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GPU CPU 

GPGPU Revolutionizes Computing 
Latency Processor + Throughput processor 



Low Latency or High Throughput? 

CPU 

Optimized for low-latency 

access to cached data sets 

Control logic for out-of-order 

and speculative execution 
 

GPU 

Optimized for data-parallel, 

throughput computation 

Architecture tolerant of 

memory latency 

More transistors dedicated to 

computation 
 



Low Latency or High Throughput? 

CPU architecture must minimize latency within each thread 

GPU architecture hides latency with computation from other thread warps 

GPU Stream Multiprocessor – High Throughput Processor 

CPU core – Low Latency Processor 

Computation Thread/Warp 

Tn 

 

Processing 

Waiting for data 

Ready to be processed 

Context switch 

W1 

 

W2 

 

W3 

 

W4 

 

T1 

 

T2 

 

T3 

 

T4 

 



Processing Flow 

1. Copy input data from CPU memory to GPU memory 

PCIe Bus 



Processing Flow 

1. Copy input data from CPU memory to GPU memory 

2. Load GPU program and execute, 

caching data on chip for performance 

PCIe Bus 



Processing Flow 

1. Copy input data from CPU memory to GPU memory 

2. Load GPU program and execute, 

caching data on chip for performance 

3. Copy results from GPU memory to CPU memory 

PCIe Bus 



OpenACC and CUDA 

OpenACC enables a compiler to target annotated C or Fortran 

code to accelerators such as NVIDIA CUDA-capable GPUs 

 

Note: CUDA refers to both a parallel computing platform and a 

parallel programming model 

 



CUDA ARCHITECTURE REVIEW 



GPU Architecture: 

Two Main Components 
Global memory 

Analogous to RAM in a CPU server 

Accessible by both GPU and CPU 

Currently up to 6 GB 

Bandwidth currently up to almost 180 GB/s for Tesla 
products 

ECC on/off option for Quadro and Tesla products 
 

Streaming Multiprocessors (SMs) 
Perform the actual computations 

Each SM has its own: 

Control units, registers, execution pipelines, caches 
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GPU Architecture – Fermi: 

Streaming Multiprocessor (SM) 
32 CUDA Cores per SM 

32 fp32 ops/clock 

16 fp64 ops/clock 

32 int32 ops/clock 

2 warp schedulers 

Up to 1536 threads 

concurrently 

4 special-function units 

64KB shared mem + L1 cache 

32K 32-bit registers 
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Scheduler 

Dispatch 

Scheduler 

Dispatch 

Load/Store Units x 16 

Special Func Units x 4 
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GPU Architecture – Fermi: 

CUDA Core 
Floating point & Integer unit 

IEEE 754-2008 floating-point 

standard 

Fused multiply-add (FMA) 

instruction for both single and 

double precision 

Logic unit 

Move, compare unit 

Branch unit 

Register File 

Scheduler 

Dispatch 

Scheduler 

Dispatch 

Load/Store Units x 16 

Special Func Units x 4 

Interconnect Network 

64K Configurable 

Cache/Shared Mem 

Uniform Cache 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 
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Core 

Core 

Core 

Core 

Core 

Core 

Core 
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Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Instruction Cache 

CUDA Core 
Dispatch Port 

Operand Collector 

Result Queue 

FP Unit INT Unit 



Kepler 

Register File 

Scheduler 
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CUDA Core
Dispatch Port

Result Queue

ALU

Operand Collector

Dispatch Port

SM

Interconnect Network

64 KB Shared Memory / L1 Cache
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CUDA PROGRAMMING MODEL REVIEW 



Anatomy of a CUDA Application 

Serial code executes in a Host (CPU) thread 

Parallel code executes in many Device (GPU) threads 

across multiple processing elements 

 
CUDA Application 

Serial code 

 

Serial code 

 

Parallel code 

 

Parallel code 

 

Device = GPU 

… 

Host = CPU 

Device = GPU 

... 

Host = CPU 



CUDA Kernels 

Parallel portion of application: execute as a kernel 

Entire GPU executes kernel, many threads 

 

CUDA threads: 

Lightweight 

Fast switching 

1000s execute simultaneously 

CPU Host Executes functions 

GPU Device Executes kernels 



CUDA Kernels: Parallel Threads 

A kernel is a function executed 

on the GPU as an array of 

threads in parallel 

 

All threads execute the same 

code, can take different paths 

 

Each thread has an ID 

Select input/output data 

Control decisions 

float x = input[threadIdx.x]; 

float y = func(x); 

output[threadIdx.x] = y; 



CUDA Kernels: Subdivide into Blocks 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 

Blocks are grouped into a grid 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 

Blocks are grouped into a grid 

A kernel is executed as a grid of blocks of threads 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 
Note: Adjacent threads execute in lock-step scheduling groupings called warps; a block 

comprises one or more warps 

Blocks are grouped into a grid 

A kernel is executed as a grid of blocks of threads 

GPU 



Kernel Execution 

• Each kernel is executed on 

one device 

• Multiple kernels can execute 

on a device at one time 

… 
… 

… 

CUDA-capable GPU 

CUDA thread • Each thread is executed by a 

core 

CUDA core 

CUDA thread block 

 

• Each block is executed by 

one SM and does not migrate 

• Several concurrent blocks can 

reside on one SM depending 

on the blocks’ memory 

requirements and the SM’s 

memory resources 

… 

CUDA Streaming 

Multiprocessor 

CUDA kernel grid 

... 



Thread blocks allow cooperation 

Threads may need to cooperate: 

Cooperatively load/store blocks of memory that they all 

use 

Share results with each other or cooperate to produce a 

single result 

Synchronize with each other 



Thread blocks allow scalability 

Blocks can execute in any order, concurrently or sequentially 

This independence between blocks gives scalability: 

A kernel scales across any number of SMs 

Device with 2 SMs 

SM 0 SM 1 

 Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel Grid 

Launch 

Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Device with 4 SMs 

SM 0 SM 1 

 

SM 2 SM 3 

 
Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 



MAPPING OPENACC TO CUDA 



OpenACC Execution Model 

The OpenACC execution model has three levels: 

gang, worker, and vector 

 

Allows mapping to an architecture that is a collection of 

Processing Elements (PEs) 

One or more PEs per node 

Each PE is multi-threaded 

Each thread can execute vector instructions 



OpenACC Execution Model on CUDA 

The OpenACC execution model has three levels: 

gang, worker, and vector 

 

For GPUs, the mapping is implementation-dependent. 

Some possibilities: 

gang==block, worker==warp, and vector==threads of a warp 

omit “worker” and just have gang==block, vector==threads of a block 

 

Depends on what the compiler thinks is the best mapping for 

the problem 



OpenACC Execution Model on CUDA 

The OpenACC execution model has three levels: 

gang, worker, and vector 

 

For GPUs, the mapping is implementation-dependent. 

 

...But explicitly specifying that a given loop should map to 

gangs, workers, and/or vectors is optional anyway 

Further specifying the number of gangs/workers/vectors is also optional 

So why do it?  To tune the code to fit a particular target architecture in 

a straightforward and easily re-tuned way. 



PROFILING AND TUNING 



Profiling Tools 

Use compiler output to determine how loops were mapped onto 

the accelerator 

Not exactly “profiling”, but it’s helpful information that 

a GPU-aware profiler would also have given you 
 

PGI: Use PGI_ACC_TIME option to learn where time is being spent 
 

NVIDIA Visual Profiler 
 

3rd-party profiling tools that are CUDA-aware 

(But those are outside the scope of this talk) 



PGI Accelerator compiler output 

 

Accelerator kernel generated 

57, #pragma acc loop gang, vector /* blockIdx.y threadIdx.y */ 

60, #pragma acc loop gang, vector /* blockIdx.x threadIdx.x */ 

CC 1.3 : 16 registers; 2112 shared, 40 constant, 0 local memory bytes; 100% occupancy 

CC 2.0 : 19 registers; 2056 shared, 80 constant, 0 local memory bytes; 100% occupancy 

CC stands for compute 

capability. 

Fermi cards are 2.0, so 

we are looking at the 

second line 

Number of registers 

used per thread. The 

max on Fermi is 63, so 

if you are close to that 

it might reduce 

occupancy 

Occupancy: how many 

threads will fit per SM 

vs. the max possible. If 

occupancy is low, try 

to see if you can 

reduce register or 

shared memory usage 

How many bytes of 

shared memory you are 

using per block. The 

compiler handles this, 

so you have no direct 

control over it. 

If you need more than 

the maximum number 

of registers, then you 

will spill to local 

memory. Spilling is 

slow since it goes to 

(cached) global 

memory, so try to 

reduce register usage 



PGI Accelerator profiling 

Compiler automatically instruments the code, outputs profile data 

set PGI_ACC_TIME=1 
 

Accelerator Kernel Timing data 

./laplace2d.c 

  main 

    66: region entered 1000 times 

        time(us): total=5515318 init=110 region=5515208 

                  kernels=5320683 data=0 

        w/o init: total=5515208 max=13486 min=5269 avg=5515 

        70: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

            time(us): total=5320683 max=5426 min=5200 avg=5320 

./laplace2d.c 

  main 

    53: region entered 1000 times 

        time(us): total=6493657 init=171 region=6493486 

                  kernels=5108494 data=0 

        ... 



PGI Accelerator profiling 

Compiler automatically instruments the code, outputs profile data 
 

Provides insight into API-level efficiency 

How many bytes of data were copied in and out? 

How many times was each kernel launched, and how long did they take? 

What kernel grid and block dimensions were used? 

 



PGI Accelerator profiling 
 

 
Total time: 13.874673 s 
 
Accelerator Kernel Timing data 
./laplace2d.c   main 
    68: region entered 1000 times 
        time(us): total=4903207 init=82 region=4903125 
                  kernels=4852949 data=0 
        w/o init: total=4903125 max=5109 min=4813 avg=4903 
        71: kernel launched 1000 times 
            grid: [256x256]  block: [16x16] 
            time(us): total=4852949 max=5004 min=4769 avg=4852 
./laplace2d.c  main 
    56: region entered 1000 times 
        time(us): total=8701161 init=57 region=8701104 
                  kernels=8365523 data=0 
        w/o init: total=8701104 max=8942 min=8638 avg=8701 
        59: kernel launched 1000 times 
            grid: [256x256]  block: [16x16] 
            time(us): total=8222457 max=8310 min=8212 avg=8222 
        63: kernel launched 1000 times 
            grid: [1]  block: [256] 
            time(us): total=143066 max=210 min=141 avg=143 
./laplace2d.c  main 
    50: region entered 1 time 
        time(us): total=13874525 init=162566 region=13711959 
                  data=64170 
        w/o init: total=13711959 max=13711959 min=13711959 avg=13711959 

Memcpy loop, taking 

4.9s out of 13s 

Main computation loop, 

taking 8.7s out of 13s 

Enclosing while loop 

data region. Takes 

13.7s, nearly the entire 

execution time 



PGI Accelerator profiling 
 

 
Total time: 13.874673 s 
 
Accelerator Kernel Timing data 
./laplace2d.c   main 
    68: region entered 1000 times 
        time(us): total=4903207 init=82 region=4903125 
                  kernels=4852949 data=0 
        w/o init: total=4903125 max=5109 min=4813 avg=4903 
        71: kernel launched 1000 times 
            grid: [256x256]  block: [16x16] 
            time(us): total=4852949 max=5004 min=4769 avg=4852 
./laplace2d.c  main 
    56: region entered 1000 times 
        time(us): total=8701161 init=57 region=8701104 
                  kernels=8365523 data=0 
        w/o init: total=8701104 max=8942 min=8638 avg=8701 
        59: kernel launched 1000 times 
            grid: [256x256]  block: [16x16] 
            time(us): total=8222457 max=8310 min=8212 avg=8222 
        63: kernel launched 1000 times 
            grid: [1]  block: [256] 
            time(us): total=143066 max=210 min=141 avg=143 
./laplace2d.c  main 
    50: region entered 1 time 
        time(us): total=13874525 init=162566 region=13711959 
                  data=64170 
        w/o init: total=13711959 max=13711959 min=13711959 avg=13711959 

Suboptimal 

grid and block 

dimensions 

..how do we 

know this? 

..how do we 

control it? 



Mapping OpenACC to CUDA threads and blocks 

 

#pragma acc kernels loop 

   for( int i = 0; i < n; ++i ) y[i] += a*x[i];  

 

 

 

 

#pragma acc kernels loop gang(100), vector(128) 

   for( int i = 0; i < n; ++i ) y[i] += a*x[i]; 

 

 

 

#pragma acc parallel num_gangs(100), vector_length(128)  

{ 

   #pragma acc loop gang, vector 

   for( int i = 0; i < n; ++i ) y[i] += a*x[i]; 

} 

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop, using kernels 

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop, using parallel 

Uses whatever mapping to 

threads and blocks the compiler 

chooses. Perhaps 16  blocks, 256 

threads each 



Mapping OpenACC to CUDA threads and blocks 

 

#pragma acc parallel loop num_gangs(100)  

{ 

   for( int i = 0; i < n; ++i ) y[i] += a*x[i]; 

} 

 

 

#pragma acc parallel num_gangs(100)  

{ 

   #pragma acc loop gang 

   for( int i = 0; i < n; ++i ) y[i] += a*x[i]; 

}  

 

100 thread blocks, each with 

apparently 1  thread, each thread 

redundantly executes the loop 



Mapping OpenACC to CUDA threads and blocks 

 

n = 12800; 

 

#pragma acc kernels loop gang(100), vector(128) 

   for( int i = 0; i < n; ++i ) y[i] += a*x[i]; 

 

 

#pragma acc kernels loop gang(50), vector(128) 

   for( int i = 0; i < n; ++i ) y[i] += a*x[i]; 

 

 

 

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop 

50 thread blocks, each with 128 

threads. Each thread does two 

elements worth of work 

Doing multiple iterations per thread 

can improve performance by 

amortizing the cost of setup 



Nested loops generate multi-dimensional blocks and grids: 

 
#pragma acc kernels loop gang(100), vector(16) 

    for( … ) 

 

    #pragma acc loop gang(200), vector(32) 

        for( … ) 

 

Mapping OpenACC to CUDA threads and blocks 

16 thread tall 

block 
100 blocks tall 
(row/Y direction) 

32 thread wide 

block 
200 blocks wide 

(column/X direction) 



Selecting block size (e.g., vectors per gang) 

Total number of threads in a block between 256 and 512 
is usually a good number 

Overly small blocks will limit the # of concurrent threads due to 
limitation on maximum # of concurrent blocks/SM 

Overly large blocks can hinder performance, e.g., by increasing cost 
of any synchronizations/barrier among all the threads in a block  

 

All CUDA-capable GPUs to date prefer # threads per block 
to be a multiple of 32 if possible 

…Since 32 threads is the warp size of current CUDA-capable GPUs 

Non-multiples of 32 waste some resources and cycles 

Furthermore, a multiple of 32 threads wide (x-dimension) is best 
(facilitates coalesced memory access to adjacent memory addresses) 

 



Selecting block size (e.g., vectors per gang) 

Total number of threads in a block between 256 and 512 

is usually a good number 
 

All CUDA-capable GPUs to date prefer # threads per block 

to be a multiple of 32 if possible 

 

 

So if we have 2D blocks, let’s try a few combinations like 

32x8, 64x4, 32x16, 64x8… 

 



An aside on warps 

Blocks are divided into 32-thread-wide groups called warps 

Size of warps is architecture-specific and can change in the future 
 

The SM creates, manages, schedules and executes threads at warp 

granularity 
 

All threads in a warp execute the same instruction at once 

In case of divergence, the warp serially executes each branch path taken 
 

When accessing global memory, the accesses of the threads 

within a warp are coalesced into as few transactions as possible 



Selecting grid size (e.g., number of gangs) 

Most obvious mapping is to have # of gangs times # of workers 

times # of vectors equal the total problem size 
 

We just saw that we can choose to manipulate this number so 

that each thread could do multiple pieces of work 

Helps amortize the cost of setup for simple kernels 
 

What is the limit on how small we can/should go? 
We at least want to have enough threads to fill the GPU several times over 

(perhaps 10 times or more), meaning we need 100,000+ threads. 

 



PGI Accelerator compiler output 

 

Accelerator kernel generated 

57, #pragma acc loop gang, vector(8) /* blockIdx.y threadIdx.y */ 

60, #pragma acc loop gang(16), vector(32) /* blockIdx.x threadIdx.x */ 

CC 1.3 : 16 registers; 2112 shared, 40 constant, 0 local memory bytes; 100% occupancy 

CC 2.0 : 19 registers; 2056 shared, 80 constant, 0 local memory bytes; 100% occupancy 

Notice the compiler 

helpfully told us the 

mapping of 

gangs/vectors to 

blocks/threads that 

was used 



PGI Accelerator profiling: 

Recall earlier example… 
 

 
Total time: 13.874673 s 
 
Accelerator Kernel Timing data 
./laplace2d.c   main 
    68: region entered 1000 times 
        time(us): total=4903207 init=82 region=4903125 
                  kernels=4852949 data=0 
        w/o init: total=4903125 max=5109 min=4813 avg=4903 
        71: kernel launched 1000 times 
            grid: [256x256]  block: [16x16] 
            time(us): total=4852949 max=5004 min=4769 avg=4852 
./laplace2d.c  main 
    56: region entered 1000 times 
        time(us): total=8701161 init=57 region=8701104 
                  kernels=8365523 data=0 
        w/o init: total=8701104 max=8942 min=8638 avg=8701 
        59: kernel launched 1000 times 
            grid: [256x256]  block: [16x16] 
            time(us): total=8222457 max=8310 min=8212 avg=8222 
        63: kernel launched 1000 times 
            grid: [1]  block: [256] 
            time(us): total=143066 max=210 min=141 avg=143 
./laplace2d.c  main 
    50: region entered 1 time 
        time(us): total=13874525 init=162566 region=13711959 
                  data=64170 
        w/o init: total=13711959 max=13711959 min=13711959 avg=13711959 



Example: Jacobi Iteration 

Iteratively converges to correct value (e.g. Temperature), by 

computing new values at each point from the average of 

neighboring points.   

Common, useful algorithm  

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎 

 

 

 

 
A(i,j) A(i+1,j) A(i-1,j) 

A(i,j-1) 

A(i+1,j) 

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1  

4
 



Jacobi Iteration 

Task: use knowledge of GPU architecture to improve performance 

by specifying gang and vector clauses 

 



Jacobi Iteration: OpenACC C v1 
#pragma acc data copy(A), create(Anew) 
while ( err > tol && iter < iter_max ) { 
  err=0.0; 
 
#pragma acc kernels loop reduction(max:err) 
  for( int j = 1; j < n-1; j++) { 
    for(int i = 1; i < m-1; i++) { 
             
      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 
                           A[j-1][i] + A[j+1][i]); 
 
      err = max(err, fabs(Anew[j][i] - A[j][i]); 
    } 
  } 
 
#pragma acc kernels loop 
  for( int j = 1; j < n-1; j++) { 
    for( int i = 1; i < m-1; i++ ) { 
      A[j][i] = Anew[j][i];       
    } 
  } 
     
  iter++; 
} 



Jacobi Iteration: OpenACC C v2 
#pragma acc data copy(A), create(Anew) 
while ( err > tol && iter < iter_max ) { 
  err=0.0; 
 
#pragma acc kernels loop reduction(max:err) 
  for( int j = 1; j < n-1; j++) { 
#pragma acc loop gang(16) vector(32) 
    for(int i = 1; i < m-1; i++) { 
             
      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 
                           A[j-1][i] + A[j+1][i]); 
 
      err = max(err, fabs(Anew[j][i] - A[j][i]); 
    } 
  } 
#pragma acc kernels loop 
  for( int j = 1; j < n-1; j++) { 
#pragma acc loop gang(16) vector(32) 
    for( int i = 1; i < m-1; i++ ) { 
      A[j][i] = Anew[j][i];       
    } 
  }     
  iter++; 
} 

Leave compiler to choose 

Y dimension for grids 

and blocks. 

Grids are 16 blocks wide, 

blocks are 32 threads 

wide 

Leave compiler to choose 

Y dimension for grids 

and blocks. 

Grids are 16 blocks wide, 

blocks are 32 threads 

wide 



Jacobi Iteration: OpenACC Fortran v1 

!$acc data copy(A), create(Anew) 
do while ( err > tol .and. iter < iter_max ) 
  err=0._fp_kind 
 
!$acc kernels loop reduction(max:err) 
  do j=1,m 
    do i=1,n        
 
      Anew(i,j) = .25_fp_kind * (A(i+1, j  ) + A(i-1, j  ) + & 
                                 A(i  , j-1) + A(i  , j+1))    
        
      err = max(err, Anew(i,j) - A(i,j)) 
    end do 
  end do 
!$acc end kernels 
 
  ... 
 
iter = iter +1 
end do 
!$acc end data 
 



Jacobi Iteration: OpenACC Fortran v2 

!$acc data copy(A), create(Anew) 
do while ( err > tol .and. iter < iter_max ) 
  err=0._fp_kind 
 
!$acc kernels loop reduction(max:err) 
  do j=1,m 
!$acc loop gang(16), vector(32) 
    do i=1,n        
 
      Anew(i,j) = .25_fp_kind * (A(i+1, j  ) + A(i-1, j  ) + & 
                                 A(i  , j-1) + A(i  , j+1))    
        
      err = max(err, Anew(i,j) - A(i,j)) 
    end do 
  end do 
!$acc end kernels 
 
  ... 
 
  iter = iter +1 
end do 
!$acc end data 
 
 
 

Leave compiler to choose 

Y dimension for grids 

and blocks. 

Grids are 16 blocks wide, 

blocks are 32 threads 

wide 



After modifying source code to specify number of gangs/vectors 

(i.e., grid/block dimensions), run again with PGI_ACC_TIME=1 
 

total: 11.135176 s 

 

./laplace2d.c 

  main 

    56: region entered 1000 times 

        time(us): total=5568043 init=68 region=5567975 

                  kernels=5223007 data=0 

        w/o init: total=5567975 max=6040 min=5464 avg=5567 

        60: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

            time(us): total=5197462 max=5275 min=5131 avg=5197 

        64: kernel launched 1000 times 

            grid: [1]  block: [256] 

            time(us): total=25545 max=119 min=24 avg=25 

Jacobi Iteration: Tune and Re-profile 

Main computation loop 

performance improved 

from 8.7s to 5.5s 

Grid size changed from 

[256x256] to [16x512] 

 

Block size changed 

from [16x16] to [32x8] 



Performance: v1 

Execution Time (s) Speedup 

CPU 1 OpenMP thread 69.80 -- 

CPU 2 OpenMP threads 44.76 1.56x 

CPU 4 OpenMP threads 39.59 1.76x 

CPU 6 OpenMP threads 39.71 1.76x 

OpenACC GPU 13.65 2.9x Speedup vs. 6 CPU cores 

Speedup vs. 1 CPU core 

CPU: Intel Xeon X5680 

6 Cores @ 3.33GHz 
GPU: NVIDIA Tesla M2070 

Note: same code runs in 9.78s on NVIDIA Tesla M2090 GPU 



Performance: v2 

Execution Time (s) Speedup 

CPU 1 OpenMP thread 69.80 -- 

CPU 2 OpenMP threads 44.76 1.56x 

CPU 4 OpenMP threads 39.59 1.76x 

CPU 6 OpenMP threads 39.71 1.76x 

OpenACC GPU 10.98 3.62x Speedup vs. 6 CPU cores 

Speedup vs. 1 CPU core 

CPU: Intel Xeon X5680 

6 Cores @ 3.33GHz 
GPU: NVIDIA Tesla M2070 

Note: same code runs in 7.58s on NVIDIA Tesla M2090 GPU 



PGI Accelerator profiling 

Compiler automatically instruments the code, outputs profile data 
 

Provides insight into API-level efficiency 

How many bytes of data were copied in and out? 

How many times was each kernel launched, and how long did they take? 

What kernel grid and block dimensions were used? 
 

Clearly this can help us to tune to fit the architecture better 

What if we want to go even deeper? 

Compiler instrumentation provides relatively little insight (at present) into 

how efficient the kernels themselves were 
 



Profiling Tools 

Need a profiling tool that is more aware of the inner workings of 

the GPU to provide deeper insights 

 

E.g.: NVIDIA Visual Profiler 



NVIDIA Visual Profiler 

Note: screenshots shown 

here are from CUDA 4.0 

Visual Profiler 

 

Updated profiler looks a 

bit different, but concepts 

are the same 



Jacobi Iteration: Kernel Profiling 

Task: use NVIDIA Visual Profiler data to identify additional 

optimization opportunities in Jacobi example 

 



Jacobi Iteration: Kernel Profiling 



Jacobi Iteration: Kernel Profiling 



Jacobi Iteration: Kernel Profiling 



Jacobi Iteration: Kernel Profiling 



Jacobi Iteration: OpenACC C v2 
#pragma acc data copy(A), create(Anew) 
while ( err > tol && iter < iter_max ) { 
  err=0.0; 
 
#pragma acc kernels loop reduction(max:err) 
  for( int j = 1; j < n-1; j++) { 
#pragma acc loop gang(16) vector(32) 
    for(int i = 1; i < m-1; i++) { 
             
      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 
                           A[j-1][i] + A[j+1][i]); 
 
      err = max(err, fabs(Anew[j][i] - A[j][i]); 
    } 
  } 
#pragma acc kernels loop 
  for( int j = 1; j < n-1; j++) { 
#pragma acc loop gang(16) vector(32) 
    for( int i = 1; i < m-1; i++ ) { 
      A[j][i] = Anew[j][i];       
    } 
  }     
  iter++; 
} 



Jacobi Iteration: OpenACC C v3 
#pragma acc data copy(A), copyin(Anew) 
while ( err > tol && iter < iter_max ) { 
  err=0.0; 
 
#pragma acc kernels loop 
  for( int j = 1; j < n-1; j++) { 
#pragma acc loop gang(16) vector(32) 
    for(int i = 1; i < m-1; i++) { 
 
      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 
                           A[j-1][i] + A[j+1][i]); 
    } 
  } 
#pragma acc kernels loop reduction(max:err) 
  for( int j = 1; j < n-1; j++) { 
#pragma acc loop gang(16) vector(32) 
    for( int i = 1; i < m-1; i++ ) { 
      A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1] + 
                        Anew[j-1][i] + Anew[j+1][i]); 
      err = max(err, fabs(A[j][i] - Anew[j][i]); 
    } 
  } 
  iter+=2; 
} 

Need to switch back to 

copying Anew in to 

accelerator so that halo 

cells will be correct 

Can calculate the max 

reduction on ‘error’ once 

per pair, so removed it 

from this loop 

Replace memcpy kernel 

with a second instance of 

the stencil kernel 

Only need half as many 

times through the loop 

now 



Performance 

Execution Time (s) Speedup 

CPU 6 OpenMP threads (v2) 39.7 

CPU 6 OpenMP threads (v3) 20.4 1.95x 

OpenACC GPU (v2) 11.0 

OpenACC GPU (v3) 5.7 1.93x 

CPU: Intel Xeon X5680 

6 Cores @ 3.33GHz 
GPU: NVIDIA Tesla M2070 



Next Steps and Further Information 

Stay tuned for Part 3: Advanced OpenACC 

Later this week: 

Sessions on profiling tools 

Sessions on CUDA performance tuning and analysis 

Reading material: 

CUDA C Programming Guide 

CUDA C Best Practices Guide 



Questions? 


