

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

Patrice Castonguay and Antony Jameson

Aerospace Computing Lab, Stanford University

GTC Asia, Beijing, China December 15th, 2011

Antony Jameson

Revolutionized CFD in aeronautics

Solution to full potential equation, efficient multi-grid methods, shock capturing for transonic flows, control theory for shape optimization

- Lead developer of FLO and SYN codes used throughout the aerospace industry
- Over 400 scientific papers
- Multiple honorary awards
- Trademark: Fast codes

SD++

- 2D/3D compressible viscous flow solver
- Mixed grids of quadrilaterals and triangles in 2D and hexahedra, prisms and tetrahedra in 3D
- Arbitrary order of accuracy
- Solver can run on multiple CPUs or GPUs (C++/Cuda/MPI)

Talk Overview

- Part 1: Unstructured High-Order Methods
 - Why are they useful?
- Part 2: Flux Reconstruction Method for the Navier-Stokes equations
 - Algorithm details
 - Why it's a good fit for GPUs
- Part 3: GPU Implementation Details
 - Single-GPU: Efficient use of GPU memory hierarchy
 - Multi-GPU : How to obtain good scalability
- Part 4: Performance analysis and Applications
 - Performance on a single GPU
 - Strong and weak scaling study
 - How GPUs enable previously intractable fluid flow simulations

Unstructured High-Order Methods

- What does high-order mean?
- Low-order methods:
 - Order of accuracy is 1 or 2 (Error is of order h or order h^2)
 - Robust and simple to implement
 - Dissipative
- High-order methods:
 - Order of accuracy is > 2
 - Not as mature as low-order methods
 - More work per DOF
 - Required for applications where accuracy requirement is high

Unstructured High-Order Methods

• Why do we need high-order methods?

Unstructured High-Order Methods

• Why is high-order useful?

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why is high-order useful?

2nd order (25,600 DOFs)

Unstructured High-Order Methods

• Why are they useful:

Complex geometry + High Accuracy

- In computational fluid dynamics, they enable:
 - Simulation of wave propagation over long distances in vicinity of complex geometries
 - Simulation of vortex motion over long distances in vicinity of complex geometries
 - Effective Large Eddy Simulations (LES) in vicinity of complex geometries

Unstructured High-Order Methods

 Airframe noise (turbulence + generation/propagation of sound waves + complex geometry)

Unstructured High-Order Methods

Rotorcraft (turbulence + track vortices over long distances + complex geometry)

Unstructured High-Order Methods

• Flapping wing flight (transitional Reynolds number + vortex dominated flow + complex geometry)

Unstructured High-Order Methods

• Flapping wing flight (transitional Reynolds number + vortex dominated flow + complex geometry)

Unstructured High-Order Methods

- Plunging airfoil: zero AOA, Re=1850, Frequency: 2.46 rad/s
- 5th order accuracy in space, 4th order accurate RK time stepping

IS91

Unstructured High-Order Methods

- Vortical patterns and force coefficients agree with experiments
- Able to capture the fine structures in addition to main vortex train

Experiment by Jones, Dohring, Platzer, July 1998

Vorticity contours, 5th order accuracy solution

Unstructured High-Order Methods

- Computations are demanding:
 - Millions of DOFS
 - Hundreds of thousands of time steps
- Until recently, high-order simulations over complex 3D geometries were intractable, unless you had access to large cluster
- GPUs to the rescue!

Flux Reconstruction Method

• For a conservation law in strong form

$$\frac{\partial Q}{\partial t} + \nabla \cdot \mathbf{F}(Q, \nabla Q) = 0$$

• Ex: Euler equations

$$\mathbf{Q} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ E \end{bmatrix}, \ \mathbf{F}_x = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uv \\ \rho ue + p \end{bmatrix}, F_y = \begin{bmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ \rho ve + p \end{bmatrix}$$

- Solve differential form within each element, with boundary data from neighbouring elements
- Can recover Spectral Difference and Discontinuous Galerkin methods

Flux Reconstruction Method

- Solution in each element approximated by a multidimensional polynomial of order N
- Order of accuracy: *h*^{N+1}
- Multiple DOFs per element

Flux Reconstruction Method

- Method maps well to the GPUs:
 - High-level of parallelism (millions of DOFs)
 - More work per DOF compared to low-order methods (flops are "free" on a GPU)
 - Cell-local operations benefit from fast on-chip shared-memory

- Test case: Viscous flow over sphere, Re=100, Mach = 0.2
- 4th order RK time-stepping scheme
- Considered 3 grid types, each made up of one of the 3 element types
- Every effort was made to maximize performance of CPU code:
 - Intel Math Kernel Library (MKL) version 10.3 for dense MM
 - Optimized Sparse Kernel Interface (OSKI) for sparse MM
 - Cuthill-McKee renumbering of cells to maximize cache-hits
- All simulations use double precision math

GPU Implementation

Performance in Gflops of single GPU algorithm running on Tesla C2050

GPU Implementation

Order of Accuracy

Speedup of the single-GPU algorithm (C2050) relative to a parallel computation on a quad-core Intel i7 930 @ 2.80GHz

Multi-GPU Implementation

- Use mixed MPI-CUDA implementation to make use of multiple GPUs working in parallel
- Computational domain divided between GPUs using graph partitioning software ParMETIS

 Overlapping communication and computation using CUDA streams to achieve good performance

Multi-GPU Implementation

Speedup relative to 1 GPU versus the number of GPUs for a 6th order accurate simulation running on a mesh with 55947 tetrahedral elements

DIA

Multi-GPU Implementation

Weak Scalability of multi-GPU code: 27915 ± 1% Tets per GPU

Applications

- Viscous flow over sphere at Reynolds 118, Mach=0.2
- 38,500 prisms and 99,951 tets , 4th order accuracy, 3.54 million DOFs
- Ran on desktop machine we built, 3 C2050 GPUs

Applications

- 3 GPUs: same performance as 30 Xeon x5670 CPUs (180 cores)
- 3 GPUs personal computer: ~\$10,000, easy to manage

Contours of Mach number for flow over sphere at Re=118, M=0.2

Applications

- At Reynolds number in range 10⁴ to 10⁵, flow over wings often characterized by formation of a Laminar Separation Bubble
- Important: birds and small UAVs fly in that regime
- Complex flow physics:

- Transitional flow over SD7003 airfoil, Re=60000, Mach=0.2, AOA=4°
- 4th order accurate solution, 400000 RK iterations, 21.2 million DOFs

Applications

Applications

Conclusions

- Developed fast high-order CFD solver that can run on mixed unstructured grids on multiple GPUs
- GPUs enable simulation of previously intractable problems
- More than 100 Gigaflops on a workstation, few Teraflops on small GPU cluster
- Scaling demonstrated on up to 32 GPUs
- Next steps: LES models, more complex geometries

Acknowledgments

- Acknowledgments:
 - Peter Vincent, David Williams, Kui Ou, Yves Allaneau
 - NSF (Grants 0708071 and 0915006)
 - AFOSR (Grants FA9550-07-1-0195 and FA9550-10-1-0418)
 - Stanford Graduate Fellowship (SGF) Program
 - National Sciences and Engineering Council (NSERC) of Canada
 - Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT)
 - NSF Graduate Research Fellowship Program
 - NVIDIA
- Questions?

Patrice Castonguay pcasto2@stanford.edu