ——DirectX

GLSL —— (DpenGL.

Slang msL ——{NN

HLSL 2020 6 Slan 9 . wesL —'MU
GLSL (with small
modifications) PyTorch
CUDA
OptiX
C++ (CPU)

Slang lets you compile your code for Vulkan, DirectX, OpenGL, Apple Metal, WebGPU, PyTorch, CUDA, OptiX, and even C++ code so you can run it on the
CPU.

And it lets you use the full capabilities of each target — for instance, WebGPU doesn’t support ray tracing, but Slang will let you use it when you’re targeting
Vulkan, DirectX, or Metal.

MORE LANGUAGE FEATURES

+ Shader reflection + Helpful type features:
Pointers Bindless ParameterBlock<T>
Properties Operators Optional<T>

- Auto-differentiation Tuples Lambdas and more

» 15+ more years of wisdom in shader language
* Helps structure large codebases

design
- Modules
- Interfaces
- Generics, like templates * Runtime performance can meet or beat target-
- Specialization specific code

And it gives you advanced language features to solve the needs of today’s graphics developers.
It has shader reflection, for getting info about shaders.
Auto-differentiation, which Chris will talk about.

It helps you structure large codebases using modules, interfaces, and generics, as well as specialization to
help with compile times;

types like pointers and parameter buffers that make shader I/O easier,
properties for structs, which even C++ doesn’t have, and many more type features to help you write shaders.

In sum, it’s a shader language designed with 15+ more years of wisdom in how to create languages for
computer graphics,

and its run-time shader performance can meet or beat handwritten code, even when using advanced
features like generics.

SLANG IN USE

+ Open source
» Open governance

* Used in production:

'#2 AUTODESK

Aurora

NVIDIA
OMNIVERSE

Slang is also open-source, and an open-governance project under the Khronos Group.

And it’s used in production in major engines. Valve ported their Source 2 engine to it. Autodesk Aurora uses
Slang to render on many different platforms. And Slang powers NVIDIA Omniverse and Portal with RTX.

AGENDA

7 vk shng. it | 190365 90FPS/ 11.133ms

° La ng uage BaSiCS ;Flllo;:l)l(vlmes Editor Shader Parameters View Help.

167 int2 intP = 1nt2((.5 * nde + .5) *
168 SF(intP.x > 0 88 intP.y > © 88 intP

» Using slangc ke e ———
+ Porting GLSL oy
¢ Shader I/O R e i

0 (
' Feturn 8.5 + 0.5 * sin(2.f * float.getPi()
82 * mad(c, paletteScale, paletteBias)):

+ Debugging and Tools

« Structs, Modules, and Interfaces =l

+ SlangPy N

« Autodifferentiation s

5 Diagnostics X
Shaders compiled successfully.

In today’s session, we’ll get you coding shaders as quickly as possible with an interactive tool.

Then we'll drop down to the command line to show you how to use the slangc compiler directly.

If you’re approaching Slang from GLSL, we'll talk about what’s involved in porting your code to Slang.
Passing data to and from shaders is an important topic, and one that Slang really innovates in.

Then we’ll go over debuggers and other tools and how they work with Slang.

We'll get into some advanced language features in the structs and modules section.

Then Chris will talk about SlangPy, which is really interesting for researchers, and finally one of Slang’s
standout features —its ability to automatically generate forwards and backwards derivatives of code.

Let’s get started!

Lab:
Language Basics

Switch to desktop + notes; next slide will be “Experiment” with Mandelbrot

LAB: GETTING STARTED

+ This one’s intended to get participants coding with Slang as soon as we can. (The previous intro/motivation
clocks in at about 5 minutes of presentation.)

» Have them open up vk_slang_editor; show where to find it on the filesystem.

» They'll see this code:

We've loaded a dev environment onto each of the 60 systems in this room. Open up the file explorer by
clicking on — and then double-click on vk_slang_editor to open it. You should see a gradient, like this:

LAB: GETTING STARTED

7k slong_editor| 970957 14595 6916ms o x

File Examples Editor Shader Parameters View Help

+ Clear it to a solid color: 7 Code

Compile (F3)
¥ Diagnostics X
Shaders compiled successfully.

Let’s start with something simple. Select the content of the main function, in between the curly braces, and
delete it. Let’s set all pixels of texFrame to a solid color. Etc.

Then press F3 or click on the “Compile” button to compile. You should get a red screen, like this.

LAB: GETTING STARTED

7 vk slang_editor | 8544841 142 FPS /7.040ms.

- Draw a gradient: File Examples Editor Shader Parameters View Help

¥ Code X

Compile (F3)
¥ Diagnostics X
Shaders compiled successfully.

Now let’s draw a gradient. For this, we’ll take the x component of the thread index, which ranges from 0 to
the screen width minus 1, and divide it by the screen width to get a value between 0 and 1, Put it in the red
channel, like this:

(Make the mistake here to show diagnostics)

LAB: GETTING STARTED

7 vk slang_edior | 834xE41 | 14DFPS/ 7.153ms

° |ntenti0na”y make a mistake tO File Examples Editor Shader Parameters View Help

¥ Code X

show diagnostics: ‘

iTin

main

Compile (F3)
 Diagnostics X

xpected an expression of type 'float', got

float2 uv = float(thread) / iResolution;

(error code 36019)
Error, line 9:

xpected a function, got 'typeof(float)'
float2 uv = float(thread) / iResolution;

LAB: GETTING STARTED

7 vk sang editor | 8346641 1425/ 7.083ms o x

° 2D gradient and ﬂoat4(ﬂoat2’ File Examples Editor Shader Parameters View Help

¥ Code X

float, float) constructor:

Compile (F3)
¥ Diagnostics X

Shaders compiled successfully.

Now let’s extend this to 2 dimensions. Let’s create a float2 variable called uv and set it to the thread divided
by the resolution.

LAB: GETTING STARTED

7 vk slng.ditor | 894543 14 78S 6.964ms
° Load Mandelbrot Set example _Fue\ Examples Editor Shader Parameters View Help
v Ciisiggraph2025 P 1 - Mandelbrot
1 Ba >3-

Renders a Mandelbrot set. Try
modifying this!

Compile (F3)

¥ Diagnostics X

Shaders compiled successfully.

Now let’s skip ahead a bit to show off some more standard features. In the menu bar, click on Examples >
ISiggraph2025 > 1 — Mandelbrot.

Point out:

* Compile-time constant (static const)
* inout parameter (copy in, copy out)
* Forloop

* If statement

* Vector math

* Color palette

LAB: GETTING STARTED

890843 | 144 FPS /6556ms

° Use uni.Fo rm .Float iTime to : Editor Shader Parameters View Help

cycle colors:

(We are about to go back to the
slides.)

Compile (F3)
¥ Diagnostics X

Shaders compiled successfully.

Up above, you can see this shader defines several shader parameters with the ‘uniform™ qualifier. One of
these is iTime, which is a float and is the time in seconds since the shader started running. Let’s use that to
cycle the color palette.

EXPERIMENT!

* Modify the shader :
- Can you use iTime in other places?
- Can you use iMouse?

- Add uniform float3 eye; to the top and use it in your
shader. Then click and drag on the viewport. What
happens?

- Try to be fearless with your changes. It will autosave.

» Stuck?
- Reload Examples > _SIGGRAPH2025 > Mandelbrot

Try this on line 9!

const float2 c = iMouse.xy/iResolution;

Now, Id like you to modify the shader on your own! The goal of this exercise is to get you practice with Slang
by making changes to the code, compiling, and seeing the result. So I'd like you to try breaking the shader,
changing the control flow, modifying the equations and experimentally seeing what you get.

I've put a few ideas up here. Try using the iTime or iMouse uniforms, or if you're feeling adventurous, try this
third idea here.

Try to be fearless with your changes and break things; it will autosave next to the executable before every
compile, so you won’t lose anything.

And if things aren’t compiling and you’re stuck, you can re-load the example. Or ask one of the TAs we have
to help out.

I'll return in about 5 minutes to introduce the next section.

@ SIGGRAPH 2025

Using slangc

OVERVIEW

+ vk_slang_editor uses the Slang shared library to compile shaders for Vulkan

Slang code

libslang.so /
slang.dll

SPIR-V

+ Let’s compile to different targets using the Slang command-line, slangc

My goal here is to show you how to work with the bare metal, in a sense. The tool you’ve been using doesn’t
do much* beyond taking your shader, passing it to the Slang library to compile it to Vulkan’s SPIR-V
intermediate representation, and then rendering with it.

Now let’s compile to targets other than Vulkan by using the Slang command line, slangc.

*At least on the rendering side; readers who have seen the source code may note that it also works with
reflection info, discussed in the next section, and spends quite a bit of code implementing an IDE.

Lab:
Compiling

with slangc

Switch to desktop + notes; next slide will be multiple inputs/outputs for Slang

LAB: SLANGC

Switch to desktop

» In vk_slang_editor, save your shader in the same folder as vk_slang_editor

- Oryou can use example.slang, which I've created for you
» Open a command line in that folder
» Type 1s to make sure you're in the right one

* (Screenshots show Windows but will be switched to Linux)

B CiWindowiSystem3ncmd.ene

examples

RendecDoc 135,64

SLANGC LAB: QUICK START

* Run slangc -v
- Should get 2025.13.1

« Let's compile to GLSL!

- Run slangc example.slang -target glsl
- Point out a few things
« #version 450, soit's GLSL
« uniforms and buffers are marked with a matrix layout; we’ll talk about that later
+ Line directives
* RWTexture2D<float4> became layout(rgba32f) uniform image2D
« Slang automatically assigned bindings
« Global shader parameters were moved into a constant buffer
+ stdi4e layout

« Slang transforms the code as a compiler would, but tries to keep the output readable.

SLANGC LAB: GETTING HELP

* Runslangc -h
- That's a lot of text! Direct it to a file using slangc -h > help.txt

- Openitin a text editor

+ Direct attention to the options for -target.

SLANGC LAB: OTHER TARGETS

* Run slangc example.slang -target spirv
- Output to a file using -o
- Open in a hex editor

+ Just to show we can do other targets:
- Run slangc example.slang -target wgsl

- Run slangc example.slang -target metal

Bindings now declared as function parameters

HOW DOES SLANG WORK?

example.slang example.hlsl example.glsl
SlangIR
HLSL
; : dxcompiler
SPIR-V GLSL MSL WGSL C++ DXBC DXIL

As you might have noticed, some of the outputs are very different than their inputs. Some studios use

preprocessor-based systems to support multiple platforms, but for things like SPIR-V or WGSL, you really do
need a full compiler with its parsing and codegen systems.\

As a compiler, Slang works by taking the input and transforming to an intermediate representation called
SlanglIR. All its optimization and other passes operate on that IR, and then it outputs code for each target

below. For some targets like DXIL, it’ll output HLSL and then call a downstream compiler like
DirectXShaderCompiler.

TARGETS: GLSL/SPIR-V

- Slang renames the entrypoint to “main”

» GLSL: If you have multiple entrypoints, select one using -entry <name>

// Was vs()

" " s
[shader("vertex")] _entry b void main(..){ .. }

VertexOutput vs(..){ .. }

// Was fs()
void main(..){ .. }

[shader("fragment")]
float4 fs(.){ .. }

-e —
"tr-y fs =

» SPIR-V: Can keep entrypoint names using -fvk-use-entrypoint-name

[shader("vertex")]

VertexOutput vs(.. -
P) } R OpEntryPoint Vertex %vs "vs"

OpEntryPoint F t %fs "fs" ..
[shader("fragment")] pEntryFoint Fragmen > TS

floatd fs(.){ .. }

Now let’s talk about the specifics of some targets you may have seen.

Earlier in our GLSL example, Slang renamed the entrypoint to “main”. This is because OpenGL only allows you
to have one entrypoint, which must be named “main”, since it doesn’t have ways to mark functions as
entrypoints.

So, if a Slang file contains multiple entrypoints, you have to select one at a time using the “-entry” argument.

Vulkan and SPIR-V allow you to have multiple entrypoints, though. So, for that, | recommend using the —fvk-
use-entrypoint-name argument to keep the original entrypoint names in the output.

Porting GLSL

Slang also has features for taking GLSL-like code as input. Suppose you’re a developer with, say, tens of
thousands of lines of GLSL code, and you’d like to make use of some of Slang’s features like reflection.

ALMOST COMPLETELY WORKS OUT OF THE

» Make sure your shader has a #version directive
= Mark your entrypoints with [shader] attributes

» Domain, hull, and mesh shader attributes must be ported to HLSL
equivalents, e.g.

- layout(vertices = 3) out; — [outputcontrolpoints(3)]

- gl TessLevelOuter — SV_TessFactor

« That'’s all!

* Docs: https://docs.shader-slang.org/en/latest/coming-from-glsl.html

© 2025 SIGGRAPH. ALL RIGHTS RESERVED.

The good news is, Slang can compile GLSL shaders with almost no modification! You only have to do a few
small things.

First off, make sure your shader uses the GLSL #version directive somewhere. This tells Slang to load in its
GLSL compatibility module.

Then, you need to mark your entrypoints with [shader] attributes to tell Slang which functions are
entrypoints for which shader types.

Most attributes are handled automatically, but if you’re porting a domain, hull, or mesh shader, which is less
common, you have to translate those specific GLSL attributes to HLSL equivalents. It’s usually straightforward.

And then you’re done! That’s all you have to do.

Demo:
Porting GLSL

Here I'll show this process in action by porting a shader live. [...]

(&

» Goal is to prove that Slang really can do what was just described; to be done on presenter’s screen.
» Open a GLSL shader in vk_slang_editor
» Add shader attributes to entrypoints

It compiles!

Here I'll show this process in action by porting a shader live. [...]

MATRIX LAYOUTS IN GLSL VS. HLSL

0| 4] 8|12 0 o123
115 |9]13 1 4 (5|6 |7

2 [6 |10 (14 * 2 = mul(i I Tis|9|10]|M1)
3 (17 |11 |15 3 12 (13 | 14 | 15
col_major row_major

Slang translates foryou: M * v. — mul(v, M)

One thing you may know about is that GLSL and HLSL typically have opposite matrix layouts and conventions
for the order in which you multiply vectors and matrices.

In GLSL, matrices are column-major, and matrices usually appear on the left.
But in HLSL, matrices are row-major, and matrices usually appear on the right.

(click) The good news is that Slang’s GLSL compatibility layer automatically handles this transposition for you:
it’ll translate GLSL M * v to HLSL mul(v, M).

RECOMMENDATION

» Use row-major layout (-matrix-layout-row-major)
- No change needed to your GLSL code
Don’t spend time flipping the order or transposing your matrices

- Using GLM or DirectXMath? memcpy

Natural to view in debugger

Slightly better access pattern

» Whichever layout you choose, always specify it in the compiler flags
- Slang’s biggest pitfall: slangc defaults to column-major, libslang defaults to row-major
- Slangc expected to default to row-major in the future

- SPIR-V annotation will appear opposite what you specify; Slang row-major/SPIR-V ColMajor has the better access pattern.

This can be a bit of a braintwister. My team at work was involved in porting several codebases from GLSL to
Slang and went back and forth on different approaches.

Based on that, we have a recommendation: specify row-major layout, and then don’t mess with your code.

Because Slang’s GLSL compatibility layer swaps the order for you, row-major CPU matrices, will show up as
row-major HLSL matrices, and as column-major GLSL matrices. This is correct in both APIs.

So, if your GLSL matrix math was working before, it’ll work now.

If you’re using the GLM or DirectXMath libraries, you can memcpy the matrices to memory. No need for
transposition.

And row-major CPU matrices are natural to view in the debugger, and have slightly better access patterns for
the GPU.

So basically, specify row-major, and then don’t touch your code.

The second most important thing is to always specify the matrix layout in the compiler flags. Slang’s biggest
pitfall at the moment in my opinion is that the library and the executable compilers default to different
layouts. The Slang team is hoping to make these both default to row-major in the future, but for now it’s best
to always specify it.

(Finally, earlier when we compiled to GLSL, you may have noticed that GLSL listed a row-major attribute, even
though the command-line defaulted to column-major. This is because of that swap | mentioned in the last
slide: the GLSL and SPIR-V layout will appear as the opposite of the Slang layout. Don’t worry though: CPU
row-major / SPIR-V ColMajor is still the better access pattern.)

(This slide assumes you’re using scalar layout or are not copying to Slang matrices with at least 2 rows and 3
elements per row; in that case, for memcpy to work the padding has to match.)

Shader |I/O

This connects to a larger topic: shader input and output.

OVERVIEW

00 00 80 3f
00 00 80 bf
00 00 00 00
00 00 80 3f
Rasterization
Sampler2D<float4> texColor; ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
>
[shader("fragment")] ‘ ‘ ‘ ‘ ‘
FsOutput fs(FsInput i){ .. }
l Descriptors
Color/Depth/Stencil Attachments

© 2025 SIGGRAPH. ALL RIGHTS RESERVED.

Most shaders operate on data in some way. E.g. a fragment shader might load material properties from one
buffer, sample textures, and finally output a color to a framebuffer.

Typically, the way this works is resources like buffers and textures exist in video RAM somewhere. An app
writes descriptors, which are like pointers with some extra info, into descriptor sets or descriptor heaps, and
then binds these descriptor sets or heaps to the rendering pipeline.

The part we’ll be talking about today is how we can write Slang code that accesses resources.

TEXTURES

Texture2D<float4> tex; float4 rgba = tex.lLoad(uint3(x, y, mip));
RWTexture2D<float> weights; weights[uint2(x, y)] = 1.0;
TexturelD, Texture3D, TextureCube

Texture2DArray, Texture2DMSArray,

FeedbackTexture2D, ..
SamplerState sampler; float4 rgba = tex.Sample(sampler, uv);
Sampler2D<float4> combined; float4 rgba = combined.Sample(uv);

There are many kinds of resources, and each one has a type.

For instance, here we define a Texture2D called tex. That will bind to a 2D texture object. (click) Calling
Texture2D.Load loads the value of a single texel.

Texture2D objects are read-only. To read and write to them, we need (click) an RWTexture2D, like we saw in
the intro example.

(click) You can also have 1D textures, 3D textures, and cubemap textures —

(click) as well as more complex texture types like arrays, multisampled textures, feedback textures, and
more.

Now, textures by themselves only give us point filtering. In order to get linear filtering, we need a (click)
SamplerState object. That will bind to a descriptor saying what kind of filtering to use and how to interpolate
between mips, as well as what to do if we sample outside the texture.

In Slang, we can write code like this more concisely by using the new (click) Sampler2D type, which is a
Texture2D plus a SamplerState. To sample it, we just call Sample. In Vulkan, this maps to a combined texture
sampler, which is a single descriptor, while in DirectX, this maps to a texture and a sampler.

STORAGE BUFFERS

* ByteAddressBuffer and RWByteAddressBuffer are raw buffers of bytes

- Load/store at multiples of 4 bytes: uint v = byteAddressBuffer.Load(word);

¢ StructuredBuffer<T> is a buffer of T:

struct Material {
uint brdfType;
float roughness;

}

StructuredBuffer<Material> materials;

Material m = materials[5];

You can also have linear buffers of data. ByteAddressBuffer is a raw buffer of bytes. Like RWTexture2D,
there’s an RWByteAddressBuffer type that allows both reading and writing.

(click) A StructuredBuffer is an array of a given type. For instance, here we define a material struct, and then
a buffer of materials.

CONSTANT BUFFERS

struct DrawInfo {
* ConstantBuffer<T> float4x4 transform;

float iTime;
- Read-only, usually up for 65,536 bytes }

- Good when all threads read the same value; depends on HW
ConstantBuffer<DrawInfo> info;

posOut = mul(posIn, info.transform);

i) uniform float4x4 transform;
+ Slang places global uniforms in a global constant buffer uniform float iTime;

Slang also has constant buffers, for read-only data limited to a maximum of usually 65,536 bytes. Constant
buffers can be faster than storage buffers, especially when all threads in a wave read the same element at the
same time, but it depends on how hardware implements them.

In our earlier Mandelbrot sample, when you were reading uniform global constants like iTime, you were
actually reading from a constant buffer! Slang places global uniforms like these in a global constant buffer for
you.

PUSH / ROOT CONSTANTS

« Push constants / root constants
- Faster, smaller (128-256 bytes)

- Best for data changing every draw call

+ Slang makes uniform entrypoint parameters push constants (or ray tracing shader records)

shader("vertex")]
VsOutput vsMain(..,
uniform DrawInfo info)

{
.

[[vk::push_constant]]
ConstantBuffer<DrawInfo> info;

Vulkan push constants, also known as root constants in DirectX, are even better than constant buffers when
you have a small amount of data that changes every call. They’re limited to 128-256 bytes usually, but they’re
good for things like IDs and model transform matrices.

In HLSL, the syntax for push constants is kind of strange; you define a constant buffer, and then when you’re
creating your root signature you have to say “actually, this constant buffer isn’t a constant buffer, it’s a root
constant”. If you're targeting SPIR-V, (click) you have to add this vk::push_constant attribute.

(click)
Slang supports that, but it also provides cleaner syntax. If you mark an entrypoint parameter as uniform, then

in SPIR-V it’ll translate to a push constant, and for DirectX it’ll show up as a root constant in reflection info,
which we’ll talk about in a few slides.

PARAMETER BLOCKS HELP ORGANIZE

struct EnvironmentUniforms

{

float3 sunDir;
float3 sunIntensity;

float3 sunDir;
float3 sunIntensity;
-~ float4x4 envShadowMats[4];

Texture2D envShadowLayers[4]; s

float4x4 envShadowMats[4]; —

SamplerComparisonState envSampler; ConstantBuffer<EnvironmentUniforms>
envUniforms;

SamplerCube envMap;

\\\\\\\\\\\\\\\\\ Texture2D envShadowLayers[4];

SamplerComparisonState envSampler;
SamplerCube envMap;

/

Graphics techniques often require multiple uniforms and resources. On the left we have the fields for a fairly
typical environment technique. We’ve got a sun direction and color. Then the fields for a cascaded sun
shadow map: four texture layers, the transformation matrix for each layer, and a sampler that does
comparisons for percentage-closer filtering. And finally, a cubemap for the skydome.

In traditional shading languages, we can’t group these together. Because you can’t have textures inside
constant buffers, we’re forced to separate uniforms into a struct and put them into a constant buffer.
Because of this, these might be dozens of lines apart, or even in different files. We have to make sure their
variable names don’t conflict with other things in our codebase, and it gets messy.

Wouldn’t it be cleaner if these were in a single struct?

Don’t these want to be in a struct together?

PARAMETER BLOCKS HELP ORGANIZE

struct Environment

{

float3 sunDir;

float3 sunDir;
float3 sunIntensity;

float3 sunIntensity;

Texture2D envShadowLayers[4]; » Texture2D shadowLayers[4];
float4x4 envShadowMats[4]; » float4x4 shadowMats[4];
SamplerComparisonState envSampler; » SamplerComparisonState sampler;

SamplerCube envMap; » SamplerCube envMap;

1

ParameterBlock<Environment> env;

You can do this with Slang’s ParameterBlock type. Now we can place all of our environment parametersin a
struct, and place that in a ParameterBlock. When compiled, Slang will do the work of separating these into
descriptors and constant buffers; while we’re writing it, they’re nicely visually grouped together.

We can even treat ParameterBlocks like other types — for instance, we can place them in structs or even nest
them.

EXPLICIT BINDINGS

» HLSL-style:

Texture2D color : register(t3, space@);

» HLSL-style for Vulkan:

[[vk::binding(3, ©)]] Texture2D color;

* GLSL-style:

layout(binding=3, set=0) Texture2D color;

+ Slang supports all 3!

So far, we’ve been talking about resource types.

The second part of shader I/0 is defining where the shader expects the descriptor for each resource to be. If
you want to explicitly specify this, there are 3 main ways.

DirectX uses different indices for textures, constant buffers, larger buffers (UAVs), and samplers. So in HLSL
style, we can say that the “color” texture is bound to texture index 3 in space 0.

Vulkan is a bit simpler; it uses one index for the binding and one for the set. HLSL and GLSL have different
ways of specifying this.

The good news is you can choose whichever one of these is your favorite; Slang supports all 3!

TOO MANY BINDINGS?

[[vk:
[[vk:
[[vk:
[[vk:

:binding(e,®
:binding(2,0
:binding(4,0
:binding(6,0

)11
)11
)11
)11

Texture2D texture®; [[vk
Texture2D texture2; [[vk
Texture2D texture4; [[vk
StructuredBuffer<Vertex>

::binding(1,0)]] Texture2D texturel;
::binding(3,0)]] Texture2D texture3;
::binding(5,0)]] Texture2D texture5;
mesh@; [[vk::binding(7,0)]] StructuredBuffer<Vertex> meshl; ..

* Slow

» Makes some graphics techniques infeasible

When a shader needs a *lot* of resources — e.g. a ray tracing shader that needs access to every vertex buffer
in the entire scene — using a separate binding for every resource is impossible. Or it can just be a lot of
bindings to set, which slows things down.

BINDLESS

« Solution: Bind/ess!

- Point to a buffer of descriptors in memory ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

wpe"
NeW

[[vk::binding(@,0)]] StructuredBuffer<DescriptorHandle<Texture2D>> textures;
[[vk::binding(1,0)]] StructuredBuffer<DescriptorHandle<StructuredBuffer<Vertex>>> vertexBuffers;

- Use it like this:

float4 foo(DescriptorHandle<Texture2D> handle, SamplerState state, float2 uv) {
return nonuniform(handle).Sample(state, uv);

¥

The solution to this is to bind less! Instead of having a binding for each resource, we have an arbitrarily-sized
buffer of descriptors somewhere in memory, and then we point to that and say “go read from resource
number 5” for example.

Previously, one problem was that Vulkan and DirectX phrase bindless in different ways. And they use raw
indices, which loses type safety.

Slang introduces the DescriptorHandle type, which converts to whichever bindless representation your API
uses. So in the code here, we say that binding 0 in set 0 is a buffer of descriptor handles for Texture2D
objects. And we do a similar thing for vertex buffers.

You can use DescriptorHandles like the objects they point to. The only thing you need to make sure of is — if
you can have different threads in the same wave accessing different resources, then you need to tell Slang by
wrapping the handle in the nonuniform qualifier just before you use it.

POINTERS

« SPIR-V, C++, and CUDA have buffer addresses

+ Slang lets you use pointers to global memory for these targets:

struct Node

{

float3* vertices;
Node* next;

¥

ConstantBuffer<Node> rootNode;

float3 pos = rootNode.next->next->next.vertices[10];

Finally, if you're compiling to targets like SPIR-V, C++, and CUDA that support them, Slang will let you use
pointers! This makes writing some data structures a /ot easier. So for instance, here we’re defining a linked
list, just as easily as if we were writing CPU code, except this can run on the GPU.

MATCHING BINDING INFO

shader.slang app.cpp
std::vector<VkDescriptorSetLayoutBinding>
bindings =
[[vk::binding(1)]] Sampler2D color; I?
[[vk::binding(3)]] Texture3D volume; H {.binding = 1,
¢ > .descriptorType =
[[vk::binding(4)1] VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER
StructuredBuffer<Vertex> vertices; P
s

Finally, the app and the shader have to agree on the binding indices and types somehow, so that the app
knows how to set up rendering pipelines and update uniform buffers correctly. This is a fairly common
problem.

MATCHING BINDING INFO

shader.slang app.cpp
std::vector<VkDescriptorSetLayoutBinding>
[[vk::binding (BINDING_COLOR)]] bindings =
Sampler2D color; {
[[vk::binding (BINDING_VOLUME)]] {.binding = BINDING_COLOR,
Texture3D volume; .descriptorType =
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER
[[vk::binding (BINDING_VERTICES)]] 5 ks
StructuredBuffer<Vertex> vertices; -
s

common.h

#tdefine BINDING_COLOR 1
#define BINDING_VOLUME 3
#define BINDING_VERTICES 4

struct Vertex

{
float3 pos; float padding;
float2 uv;

I

The usual solution is to add a third file that defines all the binding indices and constant buffer structures, and
then to include this in both the shader and the app. Since it’s included by both Slang and C++ code in this
case, it must be a polyglot: readable by both languages. And if you’re familiar with layout rules in GLSL, you
might notice that we have to be really careful about the alignment on the float2 field after this float3 field —
or that we have to use scalar layouts, which are my preferred solution. That said, this tends to work pretty
well.

REFLECTION

shader.slang app.cpp

Sampler2D color;
Texture3D volume; std::vector<VkDescriptorSetLayoutBinding>
bindings = generateBindings(layout);

StructuredBuffer<Vertex> vertices;

shader.spv slang: :ProgramLayout*

With Slang, another option is to use shader reflection! When you compile a shader with Slang, you can also
get a slang::ProgramLayout* object that tells you every shader parameter’s type, contents, and binding. Then
you can use that to automatically generate your bindings on the app side — and on the shader side, your
parameters look a lot simpler, since you don’t have to explicitly specify binding indices any more.

REFLECTION

+ Reflection information includes:
- Resource bindings + info
- Struct layouts + info
- Entrypoints + info

- Much more
+ This is how vk_slang_editor works!
+ Slang Playground uses custom attributes
+ Uniform buffer updates slower unless you JIT

+ See Theresa Foley’s talk, Getting Started with Slang: Reflections API

Reflection information includes resource types and binding indices, but it also includes a lot more. You can
get how structs are laid out in memory and the names of each of their fields, each of the entrypoints and
their attributes, and much more.

In fact, this is how the editor you’ve been using works! Whenever you compile a shader, it looks at the
reflection info to figure out how to set up its pipelines and how to update its constant buffers. For instance, if
you added a parameter named “eye” in the previous exercise, vk_slang_editor would look at the shader
inputs, see that there was one named “eye”, and would go “ah, that’s asking for the camera position; | should
add a camera widget and start updating that uniform with the camera position”.

Slang Playground, which is an online Slang editor, uses a similar solution except it uses custom attributes
instead of looking at variable names.

The one downside of reflection is that if you're using it to update uniform buffers, the additional lookups
required will probably make it slower than the common header solution, unless you generate assembly on the

fly.

Reflection is a big topic in and of itself; if you’re interested in learning more, | recommend checking out Tess
Foley’s online talk about it.

LAB: SHADER I/O

+ Can you figure out the missing types in
Examples > ISIGGRAPH2025 > 2 — Shader 10?

* Use the comments as your guide

« Stuck?

- Ask one of the TAs or the people around you! We're here
to help.

- The main keywords you'll need are in the box on the right —

We've talked about:

Texture2D)
:}—conﬂwned:SamplerZD

SamplerState

ByteAddressBuffer

StructuredBuffer<T>

uniform (shader parameter)

ConstantBuffer<T>

ParameterBlock<T>

DescriptorHandle<T>

ANSWER

kNumParticles;

<Particle> particl

> tileParticlelds;

texFrame;

texPuzzleMedian;

By the way, | mentioned earlier that the editor you’re using uses reflection to set up all its shader bindings.

It has some features to show what’s going on there. If you open View > Reflection, you can see some of the
reflection info Slang generates in a JSON view. Here’s the global constant buffer for instance, and here’s the
kNumParticles field within it.

Vk_slang_editor uses this info to also create GUI controls for each of the parameters. If you click on “Shader
Parameters” in the menu bar, you can see each of the resources. Here | can control the value of
kNumParticles.

Tools
& Debugging

Now, let’s talk about tooling. Slang has a wide amount of support in IDEs and debuggers.

WRITING SLANG

+ Slang extensions for Visual Studio and Visual Studio Code

Visual Studio > Tools > Slang Language Extension for Visual Studio

<

Slang Language Extension for Visual Studio

Slang Development Team % shader-slang.com

Visual Studio Code > Programming Languages > Slang

Provides intellisense support for Slang shader files.

Slang

t] Slang Development Team #% shader-slang.com

Extension for the Slang Shading Language

Install Trouble Installing? 2

© 2025 SIGGRAPH. ALL RIGHTS RESERVED.

If you're using Visual Studio or Visual Studio Code, Slang provides official language extensions.

WRITING SLANG

- Any editor that supports the Language Server Protocol can use slangd

les Editor Shader Parameters View Help

Co:50 B+ O

Minimize

s\Showcase\Fractal Flame,

rticle_depth) -> float2

® yee

Compile (F3)
¥ Diagnostics X

Shaders compiled successfully.

QtCreator This lab’s editor

In addition, any editor that supports the Language Server Protocol, which powers things like syntax
highlighting, Intellisense, jump to function, diagnostics, and much more for languages such as Python and
Rust, can also use Slang’s language server, slangd.

For instance, this is how autocompletion and function definitions work in the editor you’ve been using in this
lab!

(Slangd and other language servers for languages like Python and Rust are just programs that run locally
where the editor can pipe in source code and make requests, and the program responds with things like “here
are the available autocompletions”.)

DEBUGGING SHADERS

X simple_polygons_2025.0718_00.37.14 frame553.rdc - RenderDoc v1.39 I x:|

e o 2 4 6 s m o1 6 1B » 2 23 % B[P n 3 B 0 2w % s 0 0 % % @ 2 61 & 6@
e I 1 @ inGs

0 ygors:ionk:
Usage for G-Color0: Reads (&), Wites (A, ResdWirte () Barrers (A), and Cears (&)
AA A A A A AAAAA A

VkCndOramindexed(s220, 1)
2 CdDrawindexed(36, 1)
CndDramindexed(12, 1)

color | float3 0. 1443, 0.59468, 0.93106
> output
float3 |0.50848, 0.37661, 0.77435

(1 foats .00, 100, 0.00,0.00 |_68.transfo dota[1]
(2 foats 0.00,0.00, 1.00,0.00 |_68.ransfo dota(2]
13| foat# 0.00,0.00, 0.00, 100 |_68.transfo.datal3]
coor | foats 0.09333, 0.54567,0... | _68.color 5

g

@ ~ & simple_polygons_2025.07.18_00.37.14,frame5539.rdc loaded. No problems detected.

RenderDoc Nsight Graphics

Debugging lab at SIGGRAPH: NVIDIA Nsight Graphics in Action, Wednesday, 9-10:30 AM, Room 116-117

Debugging Slang shaders also works like debugging other shading languages, so you get a pretty natural
experience.

Demo:
Shader Debugging

Switch to desktop + notes; next slide will be “Experiment” with Mandelbrot

DEMO: SHADER DEBUGGING

* Open Martin-Karl’s simple_raster sample in RenderDoc
* Show draw calls

+ Show how to view vertex data

« Show how to view pass constants

+ Show “Debug this Vertex’; point out how variable names appear.

Here’s an example!

DEBUG INFO

+ Embed shader source code using -g1

%1 = OpString

» Forreleases:
- Remove debug info using -1ine-directive-mode none
- Or split line info to a source map using -1ine-directive-mode source-map -o out.zip

- SPIR-V supports -separate-debug-info

To make your app easier to debug, the most important thing you can do is to specify —g1 on the Slang
command line.

This will make formats like SPIR-V embed a copy of your shader code — so even if the debugger doesn’t have
shader search paths set up, it can still load the shader source.

Slang will automatically generate line info, mapping from output instructions to input lines, by default.
(click).

When releasing your app, you might want to make your shaders harder to debug. Slang gives you a few
options here.

You can remove debug info by setting —line-directive-mode to none.

Or you can split off the debug info into a source map, or into a separate SPIR-V file.

Structs, Modules,
and Interfaces

In this section, we’ll talk about some of Slang’s advanced language features.

STRUCTS

struct SdfInfo

{
float m_t;

uint* m_data;

}

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

Structs are all about organizing variables. For most of my examples, I'll use a struct that looks like this; it
contains a float, and a pointer to some unsigned integer data in memory.

The first thing you might notice is there’s no semicolon after this struct! This is purely a convenience feature;
you don’t have to have them in Slang.

STRUCTS

struct SdfInfo
{
float m_t;
uint* m_data;

}

SdfInfo s;

s.m_t INFINITY;
s.m_data = nullptr;

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

Usually when you have a type like this, you always want to initialize it with some default values after you

create it. HLSL and GLSL don’t have constructors, so usually you have to initialize fields explicitly, or do some
other workaround.

CONSTRUCTORS

New!
struct SdfInfo
{
float m_t;

uint* m_data;

_init()
{
_ . SdfInfo s = {};
m_t = INFINITY; // s now initialized
m_data = nullptr;
}

}

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

Slang lets you define constructors for types! Constructors are functions named __init, with two underscores.
This is a default constructor that is called whenever you create a struct of this type.

CONSTRUCTORS

New!
struct SdfInfo
{
float m_t;

uint* m_data;

__init(uint* data)

{)
m_t INFINITY; sdfinfo s(psky);

m_data = data;

}

}

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

You can also provide parameters to constructors, like this

DEFAULT VALUES

N
struct SdfInfo
{
float m_t = INFINITY;
uint* m_data = nullptr;

// Slang auto-generates __init()

SdfInfo s = {};

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

Or you can have default values for struct members, and Slang will auto-generate the constructor.

FUNCTIONS

struct SdfInfo
{

float m_t
uint* m_data

INFINITY;
nullptr;

float getT() { return m_t; }
uint at(uint i) { return m_data[i]; }

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

Structs can also have functions, which work like member functions in other programming languages.

STATIC FUNCTIONS

{

struct SdfInfo

float m_t
uint* m_data

float getT()

uint at(uint i) { return m_data[i]; }

{

INFINITY;
nullptr;

return m_t; }

static uint ID() { return 0; }

Can now write
uint id = SdfInfo.ID();

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

And you can have static member functions. Here ID() is a static function, and | can write SdfInfo::ID().

MUTATING FUNCTIONS

struct SdfInfo

{
float m_t

uint* m_data

INFINITY;
nullptr;

float getT() { return m_t; }
uint at(uint i) { return m_data[i]; }

void update(float t, uint* data)
{
if(m_t > t) return;
mt=t;
m_data = data;
¥
}

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

Functions are const by default. If a function changes struct values, (click)

MUTATING FUNCTIONS

New!
struct SdfInfo
{
float m_t

uint* m_data

float getT()
uint at(uint

[mutating]

{

mt=t;
m_data =

}
}

INFINITY;
nullptr;

{ return m_t; }
i) { return m_data[i]; }

void update(float t, uint* data)
if(m_t > t) return;

data;

then you need to mark it as [mutating].

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

ENCAPSULATION

N
struct SdfInfo
{
private float m_t = INFINITY;
private uint* m_data = nullptr;
float getT() { return m_t; }
uint at(uint i) { return m_data[i]; }
[mutating]
void update(float t, uint* data)
{
if(m_t > t) return;
mt=t;
m_data = data;
}
}

© 2025 SIGGRAPH. ALL RIGHTS RESERVED

Slang also lets you make member variables and functions private using the private keyword. This is useful for

the same reasons as in C++ and other languages.

OPERATOR OVERLOADING

struct Complex Complex z, c;
{
float r, i; // ..
}
——— | return z * z + c;

Complex operator*(Complex a, Complex b)

{

return Complex(a.r * b.r - a.i * b.i,
a.r * b.i+ a.i * b.r);

You can also overload operators for structs in Slang. Earlier in our Mandelbrot example, we had some math
on float2s that was really doing multiplication for complex numbers.

But a cleaner way might have been — instead of using float2s — define a Complex number type, and then
make it so that the multiplication operator does complex instead of elementwise multiplication.

Then our Mandelbrot iteration would have been a lot simpler.

INCLUDE FILES

bsdf.slang

» Supported in Slang #ifndef BSDF_SLANG
#define BSDF_SLANG

+ Text substitution
float3 ggxSample(

float3 wi, float2 a2, float2 xi)
must be recompiled { .1}

+ If any header changes, all dependents

* No private types // Private, please
float sqr(float x)
{ return x * x; }

t#tendif

» #tdefine leaks out

there’s something better

main.slang
#include "bsdf.slang"

[shader("fragment")]

Structs help organize code on the small scale. Now let’s talk about organizing larger codebases.
Slang lets you include other files, like other languages do. But this old technique has some downsides.

Since #include works by (virtually) substituting in the text of files you include and then compiling the result, if
a single header changes then everything that depends on it has to be recompiled from scratch. (click)

GLSL and HLSL don’t let you have private functions in headers. (click)

And there are smaller issues — for instance, preprocessor defines can leak out of the file they were defined in.
(click)

There’s something better.

» Compiled separately; linked together
* public, private, internal

* #define doesn’t leak out

nev!

Public —

Only visible within the bsdf module —

bsdf.slang

module bsdf;

public float3 ggxSample(
float3 wi, float2 a2, float2 xi)

{ .}

internal float sqr(float x)
{ return x * x; }

main.slang

import bsdf;

[shader("fragment")]

Slang introduces support for modules in shader languages. These look a lot like standard include files, but
they’re compiled separately and then linked together. This can improve compile times, as we'll talk about in a

bit.

You can also have public, private, and internal members. Private members are only visible within the current
file, while internal members are visible to the rest of the module (if you have multiple files making up a

module).

And, things like preprocessor macros don’t affect other files.

(You don’t need to specify “internal on sqr() here if you use Slang language version 2025 or newer: specify —

lang 2025 on the command line.)

THE STANDARD LIBRARIES ARE MODULES

hisl.meta.slang
slang / source / slang / hisl.meta.slang

Code | Blame 28438 lines (26617 loc) - 934 kB - @)

L1ove i
11097

11098 /11 Compute base-10 logarithm.

11099 71/ @param x The input value.

11100 /// @return The base-10 logarithm of “x .

11101 /11 @category math

11102 __generic<T : _BuiltinFloatingPointType>

11103 [__readnone]

11104 [require(cpp_cuda_glsl_hlsl_metal_spirv_wgsl, sm_4_0_version)]

11105 T loglo(T x)

11106 {

11107 __target_switch

11108 {

11109 case hlsl: _intrinsic_asm "logle";

11110 case metal: _intrinsic_asm "logle";

1111 case wgsl: _intrinsic_asm "(log($0) * $50(0.43420448190325182765112891891661))";
1112 case glsl: _intrinsic_asm "(log($0) * $5(0.43420448190325182765112891891661))";
1113 case cuda: __intrinsic_asm "$P_loglo($0)";

1114 case cpp: _intrinsic_asm "$P_log10(30)";

11115 case spirv:

1116 {

1117 const T tmp = T(0.43429448190325182765112891891661) ;

1118 return spirv_asm {

11119 %baseElog:$$T = OpExtInst gls1450 Log $x;

22120 5 00EM_ShaseFlog S

glsl.meta.slang

slang / source / slang / glsl.meta.slang

Blame 9850 lines (9062 loc) - 268 kB - (@

public in int gl_SampleID : SV_SampleIndex;
public in int gl_ViewIndex : SV_ViewID;

public in int gl_Viewp : SV_Viewp . i

public in int gl_BaseVertex : SV_StartVertexLocation;
public in int gl_BaseInstance : SV_StartInstancelocation;

// Override operator* behavior to compute algebric product of matrices and vectors.

[OverloadRank(15)]
[ForceInline]
(require(cpp_cuda_glsl_hlsl_spirv, sm_4_0_version)]
public matrix<float, N, N> operator*<let N:int>(matrix<float, N, N> ml, matrix<float, N, N> m2)
{
return mul(m2, m1);

¥

[OverloadRank(15)]
[ForceInline]
[require(cpp_cuda_gls1_hlsl_spirv, sm_4_0_version)]

public matrix<half, N, N> operator*<let N:i 5 N, N> m1, i 5 N, N> m2)
{

return mul(m2, ml);

Notably, Slang’s standard library uses modules. All Slang files link with hlsl.meta.slang. And when you enable
GLSL compatibility by adding #version 460, Slang links with glsl.meta.slang as well.

If you’re ever wondering how Slang’s intrinsic functions work, you can look at their implementations! Reading
these files is also useful for learning about advanced features like inline assembly, which lets you use features

even Slang doesn’t know about yet.

Now, a word on compile times.

IMPROVING COMPILE TIMES: MODULES +

SPECIALIZATION

Slang code

Slang compilation

SlangIR

Slang linking

Target code

Pipeline compilation

GPU assembly

lib |0 lib |1 lib | 2 lib |3 lib | 4 lib |5 lib | 6 lib |7
SlangIR SlangIR SlangIR SlangIR SlangIR SlangIR SlangIR SlangIR

SPIR-V SPIR-V SPIR-V SPIR-V SPIR-V SPIR-V SPIR-V SPIR-V

h. h. h. k. k. k. k. v

Modules can help with compile times if you use them more than once.

Here's a diagram of an app compiling 8 graphics pipelines. The input for each one is a shader that links against

a larger library.

Slang compiles shaders to SlanglR, then links them together and emits target code — like SPIR-V. When the
app creates a pipeline at runtime using a SPIR-V module, the graphics driver will usually do its own set of
optimizations, producing GPU assembly.

If you use modules, (click)

IMPROVING COMPILE TIMES: MODULES +

SPECIALIZATION

Slang code n

Slang compilation

SlangIR “

Slang linking ; ; ;
Target code
Pipeline compilation
GPU assembly

you only have to compile the shared library once, and then you can link each shader against it, saving time.

In practice, for a hot-reload benchmark | put together for a path tracer, | saw this reducing compile times by
about 30%.

Another thing that can help is (click)

(Benchmark: https://github.com/NBickford-NV/slang-compile-timer)

IMPROVING COMPILE TIMES: MODULES +

SPECIALIZATION

Slang code
Slang compilation

SlangIR

Slang linking
Target code
Pipeline compilation

GPU assembly

specialization constants, like in Vulkan, which are designed to reduce shader permutations. Instead of say,
compiling different shaders for 1 light, 2 lights, or 3 lights per pixel, you can use a variable at the Slang level,
and only specify its value when the driver needs to do final optimizations.

New in Slang, you can now do (click)

IMPROVING COMPILE TIMES: MODULES +

SPECIALIZATION

Slang code
Slang compilation

SlangIR

Slang linking
Target code
Pipeline compilation

GPU assembly

link-time specialization, where you can specify types for things after compiling but before linking.

All of these taken together reduce the total amount of work quite significantly! But you can see we’re still
paying the load-time cost for the driver to optimize and generate GPU assembly for each of these pipelines.
So we’re not quite in an ideal world for shader compilation yet.

INTERFACES AND GENERICS

struct PointLight

{ float3 pointLightSum(
float3 m_color; PointLight* lights,
float3 m_pos; uint numLights

)
float3 irradiance(float3 pos) {
{ // Same code
return color }
/ dot(pos - m_pos, pos - m_pos);
}

¥

struct Directionallight float3 directionallightSum(

{ Directionallight* lights,
float3 m_color; uint numLights
float3 irradiance(float3 pos) z
{ // Same code

return m_color; }
}
}

Finally, let’s talk about interfaces. It’s pretty common in computer graphics to have multiple objects that
conform to some sort of higher-level interface. For instance, point lights, directional lights, and spotlights are
all kinds of lights. Mirror, Lambert, and GGX are all BRDFs. And so on.

Here we have one struct for a point light and another for a directional light. If we want to sum over all point
lights, we can write a function to do that. And if we want to sum over all directional lights, we can also write a
function to do that. But the code inside these functions will look exactly the same. So, ideally, we’d like to
generalize this function somehow.

INTERFACES AND GENERICS

struct PointLight : ILight
{

float3 m_color; - -

float3 m_pos; interface ILight

{
float3 irradiance(float3 pos) float3 irradiance(float3 pos);
{
return color }
/ dot(pos - m_pos, pos - m_pos);

}
¥
struct DirectionallLight : ILight float3 lightSum<LightType>(
{ LightType* lights,

float3 m_color; uint numLights

)
float3 irradiance(float3 pos) where LightType : ILight
{ {
return m_color; // ..

} }

}

Slang provides a solution to this. First we define an interface in the box on the top-right. This is saying that
any type that conforms to the ILight interface must have a function called “irradiance” that takes in a float3
position and returns a float3.

Then over on the left, we say that PointLight implements the ILight interface by adding a colon followed by
ILight, and we do the same for DirectionalLight. (click)

Now we can write a function called lightSum that can take in any light type!

This is a generic function — and in fact, we’ve been seeing generics this whole time! Texture2D and
StructuredBuffer were generic types, for instance.

Generics are a lot like C++ templates; really, the only difference is we need to say what interfaces our types
conform to. This works really well with modules.

In C++, you usually have to put all your templates in these massive headers, so that compilers can look at
their definitions. With generics, (click) these can be in separate modules; no need for headers!

On the left, the compiler only needs to check that Point and DirectionalLight conform to ILight. And on the
right, it only needs to check that lightSum uses only what ILight gives it. And you also get better compile-time
errors as a a result.

PUZZLE: IMPLEMENT AN INTERFACE

+ Can you implement a mirror BRDF to reveal the pattern in the reflection?

vy

—
—

Let’s put this into practice with my final puzzle of the day.

In vk_slang_editor, if you load Examples > ISIGGRAPH2025 > 3 — Interfaces, you’ll see a path-traced scene
with several colored boxes, all using a diffuse BRDF.

Now, this seemingly random arrangement of boxes in fact contains a hidden image.

Your challenge is to reveal this hidden image by turning the cyan plane here into a mirror. To do this, you’ll
need to remove line 13, and then write a struct called MirrorBRDF that conforms to the IBrdf interface and
reflects the input direction along the hit normal.

I'll be back in 5 minutes to show how to solve this puzzle, and then Chris will cover SlangPy and
autodifferentiation. Good luck!

SOLUTION

struct MirrorBrdf : IBrdf
{
static float3 sample(HitInfo hit,
out float3 wOut,
inout uint rngState)

wout = reflect(hit.direction, hit.normal);
return hit.baseColor;

SlangPy

Chris Hebert

APH. ALL RIGHTS RESERVED

FIRST, A DEMONSTRATION

Remember this?

FIRST, A DEMONSTRATION

Remember this?

Well, let's take Nia's shader, completely
unmodified, and run it with SlangPy.....

TO THE NOTEBOOK!!

IPYTHON NOTEBOOKS IN VS CODE

IPython notebooks are a collection of code cells and

markdown cells.

Code Cell
They allow you to experiment with and document snippets of

Python code.

They integrate seamlessly within VS code. Markdown Cell

They can also run in a web browser.

To run a code cell, place your cursor in the cell, click the play

button in the top left corner. Code Cell

If you get behind (because you are experimenting because
you love SlangPy as much as we do), go to the top of the
page and click

Markdown Cell

Restart
Then Code Cell

Run All to run all of the cells.

FIRST, A DEMONSTRATION

device = spy.create_device(include_paths=[os.getcwd()])

tex = device.create_texture(
width=1024,
height=1024,
format=spy.Format.rgba32_float,
usage=spy.TextureUsage.shader_resource
spy.TextureUsage.unordered_access

spy.Module.load_from_file(device, "Mandelbrot.slang").render.set({
‘texFrame':tex,
'iTime':0.0,
'iResolution’:spy.float2(tex.width,tex.height),
'iMouse' :spy.float4(0,0,0,0)
}).dispatch((tex.width,tex.height,1))

display(img.fromarray((tex.to_numpy() * 255).astype(np.uint8)))

FIRST, A DEMONSTRATION

device = spy.create_device(include_paths=[os.getcwd()])

tex = device.create_texture(
width=1024, . : . .
S Well, that's just 4 lines of code to:

format=spy.Format.rgba32_float, I ags g
« Initialize

usage=spy.TextureUsage.shader_resource
spy.TextureUsage.unordered_access

) > Allocate a texture
spy.Module.load_from_file(device,"Mandelbrot.slang").render.set({ | : DlspatCh the shader

‘texFrame':tex,

'iTime':0.0,

'iResolution':spy.float2(tex.width,tex.height),

'iMouse' :spy.float4(0,0,0,0)
}).dispatch((tex.width,tex.height,1))

- Display the result

.... just sayin'

display(img.fromarray((tex.to_numpy() * 255).astype(np.uint8)))

WHY SLANGPY?

» Provides a very simple path to working with Slang
o No need to wrestle with 1000s of lines of C++ code to test a 100-line shader
o Dispatch a Slang shader with as little as 3 lines of code.
o Makes iterating on prototypes and ideas much simpler
« Helps bridge the gap between Graphics and ML
o You can use Slang alongside Python's huge ecosystem of libraries
o e.g., Design and test new operators not currently provided by PyTorch

Machine Learning

O PyTorch

SlangPy

Graphics

Microsoft*

£ Slang"

with Automatic Differentiation

= Vulikan.

penGL.
'ebGPU

Using work done in
the other ecosystem
is extremely difficult

N
@ Shading Languages

WHY SLANGPY?

+ Abstracts away the details of dispatching threads
o Butit's still there if you want it.

o Use SlangPy at both a 'high' level and a 'low' level.
« Installs with a single call to Python Pip.
« Supports a large array of backends for almost all platforms

o Vulkan Python/Numpy
o Meta Slang - P

o DirectX 9 Shader Threads

o WebGPU —

o CUDA

il
\
N

= ShRv/@ =

“Wuikan.

Direct Display

Others

Device Type

WHY SLANGPY?

Machine Learning

-~

.

~

(Graphics
Micrpsoft' o S
= YWuikan.

- Slang-

with Automatic Differentiation

penGL.
ebGPU

O PyTorch
SlangPy
<

CUDA

@ python

N

Using work done in
the other ecosystem
is extremely difficult

N
@ Shading Languages

Autodiff

IGGRAPH. ALL RIGHTS RESERVED

AUTODIFF

o

o

o

o

o

o

o

o

o

« Al

* Neural Rendering

Computing gradients for NeRFs (Neural Radiance Fields)

Gaussian splatting

- Differentiable Rendering

Fitting 3d models to images
Optimizing material properties
Automatic lighting

» Physics simulation

Finite element method derivatives

Inverse kinematics & other optimization problems

« Procedural content generation

Optimized procedural noise

Training neural networks large or small makes use of derivatives

AUTODIFF

* What Is Autodiff?
o Automatically computes exact derivatives of any function
o No manual gradient derivation required fwd_diff(eval)(dpL, dpV, dpN);
o Supports arbitrary control flow & dynamic dispatch /

o Enables any graphics function to become trainable

* Why Is This Important?

o You only need to maintain 1 version of your functions
o Slang generates the differentiable versions for you

o Less chance of errors because Slang maintains consistency for you

AUTODIFF

Forward mode vs Backwards mode

Forward Mode (fwd_diff)
Direction: Input — Output

Efficient when: Few inputs, many outputs

time

Computes: How outputs change w.r.t. one input at a

Reverse Mode (bwd_diff)
Direction: Output — Input
Efficient when: Many inputs, few outputs

Computes: How one output changes w.r.t. all inputs

AUTODIFF

« EXAMPLE : Gradient Descent

‘ Loss Surface () Optimization Path . Global Minimum

Lab: Autodiff

GRAPH. ALL RIGHT

Language Basics
- control flow, inout, types, etc.

* Using the slangc Command-Line

+ Porting GLSL

+ Shader I/O

» Debugging and Tools

+ Structs, Modules, and Interfaces

- SlangPy

« Autodifferentiation

https://docs.shader-slang.org

Compile (F3)

THANK YOU!

« Lab materials: https://shader-slang.org/landing/siggraph-25

* Related sessions:

Nsight Graphics Gaussian Splatting Sessions
* Wednesday, 9am — 10:30am & 1pm — 2:55pm, Room 116-117

Birds of a Feather: Developing with Slang: Tools,
Techniques, and Future Directions

» Wednesday, 2:30pm — 3:30pm, Vancouver Marriot Pinnacle Hotel
- An Introduction to Neural Shading
* Thursday, 9am — 12:15pm, West Building, Room 109-110

Hands-on Vulkan® Ray Tracing With Dynamic Rendering
» Thursday, 11:45am — 1:15pm, West Building, Exhibit Hall B https://shader-slang.org/landing/siggraph-25

£ [it =

i ?" g

@ SIGGRAPH 2025

Backup Slides

SLANGC: PROFILES

* Run slangc example.slang —target dxil

+ That fails; we need to specify a profile.
- slangc example.slang —target dxil —profile sm_6_6
- Profiles enable capabilities; which shader features you can use.
« For example, ray tracing is available in HLSL but not WGSL.
* Warp operations aren’t available in C++ code.
« Advanced SPIR-V functionality depends on your GPU and driver.

« Capabilities allow you to check that you're only using the features you know your platform supports.

Incidentally, this is what allows Slang to avoid falling into the lowest-common-denominator trap like GLES.
Slang can support the latest graphics features, and then capabilities restrict it to those the system can use.

TARGETS: C++

* (Go back to the desktop)
* -target cpp generates a C++ source file!
* Long section above is the prelude

» Down at the bottom is a wrapper for running the compute shader

- Exported as if from a shared library

 Infact, if we use -target callable, we get a .dll/.so!

- Show initially as hex, then redirect to a file and run lucasg-dependencies on it

At this point, it’s easiest to go back to the desktop to show it off.

“C++ is probably the most interesting out of those 8 targets — it generates a C++ source file, so you can run
your compute shader on the CPU!”

“The intent here is that you’d dynamically load this .dll using your OS’ API, then call the entrypoint function
and pass an appropriate pointer to the parameter struct.”

PROPERTIES

struct Color

{
float3 linear;

@ property float3 srgb Color c;

{ ——» | c.srgb = float3(.97, .39, .19);
return float4(c.linear, 1.0);

get { return toSrgb(linear); }
set { linear = tolLinear(newValue); }

}

}

In slang, you can also add properties to classes, which look like member variables but are in fact a getter and
a setter function. Here | have a struct that holds a linear RGB color. If | wanted to add a way to automatically
convert sRGB colors, I'd usually have to add a getSrgb function and a setSrgb function. Here I’'m doing this
instead with a property, which lets me write this really concise code on the right.

EXTENSIONS

external/lib1/sdf.slang external/lib2/math.slang
struct SdfInfo T min<T>(T a, T b)
{ where T : IComparable
float t; { ..}
uint* data;
}

* How can we make SdfInfo work with min() if we can’t modify external/lib1/sdf.slang?

// Extend SdfInfo so it conforms to IComparable
extension SdfInfo : IComparable
{
bool equals(SdfInfo other) { return t == other.t && data == other.data; }
bool lessThan(SdfInfo other) { return t < other.t; }
bool lessThanOrEquals(SdfInfo other) { return lessThan(other) || equals(other); }

}

Finally, a neat thing is that you can tack on interfaces to structs after the fact. Imagine you’re writing code
that depends on two external libraries. One defines an Sdflnfo struct, but doesn’t implement any interfaces
for it. And another defines a min() function that works for types that implement IComparable, which is Slang’s
built-in interface for types you can use less-than, equals, and greater-than operators on.

(click) If you want to use the Sdflnfo struct from library 1 with min() from library 2, normally in C++ you’d be
out of luck and have to modify library 1.

But in Slang, (click) you can add on an IComparable implementation to Sdfinfo like this!

