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Today’s and Tomorrow’s
Intellectual Challenges

« Challenges that will be faced by the Science Teams include:
— Scaling applications to large processor counts
 In the face of limited bandwidth
— Effective using of many core and accelerator components

— Using both general purpose and accelerated nodes in single
applications

— Application based resiliency

 NCSA establishing a focused effort in NCSA/UIUC Enhanced
Intellectual Services for Petascale Performance (NEIS-P2) to work
directly with the Science Teams and also the general community to
enable teams to take full advantage of the extraordinary capabilities
of Petascale+ scale systems.

— Due in February 2012
GTC Asia, Beijing, 2011
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Current Science Team GPU Plans
and Results

Nearly 1/3 of PRAC projects have active GPU efforts,
including

— AMBER

— LAMMPS

— USQCD/MILC

— GAMESS

— NAMD

— QMCPACK

— PLSQR/SPECFEM3D

Others are investigating use of GPUs (e.g., Cactus, PPM,
AWP-ODC)

Some examples follow

GTC Asia, Beijing, 2011



There i1s a critical need for

scalable kernel libraries

« Both CPUs and GPUs require scalable parallel
kernel libraries

— GPU needs are more urgent

* Only a small percentage of the Intel Math Kernel
Library (MKL) functions have scalable forms.

« Software lasts through many hardware
generations and needs to be scalable to be
economically viable

GTC Asia, Beijing, 2011



Solid Scalable Kernels

Dense SGEMM/DGEMM, LU, Triangular solvers
(CUBLAS, CULA, MAGMA)

Sparse Matrix Vector Multiplication, Tridiagonal
solvers (CUSP, QUDA, PARBOIL)

FFTs, Convolutions (CUFFT, Parboil)
N-Body (NAMD/VMD, FMM BU, PARBOIL)
Histograms (PARBOIL)

Some PDE solvers (CURRENT, PARBOIL)



Example: Tridiagonal Solver

 Implicit finite difference methods, cubic spline
Interpolation, preconditioners

« An algorithm to find a solution of Ax = d, where A
IS an n-by-n tridiagonal matrix and d is an n-

element vector
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Thomas Algorithm

e Special two-way Gaussian elimination

Backward substitution

Forward reduction
GTC Asia, Beijing, 2011



Parallel Cyclic Reduction(PCR)

 Simultaneous reduction of odd and even rows —
a.k.a. forward reduction only CR
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Summary of Previous Approaches

Number of
processing
Complexity Numbgr o steps with n-

operations )

parallelism

machine
Thomas O(n) 2n 2N

PCR O(n log n) 12 nlogn log n

GTC Asia, Beijing, 2011



Parallelization of Tiled PCR

(Owens)

« Exponential growth of halo elements and
subsequent reductions
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Hierarchical Tiling

Parallel 1st |level tile

2"d level tile processed
Sequentially using the
sliding window

Mapping onto GPU

1st level tile One per thread block
: Collaborative streaming
nd
2 el il within thread block
2nd [evel tile buffer Shared memory

GTC Asia, Beijing, 2011



Tiled PCR using HT Sliding Window
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Scalable in size and # systems
(8 million elements)
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A Scalable Kernel Requires

« Massive parallelism in application algorithms
— Data parallelism

« Regular computation and data accesses
— Similar, balanced work for parallel threads

« Avoidance of conflicts in critical resources
— Off-chip DRAM (Global Memory) bandwidth
— Conflicting parallel updates to memory locations

GTC Asia, Beijing, 2011



Eight Techniques for Scalable
Kernels (so far)

Techniques Load Regularity Efficiency
Bandwidth | Contention | Balance

Scatter to X
Gather

Privatization X
Tiling
Coarsening

Data Layout

X X X X
>

Input Binning

Regularization X X

X X X X X X

Compaction X X X

GTC Asia, Beijing, 2011
http://courses.enar.illinois.edu/ece598/hk/
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Use of Optimizations in Parboill

Benchmark Unoptimuzed Im- | Optumzations Apphed Optmmized Implementation | Prmary Lt of Effi-
plementation Bot- Bottleneck clency
tleneck

cutcp Contention, Local- | Scatter-to-Gather, Binning. Regular- | Instruction Throughput Reads/Checks of Imrel-
ity ization, Coarsening evant Bin Data

mri-q Poor Locality Data Layout Transformation, Tilmg, | Instruction Throughput N/A (true bottleneck)

Coarsening

gnidding Contention, Load | Scatter-to-Gather, Bimnmng Com- | Instruction Throughput Reads/Checks of Imrel-
Imbalance paction. Regularization. Coarseming evant Bin Data

sad Locality Tiling. Coarsening Memory Bandwidth/Latency | Register Capacity

stencil Locality Coarsening. Tiling Bandwidth Local Memory, Regis-

ter Capacity

tpacft Locality. Tiling, Privatization, Coarsening Instruction Throughput N/A (true bottleneck)
Contention

Ibm Bandwidth Data Layout Transformation Bandwidth N/A (true bottleneck)

dmm Bandwidth Coarsening, Tiling Instruction Throughput N/A (true bottleneck)

SpIMV Bandwidth Data Layout Transformation Bandwidth N/A (true bottleneck)

bis Contention, Load | Prvatization. Compaction, Regular- | Bandwidth Whole-Device  Local
Imbalance 1Zzation Memory Capacity

histogram Contention, Band- | Prvatization. Scatter-to-Gather Bandwidth Reads of Irrelevant

width
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How a mathematician writes How a smart CUDA programmer
matrix multiplication writes matrix multiplication

#define TILE_N 16

#define TILE_TB_HEIGHT 8

#define TILE_M (TILE_N*TILE_TB_HEIGHT)

__global__ void mysgemmNT( const float *A, int Ida, const float *B,
int Idb, float* C, int Idc, int k, float alpha, float beta ){

{

float c[TILE_NJ;
for (int i=0; i < TILE_N; i++) c][i] = 0.0f;
int mid = threadldx.y * blockDim.x + threadldx.x;
int m = blockldx.x * TILE_M + mid;
int n = blockldx.y * TILE_N + threadldx.x;
( f\/z N) A g !\/Z . N - __shared__ floatb_s[TILE_TB_HEIGHT][TILE_NJ;
Jy? kiVEk,2 for (inti = 0; i < k; i+=TILE_TB_HEIGHT) {
float a;
k b_s[threadldx.y][threadldx.x]=B[n + (i+threadldx.y)*|db];
__syncthreads();
for (intj=0; j < TILE_TB_HEIGHT; j++) {
a=A[m + (i+j)*lda];
for (int kk = 0; kk < TILE_N; kk++) c[kk] +=a * b_s[j][KK];
}
__syncthreads();
}
intt = Idc*blockldx.y * TILE_N + m;
for (inti=0;i <TILE_N; i++){
C[t+i*ldc] = C[t+i*Idc] * beta + alpha * c[i];
}
}

dim3 grid( m/TILE_M, n/TILE_N ), threads( TILE_N, TILE_TB_HEIGHT );
GTC Asia Beijing 2011 mysgemmNT<<<grid, threads>>>( A, Ida, B, Idb, C, Idc, k, alpha, beta);



Writing efficient code is complicated.
Tools can provide focused help

Planning how to execute an algorithm Implementing the plan

. I\D/Ietmory aIIocatlton GMAC
» Choose data structures - a1 movemen J
- Pointer operations Data
_* Index arithmetic J|Layout

: » Kernel dimension :
« Decompose work into tasks [ ernel dimensions ] M, Thread

» Thread ID arithmetic Coarsening
« Schedule tasks to threads + Synchronization

» Temporary data structures

GTCAsia, Beijing, 2011



UIUC/MCW Tools for Heterogeneous
Parallel Programming

Writing optimizable,
portable, kernels
Pyon

multi-GPU copy support
GMAC, TM

Performance tools
PPA/ADAPT
TC/SM
DL (Data Layout)

GTC Asia, Beijing, 2011
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Higher-level Interfaces for
Programmability,

Portability, and Performance

Performance portability,
Analysis, optimization
(with collaboration with
DSLs — Hanrahan/Keutzer)



Use of UIUC/MCW Tools In
Blue Waters

 Introduce compiler and library capabilities into the
science team workflow to significantly reduce the
programming effort and impact on code maintainabllitys:

« Compiler based directives

 GMAC - alibrary that provides global shared memory and
automates data transfer/coherence between the CPUs and
the GPUs in a node

« DL is a compiler-based memory layout transformation tool
that uses a combination of compiler and runtime support to
ease the task of adjusting memory layout to satisfy conflicting
needs between the CPU and the GPU

« TC is a compiler based tool for thread coarsening and data
tiling.
* Provide expert support to the science teams through hand-on

workshops, courses, and individualized collaboration programs.
GTC Asia, Beijing, 2011



Example - DL (Data Layout)

 DRAM bursts are formed differently in a
heterogeneous system
— From last level cache misses on CPUs

— From SIMD-ized memory accesses on many-core
architectures like GPUs

« Data layout transformation can mitigate the gap
— E.g.: Array-of-structure / Discrete-arrays

— Bridging divergent layout requirements
between CPU cores and GPU cores

— Transparent and efficient marshaling

GTC Asia, Beijing, 2011



Data Layout Alternatives

y=0 > < y=1

0 0 T

Array of Structure: [z][y][x][e]
y:O > < y:1 > < y:O >4 y:1 >

Structure of Array: [e][z][y][X]

>

—p e P PP P PP P — P —

GTC Asia, Bei Array of Structure of Tiled Array (ASTA) [zZ][V31.4][X31:4l[€]11Y 3.0l [ X3



OpenCL Runtime

Set arg0 < buf

Create new cl_mem buf”’

Marshal (buf=>buf”)
Free (buf)
Set arg0 < buf”

Invoke foo (arg0< buf”)

Create new cl_mem buf”

Marshal (buf '=2>buf ™)

Free (buf”)

Copy buf” back to host memory

DL for OpenCL

DL Runtime Host
Record: Pass a ¢l mem buf to a transformed
— < =
1. foo(arg0< buf) kernel foo as arg0
2. Need marshaling as foo
requires transf d arg0
quires sformed arg -
vl Invoke kemnel foo
Z 1. Create a shadow buffer
b 2
— i
“7 hal from buf'to buf”
e 2. Marshal from bufto buf
—
—>| 3. Call real OpenCL kernel
<« invocation with
—> foo(arg0 € buf”)
am —>
Copy bufback to host memory
| 1. bufis already e
= transformed. Shadow
buffer is buf”
—>
2. Need marshaling as host
—> requires original layout
o q g y
—>| 3. Record buf ’being the
&

current shadow buffer of

buf




UIUC/MCW solution ASTA

* Array-of-Structure-of-Tiled-Arrays: preserving

locality while gaining coalesced memory access

— A[X].foo = A[x/4].foo[x%4] for ASTA(4)

LBM Layouts (ATl Radeon

5870)

ASTA(32)
ASTA(128)
ASTA(512)

AOS

0 2 4 6

GTC Asia, Beijing, 2011
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LBM Layouts (NVIDIA
GTX480)

Speedup
over AOS
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Conclusion and Outlook

« Petascale and Exascale intellectual challenges

— Scaling to large processor count with limited
Interconnect bandwidth

— Effective use of massively parallel throughput
oriented processors

* There is a critical need for scalable kernels
— Algorithm design for scalable kernel libraries
— Seamless use of kernels from major languages

— Productivity tools for kernel development and
deployment

GTC Asia, Beijing, 2011



THANK YOU!

GTC Asia, Beijing, 2011



Both Fusion and Discrete GPU

Markets are Growing

800 |
700
600
500
Courtesy: Jon Peddie 400
300 |
200
100
° | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015
'HPU&EPG’B’%(EZMMMSZ ~ |107.07 230.65|328.63 | 402.37|463.29 | 518.86
mIGP, CAGR 2010-2015: -88% | 251.30|294.73/219.30 | 108.14| 37.57 | 7.36 | 0.19 | 0.01 |
Discrete GPU, CAGR 2010-2015: )1 991 119,52 140,51 |144.91| 171.46 190.22|206.76 | 229.22

10.28%




