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GPU High Level View

Streaming Multiprocessor

Global memory



Fermi Multiprocessor
 2 Warp Scheduler

— In-order dual-issue

— Up to 1536 concurrent threads

 32 CUDA Cores

— Full IEEE 754-2008 FP32 and FP64

— 32 FP32 ops/clock, 16 FP64 ops/clock

 Configurable 16/48 KB shared memory

 Configurable 16/48 KB L1 cache 

 4 SFUs

 32K 32-bit registers Uniform Cache
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GPU and Programming Model



Warp and SIMT

Block

32 Threads

32 Threads

32 Threads

...

Warps

=

• Blocks divide into groups of 32 

threads called warps

• Warps are basic scheduling units

• Context switching is free

• A lot of warps can hide memory 

latency

• Warps always perform the same 

instruction (SIMT)

• Each thread CAN execute its own 

code path



Fermi Memory Hierarchy

 Register

— Spills to local memory

 Caches

— Shared memory

— L1 cache

— L2 cache

— Constant cache

— Texture cache

 Global memory



Fermi Memory Hierarchy Review
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General Optimization Strategies: 
Measurement
 Find out the limiting factor in kernel performance

— Memory bandwidth bound (memory optimization)

— Instruction throughput bound (instruction optimization)

— Latency bound (configuration optimization)

 Measure effective memory/instruction throughput

 Optimize for peak memory/instruction throughput

— Finding out the bottleneck

— Typically an iterative process
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Memory Optimization

 If the code is memory-bound and effective memory 

throughput is much lower than the peak

 Purpose: access only data that are absolutely necessary

 Major techniques

— Improve access pattern to reduce wasted transactions: coalescing

— Reduce redundant access: shared memory



Coalescing
 Global memory latency: 400-800 cycles

— The single most important performance consideration!

 Coalescing: global memory access from a warp can be 

coalesced into a single transaction

 Criterion: requests from a warp falling in a L1 cache line, one 

transaction

# transaction = # L1 line accessed



Caching or Non-caching?

 On Fermi, by default all global memory access are cached in 

L1. 

— L1 can be by-passed by passing ―-Xptxas –dlcm=cg‖ to nvcc: cache 

only in L2

 If non-cached: same coalescing criterion

— But transaction size can be reduced to 32B segment



Caching or Non-caching?

 Caching

— Help on some non-coalesced access, e.g. misaligned

— May lead to lower performance for some uncoalesced access due to 

more wasted bandwidth

 Non-caching

— Reduce wasted bandwidth

— Leave more space for register spilling



Caching Load

Warp requests 32 aligned, consecutive 4-byte words

 Addresses fall within 1 cache-line

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0



Caching Load

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

addresses from a warp

0

Warp requests 32 aligned, permuted 4-byte words

 Addresses fall within 1 cache-line

— Warp needs 128 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 100%



Caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses

Warp requests 32 misaligned, consecutive 4-byte words

 Addresses fall within 2 cache-lines

— Warp needs 128 bytes

— 256 bytes move across the bus on misses

— Bus utilization: 50%



Non-caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses

Warp requests 32 misaligned, consecutive 4-byte words

 Addresses fall within at most 5 segments

— Warp needs 128 bytes

— At most 160 bytes move across the bus

— Bus utilization: at least 80%

 Some misaligned patterns will fall within 4 segments, so 100% utilization



Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

 All threads in a warp request the same 4-byte word

 Addresses fall within a single cache-line

— Warp needs 4 bytes

— 128 bytes move across the bus on a miss

— Bus utilization: 3.125%



Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

 All threads in a warp request the same 4-byte word

 Addresses fall within a single segment

— Warp needs 4 bytes

— 32 bytes move across the bus on a miss

— Bus utilization: 12.5%



Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

Warp requests 32 scattered 4-byte words

 Addresses fall within N cache-lines

— Warp needs 128 bytes

— N*128 bytes move across the bus on a miss

— Bus utilization:  128 / (N*128)



Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

Warp requests 32 scattered 4-byte words

 Addresses fall within N segments

— Warp needs 128 bytes

— N*32 bytes move across the bus on a miss

— Bus utilization:  128 / (N*32)



Shared Memory

 Low latency: a few cycles

 High throughput: 73.6 GB/s per SM (1.03 TB/s per GPU)

 Main use

— Inter-block communication

— User-managed cache to reduce redundant global memory accesses

— Avoid non-coalesced access



Shared Memory Example: Matrix 
Multiplication

A

B

C

C=AxB

Every thread corresponds to one entry in C.



Naive Kernel

__global__ void simpleMultiply(float* a,

float* b,

float* c, 

int N)

{

int row = threadIdx.x + blockIdx.x*blockDim.x;

int col  = threadIdx.y + blockIdx.y*blockDim.y;

float sum = 0.0f;

for (int i = 0; i < N; i++) {

sum += a[row*N+i] * b[i*N+col];

}

c[row*N+col] = sum;

}

Every thread corresponds to one entry in C.



Blocked Matrix Multiplication

A

B

C

C=AxB

Data reuse in the blocked version



Blocked and cached kernel
__global__ void coalescedMultiply(double*a, 

double* b, 

double*c,

int N)

{

__shared__ float aTile[TILE_DIM][TILE_DIM];

__shared__ double bTile[TILE_DIM][TILE_DIM];

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

float sum = 0.0f;

for (int k = 0; k < N; k += TILE_DIM) {

aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];

bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];

__syncthreads();

for (int i = k; i < k+TILE_DIM; i++) 

sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];

}

c[row*N+col] = sum;

}



Performance Results
M=N=K=512



Bank Conflicts

 Shared memory is divided into banks

— Successive 32-bit words assigned to successive banks

— Number of banks = 32 (Fermi)

 Bank conflict: two R/W fall in the same 

bank,  the access will be serialized.

 Special cases

— If all threads in a warp access the same word, 

one broadcast. Fermi can also do multi-broadcast.

— If reading continuous byte/double, no conflict on Fermi

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Shared memory



Bank Access Examples



Bank Access Examples



Optimizing Bank Conflict

 Measure whether it matters

 Change SMEM reads to the same value to see the impact

 Avoiding bank conflict

— Change address patterns

— Padding

 Use array[N_BANK][N_BANK+1]



Memory Optimizations

 Strive for perfect coalescing

— Transpose the data structure, e.g. AOS to SOA

— Padding

— Change parallelization scheme: 1-thread-per-task to 1-warp-per-task?

 Use shared memory to reduce global memory access, avoid 

non-coalesced access

 Bound to texture cache for unpredictable uncoalesced access

 Use constant cache if all threads in a warp will access the 

same constant data



Global Memory Throughput Metric

 Measuring effective memory throughput:

— From the app point of view (―useful‖ bytes): number of bytes 

needed by the algorithm divided by kernel time

— Compare to the theoretical bandwidth

 70-80% is very good

 Finding out bottleneck

— Start with global memory operations, achieve good throughput

— Add arithmetic, shared memory, etc, measuring perf as you go



Optimization Overview

 GPU architecture

 Kernel optimization

— Memory optimization

— Latency optimization

— Instruction optimization

 CPU-GPU interaction optimization

— Overlapped execution using streams



Latency Optimization
When the code is latency bound

— Both the memory and instruction throughputs are far from the peak

 Latency hiding:

— Instructions are issued in order

— A thread blocks when one of the operands isn’t ready

— Latency is hidden by switching threads

 GMEM: 400-800 cycles

 Arithmetic: 18-22 cycles

 Purpose: have enough concurrency to hide latency

 Major techniques: increase concurrency

— Adjust resource usage to increase active warps (TLP)

— Increase ILP of each threads



Grid/Block Size Heuristics

# of blocks >> # of SM > 100 to scale well to future device

 Block size should be a multiple of 32 (warp size)

 Minimum: 64. I generally use 128 or 256. But use whatever 

is best for your app.

 Depends on the problem, do experiments!



Occupancy

Occupancy: ratio of active warps per SM to the maximum 

number of allowed warps

— Maximum number: 48 in Fermi

We need the occupancy to be high enough to hide latency

 Occupancy is limited by resource usage



Dynamical Partitioning of SM Resources

 Shared memory is partitioned among blocks

 Registers are partitioned among threads: <= 63

 Thread block slots: <= 8

 Thread slots: <= 1536

 Any of those can be the limiting factor on how many threads 

can be launched at the same time on a SM

 If adding a single instruction leads to significant perf drop, 

occupancy is the primary suspect



Latency Hiding Occupancy Calculation

 Assume global memory takes 400 cycles, we need 400/2 = 

200 arithmetic instructions to hide the latency. 

 Assume the code has 8 independent arithmetic instructions 

for every one global memory access. Thus 200/8~26 warps 

would be enough (54% occupancy).

 Lessons:

— Required occupancy depends on BOTH architecture and application

— In this example , beyond 54%, higher occupancy won’t lead to 

further performance increase.



Occupancy Optimizations
 Know the current occupancy

— Visual profiler

— --ptxas-options=-v: output resource usage info; input to Occupancy 

Calculator

 Adjust resource usage to increase occupancy

— Change block size

— Limit register usage

 Compiler option –maxrregcount=n: per file

 __launch_bounds__: per kernel

 Use template to reduce register usage

— Dynamical allocating shared memory



Occupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls



Increase ILP of Each Thread
 Load by itself doesn’t stall execution

 Increment a 64M element array

— Two accesses per thread (load then store, but they are dependent)

 Thus, each warp (32 threads) has one outstanding transaction at a time

Several independent 

smaller accesses have the 

same effect as one larger 

one.

For example:

Four 32-bit  ~=  one 128-bit
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Instruction Optimization

 If you find out the code is instruction bound

— Compute-intensive algorithm can easily become memory-bound if 

not careful enough

— Typically, worry about instruction optimization after memory and 

execution configuration optimizations

 Purpose: reduce instruction count

— Use less instructions to get the same job done

 Major techniques

— Use high throughput instructions

— Reduce wasted instructions: branch divergence, bank conflict, etc.



Fermi Arithmetic Instruction 
Throughputs

 Throughputs of common instructions

— Int & fp32: 2 cycles

— fp64: 2 cycles

— Fp32 transendental: 8 cycles

— Int divide and modulo are expensive

 Divide by 2^n, use ―>> n‖

 Modulo 2^n, use ―& (2^n – 1)‖



Reduce Instruction Count

 Avoid automatic conversion of double to float

— Adding ―f‖ to floating literals (e.g. 1.0f) because the default is 

double

 Fermi default: -ftz=false, -prec-div=true, -prec-sqrt=true 

for IEEE compliance

 Fast math functions

— Two types of runtime math library functions

 func(): slower but higher accuracy (5 ulp or less)

 __func(): fast but lower accuracy (see prog. guide for full details)

— -use_fast_math: forces every func() to __func () 



Control Flow
 Divergent branches:

— Threads within a single warp take different paths

— Example with divergence: 

 if (threadIdx.x > 2) {...} else {...}

 Branch granularity < warp size

— Divergence inside a warp is processed by turning off the inactive threads

 Different if-else branches are both executes: serialized

 Different warps can execute different code with no impact on performance

 Avoid diverging within a warp

— Example without divergence:

 if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

 Branch granularity is a whole multiple of warp size



Kernel Optimization Workflow

Find Limiter

Compare to peak 

GB/s

Memory 

optimization

Compare to peak 

Ginst/s

Instruction 

optimization

Configuration 

optimization

Memory bound
Instruction 

bound
Latency bound

Done!

<< <<
~

~
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Minimizing CPU-GPU data transfer

 Host<->device data transfer has much lower bandwidth than 

global memory access.

— 8 GB/s (PCIe x16 Gen2) vs 156 GB/s & 515 Ginst/s (C2050)

 Minimize transfer

— Intermediate data directly on GPU

— Recompute

— Move CPU codes to GPU that do not have performance gains if it 

can reduce data transfer

 Group transfer

— One large transfer much better than many small ones: 10 microsec

latency, 8 GB/s => latency dominated if data size < 80 KB



Streams and Async API

 Default API:

— Kernel launches are asynchronous with CPU

— Memcopies (D2H, H2D) block CPU thread

— CUDA calls are serialized by the driver

 Streams and async functions provide:

— Memcopies (D2H, H2D) asynchronous with CPU

— Ability to concurrently execute a kernel and a memcopy

— Concurrent kernel in Fermi

 Stream = sequence of operations that execute in issue-order on GPU

— Operations from different streams can be interleaved

— A kernel and memcopy from different streams can be overlapped



Pinned (non-pageable) memory

 Pinned memory enables:

— memcopies asynchronous with CPU & GPU

 Usage

— cudaHostAlloc / cudaFreeHost

 instead of malloc / free

— Additional flags if pinned region is to be shared between lightweight 

CPU threads

 Note:

— pinned memory is essentially removed from virtual memory

— cudaHostAlloc is typically very expensive



Overlap kernel and memory copy

 Requirements:

— D2H or H2D memcopy from pinned memory

— Device with compute capability ≥ 1.1 (G84 and later)

— Kernel and memcopy in different, non-0 streams

 Code:

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync( dst, src, size, dir, stream1 );

kernel<<<grid, block, 0, stream2>>>(…);

potentially

overlapped



Summary

 Optimization needs an understanding of GPU architecture

 Memory optimization: coalescing, shared memory

 Execution configuration: latency hiding

 Instruction throughput: use high throughput inst, reduce 

wasted cycles

 Do measurements!

— Use the Profiler, simple code modifications

— Compare to theoretical peaks


