
Global Memory Usage and StrategyGlobal Memory Usage and Strategy

GPU Computing Webinar 7/12/2011

Dr. Justin Luitjens, NVIDIA Corporation

Why Focus on Global Memory Accesses?

GPU’s have many processing cores (upwards of 500)

Achieving high throughput depends on keeping these cores fed with data

Most applications tend to be bandwidth bound

Most data access begins in global memory

Maximizing global memory bandwidth is a fundamental
optimization

If you don’t get this correct other optimizations will likely be insignificant

Launch Configuration

Launch Configuration

Global memory Instructions
Instructions are issued in order

A thread stalls when one of the operands isn’t ready

Latency is hidden by switching warps (32 threads)

GMEM latency: 400-800 cycles

Need enough threads to hide latency

How many threads/threadblocks to launch?
Number of threads needed depends on the access pattern and word size

Need enough memory transactions in flight to saturate the bus

Increase transactions by having

Independent loads and stores from the same thread

Loads and stores from different threads (more threads)

Larger word sizes (float2 is twice the transactions of float, for example)

Maximizing Memory Throughput

Increment of an array of 64M elements
Two accesses per thread (load then store)
The two accesses are dependent, so really 1 access per thread at a time

Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

Launch Configuration: Summary

Need enough total threads to keep GPU busy
Typically, you’d like 512+ threads per SM

More if processing one fp32 element per thread

Of course, exceptions exist

Threadblock configuration
Threads per block should be a multiple of warp size (32)
SM can concurrently execute up to 8 threadblocks

Really small threadblocks prevent achieving good occupancy
Really large threadblocks are less flexible
I generally use 128-256 threads/block, but use whatever is best for the
application

For more details:
Vasily Volkov’s GTC2010 talk “Better Performance at Lower
Occupancy”

Global Memory Access
Patterns

Fermi Memory Hierarchy

Local storage (on-chip)
Each thread has own local storage
Mostly registers (managed by the compiler)

Shared memory / L1 (on-chip)
Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
Shared memory is accessible by the threads in the same threadblock
Very low latency
Very high throughput: 1+ TB/s aggregate

L2 (off-chip)
All accesses to global memory go through L2, including copies to/from CPU
host

Global memory (off-chip)
Accessible by all threads
Higher latency (400-800 cycles)
Throughput: up to 177 GB/s

Fermi Memory Hierarchy

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

Load Operations

Memory operations are issued per warp (32 threads)

Just like all other instructions

Prior to Fermi, memory issues were per half-warp

Operation:

Threads in a warp provide memory addresses

Determine which lines/segments are needed

Request the needed lines/segments

Memory Access

Addresses from a warp (“thread-vector”) are converted into line
requests

line sizes: 32B and 128B

Goal is to maximally utilize the bytes in these lines

4

...

96 192128 160 224 28825632 64 352320 384
Memory addresses

addresses from a warp are within cache line

11

2D Array Access Pattern (row major)

0 1 … 31

32 33 … 63

… … … …

float A[N][32];

…

A[threadIdx.x][0]=…;

A[threadIdx.x][1]=…;

…

96 192128 160 224 28825632 64 352320 384 …4160

Element Offsets

Uncoalesced access pattern

Elements read in on first SIMT access: 0, 32, 64, …

Elements read in on second SIMT access: 1, 33, 65, …

Extra data will be transferred in order to fill the cache line size

Generally the most natural access pattern for a port of a C/C++
code!

1 thread per row

Transposed 2D Array Access Pattern

0 N … 31*N

1 N+1 … 31*N+1

… … …

float A[32][N];

…

A[0][threadIdx.x]=…;

A[1][threadIdx.x]=…;

…

96 192128 160 224 28825632 64 352320 384 …4160

Element Offsets

Coalesced Accesses

Elements read in on first SIMT access: 0, 1, 2, …, 31

Elements read in on second SIMT access: 32, 33, …, 63

Minimizes transactions and total bytes transferred

1 thread per column

Array of Structures vs Structure of Arrays

An array of structures behaves like row major accesses
struct Point { double x; double y; double z; double w; } A[N];

…

A[threadIdx.x].x = …

96 192128 160 224 28825632 64 352320 384 …4160

A structure of arrays behaves like column major
struct PointList{double *x; double *y; double *z; double *w;} A;

…

A.x[threadIdx.x] = …

96 192128 160 224 28825632 64 352320 384 …4160

Fermi GMEM Operations

Two types of loads:
Caching

Default mode (can also compile –Xptxas –dlcm=ca option to nvcc)

Attempts to hit in L1, then L2, then GMEM

Load granularity is 128-bytes

Non-caching

Compile with –Xptxas –dlcm=cg option to nvcc

Skip L1, Attempts to hit in L2, then GMEM

– Do not hit in L1, invalidate the line if it’s in L1 already

Load granularity is 32-bytes

Stores:
Invalidate L1, write-back for L2

Load Caching and L1 Size

Non-caching loads can improve perf when:
Loading scattered words or only a part of a warp issues a load

Benefit: transaction is smaller, so useful payload is a larger percentage
Loading halos, for example

Spilling registers (reduce line fighting with spillage)

Large L1 can improve perf when:
Spilling registers (more lines so fewer evictions)
Some misaligned, strided access patterns
16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem

cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared);
cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferL1);

How to use:
Just try a 2x2 experiment matrix: {CA,CG} x {48-L1, 16-L1}

Keep the best combination - same as you would with any HW managed
cache, including CPUs

Caching Load

Warp requests 32 aligned, consecutive 4-byte words

Addresses fall within 1 cache-line

Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

Transactions: 1

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

0

Non-caching Load

Warp requests 32 aligned, consecutive 4-byte words

Addresses fall within 4 segments
Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

Transactions: 4

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

0

Caching Load

...

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

addresses from a warp

0

Warp requests 32 aligned, permuted 4-byte words

Addresses fall within 1 cache-line
Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

Transactions: 1

Non-caching Load

...

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

addresses from a warp

0

Warp requests 32 aligned, permuted 4-byte words

Addresses fall within 4 segments
Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

Transactions: 4

Caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 44416
Memory addresses

Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within 2 cache-lines
Warp needs 128 bytes

256 bytes move across the bus on misses

Bus utilization: 50%

Transactions: 2

Non-caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 44416
Memory addresses

Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within at most 5 segments
Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%

Some misaligned patterns will fall within 4 segments, so 100%
utilization

Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

0

All threads in a warp request the same 4-byte word

Addresses fall within a single cache-line

Warp needs 4 bytes

128 bytes move across the bus on a miss

Bus utilization: 3.125%

Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

0

All threads in a warp request the same 4-byte word

Addresses fall within a single segment

Warp needs 4 bytes

32 bytes move across the bus on a miss

Bus utilization: 12.5%

Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

0

Warp requests 32 scattered 4-byte words

Addresses fall within N cache-lines

Warp needs 128 bytes

N*128 bytes move across the bus on a miss

Bus utilization: 128 / (N*128)

Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 44416
Memory addresses

0

Warp requests 32 scattered 4-byte words

Addresses fall within N segments

Warp needs 128 bytes

N*32 bytes move across the bus on a miss

Bus utilization: 128 / (N*32)

GMEM Optimization Guidelines

Strive for perfect coalescing per warp
Align starting address (may require padding)

A warp should access within a contiguous region

Data structure, Data structure, Data structure

Using transpose your data so that it is a structure of arrays

Have enough concurrent accesses to saturate the bus
Launch enough threads to maximize throughput

Latency is hidden by switching warps (32 threads)

Process several elements per thread

Multiple loads get pipelined

Try L1 and caching configurations to see which one works best
Caching vs non-caching loads (compiler option)

16KB vs 48KB L1 (CUDA call)

Questions?

