

Profiling and Tuning

OpenACC Code

Cliff Woolley, NVIDIA

Developer Technology Group

GPU CPU

GPGPU Revolutionizes Computing
Latency Processor + Throughput processor

Low Latency or High Throughput?

CPU

Optimized for low-latency

access to cached data sets

Control logic for out-of-order

and speculative execution

GPU

Optimized for data-parallel,

throughput computation

Architecture tolerant of

memory latency

More transistors dedicated to

computation

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1

T2

T3

T4

Processing Flow

1. Copy input data from CPU memory to GPU memory

PCIe Bus

Processing Flow

1. Copy input data from CPU memory to GPU memory

2. Load GPU program and execute,

caching data on chip for performance

PCIe Bus

Processing Flow

1. Copy input data from CPU memory to GPU memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU memory

PCIe Bus

OpenACC and CUDA

OpenACC enables a compiler to target annotated C or Fortran

code to accelerators such as NVIDIA CUDA-capable GPUs

Note: CUDA refers to both a parallel computing platform and a

parallel programming model

CUDA ARCHITECTURE REVIEW

GPU Architecture:

Two Main Components
Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

Currently up to 6 GB

Bandwidth currently up to almost 180 GB/s for Tesla
products

ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)
Perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

D
R

A
M

 I
/F

G

ig
a
 T

h
re

a
d

H

O
S

T
 I

/F

D
R

A
M

 I
/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

L2

GPU Architecture – Fermi:

Streaming Multiprocessor (SM)
32 CUDA Cores per SM

32 fp32 ops/clock

16 fp64 ops/clock

32 int32 ops/clock

2 warp schedulers

Up to 1536 threads

concurrently

4 special-function units

64KB shared mem + L1 cache

32K 32-bit registers

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

GPU Architecture – Fermi:

CUDA Core
Floating point & Integer unit

IEEE 754-2008 floating-point

standard

Fused multiply-add (FMA)

instruction for both single and

double precision

Logic unit

Move, compare unit

Branch unit

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit

Kepler

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

CUDA Core
Dispatch Port

Result Queue

ALU

Operand Collector

Dispatch Port

SM

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Register File (65,536 x 32-bit)

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Fermi Kepler

CUDA PROGRAMMING MODEL REVIEW

Anatomy of a CUDA Application

Serial code executes in a Host (CPU) thread

Parallel code executes in many Device (GPU) threads

across multiple processing elements

CUDA Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU

CUDA Kernels

Parallel portion of application: execute as a kernel

Entire GPU executes kernel, many threads

CUDA threads:

Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

CUDA Kernels: Parallel Threads

A kernel is a function executed

on the GPU as an array of

threads in parallel

All threads execute the same

code, can take different paths

Each thread has an ID

Select input/output data

Control decisions

float x = input[threadIdx.x];

float y = func(x);

output[threadIdx.x] = y;

CUDA Kernels: Subdivide into Blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks
Note: Adjacent threads execute in lock-step scheduling groupings called warps; a block

comprises one or more warps

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

GPU

Kernel Execution

• Each kernel is executed on

one device

• Multiple kernels can execute

on a device at one time

…
…

…

CUDA-capable GPU

CUDA thread • Each thread is executed by a

core

CUDA core

CUDA thread block

• Each block is executed by

one SM and does not migrate

• Several concurrent blocks can

reside on one SM depending

on the blocks’ memory

requirements and the SM’s

memory resources

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

Thread blocks allow cooperation

Threads may need to cooperate:

Cooperatively load/store blocks of memory that they all

use

Share results with each other or cooperate to produce a

single result

Synchronize with each other

Thread blocks allow scalability

Blocks can execute in any order, concurrently or sequentially

This independence between blocks gives scalability:

A kernel scales across any number of SMs

Device with 2 SMs

SM 0 SM 1

 Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel Grid

Launch

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Device with 4 SMs

SM 0 SM 1

SM 2 SM 3

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

MAPPING OPENACC TO CUDA

OpenACC Execution Model

The OpenACC execution model has three levels:

gang, worker, and vector

Allows mapping to an architecture that is a collection of

Processing Elements (PEs)

One or more PEs per node

Each PE is multi-threaded

Each thread can execute vector instructions

OpenACC Execution Model on CUDA

The OpenACC execution model has three levels:

gang, worker, and vector

For GPUs, the mapping is implementation-dependent.

Some possibilities:

gang==block, worker==warp, and vector==threads of a warp

omit “worker” and just have gang==block, vector==threads of a block

Depends on what the compiler thinks is the best mapping for

the problem

OpenACC Execution Model on CUDA

The OpenACC execution model has three levels:

gang, worker, and vector

For GPUs, the mapping is implementation-dependent.

...But explicitly specifying that a given loop should map to

gangs, workers, and/or vectors is optional anyway

Further specifying the number of gangs/workers/vectors is also optional

So why do it? To tune the code to fit a particular target architecture in

a straightforward and easily re-tuned way.

PROFILING AND TUNING

Profiling Tools

Use compiler output to determine how loops were mapped onto

the accelerator

Not exactly “profiling”, but it’s helpful information that

a GPU-aware profiler would also have given you

PGI: Use PGI_ACC_TIME option to learn where time is being spent

NVIDIA Visual Profiler

3rd-party profiling tools that are CUDA-aware

(But those are outside the scope of this talk)

PGI Accelerator compiler output

Accelerator kernel generated

57, #pragma acc loop gang, vector /* blockIdx.y threadIdx.y */

60, #pragma acc loop gang, vector /* blockIdx.x threadIdx.x */

CC 1.3 : 16 registers; 2112 shared, 40 constant, 0 local memory bytes; 100% occupancy

CC 2.0 : 19 registers; 2056 shared, 80 constant, 0 local memory bytes; 100% occupancy

CC stands for compute

capability.

Fermi cards are 2.0, so

we are looking at the

second line

Number of registers

used per thread. The

max on Fermi is 63, so

if you are close to that

it might reduce

occupancy

Occupancy: how many

threads will fit per SM

vs. the max possible. If

occupancy is low, try

to see if you can

reduce register or

shared memory usage

How many bytes of

shared memory you are

using per block. The

compiler handles this,

so you have no direct

control over it.

If you need more than

the maximum number

of registers, then you

will spill to local

memory. Spilling is

slow since it goes to

(cached) global

memory, so try to

reduce register usage

PGI Accelerator profiling

Compiler automatically instruments the code, outputs profile data

set PGI_ACC_TIME=1

Accelerator Kernel Timing data

./laplace2d.c

 main

 66: region entered 1000 times

 time(us): total=5515318 init=110 region=5515208

 kernels=5320683 data=0

 w/o init: total=5515208 max=13486 min=5269 avg=5515

 70: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 time(us): total=5320683 max=5426 min=5200 avg=5320

./laplace2d.c

 main

 53: region entered 1000 times

 time(us): total=6493657 init=171 region=6493486

 kernels=5108494 data=0

 ...

PGI Accelerator profiling

Compiler automatically instruments the code, outputs profile data

Provides insight into API-level efficiency

How many bytes of data were copied in and out?

How many times was each kernel launched, and how long did they take?

What kernel grid and block dimensions were used?

PGI Accelerator profiling

Total time: 13.874673 s

Accelerator Kernel Timing data
./laplace2d.c main
 68: region entered 1000 times
 time(us): total=4903207 init=82 region=4903125
 kernels=4852949 data=0
 w/o init: total=4903125 max=5109 min=4813 avg=4903
 71: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=4852949 max=5004 min=4769 avg=4852
./laplace2d.c main
 56: region entered 1000 times
 time(us): total=8701161 init=57 region=8701104
 kernels=8365523 data=0
 w/o init: total=8701104 max=8942 min=8638 avg=8701
 59: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=8222457 max=8310 min=8212 avg=8222
 63: kernel launched 1000 times
 grid: [1] block: [256]
 time(us): total=143066 max=210 min=141 avg=143
./laplace2d.c main
 50: region entered 1 time
 time(us): total=13874525 init=162566 region=13711959
 data=64170
 w/o init: total=13711959 max=13711959 min=13711959 avg=13711959

Memcpy loop, taking

4.9s out of 13s

Main computation loop,

taking 8.7s out of 13s

Enclosing while loop

data region. Takes

13.7s, nearly the entire

execution time

PGI Accelerator profiling

Total time: 13.874673 s

Accelerator Kernel Timing data
./laplace2d.c main
 68: region entered 1000 times
 time(us): total=4903207 init=82 region=4903125
 kernels=4852949 data=0
 w/o init: total=4903125 max=5109 min=4813 avg=4903
 71: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=4852949 max=5004 min=4769 avg=4852
./laplace2d.c main
 56: region entered 1000 times
 time(us): total=8701161 init=57 region=8701104
 kernels=8365523 data=0
 w/o init: total=8701104 max=8942 min=8638 avg=8701
 59: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=8222457 max=8310 min=8212 avg=8222
 63: kernel launched 1000 times
 grid: [1] block: [256]
 time(us): total=143066 max=210 min=141 avg=143
./laplace2d.c main
 50: region entered 1 time
 time(us): total=13874525 init=162566 region=13711959
 data=64170
 w/o init: total=13711959 max=13711959 min=13711959 avg=13711959

Suboptimal

grid and block

dimensions

..how do we

know this?

..how do we

control it?

Mapping OpenACC to CUDA threads and blocks

#pragma acc kernels loop

 for(int i = 0; i < n; ++i) y[i] += a*x[i];

#pragma acc kernels loop gang(100), vector(128)

 for(int i = 0; i < n; ++i) y[i] += a*x[i];

#pragma acc parallel num_gangs(100), vector_length(128)

{

 #pragma acc loop gang, vector

 for(int i = 0; i < n; ++i) y[i] += a*x[i];

}

100 thread blocks, each with 128

threads, each thread executes one

iteration of the loop, using kernels

100 thread blocks, each with 128

threads, each thread executes one

iteration of the loop, using parallel

Uses whatever mapping to

threads and blocks the compiler

chooses. Perhaps 16 blocks, 256

threads each

Mapping OpenACC to CUDA threads and blocks

#pragma acc parallel loop num_gangs(100)

{

 for(int i = 0; i < n; ++i) y[i] += a*x[i];

}

#pragma acc parallel num_gangs(100)

{

 #pragma acc loop gang

 for(int i = 0; i < n; ++i) y[i] += a*x[i];

}

100 thread blocks, each with

apparently 1 thread, each thread

redundantly executes the loop

Mapping OpenACC to CUDA threads and blocks

n = 12800;

#pragma acc kernels loop gang(100), vector(128)

 for(int i = 0; i < n; ++i) y[i] += a*x[i];

#pragma acc kernels loop gang(50), vector(128)

 for(int i = 0; i < n; ++i) y[i] += a*x[i];

100 thread blocks, each with 128

threads, each thread executes one

iteration of the loop

50 thread blocks, each with 128

threads. Each thread does two

elements worth of work

Doing multiple iterations per thread

can improve performance by

amortizing the cost of setup

Nested loops generate multi-dimensional blocks and grids:

#pragma acc kernels loop gang(100), vector(16)

 for(…)

 #pragma acc loop gang(200), vector(32)

 for(…)

Mapping OpenACC to CUDA threads and blocks

16 thread tall

block
100 blocks tall
(row/Y direction)

32 thread wide

block
200 blocks wide

(column/X direction)

Selecting block size (e.g., vectors per gang)

Total number of threads in a block between 256 and 512
is usually a good number

Overly small blocks will limit the # of concurrent threads due to
limitation on maximum # of concurrent blocks/SM

Overly large blocks can hinder performance, e.g., by increasing cost
of any synchronizations/barrier among all the threads in a block

All CUDA-capable GPUs to date prefer # threads per block
to be a multiple of 32 if possible

…Since 32 threads is the warp size of current CUDA-capable GPUs

Non-multiples of 32 waste some resources and cycles

Furthermore, a multiple of 32 threads wide (x-dimension) is best
(facilitates coalesced memory access to adjacent memory addresses)

Selecting block size (e.g., vectors per gang)

Total number of threads in a block between 256 and 512

is usually a good number

All CUDA-capable GPUs to date prefer # threads per block

to be a multiple of 32 if possible

So if we have 2D blocks, let’s try a few combinations like

32x8, 64x4, 32x16, 64x8…

An aside on warps

Blocks are divided into 32-thread-wide groups called warps

Size of warps is architecture-specific and can change in the future

The SM creates, manages, schedules and executes threads at warp

granularity

All threads in a warp execute the same instruction at once

In case of divergence, the warp serially executes each branch path taken

When accessing global memory, the accesses of the threads

within a warp are coalesced into as few transactions as possible

Selecting grid size (e.g., number of gangs)

Most obvious mapping is to have # of gangs times # of workers

times # of vectors equal the total problem size

We just saw that we can choose to manipulate this number so

that each thread could do multiple pieces of work

Helps amortize the cost of setup for simple kernels

What is the limit on how small we can/should go?
We at least want to have enough threads to fill the GPU several times over

(perhaps 10 times or more), meaning we need 100,000+ threads.

PGI Accelerator compiler output

Accelerator kernel generated

57, #pragma acc loop gang, vector(8) /* blockIdx.y threadIdx.y */

60, #pragma acc loop gang(16), vector(32) /* blockIdx.x threadIdx.x */

CC 1.3 : 16 registers; 2112 shared, 40 constant, 0 local memory bytes; 100% occupancy

CC 2.0 : 19 registers; 2056 shared, 80 constant, 0 local memory bytes; 100% occupancy

Notice the compiler

helpfully told us the

mapping of

gangs/vectors to

blocks/threads that

was used

PGI Accelerator profiling:

Recall earlier example…

Total time: 13.874673 s

Accelerator Kernel Timing data
./laplace2d.c main
 68: region entered 1000 times
 time(us): total=4903207 init=82 region=4903125
 kernels=4852949 data=0
 w/o init: total=4903125 max=5109 min=4813 avg=4903
 71: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=4852949 max=5004 min=4769 avg=4852
./laplace2d.c main
 56: region entered 1000 times
 time(us): total=8701161 init=57 region=8701104
 kernels=8365523 data=0
 w/o init: total=8701104 max=8942 min=8638 avg=8701
 59: kernel launched 1000 times
 grid: [256x256] block: [16x16]
 time(us): total=8222457 max=8310 min=8212 avg=8222
 63: kernel launched 1000 times
 grid: [1] block: [256]
 time(us): total=143066 max=210 min=141 avg=143
./laplace2d.c main
 50: region entered 1 time
 time(us): total=13874525 init=162566 region=13711959
 data=64170
 w/o init: total=13711959 max=13711959 min=13711959 avg=13711959

Example: Jacobi Iteration

Iteratively converges to correct value (e.g. Temperature), by

computing new values at each point from the average of

neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i+1,j)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Jacobi Iteration

Task: use knowledge of GPU architecture to improve performance

by specifying gang and vector clauses

Jacobi Iteration: OpenACC C v1
#pragma acc data copy(A), create(Anew)
while (err > tol && iter < iter_max) {
 err=0.0;

#pragma acc kernels loop reduction(max:err)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, fabs(Anew[j][i] - A[j][i]);
 }
 }

#pragma acc kernels loop
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Jacobi Iteration: OpenACC C v2
#pragma acc data copy(A), create(Anew)
while (err > tol && iter < iter_max) {
 err=0.0;

#pragma acc kernels loop reduction(max:err)
 for(int j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, fabs(Anew[j][i] - A[j][i]);
 }
 }
#pragma acc kernels loop
 for(int j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }
 iter++;
}

Leave compiler to choose

Y dimension for grids

and blocks.

Grids are 16 blocks wide,

blocks are 32 threads

wide

Leave compiler to choose

Y dimension for grids

and blocks.

Grids are 16 blocks wide,

blocks are 32 threads

wide

Jacobi Iteration: OpenACC Fortran v1

!$acc data copy(A), create(Anew)
do while (err > tol .and. iter < iter_max)
 err=0._fp_kind

!$acc kernels loop reduction(max:err)
 do j=1,m
 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &
 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))
 end do
 end do
!$acc end kernels

 ...

iter = iter +1
end do
!$acc end data

Jacobi Iteration: OpenACC Fortran v2

!$acc data copy(A), create(Anew)
do while (err > tol .and. iter < iter_max)
 err=0._fp_kind

!$acc kernels loop reduction(max:err)
 do j=1,m
!$acc loop gang(16), vector(32)
 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &
 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))
 end do
 end do
!$acc end kernels

 ...

 iter = iter +1
end do
!$acc end data

Leave compiler to choose

Y dimension for grids

and blocks.

Grids are 16 blocks wide,

blocks are 32 threads

wide

After modifying source code to specify number of gangs/vectors

(i.e., grid/block dimensions), run again with PGI_ACC_TIME=1

total: 11.135176 s

./laplace2d.c

 main

 56: region entered 1000 times

 time(us): total=5568043 init=68 region=5567975

 kernels=5223007 data=0

 w/o init: total=5567975 max=6040 min=5464 avg=5567

 60: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 time(us): total=5197462 max=5275 min=5131 avg=5197

 64: kernel launched 1000 times

 grid: [1] block: [256]

 time(us): total=25545 max=119 min=24 avg=25

Jacobi Iteration: Tune and Re-profile

Main computation loop

performance improved

from 8.7s to 5.5s

Grid size changed from

[256x256] to [16x512]

Block size changed

from [16x16] to [32x8]

Performance: v1

Execution Time (s) Speedup

CPU 1 OpenMP thread 69.80 --

CPU 2 OpenMP threads 44.76 1.56x

CPU 4 OpenMP threads 39.59 1.76x

CPU 6 OpenMP threads 39.71 1.76x

OpenACC GPU 13.65 2.9x Speedup vs. 6 CPU cores

Speedup vs. 1 CPU core

CPU: Intel Xeon X5680

6 Cores @ 3.33GHz
GPU: NVIDIA Tesla M2070

Note: same code runs in 9.78s on NVIDIA Tesla M2090 GPU

Performance: v2

Execution Time (s) Speedup

CPU 1 OpenMP thread 69.80 --

CPU 2 OpenMP threads 44.76 1.56x

CPU 4 OpenMP threads 39.59 1.76x

CPU 6 OpenMP threads 39.71 1.76x

OpenACC GPU 10.98 3.62x Speedup vs. 6 CPU cores

Speedup vs. 1 CPU core

CPU: Intel Xeon X5680

6 Cores @ 3.33GHz
GPU: NVIDIA Tesla M2070

Note: same code runs in 7.58s on NVIDIA Tesla M2090 GPU

PGI Accelerator profiling

Compiler automatically instruments the code, outputs profile data

Provides insight into API-level efficiency

How many bytes of data were copied in and out?

How many times was each kernel launched, and how long did they take?

What kernel grid and block dimensions were used?

Clearly this can help us to tune to fit the architecture better

What if we want to go even deeper?

Compiler instrumentation provides relatively little insight (at present) into

how efficient the kernels themselves were

Profiling Tools

Need a profiling tool that is more aware of the inner workings of

the GPU to provide deeper insights

E.g.: NVIDIA Visual Profiler

NVIDIA Visual Profiler

Note: screenshots shown

here are from CUDA 4.0

Visual Profiler

Updated profiler looks a

bit different, but concepts

are the same

Jacobi Iteration: Kernel Profiling

Task: use NVIDIA Visual Profiler data to identify additional

optimization opportunities in Jacobi example

Jacobi Iteration: Kernel Profiling

Jacobi Iteration: Kernel Profiling

Jacobi Iteration: Kernel Profiling

Jacobi Iteration: Kernel Profiling

Jacobi Iteration: OpenACC C v2
#pragma acc data copy(A), create(Anew)
while (err > tol && iter < iter_max) {
 err=0.0;

#pragma acc kernels loop reduction(max:err)
 for(int j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, fabs(Anew[j][i] - A[j][i]);
 }
 }
#pragma acc kernels loop
 for(int j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }
 iter++;
}

Jacobi Iteration: OpenACC C v3
#pragma acc data copy(A), copyin(Anew)
while (err > tol && iter < iter_max) {
 err=0.0;

#pragma acc kernels loop
 for(int j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);
 }
 }
#pragma acc kernels loop reduction(max:err)
 for(int j = 1; j < n-1; j++) {
#pragma acc loop gang(16) vector(32)
 for(int i = 1; i < m-1; i++) {
 A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1] +
 Anew[j-1][i] + Anew[j+1][i]);
 err = max(err, fabs(A[j][i] - Anew[j][i]);
 }
 }
 iter+=2;
}

Need to switch back to

copying Anew in to

accelerator so that halo

cells will be correct

Can calculate the max

reduction on ‘error’ once

per pair, so removed it

from this loop

Replace memcpy kernel

with a second instance of

the stencil kernel

Only need half as many

times through the loop

now

Performance

Execution Time (s) Speedup

CPU 6 OpenMP threads (v2) 39.7

CPU 6 OpenMP threads (v3) 20.4 1.95x

OpenACC GPU (v2) 11.0

OpenACC GPU (v3) 5.7 1.93x

CPU: Intel Xeon X5680

6 Cores @ 3.33GHz
GPU: NVIDIA Tesla M2070

Next Steps and Further Information

Stay tuned for Part 3: Advanced OpenACC

Later this week:

Sessions on profiling tools

Sessions on CUDA performance tuning and analysis

Reading material:

CUDA C Programming Guide

CUDA C Best Practices Guide

Questions?

