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Evolving Use of GPU for 

Dassault Systemes Simulation 

Products 

Luis Crivelli 

And 

Matt Dunbar 
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Realistic Simulation 

an integral  
business practice 

Dassault Systémes is dedicated to making… 

to   Explore, 

    Discover, 

    Understand, 

    Improve 

Explore 

Discover 

Understand Improve 

product, life, & nature 
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Simulation with Abaqus 
Finite Element Simulation 

“Predictive Crashworthiness Simulation in a Virtual Design Process without Hardware Testing”, 
Jurgen Lescheticky, Hariaokto Hooputra and Doris Ruckdeschel, BMW Group, SIMULIA 
Customer Conference, May 2010 

Abaqus/Standard – static structural simulations 

Abaqus/Explicit – short term dynamic simulations 

http://www.autoevolution.com/news/2011-bmw-5-series-earns-5-star-nhtsa-rating-25075.html
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4 

Simulation runtimes 
Simulation is a valuable part of an engineering design process, but 

computational cost is significant   

Bottle Stacking 
• Routine static analysis  

• Compute time of 4-6 

hours on 4 x86 cores 

Stent Expansion 
• Complex static analysis 

• Compute time of 12-24 

hours using between 8 

and 32 x86 cores 

Gasket Sealing 
• Large static model 

• Compute time of 2-5 

days using between 32 

and 64 x86 cores 

Automotive Crash 
• Complex dynamics model 

• Compute time of 2-5 days 

using between 16 and 32 

x86 cores 

Reducing compute cost is 

critical! 
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Demand for Higher Accuracy 
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Ability to solve more 

accurate and more 

complex simulations was 

enabled between 2005 and 

present  by cluster 

Expect that use of GPGPU for 

compute will accelerate trend 

towards efficient execution of 

2008 2009 2010 
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6 

Simulation compute architecture 
Computational work is distributed to many cores on multiple servers by splitting a model 
into domains which are assigned to cores to parallelize computations 

New code 

allows x86 

cores to 

offload key 

compute 

work onto 

one or more 

Nvidia Tesla 

cards to 

accelerate 

computation 
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Existing Cluster-based Architecture 

Abaqus  

Machine 

Socket 

Core 

switch 

GPU 

RAM RAM 

PCI PCI 

RAM RAM 

RAM RAM 

PCI 

RAM RAM 

PCI 

Abaqus applications allow users to exploit X86 

clusters to decrease runtimes 

Can GPU deliver a faster or more 

efficient solution? 
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Approaches to Exploiting GPU 

Offload Code to Card 

•   X86 cores are idle while GPU card 

processes 

X86 GPU 

PCI bus 

X86 GPU 

Hybrid Mode 

•   X86 cores and GPU card are used 

simultaneously with X86 assigning 

appropriate work to GPU 

X86 GPU/MIC 

GPU As Platform 

•   Very limited “control” compute on 

X86; bulk of work done on GPU card 

RAM RAM 
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Key Code Components 

Abaqus Solvers 

Code Component Cost of Code Nature of Code 

Abaqus/Standard 

Linear Equation Solver Increases with problem size. 

Dense linear algebra kernels 

and “control code.” Relatively 

small amount of code with 

high computational cost. 

Finite Elements 
Most significant cost other 

than equation solver. 

Naturally parallel but code is 

not written to expose SIMD 

parallelism. 

Abaqus/Explicit 
Elements Typically 50%-75% of cost. 

Naturally parallel. Code is 

written for SIMD architectures. 

Constraints and other Much of remaining cost. Complex parallelism. 

Uses GPU in Abaqus 6.11 and 6.12 Focus of prototyping work 
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Time in Equation Solver 

Abaqus/Standard 

0
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13 Million DOF Powertrain Analysis, 6 Iterations, 
1.1E+14 FLOPS per factorization

ABAQUS/Standard

Direct Solver

As noted on previous slide 

Abaqus/Standard equation 

solver is a significant cost in 

execution of a simulation 

Natural target for GPU 

acceleration 
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Abaqus/Standard 
Single GPU/Single Server RAM RAM 

5.7X 

4.1X 

2.8X 1.8X 

Speedup At lower core counts GPU is more effective 

because the accelerated code takes a higher 

percentage of the overall time (code 

accelerated by the GPU is also effectively 

parallelized on X86 cores) 

Beyond 4 cores, X86 processors start 

overwhelming the GPU with computation 



12 

3D
S

.C
O

M
 ©

 D
as

sa
ul

t S
ys

tè
m

es
 | 

C
on

fid
en

tia
l I

nf
or

m
at

io
n 

| 5
/1

6/
20

12
 | 

re
f.:

 3
D

S
_D

oc
um

en
t_

20
12

 

Cluster and multi-GPU support – hybrid mode 

Abaqus/Standard  

1297
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949

537

1038

502

697

348

904

375

560

221

0
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Problem 1 Total Problem 2 Total Problem 1 Solver Problem 2 Solver

Ti
m

e
 (

se
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Speedup with GPU

No GPU

1 GPU

2 GPU

RAM RAM GPU 

PCI 

1.3 

1.4 

1.4 

1.9 

1.4 

1.7 

1.5 

2.4 

Speedup relative to no GPU case 

RAM RAM GPU 

PCI 

Jobs run on 2 hosts each 

with 12 cores, 48 GB of 

RAM, and 2 Nvidia GPU’s 

 

Problem 1 
•  1.5 MDOF 

•  5.37 teraflops per iteration 

 

Problem 2 
•  3.4 MDOF 

•  10.8 teraflops per iteration 
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GPU as a platform using Portland Group (OpenACC) compiler 

Abaqus/Explicit 

Loop A – process 1 to ngroup elements 

 

Loop B – process 1 to ngroup elements 

 

Loop C – process 1 to ngroup elements 

Loop over groups of elements 

Process group 1 Process group 2 Process group 3 
Parallelization is done at a fine-grained 

level. Generally relies on elements being 

processed being identical (Single 

Instruction Multiple Data) 

Explicit finite element codes do not have 

a natural bottleneck 

Compute cost is spread through many 

100’s of routines 

Code does have a natural SIMD structure 

SIMULIA has done a prototype in which 

the Portland Group compiler was used to 

build existing X86 code for GPU 
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Abaqus/Explicit Prototype 
X86 Socket GPU PCI bus 

Xeon X5680 – 1 core – 357 ms 

Xeon X5680 – 6 cores – 70 ms 

RAM RAM GPU 

PCI 

C3D8R Element Code 

Nvidia Tesla – 21 ms 

Data transfer – 230 ms  

Data transfer – 230 ms  

Data cannot be transferred but 

must be left on GPU 
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Memory bandwidth bounds GPU performance 
Given peak performance of GPU near 1 TFlop vs peak performance for Westmere of ~70 Gflops 

why does Explicit code sped up by only 3X? 

do k = 1, groupsize 

    temp1(k) = in1(k) * in2(k) 

 

do k = 1, groupsize 

     temp2(k) = temp1(k) * in3(k) 

 

do k = 1, groupsize 

    out(k) = temp2(k) * x 

RAM 

Cache 

L1 

L2 

L3 

Computational 

Unit 

Computational 

Unit 

GPU System 

Memory 

Local Memory 

~150 GB/sec  
~25 GB/sec  

768 KB 

On X86 system temporary arrays remain in cache, 

but on GPU limited local memory is shared 

between a large number of threads so temporary 

data ends up be written back to system memory. 

High degree of data parallelism, but each 

piece of data is used a small number of 

times in operations 
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Conclusions 

Use of GPU as an X86 accelerator in a hybrid mode is effective and continued 

area of development 

 

Investigations into GPU as a platform are ongoing 

Experience with OpenACC compiler approach has been good 

Highly data parallel code does have bandwidth issues on GPU which limits gains 

Data management between X86 memory and GPU is a key topic 
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