

Global Illumination

- Indirect effects
- Important for realistic image synthesis

Direct+Indirect lighting

Voxel-based GI

- It can run in a game!
 - EPIC Games : SVOgi

Sparse Voxel Octree

Detailed geometry rendering

Structured LODs

GPU Voxel Octree

- Linked nodes in linear video memory (Octree Pool)
 - 2x2x2 nodes tiles
 - 1 pointer per node to a node-tile
- Voxels stored into a 3D texture (Brick Pool)
 - Allows hardware tri-linear interpolation

Hybrid rendering pipeline

- Hybrid rendering pipeline
 - Rasterized primary rays
 - GPU pipeline optimized for direct visibility
 - Cone-traced secondary rays
 - Flexibility and scalability
- Forward or deferred rendering

Voxel cone tracing

- Geometry pre-filtering
 Traced like a participating media
 - Volume ray-casting
- Voxel representationScene geometry : Opacity field
 - + Incoming radiance

Rendering algorithm

- 1. Light pass (es)
 - Bake irradiance (RSM)
- 2. Filtering pass
 - Down-sample radiance in the octree
- 3. Camera pass
 - For each visible fragment: Gather indirect radiance

Discussion

- Scalable lighting rep. !
 - Independent of geometric complexity
 - Control over rendering time

- Large cones
 - Precision / Light leaking

- But always smooth
 - Never noisy !!

Specular tracing

Multiple-bounces

Voxel Ambient Occlusion

+ Distant + off-screen occlusions

Resolution

5.5ms @ 1280x720

Voxel soft shadows

One cone per pixel
The smoother, the faster to compute !

Area light source

3-9ms @ 1280x720

Publications

Interactive indirect illumination using voxel cone tracing

C. Crassin, F. Neyret, M. Sainz, S. Green, E. Eisemann

- Computer Graphics Forum (Proc. of Pacific Graphics 2011)
- <u>http://research.nvidia.com/publication/interactive-indirect-illumination-using-voxel-cone-tracing</u>
- I3D 2011 Poster
 - http://maverick.inria.fr/Publications/2011/CNSGE11/
- Siggraph 2011 Talk
 - http://maverick.inria.fr/Publications/2011/CNSGE11a/

Dynamic Voxelization

DVIDIA.

- Entirely done using the GPU graphics pipeline
 - Sparse (No plain grid allocation)

- Two modes:
 - Static environment
 - Pre-voxelized (~20ms)
 - Dynamic objects
 - Added to the structure at runtime (~4-5ms)

One pass voxelization pipeline

Thin surface voxelization

Sparse Octree construction

- Sparse voxelization
 - No plain grid allocation
- Two steps:
 - 1. Octree subdivision

2. Values MIP-mapping

Octree construction

- Top-down octree construction
 - Compute + Graphics

Voxelize Mesh at level resolution

Tag octree nodes

Create New Node Tiles

Results

- 9 levels octree (512^3)
 - RGBA32F
- Kepler GK104 performance
 - 30% 58% faster than Fermi GF100
 - Atomic merging up to 80% faster.

Times in ms	Frag	Octree construction				Write	MIP	Total
Scene	list	Flag	Create	Init	Total	WIIGE	map	
Sponza	2.07	5.65	0.37	1.32	7.34	3.94	2.09	15.44

OpenGL Insights

- Octree-Based Sparse Voxelization Using The GPU Hardware Rasterizer
 Cyril Crassin and Simon Green
- Just released at Siggraph 2012
 Patrick Cozzi & Christophe Riccio

GTC 2013 | March 18-21 | San Jose, CA

The Smartest People. The Best Ideas. The Biggest Opportunities.

Opportunities for Participation:

SPEAK - Showcase your work among the elite of graphics computing

Call for Sessions: August 2012Call for Posters: October 2012

REGISTER - learn from the experts and network with your peers

- Use promo code GM10SIGG for a 10% discount

SPONSOR - Reach influential IT decision-makers

Learn more at www.gputechconf.com