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Example, Computational Dynamics
[simulated in commercial package]
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Example, Computational Dynamics 
[simulated in commercial package]
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Classical Computational Dynamics,
Constrained Equations of Motion
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An Engineering Application…

� How is the Rover moving along on a slope with granular material?

� What wheel geometry is more effective?
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Frictional Contact Simulation
[Commercial Solution]

� Model Parameters:
� Spheres: 60 mm diameter and mass 0.882 kg
� Forces: smoothing with stiffness of 1E5, force 

exponent of 2.2, damping coefficient of 10.0, 
and a penetration depth of 0.1

� Simulation length: 3 seconds
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Simulating large problems remains Simulating large problems remains 
a challenge…
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Heterogeneous Cluster
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Lab’s Heterogeneous Computing Cluster

� More than 20,000 GPU scalar processors 

� More than 150 CPU cores

� Mellanox Infiniband Interconnect, 40Gb/sec

� About 0.7 TB of RAM

� More than 20 Tflops� More than 20 Tflops

� Can manage at each time about 1,000,000 parallel GPU threads

� …

� Third fastest cluster at UW-Madison
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The issues is not hardware availability. Rather, it is producing 
modeling and solution techniques that can leverage this hardware



Heterogeneous Computing Template (HCT):
A Software Infrastructure for Large Scale Physics-Based Simulation

� Underlying theme of our lab’s effort

� Develop a Heterogeneous Computing Template (HCT) that leverages emerging 

hardware architectures and suitable algorithms to solve large engineering problems

� Targeted “emerging hardware architectures” :

� Clusters of CPUs and GPUs (accelerators)

� More than 100 CPU cores, tens of GPU cards, tens of thousands of GPU cores

� Targeted “large engineering problems”

� Granular dynamics, compliant elements, soil modeling, tire/terrain modeling, FSI, etc.
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HCT: Five Major Components

� Computational Dynamics requires

� Advanced modeling techniques

� Strong algorithmic (applied math) support

� Proximity computation

� Domain decomposition & Inter-domain data exchange

� Post-processing (visualization) 

� HCT represents the library support, the associated API, and the 
embedded tools that support this five component abstraction
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� Multi-Physics targeted Computational Dynamics requires

� Advanced modeling techniques

� Strong algorithmic (applied math) support

� Proximity computation

13

� Proximity computation

� Domain decomposition & Inter-domain data exchange

� Post-processing (visualization) 
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HCT: 
Support for Advanced Modeling Techniques

� Modeling: what does it mean?
� The process of formulating a set of governing differential equations that captures the 

multi-physics associated with the engineering problem of interest

Modeling Issues:� Modeling Issues:
� Modeling approaches are sometimes completely new or have seen little previous usage

� Multi-physics: multiple spatial and temporal scales, difficult to solve

� Modeling can get you a head start
� Good modeling places you at an advantage when it comes to simulating hard problems
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Modeling Example:

Handling Frictional Contact Phenomena

� Two broadly used approaches for handling frictional contact:

� Soft-body approaches� Soft-body approaches

� Called a “DEM approach”, draws on penalty method

� Hard-body approaches

� Called a “DVI approach”, draws on Lagrange Multiplier method
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Modeling Example: 

Handling Frictional Contact Phenomena
[Cntd.]
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The DVI Framework…

� The hard-body approach: two rigid bodies in contact shall move so 
that their boundaries are not overlapping

� There is a complementarity condition that captures this requirement
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The DVI Framework… 
[Cntd.]

� There is also friction between bodies (acts in the tangent plane):

� Coulomb friction model states that the following conditions hold
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The DVI Framework… 
[Cntd.]

� An equivalent way of stating the Coulomb friction model is

� Recall that 

� In other words, the friction force should be such that the relative motion 
between the two bodies maximizes the amount of power dissipated
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Multi-Body Dynamics
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Many-Body Dynamics
[with Friction and Contact]
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Multi-Physics…
Fluid-Solid Interaction: Navier-Stokes + Newton-Euler.

12/11/2011
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Fluid-Solid Interaction Example

� Separating living/dead cells
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Multi-Physics:
Multi-Body Dynamics & Fluid Dynamics
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Simulation results: velocity magnitude
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Simulation results: velocity field
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Simulation results: Velocity Field
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Dealing with Compliant Bodies
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� Finite Element node coordinates

� The global position vector of an arbitrary point on the beam centerline is
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Modeling, Dynamics of Systems with 
Compliant Elements

� The shape function matrix for this element is defined as
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Element Mass Matrix and

Element Elastic Force

� M is the symmetric consistent mass matrix of element 

defined as

0

l

TA dxρ= ∫M S S

A l- c/s area,      - density,     - element length
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A ρ l

� The vector of the element elastic forces is determined 

using the strain energy as 

- axial strain - magnitude of curvature vector

11
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CPU vs. GPU Scaling Analysis
[results up to 120,000 deformable beams]

31

• Intel Nehalem Xeon E5520 2.26GHz processor with an NVIDIA Tesla C2070 graphics cards
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� Multi-Physics targeted Computational Dynamics requires

� Advanced modeling techniques

� Strong algorithmic (applied math) support� Strong algorithmic (applied math) support

� Proximity computation

� Domain decomposition & Inter-domain data exchange

� Post-processing (visualization) 

3212/11/2011 Simulation Based Engineering Lab



HCT: Novel modeling techniques

� Main issue: I should be able to solve the equations of motion 

effectively in a heterogeneous hardware environment
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Traditional Discretization Scheme

positions
time step index

speeds Reaction

impulsesApplied Forces
Mass Mat.

Coulomb 3D fricion 

model

Complementarity 

Condition

Stabilization 

term

(Stewart, 1998)
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Relaxed Discretization Scheme Used

Relaxation Term

(Anitescu & Tasora, 2008)
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� Introduce the convex hypercone... 

The Cone Complementarity Problem 

(CCP)

... and its polar hypercone:

� First order optimality conditions lead to Cone Complementarity Problem

CCP assumes following form: Find γ such that

3612/11/2011
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Putting Things in Perspective…

α

γ ∈ ϒ

37

� Coulomb Friction posed as an optimization problem

� Working with velocity and impulses rather than acceleration and forces

� Working with constraint equations (unilateral and bilateral) at the velocity level

� Contact complementarity expression relaxed to lead to CCP

� Four key points led to above algorithm:

12/11/2011
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The Quadratic Programming Angle…

� The relaxed EOM represent a cone-complementarity problem (CCP)

� The CCP captures the first-order optimality condition for a quadratic 

optimization problem with conic constraints:

� Notation used:
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CCP Solution Algorithm

39
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Mixing 50,000 M&Ms on the GPU
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1 Million Rigid Spheres
[parallel on the GPU]
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Objective Function Value
[1K bodies, 3525 contacts]

The red line has 1000 

dots on it; i.e.,1000 

Jacobi sweeps

Method Iterations
Final Objective

Function Value
γmin γmax

Computation Time  

[sec]

GPMINRES-no p
1000 MinRes Its. [within 

100 changes of active set]
-2.9035 0.0 7.7487 6.7002

GPMINRES-no p

(not plotted above)

10000 MinRes Its. [within 

1000 changes of active set]
-2.9045 0.0 8.2002 61.0698

GPMINRES-p
100 MinRes Its. [within 100 

changes of active set]
-2.8854 0.0 6.8551 1675

Jacobi 1000 -2.5077 0.0 4.4961 3.6643

The green & blue lines have 

100 dots on them; i.e.,100 

changes of active set
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Magnitudes of xk components
[1K bodies, 3525 contacts]

� Here, the solution vector xk is sorted 
by size and plotted.

� The blue dots represent the solution 
after 100 active sets (1,000 total 
MinRes iterations).

� The green dots represent the solution 

12/11/2011 44

� The green dots represent the solution 
after 1000 active sets (10,000 total 
MinRes iterations).

� The red dots correspond to Jacobi 
after 1000 sweeps.

� The solution is ‘sharper’ when 
performing more iterations.
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Magnitudes of xk components
[1K bodies, 3525 contacts]
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This is basically the same data as the previous slide, this time plotted in histograms. Again, 

the results from 100 and 1000 active sets are quite similar.
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History of Active Set Size
[1K bodies, 3525 contacts]

� Plot shows the size of the active set 

each time the inner unconstrained sub-

problem is solved.

12/11/2011
46

� For some undetermined reason, the 

active set briefly becomes unsettled at 

about 850 active sets.
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History of Active Set Size
[1K bodies, 3525 contacts]

12/11/2011
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� Note that the value of the objective function after 100 active sets reported a couple of slides 

back comes at a time when the active set is relatively unsettled

� However, it is not drastically different than the value of the cost function after 1000 active set 

changes.

100 
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Magnitude of 

Projected Gradient 
[1K bodies, 3525 contacts]

100 

100 

12/11/2011
48

� Stopping criteria should be based on magnitude of projected gradient:

� Projected gradient defined as



� Multi-Physics targeted Computational Dynamics requires

� Advanced modeling techniques

� Strong algorithmic (applied math) support

49

� Strong algorithmic (applied math) support

� Proximity computation

� Domain decomposition & Inter-domain data exchange

� Post-processing (visualization) 
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� Collision Detection is hard
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� Example: 2D collision detection, bins are squares

CD: Binning

� Body 4 touches bins A4, A5, B4, B5

� Body 7 touches bins A3, A4, A5, B3, B4, B5, C3, C4, C5

� In proposed algorithm, bodies 4 and 7 will be checked for collision 
by three threads (associated with bin A4, A5, B4)

51
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Stage 1 (Body Parallel)

� Purpose: find the number of bins touched by each body

� Store results in the “T”, array of N integers

� Key observation: it’s easy to bin bodies
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Stage 2: Parallel Inclusive Scan

� Run a parallel inclusive scan on the array T

� The last element is the total number of bin touches, including the last body

� Complexity of Stage: O(N) – thrust library

� Purpose: determine the number of 
entries M needed to store the indices of 
all the bins touched by each body in the 
problem
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Stage 3: Determine bin-to-body association

� Stage executed in parallel on a per-body basis

� Allocate an array B of M pairs of integers.  

� The key (first entry of the pair), is the bin index� The key (first entry of the pair), is the bin index

� The value (second entry of pair) is the body that 
touches that bin
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Stage 4: Radix Sort

� In parallel, run radix sort to order 

the B array according to key values

� Work load: O(N)� Work load: O(N)

� Relies on thrust library
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Stage 5: Find Bin Starting Index

� Host allocates on device an array of length Nb of pairs of 
unsigned integers

� Run in parallel, on a per bin basis:

� Load in parallel in shared memory chunks of the B array and 
find the location where each bin starts

� Store it in entry k of C, as the key associated with this pair

� Key of bins with one or no bodies is set to maximum 
unsigned int value of 0xffffffff
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Stage 6: Sort C for Pruning

� Do a parallel radix sort on the array C based on the key

� Purpose: move unused bins to the end of array

� Effort: O(Nb)
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Stage 7: Investigate Collisions in each Bin

� Carried out in parallel, one thread per bin

� To store information generated during this stage, host needs to � To store information generated during this stage, host needs to 
allocate an unsigned integer array D of length Nb

� Array D stores the number of actual contacts occurring in each bin

� D is in sync with (linked to) C, which in turn is in sync with (linked to) B

� Parallelism: one thread per bin

� Thread k reads the pair key-value in entry k of array C

� Thread k reads does rehearsal for brute force collision detection 

� Outcome: the number s of active collisions taking place in a bin

� Value s stored in kth entry of the D array 5812/11/2011



Stage 7, details…

� In order to carry out this stage you need to keep in mind how C is 

organized, which is a reflection of how B is organized

� The drill: thread 0 relies on info at C[0], thread 1 

relies on info at C[1], etc. 

� Let’s see what thread 2 (goes with C[2]) does:

� Read the first 2 bodies that start at offset 6 in B.  

� These bodies are 4 and 7, and as B indicates, they 

touch bin A4

� Bodies 4 and 7 turn out to have 1 contact in A4, 

which means that entry 2 of D needs to reflect this

59



Stage 7, details

� Brute Force CD rehearsal

� Carried out to understand the memory requirements associated with 

collisions in each bin

� Finds out the total number of contacts owned by a bin

� Key question: which bin does a contact belong to?

� Answer: It belongs to bin containing the CM of the Contact Volume (CMCV)

Zoom

in...
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Stage 7, Comments

� Two bodies can have multiple contacts, handled ok by the method

� Easy to define the CMCV for two spheres, two ellipsoids, and a couple of other 

simple geometries

� In general finding CMCV might be tricky

� Notice picture below, CM of 4 is in A5, CM of 7 is in B4 and CMCV is in A4� Notice picture below, CM of 4 is in A5, CM of 7 is in B4 and CMCV is in A4

� Finding the CMCV is the subject of the so called “narrow phase collision detection”

� It’ll be simple in our case since we are going to work with simple geometry primitives
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Stage 8: Inclusive Prefix Scan

� Save to the side the number of contacts
in the last bin (last entry of D) dlast

� Last entry of D will get overwritten

� Run parallel exclusive prefix scan on D:

� Total number of actual collisions:

Nc = D[Nb] + dlast
6212/11/2011



Stage 9: Populate Array E

� From the host, allocate on the device memory for array E
� Array E stores the required collision information: normal, two tangents, etc.

� Number of entries in the array: Nc (see previous slide)

� In parallel, on a per bin basis (one thread/bin):
� Populate the E array with required info

� Not discussed in greater detail, this is just like Stage 7, but now you have to 
generate actual collision info (stage 7 was the rehearsal)

� Thread for A4 will generate the info for contact “c”

� Thread for C2 will generate the info for “i” and “d”

� Etc.

63
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Stage 9, details

� B, C, D required to populate array E with collision information

� C and B are needed to compute the 
collision information

� D is needed to understand where the 
collision information will be stored in E
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Multiple-GPU Collision Detection

Assembled Quad GPU Machine

Processor: AMD Phenom II X4 940 Black

Memory: 16GB DDR2

Graphics: 4x NVIDIA Tesla C1060

Power supply 1: 1000W

Power supply 2: 750W
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SW/HW Setup

Main Data Set

Results
16 GB RAM

Thread 

0

Thread 

1

Thread 

3

Thread 

2

GPU 

0

GPU 

1

GPU 

3

GPU 

2

Open MP Quad Core AMD

Microprocessor 

Tesla C1060

4x4 GB Memory

4x30720 threads
CUDA
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Results – Contacts vs. Time
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Speedup - GPU vs. CPU (Bullet library)
[results reported are for spheres]
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Parallel Implementation:

Number of Contacts vs. Detection Time

[results reported are for spheres]
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Ellipsoid-Ellipsoid CD: Visualization
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Example: Ellipsoid-Ellipsoid CD
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Ellipsoid-Ellipsoid CD: Results
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� Multi-Physics targeted Computational Dynamics requires

� Advanced modeling techniques

� Strong algorithmic (applied math) support

� Proximity computation

Domain decomposition & Inter-domain data exchange

73

� Domain decomposition & Inter-domain data exchange

� Post-processing (visualization)

12/11/2011 Simulation Based Engineering Lab



Heterogeneous Cluster

74
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Juggling World Record: 
64 People Juggling (of all places) in Madison, Wisconsin
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Computation Using Multiple CPUs
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HCT: Domain decomposition

&

Inter-domain data exchange

� Relates to the ability to divide the simulation into chunks and have 
multiple CPUs/GPUs exchange data during simulation as needed

� Elements leave one subdomain to move to a different one

� Key issues:� Key issues:
� Dynamic load balancing

� Establish a dynamic data exchange protocol (DDEP) between sub-domains

77

v1

v3

v2

v5
v4
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0.5 Million Bodies on 64 Cores
[Penalty Approach, MPI-based]
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Computation Using Multiple CPUs
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Three Years Ago…

� Handling 50,000 bodies was challenging

12/11/2011 Simulation Based Engineering Lab 80



Rover on Granular Terrain…
[0.522 million bodies]

� Can scale to thousands of cores

� Simulation uses 64 CPU cores

� Work in progress, we anticipate to get to 0.5 billion in 18 months
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� Multi-Physics targeted Computational Dynamics requires

� Advanced modeling techniques

� Strong algorithmic (applied math) support

82

� Proximity computation

� Domain decomposition & Inter-domain data exchange

� Post-processing (visualization) 
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HCT:
Visualization and Post-Processing

� Rendering very complex scenes with more than one million components

� Rendering takes longer than simulating

� Pursuing a rendering pipeline that draws on multiple CPUs and GPUs
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Track Simulation

Parameters:
• Driving speed: 1.0 rad/sec

• Length: 12 seconds

• Time step: 0.005 sec

• Computation time: 18.5 hours

• Particle radius: .027273 m

• Terrain: 284,715 particles

84

• Terrain: 284,715 particles

•Inertia parameters of track are 

fake

12/11/2011
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Dual Track ‘Footprint’

12/11/2011
85
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Simulation of MRAP Impacted by Debris

Animations show work in progress.

Run simultaneously on the CPU & GPU.

86
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Simulation of MRAP Impacted by Debris
[work in progress]

12/11/2011
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M113
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Validation.Validation.

89
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Model

Simulate

Validate

� Validation at “microscale” – University of Wisconsin-Madison
� Work in progress

� Validation at “macroscale” – University of Parma, Italy
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Flat Hopper Tests

Video recording from a test (a case that starts from high crystallization)
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Flat Hopper Tests

3D rendering from a simulation (4x slower than real-time) 9212/11/2011



Flat  Hopper Tests

� Comparison experimental - simulated

Experimental     Simulated

9312/11/2011 Simulation Based Engineering Lab



Validation at
Microscale

� Sand flow rate measurements

� Approx. 40K bodies

� Glass beads

� Diameter: 100-500 microns

9412/11/2011



Experimental Setup

Beads

CPU connection

Nanopositioner controller

Translational stage

Load cell

Nanopositioner
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Flow Measurement, 
500 micron Spheres
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Flow Simulation, 500 micron Spheres
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Flow Measurement Results, 
3mm Gap Size
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Flow Measurement Results, 
2.5mm Gap Size
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Flow Measurement Results, 
2mm Gap Size
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Flow Measurement Results, 
1.5mm Gap Size
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Validation Experiment:
Repose Angle

� Simulation� Experiment
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φ = 19.5◦ for µ = 0.39
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Validation Experiment
Flow and Stagnation
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Validation,
Flow and Stagnation
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Validation,
Flow and Stagnation
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Conclusions/Putting Things in Perspective

� Goal: Leverage hybrid CPU/GPU computing & new math to solve large 
engineering problemsengineering problems

� Strategy: Develop an experimentally validated Heterogeneous Computing Template (HCT)
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HCT: Five Major Components
[Looking Ahead]

� Novel modeling techniques
� Rigid/Deformable bodies, fluid-solid interaction, electrostatics, cohesion

� Strong algorithmic (applied math) support
Sparse parallel direct preconditioner, Krylov type methods � Sparse parallel direct preconditioner, Krylov type methods 

� Proximity computation
� Handling complex non-convex topologies + time continuous collision detection

� Domain decomposition & Inter-domain data exchange
� Load balancing in distributed computing; focus on GPUDirect technology

� Post-processing (visualization)
� Establish a feature-rich ready-to-use rendering pipeline that draws on High Throughput Computing
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Thank You.Thank You.

negrut@wisc.edu
http://sbel.wisc.edu
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