- \,
Lars Nyland — Architecture,, =~ s
Stephen Jones — CUDA 575 <X nv DIAX:.
NVIDIA Corporation : \ |

-

Welcome the Kepler GK110 GPU

Performance

Programmability

Power vs Clock Speed Example

Logic Clocking

Area Power Area Power

Fermi
2x clock

1.8x . (N0)’

1x clock

SMX Balance of Resources

Resource Kepler GK110 vs Fermi

Floating point throughput 2-3x
Max Blocks per SMX 2x
Max Threads per SMX
Register File Bandwidth
Register File Capacity
Shared Memory Bandwidth

Shared Memory Capacity

New ISA Encoding: 255 Registers per Thread

* Fermi limit: 63 registers per thread
® A common Fermi performance limiter
Leads to excessive spilling

* Kepler : Up to 255 registers per thread
Especially helpful for FP64 apps

* Ex. Quda QCD fp64 sample runs 5.3x faster
® Spills are eliminated with extra registers

New High-Performance SMX Instructions

SHFL (shuffle) -- Intra-warp data exchange -

instructions:

A o
O bit rotate
ATOM -- Broader functionality, Faster O fp32 division
0 read-only cache

New Instruction: SHFL

Data exchange between threads within a warp

Avoids use of shared memory
One 32-bit value per exchange
4 variants:

shfl() shﬂ I" up() __shfl down() _shil xor()

e g

Indexed Shift right to nth Shift left to nth neighbour Butterfly (XOR)
any-to-any neighbour exchange

SHFL Example: Warp Prefix-Sum

__global__ void shfl_prefix_sum(int *data)
{
int id = threadIdx.x;
int value = data[id]; n=__shfl_up(value, 1)
int lane_id = threadIdx.x & warpSize;
value +=n
// Now accumulate in log2(32) steps
i <=width; 1*=

n=__shfl_up(value, 2)

value +=n
n=__shfl_up(value, 4)

value +=n

// Write out our result
data[id] = value;

ATOM instruction enhancements

Added int64 functions to 2 — 10x performance gains
match existing int32 Shorter processing pipeline
More atomic processors
Slowest 10x faster

Fastest 2x faster

Atom Op int32 int64
add

cas

exch

min/max

and/or/xor

High Speed Atomics Enable New Uses

Atomics are now fast enough to use within inner loops
Example: Data reduction (sum of all values)

Without Atomics

Divide input data array into N sections

Launch N blocks, each reduces one
section

Output is N values

Second launch of N threads, reduces
outputs to single value

High Speed Atomics Enable New Uses

Atomics are now fast enough to use within inner loops
Example: Data reduction (sum of all values)

With Atomics

Divide input data array into N sections

Launch N blocks, each reduces one
section

Write output directly via atomic.
No need for second kernel launch.

Texture performance

Texture :

Provides hardware accelerated filtered
sampling of data (1D, 2D, 3D)

Read-only data cache holds fetched samples
Backed up by the L2 cache

Read-only

i ») h
SMX vs Fermi SM : ata Cache

4x filter ops per clock
4x cache capacity

Texture Cache Unlocked

Added a new path for compute
Avoids the texture unit
Allows a global address to be fetched and cached
Eliminates texture setup
Why use it?
Separate pipeline from shared/L1
Highest miss bandwidth
Flexible, e.g. unalighed accesses

Managed automatically by compiler
“const __ restrict” indicates eligibility

A

Read-only
Data Cache

)

L2

const _ restrict Example

. __global__ void saxpy(float x, float y,
AnnOtate ellglble kernel const float * restrict input,

parameters with float * output)
const _ restrict

size_t offset = threadIdx.x +
(blockIdx.x * blockDim.x);

Compiler will automatically // Compiler will automatically use texture

_ // for "input"
map loads to use read onIy output[offset] = (input[offset] * x) + y;
data cache path

Kepler GK110 Memory System Highlights

Efficient memory controller for GDDR5
Peak memory clocks achievable

More L2
Double bandwidth
Double size

More efficient DRAM ECC Implementation

* DRAM ECC lookup overhead reduced by 66%
(average, from a set of application traces)

Bonsai GPU Tree-Code

Journal of Computational Physics,
231:2825-2839, April 2012

Jeroen Bédorf, Simon Portegies Zwart
Leiden Observatory, The Netherlands
Evghenii Gaburov
CIERA @ Northwestern U.
SARA, The Netherlands

Galaxies generated with: Galatics
Widrow L. M., Dubinksi J., 2005,

Astrophysical Journal, 631 838

Sterrewacht
Leiden

Improving Programmability

Library Calls from Kernels

A o P
| Simplify CPU/GPU Divide — TOgrasiiim
; n?mabiﬁfjr)

Batching to Help Fill GPU _
T Dynamic

Occupancy

Dynamic Load Balancing Parallelism

| Data-Dependent Execution

Recursive Parallel Algorithms

What is Dynamic Parallelism?

The ability to launch new grids from the GPU

Dynamically
Simultaneously
Independently

N

— —

Fermi: Only CPU can generate GPU work

N
3 B P

Kepler: GPU can generate work for itself

What Does It Mean?

GPU

GPU as Co-Processor Autonomous, Dynamic Parallelism

Data-Dependent Parallelism

Computational
Power allocated to
regions of interest

|ENEEEEEN]
|ENEEEN]

AL rrr
| 1 |

CUDA Today CUDA on Kepler

Dynamic Work Generation

Initial Grid

Statically assign conservative
worst-case grid

Dynamically assign p
where accuracy Is

Fixed Grid

- ML
———-..------u-ﬁnlu--is---
o O O Y O O O = L o ol
-y | T
ESSaaae o L

== b

Dynamic Grid

Batched & Nested Parallelism

CPU Control Thread

CPU-Controlled Work Batching v

dgetf2
CPU programs limited by single v
point of control CPU Control Thread

dswap

Can run at most 10s of threads AR
CPU Control Thread

CPU is fully consumed with dtrsm

controlling launches ¥
CPU Control Thread

dgemm

v

CPU Control Thread
Multiple LU-Decomposition, Pre-Kepler

Algorithm flow simplified for illustrative purposes

Batched & Nested Parallelism

. . i) CPU Control Thread
Batching via Dynamic Parallelism < >
Move top-level loops to GPU Ut £ GPUJ_\Comml =

Thread Thread Thread

dgetf2 dgetf2 dgetf2

Run thousands of independent tasks T I "

dswap dswap dswap

Release CPU for other work i v

v v

2 CPU Control Thread

Batched LU-Decomposition, Kepler

Algorithm flow simplified for illustrative purposes

Grid Management Unit

Stream Queue Mgmt
R

Q
=}

Work Distributor

16 active grids

CUDA
Generated
Work

Stream Queue Mgmt

R

Q

P

¢
A S

Grid Management Unit
Pending & Suspended Grids

| 1000s of pending grids |

!

Work Distributor

| 32 active grids |

VA"

SMX SMX

Kepler GK110

Fermi Concurrency

P-Q-R

ABC PQa@® DYz

Hardware Work Queue

Stream 2

A-B--C
/ Stream 1
<

X--Y-2Z

Stream 3

Fermi allows 16-way concurrency
Up to 16 grids can run at once
But CUDA streams multiplex into a single queue
Overlap only at stream edges

Kepler Improved Concurrency

A-B--C

Stream 1

P-Q-R

Stream 2

X--Y--Z

Multiple Hardware Work Queues

X--Y-2Z

Stream 3

Kepler allows 32-way concurrency
One work queue per stream
Concurrency at full-stream level
No inter-stream dependencies

Fermi: Time-Division Multiprocess

Shared GPU

Fermi: Time-Division Multiprocess

Fermi: Time-Division Multiprocess

Shared GPU

Fermi: Time-Division Multiprocess

Shared GPU

Fermi: Time-Division Multiprocess

Shared GPU

Fermi: Time-Division Multiprocess

O)

Shared GPU

Fermi: Time-Division Multiprocess

Shared GPU

Fermi: Time-Division Multiprocess

Hyper-Q: Simultaneous Multiprocess

Shared GPU

)

)

UODENEEE
]

SR

OODDDEEEE EN

O)

Without Hyper-Q

100

R
c
o
-
©
N
=
>
>
o
O

O
-
(b
o
>

L

=

M o

% uonezinn NdO

Whitepaper: http://www.nvidia.com/object/nvidia-kepler.htmi

