
nvFX : A New Scene and Material

Effect Framework for OpenGL

and DirectX
Tristan Lorach

tlorach@nvidia.com

What is an effect ?

Higher level management

Of Shader Code

Parameters

Samplers, Textures and Sampler States

Allows to package all in one “ecosystem”

Concept of Techniques and Passes

A Techniques == a way to perform a specific setup for specific rendering

Pass : setup Shaders and render states for a rendering pass

Important : an Effect file is not directly sent to the Driver/GPU

CPU work here to maintain the loaded effect

Standard Effect design

Application

Effect

runtime

Effect file

Shader func‟s

Sampler-states

Parameters

Techniques

Passes

Render-states

Texture Samplers

Textures (D3D)
GPU

Shaders

Render

states

…
• Set params (1 by 1 )

• Validate passes (builds shaders)

• Bind textures/samplers

• Activate a Pass

Issues with Existing Effect (CgFX or DX FX)

Cg
CgFX part of Cg toolkit; written in Cg

Source code of CgFX not available

Specs never evolved since 2002

Microsoft DirectX ®
HLSL Shaders Only

Features never evolved

Nobody using it, nowdays

Khronos Groups‟s GLSL
Nothing available

Let‟s make a Generic Open-Source solution !

Expectation For A New Effect Design (nvFX)

Host many Shading languages (GLSL, GLSLCompute, HLSL, CUDA…)

Effect must be as self sufficient as possible

Very few special C++ implementation from the hosts application

Simplify the code in the Application

Better maintenance & productivity

consistency in Effect file and between Effect files

Modularity for various Shadowing, Lighting (etc.) implementations

Post-processing of the scene Object materials consistent

Self descriptive and easier to read

Spares us 100s of #ifdef #else #endif (Games do this a lot)

User Target

Games

Helps highly combinatorial Shaders

Avoids heavy pre-processor code (#ifdef/#else/#endif everywhere)

Runtime optimizations of nvFX designed to be efficient

Workstation CAD/DCC

Convenient to expose some programmability to the end-user

Helps for maintenance of heavy projects

Labs / research (Prototype for a Siggraph paper !)

Helps to perform rapid and flexible prototyping

Convenient for Demos, Samples showcasing Shaders

nvFX Effect Integration

Application

nvFX

runtime

nvFX files
Shader code

Techs/passes

…

Shader code

Techs/passes

nvFX files

Application

nvFX

runtime

Techs/passes

…

Techs/passes

Application

nvFX

runtime
Pre-

compiled

shaders

C++

nvFX

Effects

nvFX files

Shader code Shader code

Techs/passes Techs/passes

…

Shader code Shader code

Pre-

compiled

shaders

Shader code

API Design

Front-End : parser (Bison)

Parses the effect

Does not parse the shader/compute

code that is inside !

Back-End : the library to build the

effect data

Used by the Front-End to create

parsed data

Used by the application to drive the

effects

Works on PC, Unix (OSX/Linux),

Android… even iOS

Front-End

(nvFX parser)

C++ Back-End

(nvFX runtime)

API

Application

Your

Front-End

Parser

OpenGL DX CUDA

Your Gfx API layer

Custom Grammar

& Token

1

Example : HDR Rendering With Glow

Render

Skybox in HDR

Render The

Scene in HDR

Down-scale the

texture 2x, 4x

Blur texture

Horizontal

Then Vertical

Scene Effect

 1

2

3

4

5

6

Material Effect 1

Metal Pass

Material Effect 2

Plastic pass

Scene Graph

Other „Effects‟…

RGBA32F

Texture

(HDR)

Compositing:

tone-mapping

And radial Blur

7

RGBA

32F

Texture

Backbuffer

+

2 3

4
5 6 7 7

Example : Compute Post-Processing

Render

Skybox

Render The

Scene

Triggers CUDA

(or GLSL/DX-

Compute)

Kernel

Display result

As a fullscreen

Quad

Scene Effect passes

 1

2

3

4

Material Effect 1

Metal Pass

Material Effect 2

Plastic pass

Scene Graph

Other „Effects‟…

RGBA

Texture

Backbuffer

Results with CUDA / GLSLCompute filtering

Convolution

Bokeh Filter

Fire (Navier-Stokes equations)
Simulation passes

Advect Color

Advect Velocity

Vorticity

Confinement

Emit
(Gaussian ball)

Fire Up-force

Vel. divergence

Comp. pressure

Proj. Velocity

Proj. Vel. edges

T
e
c
h
n
iq

u
e

Techniques

passes

1

Volume bound 1

Volume bound 2

Volume depth

2

Volume depth

Smoke Ray-cast

Water Ray-cast

Fire Ray-cast
3

Rasterize result

Rasterize

4

Inside And nvFX Effect

nvFX file

Sampler-states
Uniform

Parameters

Techniques

Passes

Texture Bind point

Render

state-groups

Shader Code Modules

GLSL

D3D

CUDA

GLSL-Compute

DXCompute Resources

Frame buffers

Constant

Buffers

Simple nvFX Example

GLSLShader {

 #version 410 compatibility

 #extension GL_ARB_separate_shader_objects : enable

… }

GLSLShader ObjectVS {

 layout(location=0) in vec4 Position;

 layout(location=0) out vec3 v2fWorldNormal;

 void main() { … }

}

GLSLShader ObjectPS {

 layout(location=0) in vec3 v2fWorldNormal;

 Main() { … }

}

rasterization_state myRStates {

 POLYGON_MODE = FILL;

… }

sampler_state defaultSamplerState

{

 TEXTURE_MIN_FILTER = LINEAR_MIPMAP_LINEAR;

 TEXTURE_MAG_FILTER = LINEAR;

}

Texture2D diffTex {

 samplerState = defaultSamplerState;

 defaultFile = "gargoyleMossyDiffuse.dds";

}

technique BasicTechnique {

 pass p1 {

 RasterizationState = myRStates;

 samplerResource[diffSampler] = { diffTex, 0 };

 VertexProgram = ObjectVS;

 FragmentProgram = ObjectPS;

 attenuation = 0.9;

}

nvFX On C++ Side : Simple Example

Initialization:

Validate effect‟s passes (Checks errors, compile shaders…)

Create/Gather any object we need for update (Uniforms to set etc.)

Rendering Loop:

Loop in a Technique (taken from a material id, for example)

Set some Uniform values (projection matrix…)

Loop in the Passes

For each pass : „Execute‟ it

Optionally update Uniforms/Cst Buffers afterward

Render your geometry

Shader Code And Effect Compiler

GLSL, D3D, CUDA, GLSL-Compute, DX-Compute… Not Parsed

We rely on existing compilers

D3D Driver

GLSL OpenGL driver

CUDA compiler

OpenCL from OpenGL driver

nvFX  invokes APIs to compile shaders

Easy

No redundant work

But nvFX doesn‟t know what is inside (did not parse the code)

Shader Code

Declared within a section :
 GLSLShader myShader {

 layout(location=0) in vec4 Position;

 void main(void) {…}

 }

 CUDAKernel Blur(unsigned int* data, int imgw,…) {

 …CUDA code…

 }

 D3D10Shader myD3DShader {

 …HLSL code…

 }

Sampler States

We don‟t add sampler state info to the existing shader code

GLSL Does not have Sampler-states

Instead : create sampler states in nvFX

Can be connected in a Pass or via Textures or Resources
GLSLShader myShader {

 uniform sampler2D diffuseColorSampler;

 …

}

sampler_state mySamplerState {

 MIN_FILTER = GL_LINEAR_MIPMAP_LINEAR;

 MAG_FILTER = GL_NEAREST;

};

State Groups

The modern way to use renderstate : DX10/11 default way

OpenGL could have one : NV_state_object

Rasterization States

Color Sample States

Depth-Stencil States

Define many of them in the effect :
 rasterization_state myRasterState1 { POINT_SIZE=1.2; …}

 rasterization_state myRasterState2 { CULL_FACE=FALSE; …}

 color_sample_state myCSState1 { BLEND=TRUE; ALPHA_TEST=FALSE;…}

 dst_state myDSTState { DEPTH_TEST=TRUE; DEPTH_WRITEMASK=TRUE;…}

State groups can then used in Passes

Techniques & Passes

A technique hosts passes. Nothing new

A Pass carries render-pipeline setup and actions
References to State-Groups

Or direct References to render-states (old style as CgFX)

References to many Shaders (Vertex, Fragment etc.)

Value assignment to uniform parameters

GLSL sub-routine

 each pass can setup a set of default uniform values

Connection of samplers/textures with resources & Sampler-states

Connection of images (ARB_shader_image_load_store) with resources

Lots of other special states to drive the runtime behavior

• Clear mode (glClear mode…)

• Clear color

• Rendering Mode

• Render Group Id

• Blit action of a resource to a target

• Current Target for rendering

• Viewport Size

• Swap of 2 resources

• Loop count (to repeat passes)

• Active Pass On/Off

• CUDA Module; Shared Mem. Grid/Block…

• GLSL Compute Groups

Pass example

Pass myPass {

 RasterizationState = myRasterState;

 GL_POLYGON_MODE={GL_FRONT_AND_BACK, GL_FILL};

 VertexShader ={MainVtxProg, HelperFunctions, InputAttribFunc};

 FragmentShader = MainFragmentShader

 FragmentShader[LightShaders]= {LightSpotFunc, LightDirFunc,…};

 mySubroutineArray = {srFunc_spot, srFunc_point, srFunc_dir};

 myOtherSubroutineArray[0] = srFunc32;

 myOtherSubroutineArray[1] = srFunc6;

 mySimpleUniform = {1.3, 2.2, 5.2};

 samplerResource(quadSampler) = myRenderTexture;

 samplerTexUnit(quadSampler) = 0;

 samplerState(quadSampler) = nearestSampler;

 …

}

Concatenation of Shaders

Literally allows you to “link” Shader Objects to a program Object

A Pass hosts a program
VertexShader = {ShaderMain, ShaderHelpers, ShaderA, ShaderB, …};

We can group shaders by name :
VertexShader = myVtxShaderMain;

VertexShader[Lighting] = {VtxLight0, VtxLight1, …}

Groups allows to Change some behavior at runtime
Example:

1. Gather the group of shaders named “Lighting”

2. Remove these shaders from the Pass (Pass‟s program)

3. Add other shaders to this “Lighting” Group (for different lighting…)

4. Link the program with new Shader Objects

Uniforms

GLSLShader myFragShader

{

 uniform sampler2D mySampler

 main() {…using diffCol… }

}

Target 1

Application nvFX runtime

set…()

update…()

findUniform(„diffCol‟)

Uniform

Binding point

“diffCol”

Load Effect &

& initialize it

GLSLShader myVtxShader

{

main() {…using diffCol… }

}

Target 2
findUniform(„foo‟)

Effect

Effect

Obj.

uniform vec3 diffCol;

uniform vec3 diffCol;

: SEMDIFF;

Uniforms

GLSLShader myFShader

{

 uniform sampler2D mySampler

 main() { …using diffCol… }

}

Target 1

Application nvFX runtime

set…()

update…()

findUniform(„diffCol‟)

Uniform

Binding point

“diffCol”

Load Effect &

& initialize it

Technque tech1 {

 Pass p1

 {

 fragmentShader = myFShader

 diffCol = {0.3, 0.5, 1.0};

 }

}

Effect

Effect

Obj. uniform vec3 diffCol;

Pass’s uniform

Binding point

“diffCol”

Target 1

Buffers of Uniforms (Buffer Objects)

Direct mapping to

OpenGL Uniform Buffer Object (UBO + GLSL std140)

D3D10/11 Cst Buffers (cbuffer token in HLSL)

Similar mechanism as explained for uniforms

A constant Buffer made of uniforms

Can be targeted by a Uniform Object

Can have default values specified by nvFX code

Two ways for buffer‟s resource creation :

Create from your application and pass the handle to nvFX

Let nvFX create the buffer for you (and update it with default values)

Resources in nvFX

Visual Effects resources : often inter-dependent

Example : deferred shading

G-Buffer really depends on how the effect does deferred shading

Furthermore : Compute  Graphics : interaction through

resources

Compute reading from a rendered image and writing into a Textures…

Compute kernels sometimes need temporary storage…

 Idea of creation of resources within an effect

Resource Creation And Use

Create resources :
RenderTexture myRTex1

{

 MSAA = {0,0};

 Size = ApplicationDefined;// or {800,600};

 Format = RGBA8;

}

RenderTexture myRTex2

{ … }

RenderBuffer myDST

{

 MSAA = {0,0};

 Size = ApplicationDefined;// or {800,600};

 Format = DEPTH24STENCIL8;

}

Code on how to use these

resouces

Create Frame Buffer Object
FBO myFBO

{

 Color = { myRTex1, myRTex2 };

 DST = myDST;

}

Use this in Passes
 CurrentTarget = myFBO;//(can be backbuffer)

 BlitFBOToActiveTarget = myFBOSrc;

 swapResources(mFBO1, myFBO2);

 samplerResource(mySampler) = myRTex1;

You can query all from your

Application, too

Scene-Level / Multi-Level Effects

pre/post-processing are Effects, too : at scene level

Scene-level Effects and material Effects must be consistent

Deferred shading : Material RT‟s must match the G-Buffer

Shadowing of the scene : must tell materials how to use Shadowing

Special scene lighting need to tell material Shaders how to do lighting

nvFX Allows Effect (Scene-level) to override the final linkage of

lower levels effects

lower level Effect shaders compiled for the needs of the higher one

 instances of shader programs matching the scene-level requirements

Example of Scene-level override

Scene-level Effect
…

Pass renderScene {

 ClearMode = all;

 FragmentProgramOverride["out"] = forGBuff;

 FragmentProgramOverride[“light"] = noLight;

 CurrentTarget = myGBuffer;

 renderMode = render_scenegraph_shaded;

}

Pass deferredLighting {

 VertexProgram = deferredLightingVS;

 FragmentProgram = deferredLightingPS;

 renderMode = render_fullscreen_quad;

 CurrentTarget = backbuffer;

}

Material Effect in the scene
…

Pass myMatPass1 {

 VertexProgram = myVtxProg;

 FragmentProgram = {helpers, mainEntry};

 FragmentProgram[out] = simpleOutput;

 FragmentProgram[light] = defaultLighting;

 …

}

New instance of myMatPass1
 FragmentProgram = {helpers, mainEntry};

 FragmentProgram[out] = forGBuff;

 FragmentProgram[light] = noLight;

GLSLShader defaultLighting

{

 void lighting_compute(LIGHTINFOS infos,

 inout LIGHTRES res) {

 …Some OpenGL-style lighting…

 }

}

GLSLShader forGBuff

{

 layout(location=0) out vec4 outColor;

 layout(location=1) out vec4 outNormal;

 void finalColor(vec3 normal, vec4 colorSrc,

 vec3 tc, vec3 p, int matID)

 {

 outNormal = …

 outColor …

 …

 }

}

GLSLShader mainEntry

{

 void main()

 {

 …

 lighting_compute(lightInfos, res);

 …

 finalColor(N, color, tc, p, matID);

 }

} GLSLShader simpleOutput

{

 layout(location=0) out vec4 outColor;

 void finalColor(vec3 normal, vec4 colorSrc,

 vec3 tc, vec3 p, int matID)

 {

 outColor = colorSrc;

 }

}

GLSLShader noLight

{

 void lighting_compute(LIGHTINFOS infos,

 inout LIGHTRES res) {/*empty*/}

}

Conclusion

Less code in Application

More flexibility

Consistency of Effect code. Helps for maintenance and creativity

Updated use of modern APIs good for performance

Open-Source approach to allow developers to

Easily debug it

Improve it

Customize it

Available soon on http://developer.nvidia.com

Feedback welcome : tlorach@nvidia.com

NVIDIA Confidential

Example : Pure Ray Tracing With OptiX

Rendering at Interactive

Framerate

Generic use of Optix

No specialization on

specific rendering methods

90% of the OptiX code

defined outside of the

application

In CgFX files

In CUDA/PTX files

Triggers OptiX

Context

Display result

As a fullscreen

Quad

Scene Effect passes

1

2

RGBA

Texture

Backbuffer

Pure Ray Tracing Examples

(Courtesy of Watershot Digital Imaging)

Hybrid Rendering : Mixing OpenGL & OptiX

Render

Skybox

Render The

Scene

Triggers OptiX

Ray Tracing

For Reflections

and shadow

Compositing

OpenGL +

reflection &

shadow

Scene Effect passes

 1

2

3

4

Material Effect 1

Metal Pass

Material Effect 2

Plastic pass

Scene Graph

Other „Effects‟…

More results

GTC 2013 | March 18-21 | San Jose, CA
The Smartest People. The Best Ideas. The Biggest

Opportunities.

Showcase Your Work Among the Elite of GPU Computing!

Call for Submissions

- Call for Sessions: August 2012

- Call for Posters: October 2012

As a speaker you‟ll receive many benefits that include:

• A complimentary Full Conference pass

• Discounted passes for your colleagues

• Access to exclusive speaker-only on-site amenities

• Audio capture and hosting of your session

• A unique opportunity to promote your name, your expertise, and

 your company

Learn more at www.gputechconf.com

