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What is a DOE Innovation Hub? 
• 04/06/2009: Secretary Chu proposes 8 Energy Innovation Hubs (idea pre-dates Chu) 

– modeled after research entities like the Manhattan Project (nuclear weapons), Lincoln Lab at MIT (radar), and  

AT&T Bell Labs (transistor) 
• highly-integrated & collaborative teams - solve priority technology challenges to national climate and energy goals 

• problems that have proven the most resistant to solution via the normal R&D enterprise 

• focused, spanning spectrum from basic research through engineering development to partnering with industry in commercialization 

• bring together expertise across the R&D enterprise (gov, academia, industry, non-profits)  

– $25M per yr for 5 years, with possible 5-yr extension 

• 06/25/2009: House bill did not approve any of the proposed Hubs 
– $35M in Basic Energy Sciences for the Secretary to select one Hub 

• 07/09/2009: Senate approves 3 of the proposed hubs, but at $22M 
– Fuels from sunlight (in EERE) 

– Energy efficient building systems (in EERE) 

– Modeling and simulation for nuclear energy systems (in NE) 

• 10/01/2009: Final bill out of conference matches Senate bill 

• 01/20/2010: FOA released, proposals due 03/08/2010 

• 05/27/2010: CASL selected, first funding arrived 07/01/2010 
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The Consortium for Advanced Simulation of Light Water 
Reactors (CASL) 
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Challenges 

• High visibility 

• Geographically-dispersed 

• Diversity of experience 

• Wide range of motivation / priorities 

• Proprietary codes and data 

• Role of commercial codes 

• Export control 
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Nuclear Energy Overview 
Source: Nuclear Energy Institute (NEI) 

• World nuclear power generating capacity 

– 439 plants (U.S.- 104 plants in 31 states) 

– 373 GWe (U.S.- 100.7 GWe, 798.7 TWh in 2009) 

– ~90% capacity factor (>6 GWe added to grid) 

• U.S. electricity from nuclear: 20.2% 

– One uranium fuel pellet provides as much energy as: 
• one ton of coal 

• 149 gallons of oil 

• 17,000 cubic feet of natural gas 

• U.S. electricity demand projected  

to grow 25% by 2030 

– 2007: 3.99 TWh 

– 2030: 4.97 TWh 

• nuclear accounts for 73% of  

emission-free electricity in US 

U.S. nuclear industry capacity factors 
1971-2011 (percent) 
Source: www.nei.org  
(Energy Information Administration, 3/12) 
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Anatomy of a Nuclear Reactor 

Power: ~1170 MWe (~3400 MWth) 

Containment Building: 115’ diameter x 156’ high steel / concrete  

Pressure Vessel: 14.4’ diameter x 41.3’ high x 0.72’ thick alloy steel 

Coolant: pressurized water (2250 psia), Tin ~ 545°F, Tout ~ 610°F, 134M lb/h (4 pumps) 

Example: 
Westinghouse  
4-Loop 
Pressurized 
Water Reactor 
(PWR) 
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Anatomy of a Nuclear Reactor 

reactor vessel 

and internals 

17x17 fuel 
assembly 

Core 
• 11.1’ diameter x 12’ high 
• 193 fuel assemblies 
• 107.7 tons of UO2 (~3-5% U235) 

Fuel Assemblies 
• 17x17 pin lattice (14.3 mm pitch) 
• 204 pins per assembly  

Fuel Pins 
• ~300-400 pellets stacked within 12’ high x 0.61 mm 

thick Zr-4 cladding tube 

Fuel Pellets 
• 9.29 mm diameter x ~10.0 mm high 

Fuel Temperatures 
• 4140° F (max centerline) 
• 657° F (max clad surface) 
 

~51,000 fuel pins and over 16M fuel pellets  
in the core of a PWR 

Example: Westinghouse 4-Loop 
Pressurized Water Reactor (PWR) 
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CASL mission is to improve reactor performance 
(initially currently-operating LWRs) 

Power uprates Lifetime extension Higher burnup 

• 5–7 GWe delivered  
at ~20% of new reactor cost 

• Advances in M&S needed to 
enable further uprates (up to 20 
GWe) 

• Key concerns: 

– Damage to structures, systems, 
and components (SSC) 

– Fuel and steam generator 
integrity 

– Violation of safety limits 

• Reduces cost of electricity 

• Essentially expands existing nuclear 
power fleet 

• Requires ability to predict structures, 
systems, and components aging and life-
cycle management 

• Key concerns: 

– Effects of increased radiation and aging 
on integrity of reactor vessel and 
internals 

– Ex-vessel performance  
(effects of aging on containment and 
piping) 

– Significant financial decisions  
to support operation beyond 60 years 
must be made in ~5 yrs 

• Supports reduction in amount of used 
nuclear fuel 

• Supports uprates by avoiding need 
for additional fuel 

• Key concerns: 

– Cladding  
integrity 

– Fretting 

– Corrosion/  
CRUD 

– Hydriding 

– Creep 

– Fuel-cladding  
mechanical  
interactions 
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CASL Challenge Problems 

* Edsinger, Stanek, Wirth, JOM 63, no. 8 (2011) 

Fuel failure modes provide motivation for CASL activities 

Summary of 
US fuel failure 
mechanisms 
(2000-2008) 
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Grid-to-Rod-Fretting (GTRF) 
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CRUD-induced power shift (CIPS) 
• deviation in axial power shape 

– Cause: boron uptake in CRUD deposits  

in high power density regions with subcooled boiling 

– affects fuel management and thermal margin in many plants 

• power uprates will increase potential for CRUD growth 

Need: Multi-physics chemistry, flow, and 

neutronics model to predict CRUD growth 

CRUD deposits 
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• Flexible coupling  
of physics components 

• Toolkit of components 
– Not a single executable 

– Both legacy  
and new capability 

– Both proprietary  
and distributable 

• Attention to usability 

• Rigorous software 
processes 

• Fundamental focus on V&V 
and UQ 

• Development guided  
by relevant challenge 
problems 

• Broad applicability 

 

• Scalable from high-end 
workstations to existing and 
future HPC platforms 

– Diversity of models, 
approximations, algorithms 

– Architecture-aware 
implementations 

Virtual Environment for Reactor Applications (VERA) 
A suite of tools for scalable simulation of nuclear reactor core behavior 

Chemistry 
(crud formation, 

corrosion) 

Mesh Motion/ 
Quality  

Improvement 

Multi-resolution 
Geometry 

Multi-mesh 
Management 

Fuel Performance 
(thermo-mechanics, 
materials models) 

Neutronics 
(diffusion, transport) 

Reactor System 

Thermal Hydraulics 
(thermal fluids) 

Structural 
Mechanics 

Multiphysics 
Integrator 
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Lightweight Integrating Multiphysics Environment (LIME) 

Base LIME 
software 

Physics 
Component A 

Model  
Evaluator  

Physics 
Component C 

Model  
Evaluator 

Physics 
Component B 

Multi-Physics 
Driver 

Input File(s) Input File(s) Input File(s) 

Trilinos, NOX 
Solver Library 

Input 
Files 
(xml) 

Dakota 
Sensitivity, UQ 

Model  
Evaluator 

Problem 
Manager 

“Plug 

and 

Play!” 

https://sourceforge.net/projects/lime1/ 
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Writing software is easy 

• “Writing songs is easy. Writing great songs is hard.” 
– Bono (?  couldn’t verify) 

• Writing software is easy. Writing great software is hard. 

single author collocated team 
geographically-

dispersed team 

self targeted broad community 

research / 

exploration 
prototype 

regulatory 

environment 
production 

serial 
shared-memory 

parallel heterogeneous 
distributed-memory 

parallel 

developers 

users 

deployment 

platform(s) 

Easier Harder 

CASL 
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CFD is required for several challenge problems (GTRF, CRUD/CIPS) - 
remainder of presentation focuses on neutronics… 



20 

• We solve the first-order form of the transport equation: 

– Eigenvalue form for multiplying media (fission): 

 

 

 

 

– T-H coupling comes through the temperature-dependent 

material cross sections 

• Total number of unknowns in solve: 

–   

• An ideal (conservative) estimate. 

– (238) x (1x109) x (4) x (288) x (16) 

Discrete Ordinates Methods for Neutron Behavior 
Eigenvalue Solvers 

Power iteration 

Arnoldi 

Shifted-inverse 

Multigroup Solvers 
Gauss-Seidel 

Residual Krylov 

Gauss-Seidel + Krylov 

Within-group Solvers 
Krylov 

Residual Krylov 

Source iteration 
unknowns > 4 x 1015 
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Current State-of-the-Art in Reactor Neutronics 
Pin cell (single fuel pin) 

• 0/1-D transport 

• high energy fidelity (102-5 unknowns) 

• approximate state and BCs 

 

Lattice cell (single assembly) 

• 2-D transport 

• moderate energy fidelity (7-102 groups) 

• approximate state and BCs 

• depletion with spectral corrections 

• space-energy homogenization 

 

Full core 

• 3-D diffusion 

• low energy fidelity (2-4 groups) 

• homogeneous lattice cells 

• heterogeneous flux reconstruction 

• coupled physics 
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Can we approach resolution/fidelity of current 2D analysis in 
3D for full core analysis? 
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PWR-900 Whole-Core Reactor Problem 

• 2 and 44-group, homogenized fuel pins 

• 2×2 spatial discretization per fuel pin 

• 17×17 fuel pins per assembly 

• 289 assemblies 

– 157 fuel, 132 reflector 

– high, med, low enrichments 

• Space-angle unknowns: 

– 233,858,800 cells 

– 128 angles (1 moment) 

– 1 spatial unknown per cell 
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Performance at scaling on ORNL Titan (Cray XK6) 

• full partitioning scales well to 

275K cores 

• improved interconnect + 

reduce-scatter have 

dramatically reduced global 

reduction cost 

• upscatter partitioning more 

efficient at lower set counts 

• roll-over occurs between 4 

and 11 sets (5 and 2 groups 

per set) where serial work in 

GS solver dominates 

• Constant number of blocks = 12,544 

• 44 total groups/22 coupled groups 
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What does this mean? 

Where we want to be… Where we are… 
• reproduce fidelity of 2D calculations using 

consistent 3D methods 

• produce all state-points for an 18-month 
depletion cycle in O(8 hours) 

• O(72) state points per cycle (1 week steps) 

• steady-state, coupled neutronics simulation 
with T-H feedback = O(1019) unknowns 

• assuming 2% peak, we can solve 1.7×1013 
unknowns/hour (XT5) 

• we can solve a reduced 3D problem (O(1015) 
unknowns) in 175 hours 

– assumes status quo on a 1 PF/s XT5 machine 

So… 

• to reach 2D fidelity at 3D we need to solve ~104x more unknowns 

• to run all state points in one day at this fidelity using existing code and 

methods would require ~140 EF/s 
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Is it hopeless? 
• according to industry partners, a fully-consistent 3D calculation 

in 1 week would be acceptable 

– factor of 7 (20 EF/s) 

• valuable insight possible without reproducing full 2D fidelity 

– factor of 150-200 (100 PF/s) 

• utilize GPUs 

– if current projections hold, we can potentially get a factor of 3x-4x 

improvement by executing sweep kernels on the GPU 

• further solver research (multigrid-in-energy) shows promise for 

reducing iteration counts as well 

a 30-40 PF/s machine could allow fully-

consistent, 3-D neutronics simulations 
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Performance 

Improvement 

factors 

GPU 

XK6 Fermi 

CPU 
XK6 / Interlagos 3.5 

XE6 / dual Interlagos 3.3 
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GPU Sweep Kernel 

• Krylov multigroup solvers allow space-

angle sweeps to be performed over all 

groups concurrently 

• ideal for exploiting thread-based 

concurrency on GPUs 

• space-angle sweep for all groups on GPU 
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Future large-scale systems present challenges  
for applications 
• Dramatic increases in node parallelism 

– 10 to 100 by 2015 

– 100 to 1000 by 2018 

• Increase in system size contributes to 

lower mean time to interrupt (MTTI) 

• Dealing with multiple additional levels of 

memory hierarchy 

– Algorithms and implementations that 

prioritize data movement over compute 

cycles 

• Expressing this parallelism and data 

movement in applications 

– Programming models and tools are 

currently immature and in a state of flux Exascale Initiative Steering Committee 
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desktop 

Intel 48-core experimental  
chip shipped in 2010 

NVIDIA 512-”core”  
Fermi GPU 

Over the life of CASL, these challenges will become 
increasingly significant at the desktop level 

NVIDIA Tegra 3 

designed for mobile devices, 

but will be used in next HPC 

system at Barcelona 

Supercomputing Center 
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Questions? http://www.casl.gov/  -or-  info@casl.gov 

DENOVO 12x12 

DENOVO 50x50 

DeCART 
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Supplemental 
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CASL Technical Focus Areas 

CASL  
industry 
partners 

and beyond 

Validation and  
Uncertainty  

Quantification (VUQ) 

Advanced  
Modeling 

Applications 
(AMA) 

 fuel microstructure 

 clad / internals 
microstructure 

 corrosion 

 CRUD deposition 

 failure modes 

Radiation Transport  
Methods (RTM) 

and 
Thermal-Hydraulic  

Methods (THM) 

 coupled physics 
environment 

 workflow & usability 

 programming model 

Materials 
Performance  

and  
Optimization 

(MPO) 

Virtual  
Reactor  

Integration 
(VRI) 

 neutron behavior 

 fluid flow and heat transfer 

All Focus Areas span institutions (labs, universities, industry) 

 V&V and calibration 
through data assimilation 

 sensitivity analysis and 
uncertainty quantification 

 requirements 

 physical reactor qualification 

 challenge problem application 

 validation 

 NRC engagement 
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• Flexible coupling  
of physics components 

• Toolkit of components 
– Not a single executable 

– Both legacy  
and new capability 

– Both proprietary  
and distributable 

• Attention to usability 

• Rigorous software 
processes 

• Fundamental focus on V&V 
and UQ 

• Development guided  
by relevant challenge 
problems 

• Broad applicability 

 

• Scalable from high-end 
workstation  
to existing and future HPC 
platforms 

– Diversity of models, 
approximations, algorithms 

– Architecture-aware 
implementations 

Virtual Environment for Reactor Applications (VERA) 
A suite of tools for scalable simulation of nuclear reactor core behavior 

Chemistry 
(crud formation, 

corrosion) 

Mesh Motion/ 
Quality  

Improvement 

Multi-resolution 
Geometry 

Multi-mesh 
Management 

Fuel Performance 
(thermo-mechanics, 
materials models) 

Neutronics 
(diffusion, transport) 

Reactor System 

Thermal Hydraulics 
(thermal fluids) 

Structural 
Mechanics 

Multiphysics 
Integrator 

Missing… 

geometry 

material properties 

workflow (analysis / design / optimization) 

mesh generation 
input / user interface 



34 

CASL has embraced Agile software development processes 

• users prioritize goals 

• team determines work 

assignments 

• deliver and demonstrate to users 

• review and plan next iteration 

• two 30-minute standup 
meetings each week 

  End   Execute      Start 

Desirable attributes 

• emphasis on collaboration and adaptability 

• constant communication / interaction 

– both within team and with user community 

• accommodates changing requirements & 
unpredictability  

Agility + Formality 
Scrum: http://en.wikipedia.org/wiki/Scrum_%28development%29 

• based on methodologies being used by partners 
– combine attributes of Scrum and Kanban methodologies 

– customized for CASL and refined as needed (iteratively) 

• enabled diverse team to be productive very quickly 
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CASL advanced CRUD modeling predictions 

Boron concentration Crud deposition 

605 K 

585 K 

595 K 

100° 200° 300° 

Large azimuthal variation in 
fluid/cladding temperature 

Fuel  
pin 4 

• Colored contours: boron 
concentration within crud layer 

• Findings:  

– Crud thickness and boron vary 
with T variations on cladding 
surface 

– Crud and boron reduced by 
turbulence behind mixing vanes 

Fuel rod  
(80 cm section) 

Spacer with mixing vanes 


