

GPU-based operational Weather Model with Horizontal 500m resolution

Takayuki Aoki

Global Scientific Information and Computing Center (GSIC) Tokyo Institute of Technology

Supercomputer in the world

2011 November

Rank	Site	Computer/Year Vendor	Cores	R _{max}	Rpeak	Power
1	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect / 2011 Fujitsu	705024	10510.00	11280.38	12659.9
2	National Supercomputing Center in Tianjin China	NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 / 2010 NUDT	186368	2566.00	4701.00	4040.0
3	DOE/SC/Oak Ridge National Laboratory United States	Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.0
4	National Supercomputing Centre in Shenzhen (NSCS) China	Dawning TC3600 Blade System, Xeon X5650 6C 2.66GHz, Infiniband QDR, NVIDIA 2050 / 2010 Dawning	120640	1271.00	2984.30	2580.0
5	GSIC Center, Tokyo Institute of Technology Japan	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73278	1192.00	2287.63	1398.6

ORNL Jaguar vs Tsubame 2.0

Similar Peak Performance, 1/5 the Size and Power

Supercomputer in the world

November 2011

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)				
1	2026.48	IBM - Rochester	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	85.12				
2	2026.48	IBM Thomas J. Watson Research Center	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	85.12				
3	1996.09	IBM - Rochester	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	170.25				
4	1988.56	DOE/NNSA/LLNL	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	340.50				
5	1689.86	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 1	38.67				
<u>6</u>	1378.32	Nagasaki University	DEGIMA Cluster, Intel i5, ATI Radeon GPU, Infiniband QDR	47.05				
Z	1266.26	Barcelona Supercomputing Center	Bullx B505, Xeon E5649 6C 2.53GHz, Infiniband QDR, NVIDIA 2090	81.50				
8	1010.11	TGCC / GENCI	Curie Hybrid Nodes - Bullx B505, Xeon E5640 2.67 GHz, Infiniband QDR	108.80				
9	963.70	Institute of Process Engineering, Chinese Academy of Sciences	Mole-8.5 Cluster, Xeon X5520 4C 2.27 GHz, Infiniband QDR, NVIDIA 2050	515.20				
10	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80				
* Performance data obtained from publicly available sources including TOP500								

(Power Usage Effectiveness) TSUBAME2.0 PUE = 1.2

Heterogeneous Computer

Several Bandwidth Bottle Necks

Collaboration: Japan Meteorological Agency

Meso-scale Atmosphere Model:

Cloud Resolving Non-hydrostatic model

Compressible equation taking consideration of sound waves.

Atmosphere Model

Dynamical Process: Full 3-D Navior-Stokes Equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla P - 2 \Omega \times \boldsymbol{u} - \Omega \times (\Omega \times \boldsymbol{r}) + \boldsymbol{g} + \boldsymbol{F}$$

Physical Process:

Cloud Physics, Moist, Solar Radiation, Condensation, Latent heat release, Chemical Process, Boundary Layer

"Parameterization" including sin, cos, exp, ... in empirical rules.

WRF GPU Computing

WRF (Weather Research and Forecast)

WSM5 (WRF Single Moment 5-tracer) Microphysics*

Represents condensation, precipitation and thermodynamic effects of latent heat release 1 % of lines of code, 25 % of elapsed time \Rightarrow 20 x boost in microphysics (1.2 - 1.3 x overall improvement)

WRF-Chem^{**} provides the capability to simulate chemistry and aerosols from cloud scales to regional $\Rightarrow x 8.5$ increase

**John C. Linford, John Michalakes, Manish Vachharijani, and Adrian Sandu. Multi-core acceleration of chemical kinetics for simulation and prediction, proceedings of the 2009 ACM/IEEE conference on supercomputing (SC'09), ACM, 2009.

ASUCA Production Code

 A next-generation high resolution weather simulation code that is being developed by Japan Meteorological Agency (JMA)
 ASUCA succeeds the JMA-NHM as an operational nonhydrostatic regional model at JMA

J. Ishida, C. Muroi, K. Kawano, Y. Kitamura, Development of a new nonhydrostatic model "ASUCA" at JMA, CAS/JSC WGNE Reserch Activities in Atomospheric and Oceanic Modelling.

JMA-ASUCA

ASUCA : developed by Japan Meteorological Agency (JMA) for the next-generation weather prediction

Meso-scale non-hydrostatic Atmosphere Model

Time-splitting method: long time step for flow

u, v (~ 100 m/s), w (~ 10 m/s) << sound velocity (~300/ms)

Similar Structure as WRF

HEVI (Horizontally explicit Vertical implicit) scheme

✓ Dynamical Core uses a numerical scheme with 3rd-order

accuracy in time and space

Flux-form non-hydrostatic compressible equation Generalized coordinate

1 Year

Introducing many optimizations, overlapping the computation with the communication, kernel fuse, re-ordering kernel, . . .

Implementation : Advection

- Each thread specifies a (x, z) point, marching in y
 - Improve data transfer performance using domain decomposition

Implementation : 1D Helmholtz equation

- 1D Helmholtz equation
 - Element in k depends on elements in k+/- 1
 - ⇒ marching in z direction

Using Registers in marching direction

TSUBAME 2.0 (1 GPU)

Arithmetic INTENSITY: FLOP/Byte

$$\frac{f_{i,j}^{n+1} - f_{i,j}^{n}}{\Delta t} = \kappa \left(\frac{f_{i+1,j}^{n} - 2f_{i,j}^{n} + f_{i-1,j}^{n}}{\Delta x^{2}} + \frac{f_{i,j+1}^{n} - 2f_{i,j}^{n} + f_{i,j-1}^{n}}{\Delta y^{2}} \right)$$

$$f_{i,j}^{n+1} = c_{0}f_{i,j}^{n} + c_{1}f_{i+1,j}^{n} + c_{2}f_{i-1,j}^{n}$$

$$+ c_{3}f_{i,j+1}^{n} + c_{4}f_{i,j-1}^{n}$$
FLOP = 9
Byte = 8*(5+1) = 48 byte: read 5, write 1
FLOP/Byte = 9/48 = 0.1875 (DP)
$$= 9/24 = 0.375$$
 (SP)
$$f_{i,j-1}$$

Achievable Performance

- F = Peak Performance of floating point operation
- **B** = Peak Memory Bandwidth

Performance of 5 kernels

Breakdown of the GPU Kernel Functions in Time Loop

Re-ordering the communication and computation

Overlapping comm and comp in each function

TSUBAME 2.0 Weak Scaling

ASUCA Typhoon Simulation 500m-horizontal resolution 4792×4696×48 Using 437 GPUs

Real City Computation

Tokyo 六本木 Area 1km x 1 km

Building Data

1-m resolution 1000x1000x256

Lattice Boltzmann Method

$$\frac{\partial f_i}{\partial t} + \mathbf{e}_i \cdot \nabla f_i = -\frac{1}{\lambda} \left(f_i - f_i^{eq} \right)$$

$$f_i^{eq} = \rho w_i \left[1 + \frac{3}{c^2} \left(\mathbf{e}_i \cdot \mathbf{u} \right) + \frac{9}{2c^4} \left(\mathbf{e}_i \cdot \mathbf{u} \right)^2 - \frac{3}{2c^2} \left(\mathbf{u} \cdot \mathbf{u} \right) \right]$$

Strongly Memory Bound Problem:

Collision step:

Streaming step:

- *i* is the value in the direction of *ith* discrete velocity *e_i* is the discrete velocity set;
- w_i is the weighting factor
- c is the particle velocity
- **u** is the macroscopic velocity

LES for Turbulent Flows

Filtered Navier-Stokes equation

LES modeling

Smagorinsky model

 $egin{aligned} & au_{ij} = -2
u_{SGS} S_{ij} \ &
u_{SGS} = C riangle^2 |S| & C: const \end{aligned}$

Dynamic Smagorinsky model

 $\nu_{SGS} = C \triangle^2 |S|$

$$C = \frac{\langle L_{ij}L_{ij} \rangle}{\langle M_{ij}M_{ij} \rangle} \qquad \begin{array}{c} L_{ij} = \widehat{\bar{u}_i \bar{u}_j} - \widehat{\bar{u}}_i \widehat{\bar{u}}_j \\ M_{ij} = 2\bar{\bigtriangleup}^2 |\bar{\bar{S}}|\bar{\bar{S}}_{ij} - 2\bar{\bigtriangleup}^2|\hat{\bar{S}}|\bar{\bar{S}}_{ij} \end{array}$$

 \circ Simple

△ inaccurate for the flow with wall boundary

 $\boldsymbol{\Delta}$ emperical tuning for the constant model coefficient

• applicable to wall boundary

- △ complicated calculation
- △ average process over the wide area
 - \rightarrow not available for complex shaped body
 - \rightarrow not suitable for large-scale problem

 $\begin{array}{ll} \begin{array}{l} \mbox{Coherent-Structure Smagorinsky model} \\ \nu_{SGS} = C \bigtriangleup^2 |S| \\ \nu_{SGS} = C \bigtriangleup^2 |S| \\ \hline \end{array} \rightarrow \mbox{model coefficient determined by the second invariant of} \\ \begin{array}{l} \mbox{the velocity gradient tensor} \\ \mbox{the velocity gradient tensor} \\ \hline \end{array} & \begin{array}{l} \mbox{model coefficient} \\ \hline \end{array} & \begin{array}{l} \mbox{model coefficient} \\ \mbox{model coefficient} \\ \hline \end{array} & \begin{array}{l} \mbox{model coefficient} \\ \mbox{of the velocity gradient tensor} \\ \hline \end{array} & \begin{array}{l} \mbox{model coefficient} \\ \mbox{model coefficient} \\ \hline \end{array} & \begin{array}{l} \mbox{model coefficient} \\ \mbox{model coefficient} \\ \mbox{of the velocity gradient tensor} \\ \mbox{model coefficient} \\ \hline \end{array} & \begin{array}{l} \mbox{model coefficient} \\ \mbox{model coefficient} \\ \mbox{of the velocity gradient tensor} \\ \mbox{model coefficient} \\ \mbox{of the velocity gradient tensor} \\ \mbox{model coefficient} \\ \mbox{of the velocity gradient tensor} \\ \mbox{model coefficient} \\ \mbox{of the velocity gradient tensor} \\ \mbox{model coefficient} \\ \mbox{model coefficient is locally} \\ \mbox{of the velocity gradient tensor} \\ \mbox{model coefficient is locally} \\ \mbox{model coefficient is locally} \\ \mbox{model coefficient is locally} \\ \mbox{model tensor} \\ \mbox{model coefficient} \\ \mbox{model coefficient} \\ \mbox{model coefficient is locally} \\ \mbox{model tensor} \\ \mbox{model tensor}$

LES modeling on LBM

Turbulence model :

$$v_* = v_0 + v_t = \frac{1}{3} \left(\tau_* - \frac{1}{2} \right) c^2 \delta_t = \frac{1}{3} \left(\tau_0 + \tau_t - \frac{1}{2} \right) c^2 \delta_t, \quad v_t := \frac{1}{3} \tau_t c^2 \delta_t,$$

Molecular viscosity + eddy viscosity

 $v_t = (C_S \Delta_x)^2 \bar{S}$ Smagorinsky model subgrid closure $C_s = 0.22$

$$\bar{S}_{ij} = \frac{1}{2} \left(\partial_j \bar{u}_i + \partial_i \bar{u}_j \right) \quad \bar{S} = \sqrt{2 \sum_{i,j} \bar{S}_{ij} \bar{S}_{ij}}$$

SUMMARY

- ASUCA (JMA operational weather prediction model) has been successfully implemented on GPU supercomputer TSUBAME 2.0.
- 500m-resolution model runs on 437 GPU, i.e, only 10 % of TSUBAME 2.0.
- A showcase of Large-scale GPU applications
 - Lattice Boltzmann Method
 - LES with CSM SGS model

Thank you for your kind attention