GPU Supercomputing —
From Blue Waters to Exascale

Wen-mel Hwu

Professor, University of lllinois at Urbana-Champaign
(UIUC)

CTO, MulticoreWare Inc.

I

New BW Conflguratlon

Cray System & Storage cabinets:
Compute nodes:

Usable Storage Bandwidth:

s |
o e coromoue |
i mrcomet ooty |
e s |
ek e |
e o |
r o o1 coremose |
R of WiBIA 6P &

>300
>25,000
>1 TB/s
>1.5 Petabytes
4 GB

3D Torus

>25 Petabytes
>11.5 Petaflops
>49,000
>380,000
>3,000

@ NENSA

ILLINOTIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Today’s and Tomorrow’s
Intellectual Challenges

« Challenges that will be faced by the Science Teams include:
— Scaling applications to large processor counts
 In the face of limited bandwidth
— Effective using of many core and accelerator components

— Using both general purpose and accelerated nodes in single
applications

— Application based resiliency

 NCSA establishing a focused effort in NCSA/UIUC Enhanced
Intellectual Services for Petascale Performance (NEIS-P2) to work
directly with the Science Teams and also the general community to
enable teams to take full advantage of the extraordinary capabilities
of Petascale+ scale systems.

— Due in February 2012
GTC Asia, Beijing, 2011

Science Area

Climate and
Weather

Plasmas/Magnet
osphere

Stellar
Atmospheres
and Supernovae

Cosmology

Combustion/Tur
bulence

General
Relativity

Molecular
Dynamics

Quantum
Chemistry

Material Science

Earthquakes/Sei
smology

Quantum
Chromo
Dynamics

Social Networks
Evolution

Computer
Science

Codes Structured
Grids
CESM, GCRM, CM1, X
HOMME
H3D(M), OSIRIS, X
Magtail/UPIC
PPM, MAESTRO, X

CASTRO, SEDONA

Enzo, pGADGET X
PSDNS X
Cactus, Harm3D, X
LazEV

AMBER, Gromacs,
NAMD, LAMMPS

SIAL, GAMESS,
NWChem

NEMOS, OMEN, GW,
QMCPACK

AWP-ODC, X
HERCULES, PLSQR,
SPECFEM3D

Chroma, MILD, X
USQCD

EPISIMDEMICS

Eve

Unstructured

Grids

Dense Sparse N- Monte
Matrix Matrix Body Carlo
X X

X
X X
X X
X
X X
X X X X
X X X X
X
X X X
X X

Significan

t1/0

Current Science Team GPU Plans
and Results

Nearly 1/3 of PRAC projects have active GPU efforts,
including

— AMBER

— LAMMPS

— USQCD/MILC

— GAMESS

— NAMD

— QMCPACK

— PLSQR/SPECFEM3D

Others are investigating use of GPUs (e.g., Cactus, PPM,
AWP-ODC)

Some examples follow

GTC Asia, Beijing, 2011

There i1s a critical need for

scalable kernel libraries

« Both CPUs and GPUs require scalable parallel
kernel libraries

— GPU needs are more urgent

* Only a small percentage of the Intel Math Kernel
Library (MKL) functions have scalable forms.

« Software lasts through many hardware
generations and needs to be scalable to be
economically viable

GTC Asia, Beijing, 2011

Solid Scalable Kernels

Dense SGEMM/DGEMM, LU, Triangular solvers
(CUBLAS, CULA, MAGMA)

Sparse Matrix Vector Multiplication, Tridiagonal
solvers (CUSP, QUDA, PARBOIL)

FFTs, Convolutions (CUFFT, Parboil)
N-Body (NAMD/VMD, FMM BU, PARBOIL)
Histograms (PARBOIL)

Some PDE solvers (CURRENT, PARBOIL)

Example: Tridiagonal Solver

 Implicit finite difference methods, cubic spline
Interpolation, preconditioners

« An algorithm to find a solution of Ax = d, where A
IS an n-by-n tridiagonal matrix and d is an n-

element vector

_bl C1] I dl]

an bg (6] 0 d2
0 ap—1 bn—l Cn—1 dn—l

I a, by, dy

GTC Asia, Beijing, 2011

Thomas Algorithm

e Special two-way Gaussian elimination

Backward substitution

Forward reduction
GTC Asia, Beijing, 2011

Parallel Cyclic Reduction(PCR)

 Simultaneous reduction of odd and even rows —
a.k.a. forward reduction only CR

by] eiffn, 0 ¢] b,
a by Al o b, 0 | |4y b

as by c3| éld, 0 b, 0| b,
I as by Al a, 0 b} a, b,

GTC Asia, Beijing, 2011

Summary of Previous Approaches

Number of
processing
Complexity Numbgr o steps with n-

operations)

parallelism

machine
Thomas O(n) 2n 2N

PCR O(n log n) 12 nlogn log n

GTC Asia, Beijing, 2011

Parallelization of Tiled PCR

(Owens)

« Exponential growth of halo elements and
subsequent reductions

b | T
18 O G @) &) G-
// = o= = [

Redundant loaad s e

Redundant

GTC Asia, Beijing, 2011
comp U%atl ONS 2-step PCR

Hierarchical Tiling

Parallel 1st |level tile

2"d level tile processed
Sequentially using the
sliding window

Mapping onto GPU

1st level tile One per thread block
: Collaborative streaming
nd
2 el il within thread block
2nd [evel tile buffer Shared memory

GTC Asia, Beijing, 2011

Tiled PCR using HT Sliding Window

T

Reduction steps of PCR E'

I e e e e

I 1| N4 5 6 7
T Ih- 1 1 1 1
I i e e e e
I | N4 5 6 7
/ el‘ ell el

5 6 7

r Y

W,

(a) 2-step PCR using cached dependency from both sides

= -

e

Cached

computation direction

Cached

>
1] o — T
e e e -
| I\ 7 8 9}
_____ !
1 (€ e' e e’
. \6 7. \&8 9
> 4 —
e (e"y (e"\|(¢€ Reduction stpps of PCR
4 5 6 7

GTC Asia, Beijing, 2011 X X .
(b) 2-step PCR using cached dependency from lefthand side

Scalable in size and # systems
(8 million elements)

M=2048 M=256
1000 1000 _
MKL(sequential)
2) MKL(8 threads)
E 100 E Ours(GTX480) wwwm
£ 2 100 !
|_
= 10 'E
ST S [
e E ol e
< L S MKL(sequential) =——=— © P
L MKL(8 threads) n
0.1) Ours(GTX480) wmwee 1
256 512 1K 2K 4K 8K 4K 8K 16K 32K
100 ' 1000 v
MKL(sequential) MKL (sequential)
) MKL(8 threads)) Ours(GTX480)
£ Ours(GTX480) ey £
£ 2 100} ,
= -
- 10 _
o b e e o
5 wer 5 1 O 3
T §
B fe e . b
1 _ L A 1 .
16K G1C A2K Beijing, 26K 128K 0.5M 2M SM

M .= number of systems / x-axis := number of unknowns

A Scalable Kernel Requires

« Massive parallelism in application algorithms
— Data parallelism

« Regular computation and data accesses
— Similar, balanced work for parallel threads

« Avoidance of conflicts in critical resources
— Off-chip DRAM (Global Memory) bandwidth
— Conflicting parallel updates to memory locations

GTC Asia, Beijing, 2011

Eight Techniques for Scalable
Kernels (so far)

Techniques Load Regularity Efficiency
Bandwidth | Contention | Balance

Scatter to X
Gather

Privatization X
Tiling
Coarsening

Data Layout

X X X X
>

Input Binning

Regularization X X

X X X X X X

Compaction X X X

GTC Asia, Beijing, 2011
http://courses.enar.illinois.edu/ece598/hk/

http://courses.engr.illinois.edu/ece598/hk/

Use of Optimizations in Parboill

Benchmark Unoptimuzed Im- | Optumzations Apphed Optmmized Implementation | Prmary Lt of Effi-
plementation Bot- Bottleneck clency
tleneck

cutcp Contention, Local- | Scatter-to-Gather, Binning. Regular- | Instruction Throughput Reads/Checks of Imrel-
ity ization, Coarsening evant Bin Data

mri-q Poor Locality Data Layout Transformation, Tilmg, | Instruction Throughput N/A (true bottleneck)

Coarsening

gnidding Contention, Load | Scatter-to-Gather, Bimnmng Com- | Instruction Throughput Reads/Checks of Imrel-
Imbalance paction. Regularization. Coarseming evant Bin Data

sad Locality Tiling. Coarsening Memory Bandwidth/Latency | Register Capacity

stencil Locality Coarsening. Tiling Bandwidth Local Memory, Regis-

ter Capacity

tpacft Locality. Tiling, Privatization, Coarsening Instruction Throughput N/A (true bottleneck)
Contention

Ibm Bandwidth Data Layout Transformation Bandwidth N/A (true bottleneck)

dmm Bandwidth Coarsening, Tiling Instruction Throughput N/A (true bottleneck)

SpIMV Bandwidth Data Layout Transformation Bandwidth N/A (true bottleneck)

bis Contention, Load | Prvatization. Compaction, Regular- | Bandwidth Whole-Device Local
Imbalance 1Zzation Memory Capacity

histogram Contention, Band- | Prvatization. Scatter-to-Gather Bandwidth Reads of Irrelevant

width

[nput

cache)

(alleviated by

How a mathematician writes How a smart CUDA programmer
matrix multiplication writes matrix multiplication

#define TILE_N 16

#define TILE_TB_HEIGHT 8

#define TILE_M (TILE_N*TILE_TB_HEIGHT)

__global__ void mysgemmNT(const float *A, int Ida, const float *B,
int Idb, float* C, int Idc, int k, float alpha, float beta){

{

float c[TILE_NJ;
for (int i=0; i < TILE_N; i++) c][i] = 0.0f;
int mid = threadldx.y * blockDim.x + threadldx.x;
int m = blockldx.x * TILE_M + mid;
int n = blockldx.y * TILE_N + threadldx.x;
(f\/z N) A g !\/Z . N - __shared__ floatb_s[TILE_TB_HEIGHT][TILE_NJ;
Jy? kiVEk,2 for (inti = 0; i < k; i+=TILE_TB_HEIGHT) {
float a;
k b_s[threadldx.y][threadldx.x]=B[n + (i+threadldx.y)*|db];
__syncthreads();
for (intj=0; j < TILE_TB_HEIGHT; j++) {
a=A[m + (i+j)*lda];
for (int kk = 0; kk < TILE_N; kk++) c[kk] +=a * b_s[j][KK];
}
__syncthreads();
}
intt = Idc*blockldx.y * TILE_N + m;
for (inti=0;i <TILE_N; i++){
C[t+i*ldc] = C[t+i*Idc] * beta + alpha * c[i];
}
}

dim3 grid(m/TILE_M, n/TILE_N), threads(TILE_N, TILE_TB_HEIGHT);
GTC Asia Beijing 2011 mysgemmNT<<<grid, threads>>>(A, Ida, B, Idb, C, Idc, k, alpha, beta);

Writing efficient code is complicated.
Tools can provide focused help

Planning how to execute an algorithm Implementing the plan

. I\D/Ietmory aIIocatlton GMAC
» Choose data structures - a1 movemen J
- Pointer operations Data
_* Index arithmetic J|Layout

: » Kernel dimension :
« Decompose work into tasks [ernel dimensions] M, Thread

» Thread ID arithmetic Coarsening
« Schedule tasks to threads + Synchronization

» Temporary data structures

GTCAsia, Beijing, 2011

UIUC/MCW Tools for Heterogeneous
Parallel Programming

Writing optimizable,
portable, kernels
Pyon

multi-GPU copy support
GMAC, TM

Performance tools
PPA/ADAPT
TC/SM
DL (Data Layout)

GTC Asia, Beijing, 2011

Late

Task and data movement &

~

\

Higher-level Interfaces for
Programmability,

Portability, and Performance

Performance portability,
Analysis, optimization
(with collaboration with
DSLs — Hanrahan/Keutzer)

Use of UIUC/MCW Tools In
Blue Waters

 Introduce compiler and library capabilities into the
science team workflow to significantly reduce the
programming effort and impact on code maintainabllitys:

« Compiler based directives

 GMAC - alibrary that provides global shared memory and
automates data transfer/coherence between the CPUs and
the GPUs in a node

« DL is a compiler-based memory layout transformation tool
that uses a combination of compiler and runtime support to
ease the task of adjusting memory layout to satisfy conflicting
needs between the CPU and the GPU

« TC is a compiler based tool for thread coarsening and data
tiling.
* Provide expert support to the science teams through hand-on

workshops, courses, and individualized collaboration programs.
GTC Asia, Beijing, 2011

Example - DL (Data Layout)

 DRAM bursts are formed differently in a
heterogeneous system
— From last level cache misses on CPUs

— From SIMD-ized memory accesses on many-core
architectures like GPUs

« Data layout transformation can mitigate the gap
— E.g.: Array-of-structure / Discrete-arrays

— Bridging divergent layout requirements
between CPU cores and GPU cores

— Transparent and efficient marshaling

GTC Asia, Beijing, 2011

Data Layout Alternatives

y=0 > < y=1

0 0 T

Array of Structure: [z][y][x][e]
y:O > < y:1 > < y:O >4 y:1 >

Structure of Array: [e][z][y][X]

>

—p e P PP P PP P — P —

GTC Asia, Bei Array of Structure of Tiled Array (ASTA) [zZ][V31.4][X31:4l[€]11Y 3.0l [X3

OpenCL Runtime

Set arg0 < buf

Create new cl_mem buf”’

Marshal (buf=>buf”)
Free (buf)
Set arg0 < buf”

Invoke foo (arg0< buf”)

Create new cl_mem buf”

Marshal (buf '=2>buf ™)

Free (buf”)

Copy buf” back to host memory

DL for OpenCL

DL Runtime Host
Record: Pass a ¢l mem buf to a transformed
— < =
1. foo(arg0< buf) kernel foo as arg0
2. Need marshaling as foo
requires transf d arg0
quires sformed arg -
vl Invoke kemnel foo
Z 1. Create a shadow buffer
b 2
— i
“7 hal from buf'to buf”
e 2. Marshal from bufto buf
—
—>| 3. Call real OpenCL kernel
<« invocation with
—> foo(arg0 € buf”)
am —>
Copy bufback to host memory
| 1. bufis already e
= transformed. Shadow
buffer is buf”
—>
2. Need marshaling as host
—> requires original layout
o q g y
—>| 3. Record buf ’being the
&

current shadow buffer of

buf

UIUC/MCW solution ASTA

* Array-of-Structure-of-Tiled-Arrays: preserving

locality while gaining coalesced memory access

— A[X].foo = A[x/4].foo[x%4] for ASTA(4)

LBM Layouts (ATl Radeon

5870)

ASTA(32)
ASTA(128)
ASTA(512)

AOS

0 2 4 6

GTC Asia, Beijing, 2011

ASTA(16) |
ASTA(32) |
ASTA(64)

ASTA(128) |
= Speedup ASTA(256) |
over AOS piscrete Array

AOS |

|
|
|
|
|
!
0 2

|
|
|
|
|
|
4

LBM Layouts (NVIDIA
GTX480)

Speedup
over AOS

.
" wir D™ o T
- i, ey R Y A" aAbd s "\"’,"__
> L A S 4+

N B St R B
. . -

e e
e . '\ “" . - : * . n

s

< }rzolzz

- INPAR Parb...

inpar_chan...

%y St. Lucia Va...

% To Rent a C...

A’a Reservation...

|[1] Pending Inv...

Create Your...

Create Your...

IMPACT

. multicorewareinc.com/index.phpfoption=com

Company

Technology

MulticoreWare Tools

Products

News

Increasing Programmer Productivity and Performance
Portability across Compute Platforms

CUDA Code

OpenCL Code

Pyon Code

DSL Code

<

&€

- C' -.‘~ G

Contact Us

Services List

Bl s

) sl

il - =

M ~aa: —

Bl ==

Conclusion and Outlook

« Petascale and Exascale intellectual challenges

— Scaling to large processor count with limited
Interconnect bandwidth

— Effective use of massively parallel throughput
oriented processors

* There is a critical need for scalable kernels
— Algorithm design for scalable kernel libraries
— Seamless use of kernels from major languages

— Productivity tools for kernel development and
deployment

GTC Asia, Beijing, 2011

THANK YOU!

GTC Asia, Beijing, 2011

Both Fusion and Discrete GPU

Markets are Growing

800 |
700
600
500
Courtesy: Jon Peddie 400
300 |
200
100
° | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015
'HPU&EPG’B’%(EZMMMSZ ~ |107.07 230.65|328.63 | 402.37|463.29 | 518.86
mIGP, CAGR 2010-2015: -88% | 251.30|294.73/219.30 | 108.14| 37.57 | 7.36 | 0.19 | 0.01 |
Discrete GPU, CAGR 2010-2015:)1 991 119,52 140,51 |144.91| 171.46 190.22|206.76 | 229.22

10.28%

