X/

GPUs Reaching Broader Set of Developers

1,000,000’s
Universities
Supercomputing Centers
100,000’s Oil & Gas
Research
Early Adopters

2004 Present
Time

3 Ways to Accelerate Applications

Applications

1

J

with GPUs
s
Libraries
_
“Drop-in”

Acceleration

Quickly Accelerate
Existing Applications

4

-

~
Programming
Languages
J
Maximum
Performance

Directives: Add A Few Lines of Code <X

NVIDIA.
/ CPU \

OpenMP

OpenACC: Y
Open Programming Standard for Parallel Computing ™"™A

<A NVIDIA. AN

THE SUPERCOMPUTER COMPANY

‘“ OpenACC will enable programmers to easily develop portable applications that
maximize the performance and power efficiency benefits of the hybrid
CPU/GPU architecture of Titan. ”’

Buddy Bland
Titan Project Director

Easy, Fast, Portable Oak Ridge National Lab

‘ OpenACC is a technically impressive initiative brought together by members of
the OpenMP Working Group on Accelerators, as well as many others. We look

T
forward to releasing a version of this proposal in the next release of OpenMP. Michael Wong

CEO, OpenMP
Directives Board

http://www.openacc-standard.org/

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

OpenACC >

NVIDIA

* Compiler directives to specify parallel regions in C, C++, Fortran
OpenACC compilers offload parallel regions from host to accelerator
Portable across OSes, host CPUs, accelerators, and compilers

* Create high-level heterogeneous programs
Without explicit accelerator initialization,
Without explicit data or program transfers between host and accelerator

* Programming model allows programmers to start simple

Enhance with additional guidance for compiler on loop mappings, data
location, and other performance details

OpenACC Specification and Website

* Full OpenACC 1.0 Specification available online

http://www.openacc-standard.org

.

Quick reference card also available

»

First implementations to appear mid-2012

* Current PGI, Cray, and CAPS compilers all have
accelerator directives (precursors to OpenACC)

<3

NVIDIA

The OpenACC™ API

QUICK REFERENCE GUIDE

NVIDIA.
PGI

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

Small Effort. Real Impact.

Large Oil Company

3x in 7 days

Solving billions of
equations iteratively for oil
production at world’s
largest petroleum
reservoirs

UNIVERSITY ef

HOUSTON

CULLEN CCLLESE of ENGINEERING

Univ. of Houston
Prof. M.A. Kayali

20x in 2 days

Studying magnetic
systems for innovations in
magnetic storage media
and memory, field sensors,
and biomagnetism

Uni. Of Melbourne
Prof. Kerry Black

65x in 2 days

Better understand complex
reasons by lifecycles of
snhapper fish in Port Phillip
Bay

v YTATY

Ufa State Aviation
Prof. Arthur Yuldashev

7X in 4 Weeks

Generating stochastic

geological models of

oilfield reservoirs with
borehole data

<3

NVIDIA

GAMESS-UK
Dr. Wilkinson, Prof. Naidoo

10x

Used for various fields

such as investigating

biofuel production and
molecular sensors.

* Achieved using the PGI Accelerator Compiler

. . »
Focus on Exposing Parallelism <

With Directives, tuning work focuses on exposing parallelism,
which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

CAM-SE

Answer questions about specific
climate change adaptation and
mitigation scenarios

S3D
Research more efficient
combustion with next-

generation fuels
» Tuning top 3 kernels (90% of runtime) » Tuning top key kernel (50% of runtime)
» 3 to 6x faster on CPU+GPU vs. CPU+CPU » 6.5x faster on CPU+GPU vs. CPU+CPU

» But also improved all-CPU version by 50% » Improved performance of CPU version by 100%

<3

A simple example (Jacobi relaxation) o

while (error > tol && iter < iter max) ({
error=0.f;

for(int i = 1; 1 < m-1; i++) {

Anew[j][1i] = 0.25f * (A[j]l[i+1l] + A[j]l[1i-1]
+ A[j-1][1] + A[J+1][1i]):
error = max(error, abs (Anew[j][i] - A[J][1])

}

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[j][i] = Anew[]] [i];

}}

iter++;

OpenMP CPU Implementation <

NVIDIA

while (error > tol && iter < iter max) ({
error=0.f;
#pragma omp parallel for shared(m, n, Anew, A)

for(int j =1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {
Anew[j][1i] = 0.25f * (A[j]l[i+1l] + A[j]l[1i-1]
+ A[F-1]1[i] + A[F+1]1[i]);
error = max(error, abs (Anew[j][i] - A[J][1])

}

#pragma omp parallel for shared(m, n, Anew, A)
for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[j][i] = Anew[]][i];
}}

iter++;

>

OpenACC GPU Implementation

#pragma acc data copy (A, Anew)
while (error > tol && iter < iter max) ({

error=0.f;
#pragma acc parallel
for(int j =1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {
Anew[j][1i] = 0.25f * (A[j][i+1l] + A[j]l[i-1]
+ A[F-11[4i] + A[F+1]1[i]);
error = max(error, abs(Anew[j][i] - A[J][1])

NVIDIA

}

#pragma acc parallel
for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[jl[i] = Anew[]j][1i];

}}
iter++; }

Speed Up SI%A

Implementation

Single-threaded CPU Xeon X5550 33.42 --
Multi-threaded CPU (8 threads) Xeon X5550 17.81 1.88x
GPU accelerated Tesla M2090 8.27 2.15x%

Over 2x speed compared to 8-Core OpenMP code with just 3 directives.
Note: tested with PGI Accelerator directives

Jacobi Relaxation (Fortran) >

NVIDIA

iter = 0
do while (err .gt tol .and. iter .gt. iter max)

iter = iter + 1
err = 0.0
do j=1,m ’
do i=1,n
Anew(i,j) = 0.25 * (A(i+1l,3j) + A(i-1,3) + A(i,3j-1) + A(1i, j+1)
err = max(err, abs(Anew(i,]j)-A(i,3)))

end do
end do

if(mod(iter,100) .eq.0 .or. iter.eq.l) print*, iter, err
A = Anew
end do

© NVIDIA Corporation 2012

OpenMP CPU Implementation (Fortran) N>

NVIDIA

iter = 0
do while (err .gt tol .and. iter .gt. iter max)

iter = iter + 1
err = 0.0
!Somp parallel do shared(m,n,Anew,A) reduction (max:err)
do j=1,m
do i=1,n
Anew(i,j) = 0.25 * (A(i+1l,3j) + A(i-1,3) + A(i,j-1) + A(i, jJ+1)
err = max(err, abs(Anew(i,j)-A(1i,])))
end do
end do
'Somp end parallel do
if(mod(iter,100) .eq.0) print*, iter, err
A = Anew
end do

© NVIDIA Corporation 2012

>

NVIDIA

OpenACC GPU Implementation (Fortran)

1Sacc data copy (A,Anew)
iter = 0
do while (err .gt tol .and. iter .gt. iter max)
iter = iter + 1
err = 0.0

!Sacc parallel reduction(max:err) ’
do j=1,m

do i=1,n

Anew(i,j) = 0.25 * (A(i+1l,3j) + A(i-1,3) + A(i,j-1) + A(i,]J+1)
err = max(err, abs(Anew(i,j)-A(1i,]3)))
end do
end do

ISacc end parallel
if(mod(iter,100) .eq.0) print*, iter, err

!1Sacc parallel
A = Anew
!Sacc end parallel

end do
1Sacc end data

© NVIDIA Corporation 2012

Finding Parallelism in your code >

NVIDIA

(Nested) for loops are best for parallelization
Large loop counts needed to offset GPU/memcpy overhead
Iterations of loops must be independent of each other

* Compiler must be able to figure out sizes of data regions
Can use directives to explicitly control sizes
Pointer arithmetic should be avoided if possible
Use subscripted arrays, rather than pointer-indexed arrays.

* Function calls within accelerated region must be inlineable.

Tips and Tricks >

NVIDIA

(PGI) Use time option to learn where time is being spent
-ta=nvidia,time
Eliminate pointer arithmetic
Inline function calls in directives regions
Use contiguous memory for multi-dimensional arrays
Use data regions to avoid excessive memory transfers
* Conditional compilation with _ OPENACC macro

>

NVIDIA.

OPENACC CONCEPTS

Basic Concepts N>

nVIDIA
< PCI Bus >

7 > -

For efficiency, decouple data movement and compute off-load

Directive Syntax S,%A

® Fortran
!Sacc directive [clause [,] clause] ..]

Often paired with a matching end directive surrounding a

structured code block
1Sacc end directive

* C
#pragma acc directive [clause [,] clause] ..]
Often followed by a structured code block

>

NVIDIA.

DATA MANAGEMENT

Data Construct <3

NVIDIA

Fortran C
!Sacc data [clause ..] #pragma acc data [clause ..]
structured block { structured block }

!Sacc end data

General Clauses
if(condition)

async(expression)

Manage data movement. Data regions may be nested.

Data Clauses <3

NVIDIA

copy (list) Allocates memory on GPU and copies data from
host to GPU when entering region and copies data
to the host when exiting region.

copyin (list) Allocates memory on GPU and copies data from
host to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the
host when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Datais already present on GPU from another
containing data region.

and present or copyl[in|out], present or create, deviceptr.

Improved OpenACC GPU Implementation ,S%A

#pragma acc data copyin(A), create (Anew)
while (error > tol && iter < iter max) ({

error=0.f;
#pragma acc parallel
for(int j =1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {
Anew[j][1i] = 0.25f * (A[j][i+1l] + A[j]l[i-1]
+ A[F-11[4i] + A[F+1]1[i]);
error = max(error, abs(Anew[j][i] - A[J][1])

}

#pragma acc parallel
for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[jl[i] = Anew[]j][1i];
)
iter++; }

Improved OpenACC GPU Implementation >

NVIDIA

!Sacc data |copyin (A), create (Anew)
iter = 0
do while (err .gt tol .and. iter .gt. iter max)

iter = iter + 1
err = 0.0
!Sacc parallel reduction(max:err)
do j=1,m
do i=1,n
Anew(i,j) = 0.25 * (A(i+l1l,3) + A(i-1,373) &
A(i, 3j-1) + A(i, 3j+1)
err = max(err, abs(Anew(i,j)-A(i,3)))
end do
end do
!Sacc end parallel
if(mod(iter,100) .eq.0) print*, iter, err
A = Anew
end do
!Sacc end data

<3

Update Directive DA
Fortran C

!Sacc update [clause ..] #pragma acc update [clause ..]
Clauses

host(list) if(expression)

device(list) async (expression)

Move data from GPU to host, or host to GPU.
Data movement can be conditional, and asynchronous.

>

NVIDIA.

WORK MANAGEMENT

Parallel Construct

Fortran

!1Sacc parallel [clause ..]
structured block

1Sacc end parallel

Clauses

if(condition)

async(expression)

num gangs (expression)

num workers(expression)

vector length(expression)

<3

NVIDIA

C

#pragma acc parallel [clause ..]
{ structured block }

private(list)
firstprivate(list)
reduction(operator:list)

Any data clause

Parallel Clauses S%A

num gangs (expression) Controls how many parallel gangs are
created (CUDA gridpim).

num workers (expression) Controls how many workers are created
In each gang (CUDA biockDim).

vector length (list) Controls vector length of each worker
(SIMD execution).

private(list) A copy of each variable in list is
allocated to each gang.

firstprivate (list) private Variables initialized from host.

reduction(operator:list) private Variables combined across
gangs.

More Parallelism (C)

#pragma acc data copyin(A), create (Anew)
while (error > tol && iter < iter max) ({

error=0.f;
#pragma acc parallel

reduction(max:error)

for(int j = 1; J < n-1I; J++) {

for(int i =

1; 1 <m-1; i++) {

Anew[]j] [1] = 0.25f * (A[j][i+1]

+ A[j-1]1[i]

>

NVIDIA

= al

+ A[]j] [i-1]
+ A[J+1][1]);

error = max (error, abs(Anew[j][i] - A[j]lI[i]);

}

#pragma acc parallel

for(int j = 1; j < n-1; j++) {

for(int 1 =

1; 1 < m-1; i++) {

A[j]l[i] = Anew[]j][1i];

}}
iter++; }

More Parallelism (Fortran) ,f,?z.,.,\

!Sacc data copyin(A), create (Anew)
iter = 0
do while (err .gt tol .and. iter .gt. iter max)

iter = iter + 1
err = 0.0
!Sacc parallel|reduction(max:err)
do j=1,m
do i=1,n
Anew(i,j) = 0.25 * (A(i+l1,3) + A(i-1,3) &
A(i, 3j-1) + A(i, Jj+1)
err = max(err, abs(Anew(i,j)-A(i,3)))
end do
end do
!1Sacc end parallel
if(mod(iter,100) .eq.0) print*, iter, err
!1Sacc parallel
A = Anew
!Sacc end parallel
end do
!Sacc end data

Kernels Construct

Fortran

!Sacc kernels [clause ..]
structured block

!Sacc end kernels

Clauses
if(condition)
async(expression)

Any data clause

C

#pragma acc kernels [clause
{ structured block }

o]

<3

NVIDIA

Kernels Construct <X

NVIDIA

Each loop executed as a separate kernel on the GPU.

1Sacc kernels

do i=1l,n D
a(l) 0 \. kernel 1
b(i) =1.0
c(i) = 2.0)
end do
do i=1,n
a(i) = b(1i) + c(1) kernel 2
end do

1Sacc end kernels

Loop Construct >

NVIDIA

Fortran C

!Sacc loop [clause ..] #pragma acc loop [clause ..]
loop { loop }

1Sacc end loop

Combined directives

!Sacc parallel loop [clause ..] !Sacc parallel loop [clause ..]

!Sacc kernels loop [clause ..] !Sacc kernels loop [clause ..]

Detailed control of the parallel execution of the following loop.

<@
Loop Clauses nv%A

collapse(n) Applies directive to the following n
nested loops.

seq Executes the loop sequentially on the
GPU.

private(list) A copy of each variable in list is created

for each iteration of the loop.

reduction(operator:list) private Variables combined across
Iiterations.

>

Loop Clauses Inside parallel Region Ay — A
gang Shares iterations across the gangs of

the parallel region.
worker Shares iterations across the workers of

the gang.
Execute the iterations in SIMD mode.

vector

Loop Clauses Inside kernels Region S,%A

gang [(num gangs)] Shares iterations across across at most
num _gangs Jangs.

worker [(num workers)] Shares iterations across at most
num workers Of a single gang.

vector [(vector length)] [EXecute the iterations in SIMD mode
with maximum vector length.

independent Specify that the loop iterations are

Independent.

More Performance (C)

#pragma acc data copyin(A), create (Anew)
while (error > tol && iter < iter max) ({
error=0.f;
#pragma acc kernels loop reduction(max:error),
for(int j =1; j < n-1; j++) {
#pragma acc loop gang(l16), worker (32)
for(int i = 1; 1 < m-1; i++) {

gang (32) , worker (16

Anew[j][1i] = 0.25f * (A[j]l[i+1l] + A[j]l[1i-1]
+ A[j-1][1] + A[J+1][1i]);
error = max(error, abs(Anew[j][i] - A[]j][1])

}}

#pragma acc kernels loop
for(int J =1; j < n-1; j++) {
#pragma acc loop gang(l16), worker (32)
for(int 1 = 1; i < m-1; i++) {
A[j1[i] = Anew[j][i];
}}
iter++; }

>

NVIDIA

More Performance (Fortran) E%A

!Sacc data copyin(A), create (Anew)
iter = 0
do while (err .gt tol .and. iter .gt. iter max)

iter = iter + 1
err = 0.0
!Sacc kernels loop reduction(max:err), |gang(32), worker (8)
do j=1,m
do i=1,n
Anew(i,j) = 0.25 * (A(i+l1l,3) + A(i-1,353) &
A(i, 3j-1) + A(i, 3j+1)
err = max(err, abs(Anew(i,j)-A(i,3)))
end do
end do
!1Sacc end kernels loop
if(mod(iter,100) .eq.0) print*, iter, err
!1Sacc parallel
A = Anew
!Sacc end parallel
end do
!Sacc end data

>

NVIDIA.

OTHER SYNTAX

Other Directives

cache CONStruct
host data construct
wait directive

declare directive

<3

NVIDIA

Cache data in software managed data
cache (CUDA shared memory).

Makes the address of device data
avallable on the host.

Waits for asynchronous GPU activity to
complete.

Specify that data is to allocated In
device memory for the duration of an
implicit data region created during the
execution of a subprogram.

Runtime Library Routines

Fortran
use openacc

#include "openacc lib.h"

acc_get num devices
acc_set device type
acc_get device type
acc_set device num
acc_get device num
acc_async_test

acc_async_test all

C

#include "openacc.h"

acc_async _wait
acc_async _wait all
acc_shutdown
acc_on device

acc malloc

acc free

<3

NVIDIA

Environment and Conditional Compilation <3

ACC_DEVICE device

ACC _DEVICE NUM num

_OPENACC

NVIDIA

Specifies which device type to connect
to.

Specifies which device number to
connect to.

Preprocessor directive for conditional
compilation.

