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Antony Jameson

• Revolutionized CFD in aeronautics

Solution to full potential equation, 
efficient multi-grid methods, shock 
capturing for transonic flows, control 
theory for shape optimization

• Lead developer of FLO and SYN codes 
used throughout the aerospace 
industry

• Over 400 scientific papers

• Multiple honorary awards

• Trademark: Fast codes
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SD++

• 2D/3D compressible viscous flow solver

• Mixed grids of quadrilaterals and triangles in 2D and hexahedra, 
prisms and tetrahedra in 3D

• Arbitrary order of accuracy

• Solver can run on multiple CPUs

or GPUs (C++/Cuda/MPI)
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Talk Overview
• Part 1: Unstructured High-Order Methods

– Why are they useful?

• Part 2: Flux Reconstruction Method for the Navier-Stokes equations
– Algorithm details
– Why it’s a good fit for GPUs

• Part 3: GPU Implementation Details
– Single-GPU: Efficient use of GPU memory hierarchy
– Multi-GPU : How to obtain good scalability

• Part 4: Performance analysis and Applications
– Performance on a single GPU
– Strong and weak scaling study
– How GPUs enable  previously intractable fluid flow simulations
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Unstructured High-Order Methods

• What does high-order mean?

• Low-order methods:

– Order of accuracy is 1 or 2 (Error is of order h or order h2)

– Robust and simple to implement

– Dissipative

• High-order methods:

– Order of accuracy is > 2

– Not as mature as low-order methods

– More work per DOF

– Required for applications where accuracy requirement is high
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Unstructured High-Order Methods

• Why do we need high-order methods?

5

Cost

Er
ro

r

Low-Order Method

High-Order Method

Error level for RANS simulations

Error level for acoustic wave 
propagation
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 0 t = 0

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 1 t = 1

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 2 t = 2

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 3 t = 3

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 4 t = 4

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 5 t = 5

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 20 t = 20

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 40 t = 40

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 60 t = 60

Unstructured High-Order Methods

• Why is high-order useful?
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2nd order (25,600 DOFs) 4th order (25,600 DOFs)

t = 180 t = 180

Unstructured High-Order Methods

• Why is high-order useful?
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Unstructured High-Order Methods

• Why are they useful:

Complex geometry + High Accuracy

• In computational fluid dynamics, they enable:

– Simulation of wave propagation over long distances in vicinity of 
complex geometries

– Simulation of vortex motion over long distances in vicinity of 
complex geometries

– Effective Large Eddy Simulations (LES) in vicinity of complex 
geometries
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Unstructured High-Order Methods

• Airframe noise (turbulence + generation/propagation of sound 
waves + complex geometry)
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Unstructured High-Order Methods

• Rotorcraft (turbulence + track vortices over long distances + complex 
geometry)
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Unstructured High-Order Methods

• Flapping wing flight (transitional Reynolds number + vortex 
dominated flow + complex geometry) 
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Unstructured High-Order Methods

• Flapping wing flight (transitional Reynolds number + vortex 
dominated flow + complex geometry) 
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Unstructured High-Order Methods

• Plunging airfoil: zero AOA, Re=1850, Frequency: 2.46 rad/s

• 5th order accuracy in space, 4th order accurate RK time stepping
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Unstructured High-Order Methods

• Vortical patterns and force coefficients agree with experiments

• Able to capture the fine structures in addition to main vortex train
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Experiment by Jones, Dohring, 
Platzer, July 1998

Vorticity contours, 5th

order accuracy solution
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Unstructured High-Order Methods

• Computations are demanding:

– Millions of DOFS

– Hundreds of thousands of time steps

• Until recently, high-order simulations over complex 3D geometries 
were intractable, unless you had access to large cluster

• GPUs to the rescue!
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Flux Reconstruction Method
• For a conservation law in strong form

• Ex: Euler equations

• Solve differential form within each element, with boundary data 
from neighbouring elements

• Can recover Spectral Difference and Discontinuous Galerkin methods
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N=1N=4N=3

N=2

Flux Reconstruction Method

• Solution in each element 
approximated by a multi-
dimensional polynomial of 
order N

• Order of accuracy: hN+1

• Multiple DOFs per element
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N=2

N=2
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Flux Reconstruction Method

• Method maps well to the GPUs:

– High-level of parallelism (millions of DOFs)

– More work per DOF compared to low-order methods 

(flops are “free” on a GPU)

– Cell-local operations benefit from fast on-chip shared-memory
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GPU Implementation
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GPU Implementation

• Test case: Viscous flow over sphere, Re=100, Mach = 0.2 

• 4th order RK time-stepping scheme 

• Considered 3 grid types, each made up of one of the 3 element types 

• Every effort was made to maximize performance of CPU code:

– Intel Math Kernel Library (MKL) version 10.3 for dense MM
– Optimized Sparse Kernel Interface (OSKI) for sparse MM 
– Cuthill-McKee renumbering of cells to maximize cache-hits

• All simulations use double precision math
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GPU Implementation
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Performance in Gflops of single GPU algorithm running on Tesla C2050

Introduction | Unstructured High-Order Methods | Flux Reconstruction | GPU Implementation | Applications 



Patrice Castonguay  and  Antony Jameson  |  Aerospace Computing Lab  |  Stanford University

GPU Implementation
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Speedup of the single-GPU algorithm (C2050) relative to a parallel computation on 
a quad-core Intel i7 930 @ 2.80GHz
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Multi-GPU Implementation
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• Use mixed MPI-CUDA implementation to make use of multiple GPUs
working in parallel

• Computational domain divided between GPUs using graph 
partitioning software ParMETIS

• Overlapping communication and computation using CUDA streams 
to achieve good performance
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Multi-GPU Implementation
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Speedup relative to 1 GPU versus the number of GPUs for a 6th order accurate 
simulation running on a mesh with 55947 tetrahedral elements
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Multi-GPU Implementation
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Weak Scalability of multi-GPU code: 27915 ± 1% Tets per GPU
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Applications

• Viscous flow over sphere at Reynolds 118, Mach=0.2

• 38,500 prisms and 99,951 tets , 4th order accuracy, 3.54 million DOFs

• Ran on desktop machine we built, 3 C2050 GPUs
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Applications
• 3 GPUs: same performance as 30 Xeon x5670 CPUs (180 cores) 

• 3 GPUs personal computer: ∼$10,000, easy to manage
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Contours of Mach number for flow over sphere at Re=118, M=0.2
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Applications

• At Reynolds number in range 104 to 105, flow over wings often 
characterized by formation of a Laminar Separation Bubble

• Important: birds and small UAVs fly in that regime

• Complex flow physics:
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• Transitional flow over SD7003 airfoil, Re=60000, Mach=0.2, AOA=4°

• 4th order accurate solution, 400000 RK iterations, 21.2 million DOFs

Applications
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Applications
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Applications
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15 hours on 16 C2070s

202 hours ( > one week) 

on 16 Xeon x5670 CPUs
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Conclusions

• Developed fast high-order CFD solver that can run on mixed 
unstructured grids on multiple GPUs

• GPUs enable simulation of previously intractable problems

• More than 100 Gigaflops on a workstation, few Teraflops on small 
GPU cluster

• Scaling demonstrated on up to 32 GPUs

• Next steps: LES models, more complex geometries
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