OpenCV

James Fung
NVIDIA Developer Technology

@ itseez

NVIDIA.

Outline

* [ntroduction into OpenCV

* OpenCV GPU module

» Face Detection on GPU

» Pedestrian detection on GPU

OpenCV History

OpenCV Release Release Release
started Beta 1 Beta 3 Beta 5 1.0 2.0 2.2 (GPU)
Rel
Alpha Beta 2 Beta 4 Release P 0
Release 1.1 GPU Bet (§
CVPR'00 ' (eta) OnenCy

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 [2009 2010 2011

Willow
Garage

NVIDIA

Original goal:

— Accelerate the field by lowering the bar to computer vision

— Find compelling uses for the increasing MIPS out in the market
Staffing:

— Climbed in 1999 to average 7 first couple of years
— Little development from 2002 - 2008
— Willow entered in 2008 to accelerate development, NVIDIA joined in 2010

8 full time professional developers, 3 of them dedicated to GPU

OpenCV Functionality Overview

Image processing

I
s
ARy
AR -~
} K3
i % ,

General Image Segmentation Machine Image Pyramids Transforms Fitting
Processing Learning,
Detection

Video, Stereo, and 3D

1

ali

Camera Features Depth Maps Optical Flow Inpainting Tracking
Calibration

OpenCV Architecture and Development

Eigen Maintainers Core X86
C++ IPP Contributors HighGUI X64
Python Jasper I ARM
CUDA JPEG, PNG ImgProc CUDA
_ OpenEXR . /V\ - ML_ \
- OpenN| & ObjDetect e
QT Video
CUDA TBB Calib3D Windows
SSE Videolnput Features2D Linux
MPU Buildbot FFMPEG Mac OS
kTBB Google Tests FLANN kAndroid

OpenCV License

Based on BSD license

* Free for commercial and research use
= Does not force your code to be open
* You need not contribute back

— We hope you will contribute back!

Projects Using OpenCV

Google Maps, Google street view, Google Earth

Academic and Industry Research
Security systems
Image retrieval
» Video search
= Machine vision factory production systems
= Structure from motion in movies
= Robotics

Outline

* [ntroduction into OpenCV

= OpenCV GPU module

» Face Detection on GPU

= Pedestrian detection on GPU

OpenCV GPU Module
Motivation:

» Many computer vision tasks are inherently parallel
» GPUs provide cheap computational power

OpenCV GPU Module

Goals:

» Provide developers with a convenient computer vision framework on
the GPU

= Maintain conceptual consistency with the current CPU functionality

» Achieve the best performance with GPUs

— Efficient kernels tuned for modern architectures
— Optimized dataflows (asynchronous execution, copy overlaps, zero-copy)

OpenCV GPU Module Contents

» Image processing building blocks:

Color Per-element Integrals,
conversions operations reductions
Feature
detectors

OpenCV GPU: Histogram of Oriented Gradients
it . b

» Used for pedestrian o0

detection
» Speed-up ~ 8x

OpenCV GPU: Speeded Up Robust Features
= SURF (12x)
» Bruteforce matcher

— K-Nearest search (20-30><)

— In radius search (3-5><)

OpenCV GPU: Stereo Vision

= Stereo Block Matching (7x)

— Can run Full HD real-time on Dual-GPU

» Hierarchical Dense Stereo
— Belief Propagation (20x)
— Constant space BP (50-100x)

OpenCV GPU: Viola-Jones Cascade Classifier

= Used for face detection aw SeF P— ':;;m

» Speed-up ~ 6x " -J:'
= Based on NCV classes (NVIDIA
implementation)

OpenCV with Multiple GPUs

= Algorithms designed with single GPU in mind

» You can split workload manually in slices:
— Stereo Block Matching (dual-GPU speedup ~ 1.8x)

OpenCV and NPP

= NPP is NVIDIA Performance Primitives library of signal and image processing
functions (similar to)

» GPU module uses NPP whenever possible
— Highly optimized implementations for all supported NVIDIA architectures and OS
— Part of CUDA Toolkit - no additional dependencies

= NVIDIA will continue adding new primitives
— Several hundred primitives added every CUDA release

— If you feel like your function could be a primitive - go ahead and add it to
NPP_staging! (part of NCV in OpenCV GPU module)

OpenCV GPU Module Usage

* Prerequisites:

— Get sources from the website
http://opencv.willowgarage.com/wiki/InstallGuide

— CMake
— NVIDIA Display Driver
— NVIDIA GPU Computing Toolkit (for CUDA)

= Build OpenCV with CUDA support
" include <opencv2/gpu/gpu.hpp>

OpenCV GPU Data Structures

= Class GpuMat

— For storing 2D image in GPU
memory, just like class cv::Mat

— Reference counting

» Class CudaMem
— For pinned memory support

— Can be transformed into cv::Mat
or cv::gpu::GpuMat

= Class Stream

— Overloads with extra Stream
parameter

// class GpuMat

GpuMat (Size size, int type);

GpuMat (const GpuMaté& m) ;

explicit GpuMat (const Maté& m);

GpuMaté& operator = (const GpuMaté& m);

GpuMaté& operator = (const Maté& m);

void upload(const Maté& m);

void upload(const CudaMem& m, Stream& stream);
void download (Mat& m) const;

void download(CudaMem& m, Stream& stream) const;

// class Stream

bool queryIfComplete();

void waitForCompletion();

void enqueueDownload (const GpuMaté& src, Maté& dst);
void enqueueUpload (const Mat& src, GpuMaté& dst);
void enqueueCopy (const GpuMat& src, GpuMaté& dst);

OpenCV GPU Module Example

Mat frame;
VideoCapture capture (camera) ;
cv: :HOGDescriptor hog;

hog.setSVMDetector (cv: : HOGDescriptor: :
getDefaultPeopleDetectorector());

capture >> frame;

GpuMat gpu_frame;
gpu_frame.upload (frame) ;

vector<Rect> found;
hog.detectMultiScale (frame, found, gpu_frame
1.4, Size(8, 8), Size(0, 0), 1.05, 8);

OpenCV GPU Module Performance

Tesla C2050 (Fermi) vs. Core i5-760 2.8GHz
(4 cores, TBB, SSE)

— Average speedup with GPU: 33.98x

What can you get from your computer?
— opencv\samples\gpu\perfomance
— 839 tests for 79 functions

OpenCV GPU Demo Pack

» Contains demos for high-level GPU algorithms:

— Face detection (6X)
— Keypoint detection (12x) / Point matching (20-30x)

— Pedestrian detection (8X)

— Image Stitching

— Optical flow

— Stereo matching (7x/20x/50x)

http://sourceforge.net/projects/opencvlibrary/

OpenCYV Stitching Module

» Automatic stitching photos taken from the same point
— Cylindrical, spherical or planar panoramas
— Multi-band blending technique
— Smart seam estimation (graph cut based approach)
— GPU acceleration for the most time-consuming steps

Auto calibration

= Rotation camera movement model

— Requires all photos to be taken from approximately the same
position

— A few tens of images are recommended for accurate work
— Works without an initial guess of camera intrinsic parameters

Applications: stitching, augmented reality and many other

Auto calibration sample images

Auto calibration

= Relative errors:

relative error

12.00%

10.00%

8.00%

6.00%

4.00%

2.00%

0.00%

focal x

Dataset 1

A

20 40 60 80
number of images
focaly === principal point x principal point y

relative error

18.00%
16.00%
14.00%
12.00%
10.00%
8.00%
6.00%
4.00%
2.00%
0.00%

focal x

Dataset 2

20 30 40 50 60
number of images

focaly ==e=nprincipal point x principal point y

OpenCV Needs Your Feedback!

= Help us set development priorities
— Which OpenCV functions do you use?

— Which are the most painful and time-consuming today? ===

= The more information you can provide about your end
application, the better

= Feature request/feedback form on OpenCV Wiki:
http://opencv.willowgarage.com/wiki/OpenCV_GPU

Outline

* [ntroduction into OpenCV

* OpenCV GPU module

= Face Detection on GPU

» Pedestrian detection on GPU

GPU Face Detection: Motivation

* One of the first Computer Vision problems
= Soul of Human-Computer interaction
= Smart applications in real life

GPU Face Detection: Problem

» Locate all upright frontal faces:

= Where face detection does not work:

GPU Face Detection: Approaches

Viola-Jones Haar classifiers framework:

Classifiers Cascade Explained

\;»-'s = White points represent face windows passed through the 1,2,3,6,
S and 20 classifier stages

GPU Face Detection: Haar Classifier

Each stage comprises a strong classifier:

K

L, Y hX)>T
i=1

0, otherwise

Haar Features Explained

Integral Image Explained

» Each Integral Image “pixel” contains the sum of all pixels of
the original image to the left and top

X . " Calculation of sum of pixels in a rectangle can be done in 4
' accesses to the integral image

Integral Images with CUDA

Algorithm:
* Integrate image rows
* [ntegrate image columns

Known as Parallel Scan (one CUDA thread per element):

" [nput:

» Qutput:

Scan Sample: 8 Numbers

Scan Sample: 8 Numbers

Scan Sample: 8 Numbers

Scan Sample: 8 Numbers

000000 I;l;l\

»5“*

Scan Sample: 8 Numbers

.0.0.0.0.0.0
1I1IL

00000 L l\
JILLL

\1
0.0.0.0.0.0.0

Scan Sample: 8 Numbers

DoOoooe 1 1 1 .1
~.0.0.0.0.0

= -‘.
2 .
; - s
- A, i
P A 5
R e
- e s
“ R g
N ot e i
b i
- i \.f"_e
%]
" . o
X B -
s g
N e
bl e B e]
. o % -,'"\"‘a#“
s % e |
N]
PR]
-

1|

GPU Face Detection

GPU Face Detection

30.00
25.00
20.00
= 15.00
N
%
B PN 10.00
SN 5.00
- & e
4) ; <
& S
A < 0.00
%
\w“‘ //

Performance

@
.................... /
—=0=640x480_VGA /.
/
— 1280x720_HD720p
=¢==1920x1080_HD1080p
@
/
/
/
/
/
_ -~ i
- e
./
/
o=
’\
——=
GeForce 9800 GTX+ Intel Core2 Duo Intel Core2 Duo Intel Core i7 965 GeForce GTX 260 GeForce GTX 480

2.00GHz 3.00GHz 3.20GHz

OpenCV NCV Framework

Features:

= Native and Stack GPU memory allocators
» Protected allocations (fail-safety)

» Containers: NCVMatrix, NCVVector

» Runtime C++ template dispatcher

= NPP_staging - a place for missing NPP functions
— Integral images
— Mean and StdDev calculation
— Vector compaction

OpenCV NCV Haar Cascade Classifiers

Haar Object Detection from OpenCV GPU module:
* Implemented on top of NCV

» Uses NPP with extensions (NPP_staging)

= Not only faces!

= Suitable for production applications
— Reliable (fail-safe)

— Largest Object mode (up to 200 fps)
— All Objects mode

Outline

* [ntroduction into OpenCV

* OpenCV GPU module

» Face Detection on GPU

» Pedestrian detection on GPU

Pedestrian Detection

» HOG descriptor
— Introduced by Navneet Dalal and Bill Triggs

— Feature vectors are compatible with the
INRIA Object Detection and Localization Toolkit
http://pascal.inrialpes.fr/soft/olt/

Pedestrian Detection: HOG Descriptor

= Object shape is characterized by
distributions of:

— Gradient magnitude

— Gradient orientation

= Grid of orientation histograms

Magnitude Orientation

Pedestrian Detection: Working on Image

= Gamma correction

» Gradients calculation

= Sliding window algorithm
= Multi-scale

Pedestrian Detection: Inside Window

» Compute histograms inside cells Window descriptor
* Normalize blocks of cells -
* One cell may belong to >1 block
= Apply linear SVM classifier

Blocks of cells Cells

Pedestrian Detection: Step 1
= R

. . 0 —+1
* Gamma correction improves i } + Tmage

2 0 +2

quality s

= Sobel filter 3x3 by columns and .~ 10 ‘é} © 1o
rows 2+l

= Qutput: magnitude and angle

L
® = arctan (E

il

Pedestrian Detection: Step 2
R =

» Big intersection in close positions

» Require window stride to be
multiple of cell size

» Histograms of blocks are
computed independently

e e s e ey

Pedestrian Detection: Step 2

Gradlent.s - Hlstograms Linear SVM
computation normalization

= Pixels vote in proportion to
gradient magnitude

= Tri-linear interpolation

— 2 orientation bins

— 4 cells

= Gaussian

— Decreases weight of pixels near
block boundary

Pedestrian Detection: Step 3

Gradients Block histograms -
computation calculation

o181 |{of-2({3]|5]-2]-

Linear SVM
3| 2 7 0111 0 2

» Normalization
— L2-Hys norm

» L2 norm, clipping,
normalization

— 2 parallel reductions in

shared memory

Pedestrian Detection: Step 4

Gradients Block histograms Histograms
computation calculation normalization

= Linear SYM GPU time, %

— Classification is just a dot
product

m Gamma + Gradients

— 1 thread block per window
position

m Histograms
C I
Normalize

m Other

Pedestrian Detection Performance

= 8x times faster!

= Detection rate
— Same as CPU

FPS
40

35

= Corei5 2.8 GHz
TBB, 4 cores

m Tesla C2050

20

15

10

768x576 1536x1152

Thank you

CUDA http://developer.nvidia.com/cuda
OpenCV _http://opencv.willowgarage.com/wiki

GPU Technology Conference
Spring 2012 | San Francisco Bay Area

The one event you can’t afford to miss ’"\E’,‘{ ‘

Learn about leading-edge advances in GPU computing

Explore the research as well as the commercial applications

Discover advances in computational visualization

Take a deep dive into parallel programming

Ways to participate
» Speak - share your work and gain exposure as a thought leader
= Register - learn from the experts and network with your peers

= Exhibit/Sponsor - promote your company as a key player in the GPU ecosystem

www.gputechconf.com

