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GPGPU Revolutionizes Computing

Latency Processor + Throughput processor




Low Latency or High Throughput? <.

CPU

100s of ALUs

100s of ALUs

~ GPU

® Optimized for low-latency * Optimized for data-parallel,
access to cached data sets throughput computation

¢ Control logic for out-of-order ¢ Architecture tolerant of
and speculative execution memory latency

® More transistors dedicated to
computation



Low Latency or High Throughput? <

® CPU architecture must minimize latency within each thread
* GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor — High Throughput Processor Computation Thread/Warp

Th }Processing

Waiting for data

Ready to be processed

CPU core — Low Latency Processor
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CPU Memory
Copy input data from CPU memory to GPU memory
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Processing Flow <.

GigaThread™

|
|

PCle Bus

CPU Memory

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,
caching data on chip for performance




Processing Flow <.

GigaThread™

=

PCle Bus

Copy input data from CPU memory to GPU memory
Load GPU program and execute,

caching data on chip for performance

Copy results from GPU memory to CPU memory



OpenACC and CUDA >

* OpenACC enables a compiler to target annotated C or Fortran
code to accelerators such as NVIDIA CUDA-capable GPUs

* Note: CUDA refers to both a parallel computing platform and a
parallel programming model






GPU Architecture: <3

NVIDIA

Two Main Components

® Global memory
* Analogous to RAM in a CPU server
® Accessible by both GPU and CPU
® Currently up to 6 GB
«

Bandwidth currently up to almost 180 GB/s for Tesla
products |

* ECC on/off option for Quadro and Tesla products

/1 Nvdd

® Streaming Multiprocessors (SMs) E
® Perform the actual computations -

® Each SM has its own: |
® Control units, registers, execution pipelines, caches l
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GPU Architecture - Fermi:

Streaming Multiprocessor (SM)

¢ 32 CUDA Cores per SM
* 32 fp32 ops/clock
* 16 fp64 ops/clock
® 32 int32 ops/clock

® 2 warp schedulers

* Up to 1536 threads
concurrently

* 4 special-function units
® 64KB shared mem + L1 cache
* 32K 32-bit registers




GPU Architecture - Fermi:
CUDA Core

Floating point & Integer unit
IEEE 754-2008 floating-point

standard
Fused multiply-add (FMA) CUDA Core
instruction for both single and Sispatch Port
double precision rand Collector
| osieunt --
i FP Unit INT Unit
¢ Move, compare unit

* Branch unit resit e

<3

nvibia
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CUDA PROGRAMMING MODEL REVIEW



Anatomy of a CUDA Application >

* Serial code executes in a Host (CPU) thread

® Parallel code executes in many Device (GPU) threads
across multiple processing elements

CUDA Application

Host = CPU
Serlal code ?

Device = GPU

Host = CPU

Device = GPU




CUDA Kernels 2

Parallel portion of application: execute as a kernel
Entire GPU executes kernel, many threads

* CUDA threads:
* Lightweight
* Fast switching
* 1000s execute simultaneously

CPU Host Executes functions
GPU Device Executes kernels




NVIDIA

CUDA Kernels: Parallel Threads >

=
.

A kernel is a function executed
on the GPU as an array of HEETREN

threads in parallel

float x = input[threadldx.x];

* All threads execute the same float y = func(x);
code, can take different paths

output[threadldx.x] = y;

¢ Each thread has an ID 3\
* Select input/output data \
® Control decisions :
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CUDA Kernels: Subdivide into Blocks 2
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* Threads are grouped into blocks
¢ Blocks are grouped into a grid



CUDA Kernels: Subdivide into Blocks
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* Threads are grouped into blocks
¢ Blocks are grouped into a grid

® A kernel is executed as a grid of blocks of threads



CUDA Kernels: Subdivide into Blocks >

GO

* Threads are grouped into blocks

* Note: Adjacent threads execute in lock-step scheduling groupings called warps; a block
comprises one or more warps

* Blocks are grouped into a grid
® A kernel is executed as a grid of blocks of threads



Kernel Execution <2

CUDA thread CUDA core » Each thread is executed by a
§ — I core

» Each block is executed by

CUDA Streaming one SM and does not migrate
CUDA thread block Multiprocessor  Several concurrent blocks can

- reside on one SM depending
- I I I I on the blocks’ memory
requirements and the SM’s
memory resources

CUDA-capable GPU

* Each kernel is executed on
I one device
I I I I » Multiple kernels can execute

on a device at one time

CUDA kernel grid




Thread blocks allow cooperation <,

* Threads may need to cooperate:

* Cooperatively load/store blocks of memory that they all
use

* Share results with each other or cooperate to produce a
single result

* Synchronize with each other



Thread blocks allow scalability <

* Blocks can execute in any order, concurrently or sequentially

* This independence between blocks gives scalability:
* A kernel scales across any number of SMs

Kernel Grid
Launch

Device with 2 SMs Block 0 Device with 4 SMs

SM 0 SM 1 Elwelil SM 0 SM 1 SM 2 SM 3

Block O Block 1 Block 2 Block O Block 1 Block 2 Block 3

Block 2 Block 3 Elgele Block 4 Block 5 Block 6 Block 7
Block 4 Block 5 Blloslcn

Block 6 Block 7 Bllae s
Block 6

Block 7







OpenACC Execution Model <3

nvibia

* The OpenACC execution model has three levels:
gang, worker, and vector

* Allows mapping to an architecture that is a collection of
Processing Elements (PEs)

® One or more PEs per node
¢ Each PE is multi-threaded
* Each thread can execute vector instructions



OpenACC Execution Model on CUDA

* The OpenACC execution model has three levels:

)

-

gang, worker, and vector

For GPUs, the mapping is implementation-dependent.
Some possibilities:
® gang==block, worker==warp, and vector==threads of a warp
* omit “worker” and just have gang==block, vector==threads of a block

Depends on what the compiler thinks is the best mapping for
the problem

=

nvibia



OpenACC Execution Model on CUDA >

* The OpenACC execution model has three levels:
gang, worker, and vector

* For GPUs, the mapping is implementation-dependent.

* ...But explicitly specifying that a given loop should map to
gangs, workers, and/or vectors is optional anyway
* Further specifying the number of gangs/workers/vectors is also optional

* So why do it? To tune the code to fit a particular target architecture in
a straightforward and easily re-tuned way.
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Profiling Tools

Use compiler output to determine how loops were mapped onto
the accelerator
Not exactly “profiling”, but it’s helpful information that

a GPU-aware profiler would also have given you
* PGI: Use PGI_ACC_TIME option to learn where time is being spent
* NVIDIA Visual Profiler

¢ 3rd-party profiling tools that are CUDA-aware
® (But those are outside the scope of this talk)



PGl Accelerator compiler output >N

Accelerator kernel generated

57, #pragma acc loop gang, vector /* blockIdx.y threadidx.y */

60, #pragma acc loop gang, vector /* blockIdx.x threadIdx.x */

CC 1.3 : 16 registers; 2112 shared, 40 constant, 0 local memory bytes; 100% occupancy
CC 2.0 : 19 registers; 2056 shared, 80 constant, 0 local memory bytes; 100% occupancy

Se=gw



PGl Accelerator profiling <.

¢ Compiler automatically instruments the code, outputs profile data
* set PGI_ACC_TIME=1

Accelerator Kernel Timing data
./laplace2d.c
main
66: region entered 1000 times
time(us): total=5515318 init=110 region=5515208
kernels=5320683 data=0
w/0 init: total=5515208 max=13486 min=5269 avg=5515
70: kernel Tlaunched 1000 times
grid: [16x512] block: [32x8]
time(us): total=5320683 max=5426 min=5200 avg=5320
./laplace2d.c
main
53: region entered 1000 times
time(us): total=6493657 init=171 region=6493486
kernels=5108494 data=0



PGl Accelerator profiling <,

Compiler automatically instruments the code, outputs profile data

Provides insight into API-level efficiency
How many bytes of data were copied in and out?
How many times was each kernel launched, and how long did they take?
* What kernel grid and block dimensions were used?



PGI Accelerator profiling

Total time: 13.874673 s

Accelerator Kernel Timing data
./laplace2d.c main
68: region entered 1000 times
time(us): total=4903207 init=82 region=4903125
kernels=4852949 data=0
w/0 init: total=4903125 max=5109 min=4813 avg=4903
71: kernel Tlaunched 1000 times
grid: [256x256] block: [16x16]
time(us): total=4852949 max=5004 min=4769 avg=4852
./1laplace2d.c main
56: region entered 1000 times
time(us): total=8701161 init=57 region=8701104
kernels=8365523 data=0
w/0 init: total=8701104 max=8942 min=8638 avg=8701
59: kernel launched 1000 times
grid: [256x256] block: [16x16]
time(us): total=8222457 max=8310 min=8212 avg=8222
63: kernel Taunched 1000 times
grid: [1] block: [256]
time(us): total=143066 max=210 min=141 avg=143
./1aplace2d.c main
50: region entered 1 time
time(us): total=13874525 init=162566 region=13711959
data=64170
w/0 init: total=13711959 max=13711959 min=13711959 avg=13711959

<3

NVIDIA

<[ Memcpy loop, taking
4.9s out of 13s

‘[ Main computation loop,
taking 8.7s out of 13s

Enclosing while loop
< data region. Takes
13.7s, nearly the entire
execution time



PGl Accelerator profiling >N

59: kernel launched 1000 times
grid: [256x256] block: [16x16]
time(us): total=8222457 max=8310 min=8212 avg=8222




Mapping OpenACC to CUDA threads and blocks <

#pragma acc kernels loop

for( int i =0; i < n; ++1 ) y[i1] += a*x[i];

#pragma acc kernels loop gang(100), vector(128)

for( int i =0; i < n; ++1 ) y[i] += a*x[i1];

#pragma acc parallel num_gangs(100), vector_length(128)

{

#pragma acc loop gang, vector
for( int i = 0; 1 < n; ++1 ) y[i] += a*x[i];

nvibia

Uses whatever mapping to
< threads and blocks the compiler
chooses. Perhaps 16 blocks, 256
threads each

( 100 thread blocks, each with 128
4 threads, each thread executes one
iteration of the loop, using kernels

[ 100 thread blocks, each with 128
threads, each thread executes one
iteration of the loop, using parallel



Mapping OpenACC to CUDA threads and blocks <

NVIDIA

#pragma acc parallel Toop num_gangs(100)
{

for( int i = 0; 1 < n; ++1 ) y[i] += a*x[i];

} [ 100 thread blocks, each with
4 apparently 1 thread, each thread

redundantly executes the loop

#pragma acc parallel num_gangs(100)
{
#pragma acc loop gang
for( int i = 0; i < n; ++i ) y[i] += a*x[i];



Mapping OpenACC to CUDA threads and blocks >

NVIDIA

n = 12800;

' 1 h lock '
#pragma acc kernels loop gang(100), vector(128) 4 th?gazsre:gctr)l ?r?resa’l dezire]gtljltt:slc?r?e

forC int i = 0; i < n; ++i ) y[i] += a*x[i]; iteration of the loop

#pragma acc kernels loop gang(50), vector(128) <' ?grt:a:gzdIEballcc)ﬁkt?\’rgzghd\(l)vétsht\%VZOS

for( int i = 0; i < n; ++i ) y[i] += a*x[i];
elements worth of work




Mapping OpenACC to CUDA threads and blocks >

NVIDIA

Nested loops generate multi-dimensional blocks and grids:

#pragma acc kernels loop gang(100), vector(16)
for( .. )

#pragma acc loop gang(200), vector(32)
for( .. )




Selecting block size (e.g., vectors per gang) &,

* Total number of threads in a block between 256 and 512

is usually a good number

Overly small blocks will limit the # of concurrent threads due to
limitation on maximum # of concurrent blocks/SM

Overly large blocks can hinder performance, e.g., by increasing cost
of any synchronizations/barrier among all the threads in a block

* All CUDA-capable GPUs to date prefer # threads per block
to be a multiple of 32 if possible

® ...Since 32 threads is the warp size of current CUDA-capable GPUs
* Non-multiples of 32 waste some resources and cycles

® Furthermore, a multiple of 32 threads wide (x-dimension) is best
(facilitates coalesced memory access to adjacent memory addresses)



Selecting block size (e.g., vectors per gang) &,

* Total number of threads in a block between 256 and 512
is usually a good number

* All CUDA-capable GPUs to date prefer # threads per block
to be a multiple of 32 if possible

® So if we have 2D blocks, let’s try a few combinations like
32x8, 64x4, 32x16, 64x8...



An aside on warps <

Blocks are divided into 32-thread-wide groups called warps
Size of warps is architecture-specific and can change in the future

* The SM creates, manages, schedules and executes threads at warp
granularity

* All threads in a warp execute the same instruction at once
* In case of divergence, the warp serially executes each branch path taken

* When accessing global memory, the accesses of the threads
within a warp are coalesced into as few transactions as possible



Selecting grid size (e.g., number of gangs) <

* Most obvious mapping is to have # of gangs times # of workers
times # of vectors equal the total problem size

* We just saw that we can choose to manipulate this number so
that each thread could do multiple pieces of work
* Helps amortize the cost of setup for simple kernels

-

What is the limit on how small we can/should go?

* We at least want to have enough threads to fill the GPU several times over
(perhaps 10 times or more), meaning we need 100,000+ threads.



PGl Accelerator compiler output >

NVIDIA

Accelerator kernel generated

57, #pragma acc loop gang, vector(8) /* blockIdx.y threadidx.y */

60, #pragma acc loop gang(16), vector(32) /* blockIdx.x ‘threadIdx.x */

CC 1.3 : 16 registers; 2112 shared, 40 constant, 0 local mdgory bytes; 100% occupancy
CC 2.0 : 19 registers; 2056 shared, 80 constant, 0 local mem bytes; 100% occupancy




PGl Accelerator profiling:
Recall earlier example...

Total time: 13.874673 s

Accelerator Kernel Timing data
./1aplace2d.c main
68: region entered 1000 times
time(us): total=4903207 init=82 region=4903125
kernels=4852949 data=0
w/0 init: total=4903125 max=5109 min=4813 avg=4903
71: kernel Tlaunched 1000 times
grid: [256x256] block: [16x16]
time(us): total=4852949 max=5004 min=4769 avg=4852
./1laplace2d.c main
56: region entered 1000 times
time(us): total=8701161 init=57 region=8701104
kernels=8365523 data=0
w/0 init: total=8701104 max=8942 min=8638 avg=8701
59: kernel Taunched 1000 times
grid: [256x256] block: [16x16]
time(us): total=8222457 max=8310 min=8212 avg=8222
63: kernel launched 1000 times
grid: [1] block: [256]
time(us): total=143066 max=210 min=141 avg=143
./1aplace2d.c main
50: region entered 1 time
time(us): total=13874525 init=162566 region=13711959
data=64170

w/0 init: total=13711959 max=13711959 min=13711959 avg=13711959

=

NVIDIA



Example: Jacobi Iteration >

Iteratively converges to correct value (e.g. Temperature), by
computing new values at each point from the average of
neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: V2f(x,y) = 0

A(i+1,])
®

e e A=
(]'17J) A(];J) A(]+1’J) 4’

®
A(i,j-1)



Jacobi Iteration <

* Task: use knowledge of GPU architecture to improve performance
by specifying gang and vector clauses



Jacobi Iteration: OpenACC C v1

#pragma acc data copy(A), create(Anew)
while ( err > tol & 1iter < iter_max ) {
err=0.0;

#pragma acc kernels loop reduction(max:err)
forC int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * CA[jI1[i+1] + A[jI[i-1] +
A[J-11[1]1 + A[J+11[i1);

err = max(err, fabsCAnew[jl[i] - A[JI1[iD);
}
}

#pragma acc kernels loop
forCint j =1; j < n-1; j++) {
forCint 1 =1; i < m-1; i++ ) {
A[31[i] = Anew[jI[i];
}
}

iter++;

}

3

NVIDIA



Jacobi Iteration: OpenACC C v2 <.

#pragma acc data copy(A), create(Anew)
while ( err > tol & 1iter < iter_max ) {

err=0.0; ;
[ Leave compiler to choose
#pragma acc kernels Tloop reduction(max:err) < Y dimension for grids
forCint j =1; j < n-1; j++) { and blocks.
#pragma acc loop gang(16) vector(32) \
For(int i = 1; i < m-1; i++) { ' Grids are 16 blocks wide,
. . . blocks are 32 threads
Anew[j][i] = 0.25 * (A[JI[1+1] + A[J][i-1] + wide
A[J-11[1]1 + A[J+11[iD);
err = max(err, fabsCAnew[jl[i] - A[JI1[iD);
}
} (Leave compiler to choose
forC1int j =1; j < n-1; j++) { v ) Lo s

#pragma acc loop gang(16) vector(32)

RIPAC WS 170 T A s iy e ) el | Grids are 16 blocks wide,

} ALITT = Anew[3][11; < blocks are 32 threads
} wide
iter++;

}



Jacobi Iteration: OpenACC Fortran v1 <.

1$acc data copy(A), create(Anew)
do while ( err > tol .and. iter < iter_max )
err=0._fp_kind

1$acc kernels loop reduction(max:err)
do j=1,m
do i=1,n

Anew(i,j) = .25 _fp_kind * CACi+1, j ) + A(i-1, j ) + &
A(-i ’ j_l) + A(-i ’ j+1))

err = max(err, Anew(i,j) - A(i,j))
end do
end do
I$acc end kernels

iter = iter +1
end do
1$acc end data



Jacobi Iteration: OpenACC Fortran v2 <.

I$acc data copy(A), create(Anew)

do while ( err > tol .and. iter < iter_max ) Leave compiler to choose\

err=0._fp_kind Y dimension for grids

1$acc kernels loop reduction(max:err) and blocks.
do j=1,m : : )
$acc loop gang(16), vector(32) < [ Grids are 16 blocks wide,
do i=1,n blocks are 32 threads

wide
Anew(i,j) = .25 _fp_kind * CACi+1, j ) + A(i-1, j ) + &
A(-i ’ j_l) + A(-i ’ j+1))

err = max(err, Anew(i,j) - A(i,j))
end do
end do
I$acc end kernels

iter = iter +1
end do
1$acc end data



Jacobi Iteration: Tune and Re-profile <

* After modifying source code to specify humber of gangs/vectors
(i.e., grid/block dimensions), run again with PGI_ACC_TIME=1

total: 11.135176 s

./laplace2d.c

main
56: region entered 1000 times [ Main computation loop
time(us): total=5568043 1init=68 region=5567975 performance improved
kernels=5223007 data=0 from 8.7s to 5.5s
w/0 init: total=5567975 max=6040 min=5464 avg=5567
60: kernel Taunched 1000 times
grid: [16x512] block: [32x8] : :
time(us): total=5197462 max=5275 min=5131 avg=5197 (G”d size changed from
64: kernel launched 1000 times [256x256] to [16x512]
grid: [1] block: [256] ‘
time(us): total=25545 max=119 min=24 avg=25 Block size changed

from [16x16] to [32x8]



Performance: v1 >

CPU: Intel Xeon X5680 _ |
6 Cores @ 3.33GHz GPU: NVIDIA Tesla M2070

Speedup vs. 1 CPU core

OpenACC GPU 15.65 2. 9X Speedup vs. 6 CPU cores

Note: same code runs in 9.78s on NVIDIA Tesla M2090 GPU



Performance: v2 >

CPU: Intel Xeon X5680 _ |
6 Cores @ 3.33GHz GPU: NVIDIA Tesla M2070

Speedup vs. 1 CPU core

OpenACC GPU 10U.90 5.02X Speedup vs. 6 CPU cores

Note: same code runs in 7.58s on NVIDIA Tesla M2090 GPU



PGl Accelerator profiling <

Compiler automatically instruments the code, outputs profile data

Provides insight into API-level efficiency
How many bytes of data were copied in and out?
How many times was each kernel launched, and how long did they take?
What kernel grid and block dimensions were used?

* Clearly this can help us to tune to fit the architecture better

* What if we want to go even deeper?

* Compiler instrumentation provides relatively little insight (at present) into
how efficient the kernels themselves were



Profiling Tools >

* Need a profiling tool that is more aware of the inner workings of
the GPU to provide deeper insights

* E.g.: NVIDIA Visual Profiler



NVIDIA Visual Profiler >

2] laplace2d - Compute Visual Profiler - [laplace2d exercise 4 - Device 0 - Context 0 [CUDA]] (koliman0.psc.edu) -8 X

2 File Session View Options Window Help
DéE DDQ ERARENOdEE O

- laplace2d exercise 4 B main_62_gpu_red

E main_71_gpu

3 memcpyDtoH

Bl memcpyDtoHasync
3 memcpyHtoD
memset32_alignedlD

GPU Time
0 139190 78 556760 695950 97

Methods

139190 278380 417570 695950 835140

aplace2d exercise 4::Device_0::Context_0 ‘ N Ote: S C reen S h OtS S h OW n

= Kernel time = 87.67 % of total GPU time

= Memory copy time = 5.4 % of total GPU time h ere are fro m CU DA 4.0

= Kernel taking maximum time = main_58_gpu (44 f total GPU time])
= Memory copy taking maximum time = memcpyDtoH (2.8% of total GPU time} - :
= There is no time overlap between memory copies and kernels on GPU VI S u al PrOfI I er

Hint(s)

Analysis

= Double click on the kernel name in the Summary Table to analyze the kernel

Updated profiler looks a

= Consider using page-locked memory to attain higher bandwidth between host and device memory Overuse of pin

may reduce overall system performance. b it d Ifferen t’ b ut C o n C epts
A [ e are the same



Jacobi Iteration: Kernel Profiling <

* Task: use NVIDIA Visual Profiler data to identify additional
optimization opportunities in Jacobi example



Jacobi Iteration: Kernel Profiling <,

laplace2d - Combute Visual Profiler - [laplace2d exercise 4 - Device 0 - Context_o [CUDA]] (koliman0.psc.edu)

- File Session View Options Window Help

Do @ E]IQ ARG E OO = E

Sessions ?IX! [ profiler Qutput l Summary Table DI
‘laplace2d exercise 4
=) Dewce 0

| Method !#Calls ‘GPU tlme (usl 7 i%GPU time !glob mem read throughput !glob mem write throughput glob mem overall throughput
JlOO 535591 7 4417 7 780743 7 o - 341788 - N 112253 - -

main_71_gpu 100 525235 43.32 78.9367 34.4261 113.363

main_62_gpu_red 100 2048.22 016 4.45694 0.0033919 4.46033
memset.32_a|ignedlD 1 5.92 0] 0.416216 0.0108108 0.427027
| memcpyHtoD 101 312472
|memcpyDtoHasync 100 226752
memcpyDtoH 1 334708

; laplace2d exercise 4::Device_0::Context_0

= Kernel time = 87.67 % of total GPU time

= Memory copy time = 5.4 % of total GPU time

= Kernel taking maximum time = main_58_gpu (44.2% of total GPU time)

= Memory copy taking maximum time = memcpyDtoH (2.8% of total GPU time)
= There is no time overlap between memory copies and kernels on GPU

Hint(s)

= Double click on the kernel name in the Summary Table to analyze the kernel

= Analyze kernel main_58_gpu

= Consider using page-locked memory to attain higher bandwidth between host and device memory Overuse of pinned memory should be avoided as it
may reduce overall system performance.
Refer to the "Page-Locked Host Memory" section in the "CUDA C Runtime" chapter of the CUDA C Programming Guide for more details.

Analysis




o

Jacobi Iteration: Kernel Profiling

- main_SS_gpu analysis - [Iaplé(eZd exercise 4 - Devlcé_o - Context 0] (kolimanO.psc.edu)

File View

Analysis

GIa o128 116 512 1]
Block size: [32 8 1]

Limiting Factor

Achieved Instruction Per Byte Ratio: 2.46 [ Balanced Instruction Per Byte Ratio: 3.58 )
Achieved Occupancy. 0.94 ( Theoretical Occupancy. 1.00 )

IPC: 0.86 [ Maximum IPC: 2}

Achieved global memory throughput: 112.25 ( Peak global memory throughput(GB/s): 143.42 )

Hint(s)

= The achieved instructions per byte ratio for the kernel is less than the balanced instruction per byte ratio for the device. Hence. the kernel is likely memory bandwidth limited. For details. click
on Memory ThroughpuBAnalysis.

Factors that may affect analysis

= The counters of type SM are collected only for 1 multiprocessor in the chip and the values are extrapolated to get the behavior of entire GPU assuming equal work distribution. This may result in
some inaccuracy in the analysis in some cases.

= The counters for some derived stats are collected in different runs of application. This may cause some inaccuracy in the derived statistics as the blocks scheduled on each multiprocessor may be
different for each run and for some applications the behavior changes for each run.

= The derived statistics instruction per byte ratio and IPC assume that all instructions are single precision floating point instructions. If the application uses double precision floating point instructions
then the limiting factor predicted here may be incorrect.

Limiting Factor Show all columns

Identification GPU Timestamp {us) % | GPU Time {us} |instructions issued active warps active cycles |12 read requests |12 read texture requests |2 write requests
Type:SM Run:6 Type:SM Run:9 | Type:SM Run:10 | Type:FB | Type:FB

5244418
5244418
5244418
5244418
5244418
5244418
5244418
5244418
5244418

Mem°%;{;§gghp“t 1 |31720 546736 2665034 143406379 3127348 9067972
i IS
2 |4z2978 5463.03 2663980 143580658 3131022 9051004

lnstructi\on lThroughput 3 |54124 5459.23 2669879 143392693 3132306 9086534
nalysis —
5 4 |65194 5469.34 2660765 142677428 3132532 9131096

5 76334 5471.26 2661521 142751952 3122542 9154532
6 87478 5463.42 2657591 142907419 3123614 9170788

7 98600 5478.37 2656277 143022175 3136000 9266760

3 109750 5476.48 2654755 143813456 3131224 9323648
121016 5501.38 2654338 143525077 3142124 9392984

Occupancy Analysis
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Jacobi Iteration: Kernel Profiling

- main_SS_gpu analysis - [Iaplé(eZd exercise 4 - Devlcé_o - Context 0] (kolimanO.psc.edu)
File View

Analysis

Hint{s)

= Memory access pattern is not coalesced. The kernel requested throughput and achieved global memory throughput can be different because of following two reasons:
o Scattered/misaligned pattern: not all transaction bytes are utilized.
o Broadcast: the same transaction serves many requests (due to sector size. cache line size and caching}:
Refer to the "Global Memory" section in the "Performance Guidelines" chapter of the CUDA C Programming Guide for more details.
= The achieved global memory throughput is low compared to the peak global memory throughput. To achieve closer to peak global memory throughput. try to
aLaunch enough threads to hide memory latency (check occupancy analysis):
o Process more data per thread to hide memory latency:
= Consider using texture memory for read only global memory. texture memory has its own cache so it does not pollute L1 cache. this cache is also optimized for 2D spatial locality
Refer to the "Texture Memory" section in the "CUDA C Runtime" chapter of the CUDA C Programming Guide for more details.

| Factors that may affect analysis

= If display is attached to the GPU that is being profiled. the DRAM reads. DRAM writes. 12 read hit ratio and |2 write hit ratio may include data for display in addition to the data for kernel that is being
profiled.

= The thresholds that are used to provide the hints may not be accurate in all cases. It is recommended to analyze all derived statistics and signals and correlate them with your algorithm before
arriving to any conclusion.

= The value of a particular derived statistic provided in the analysis window is the average value of the derived statistic for all calls of that kernel. To know the value of the derived statistic
corresponding to a particular call please refer to the kernel profiler table.

= The counters of type SM are collected only for 1 multiprocessor in the chip and the values are extrapolated to get the behavior of entire GPU assuming equal work distribution. This may result in
some inaccuracy in the analysis in some cases.

Limiting Factor Show all columns

Identification GPU Timestamp {us}) % | GPU Time {us} |dynamic shared memory per block static shared memory per block I1 local load hit |I1 local load miss |11 global loa]
(bytes) (bytes) Type:SM Run:3 Type:SM Run:4 Type:SM Run|

Memory Throughput |, |3772¢ 5467.36 0 2056 0

(=)

519582
518719
520312
520351
520377
518082
516576
511720
510221

Analysis —
2 42978 5468.03

Instruction Throughput | 3 54124 5459.23
Analysis —
4 65194 5469.34

5 76334 5471.26
6 87478 5463.42

7 98600 5478.37

3 109750 5476.48
121016 5501.38

2056
2056
2056
2056
2056
2056
2056
2056

Occupancy Analysis
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acobi Iteration: Kernel Profiling

- main_71_gpu analysis - [Iaplé(eZd exercise 4 - Devlcé_o - Context 0] (kolimanO.psc.edu)

File View

Analysis

Average GPU time(us): 5252.35
GPU time (%): 43.32

Grid size: [16 512 1]

Block size: [32 8 1]

Limiting Factor

Achieved Instruction Per Byte Ratio: 1.85 { Balanced Instruction Per Byte Ratio: 3.58 )
Achieved Occupancy: 1.00 { Theoretical Occupancy: 1.00 )

IPC: 0.50 { Maximum IPC: 2}

Achieved global memory throughput: 113.36 { Peak global memory throughput(GB/s): 143.42 }

Hint{s)

= The achieved instructions per byte ratio for the kernel is less than the balanced instruction per byte ratio for the device. Hence. the kernel is likely memory bandwidth limited. For details. click
on Memory Throughput Analysis.

Factors that may affect analysis

= The counters of type SM are collected only for 1 multiprocessor in the chip and the values are extrapolated to get the behavior of entire GPU assuming equal work distribution. This may result in
some inaccuracy in the analysis in some cases.

= The counters for some derived stats are collected in different runs of application. This may cause some inaccuracy in the derived statistics as the blocks scheduled on each multiprocessor may be
different for each run and for some applications the behavior changes for each run.

= The derived statistics instruction per byte ratio and IPC assume that all instructions are single precision floating point instructions. If the application uses double precision floating point instructions
then the limiting factor predicted here may be incorrect.

Limiting Factor Show all columns -

Identification GPU Timestamp {us) % |GPU Time {us} |instructions issued | active warps | active cycles |12 read requests |12 read texture requests 12 write requests |
\ Type:SM Run:6 Type:SM Run:9 | Type:SM Run:10 | TypeFB Type:FB

Memo%;?;;:ghpm |37578 5273.57 1507198 146187434 3092016 6179630 5236226

43710 5291.1 1453089 147375638 2980938 6184408 5236226
59346 5222.59 1617373 146549927 3094876 6177516 5236226
70924 5286.11 1447391 143247135 3096598 6175412 5236226
82070 5204.03 1426756 146417852 3075510 6185596 5236226
93206 5270.34 1481410 147351486 3060930 6172288 5236226
104414 5211.55 1525744 145934457 3026576 6162780 5236226

laacren Coan Ay Acncnce Assrconnc. AncnACo PP T TV S— FAnsnns

Instruction Throughput
Analysis

Occupancy Analysis
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Jacobi Iteration: OpenACC C v2

#pragma acc data copy(A), create(Anew)
while ( err > tol & 1iter < iter_max ) {
err=0.0;

#pragma acc kernels loop reduction(max:err)
forCint j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
for(int i = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * (CA[jl1[i+1] + A[jI[i-1] +
A[J-11[1]1 + A[J+11[i1);

err = max(err, fabs(Anew[jl1[i] - A[j1[i1);
}
}

#pragma acc kernels loop
forC1int j =1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
forCint 1 =1; 1 <m-1; i++ ) {
A[31[i] = Anew[jI[i];
}
}
iter++;

}

3

NVIDIA



Jacobi Iteration: OpenACC C v3

#pragma acc data copy(A), copyin(Anew)
while ( err > tol & 1iter < iter_max ) {
err=0.0;

#pragma acc kernels loop
forCint j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
for(int i = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]J[i+1] + A[jI[i-1] +
. ALJ-11[1]1 + A[J+11[11D;

}

#pragma acc kernels loop reduction(max:err)
forCint j =1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
forCint i =1; i <m-1; i++ ) {
A[j1[i] = 0.25 * (Anew[j]l[i+1] + Anew[j]l[i-1] +
Anew[j-1]1[1] + Anew[j+1][1]);
err = max(err, fabsCA[j]l[i1] - Anew[jl[i]);
}
}
iter+=2;

}

<

<

3

NVIDIA

[ Need to switch back to
copying Anew in to

accelerator so that halo
cells will be correct

( Can calculate the max
reduction on ‘error’ once
per pair, so removed it
from this loop

[ Replace memcpy kernel
with a second instance of
the stencil kernel

[ Only need half as many
times through the loop
now



Performance >N

CPU: Intel Xeon X5680 _
6 Cores @ 3.33GHz GPU: NVIDIA Tesla M2070




Next Steps and Further Information <=

¢ Stay tuned for Part 3: Advanced OpenACC

* Later this week:
® Sessions on profiling tools
* Sessions on CUDA performance tuning and analysis

* Reading material:

* CUDA C Programming Guide
® CUDA C Best Practices Guide
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