
© NVIDIA Corporation 2009

Introduction to GPU Computing with OpenCLIntroduction to GPU Computing with OpenCL

Presentation Outline

Overview of OpenCL for NVIDIA GPUs

Highlights from OpenCL Spec, API and Language

Sample code walkthrough (oclVectorAdd)

© NVIDIA Corporation 2009

Sample code walkthrough (oclVectorAdd)

What Next ?

OpenCL Information and Resources

OpenCLTM – Open Computing Language

Open, royalty-free standard C-language extension

For parallel programming of heterogeneous systems using GPUs, CPUs,
CBE, DSP’s and other processors including embedded mobile devices

Initially proposed by Apple, who put OpenCL in OSX Snow Leopard and is

© NVIDIA Corporation 2009

Initially proposed by Apple, who put OpenCL in OSX Snow Leopard and is

active in the working group. Working group includes NVIDIA, Intel, AMD, IBM…

Managed by Khronos Group

(same group that manages the OpenGL std)

Note: The OpenCL working group chair is NVIDIA VP Neil Trevett, who is also

President of Khronos Group

OpenCL is trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA’s OpenCL Timeline

OpenCLOpenCL 1.01.0

OpenCLOpenCL 1.11.1

12 / 2008 1st operable OpenCL demo on GPU (Siggraph Asia)

4 / 2009 Drivers, compiler and SDK available to developers

5 / 2009 1st GPU implementation filed for conformance

6 / 2009 1st Conformant GPU Implementation

© NVIDIA Corporation 2009

2008 2009

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Alpha Alpha
OpenCLOpenCL

BetaBeta
OpenCLOpenCL

NVIDIA OpenCL Support

OS / Platform
32 and 64 bit Windows XP and Vista (and soon Win 7)

32 and 64 bit Linux (Ubuntu, RHEL, etc)

Mac OSX Snow Leopard (indirectly via Apple)

IDE’s
VS 8(2005) and VS 9(2008) for Windows

GCC for Linux

© NVIDIA Corporation 2009

GCC for Linux

Drivers and JIT compiler
In SDK for Alpha & Beta

To be packaged with GPU drivers

SDK
Source code & white papers for Sample applications (30 presently)

Documentation: Spec, Getting Started Guide, Programming Manual,
Best Practices (Optimization) Guide

OpenCL & CUDA GPU’s

OpenCL

C for CUDA

DirectX Compute

Fortran (PGI)

C++

© NVIDIA Corporation 2009

C++

Java

Python

.Net

The CUDA Architecture supports standard languages & APIs to
tap the massive parallel computational power of the GPU

ATI’s Compute
“Solution”(GPU HW, Driver, ISA…)

OpenCL Language & API Highlights

Platform Layer API (called from host)
Abstraction layer for diverse computational resources

Query, select and initialize compute devices

Create compute contexts and work-queues

Runtime API (called from host)

Launch compute kernels

© NVIDIA Corporation 2009

Launch compute kernels

Set kernel execution configuration

Manage scheduling, compute, and memory resources

OpenCL Language
Write compute kernels that run on a compute device

C-based cross-platform programming interface

Subset of ISO C99 with language extensions

Includes rich set of built-in functions, in addition to standard C operators

Can be compiled JIT/Online or offline

Kernel Execution Configuration

Host program launches kernel in index space called NDRange
NDRange (“N-Dimensional Range”) is a multitude of kernel instances

arranged into 1, 2 or 3 dimensions

A single kernel instance in the index space is called a Work Item
Each Work Item executes same compute kernel (on different data)

Work Items have unique global IDs from the index space

© NVIDIA Corporation 2009

Work-items are further grouped into Work Groups
Work Groups have a unique Work Group ID

Work Items have a unique Local ID within a Work Group

~ Analagous to a C loop that calls a function many times
Except all iterations are called simultaneously & executed in parallel

Kernel Execution Configuration

© NVIDIA Corporation 2009

Total number of Work Items = Gx * Gy

Size of each Work Group = Sx * Sy

Global ID can be computed from Work Group ID and Local ID

OpenCL Memory Model

Private Memory
Read / Write access
For Work Item only

Local Memory
Read / Write access

Compute Unit 1

Private
Memory

Work
Item M

Private
Memory

Work
Item 1

Work Group

Compute Unit N

Private
Memory

Work
Item M

Private
Memory

Work
Item 1

Work Group

© NVIDIA Corporation 2009

Read / Write access
For entire Work Group

Constant Memory
Read access
For entire ND-range
(All work items, all work groups)

Global Memory
Read / write access
For entire ND-range
(All work items, all work groups)

Compute Device (e.g. GPU)

Local Memory

Global / Constant Memory Data Cache

Local Memory

Compute Device Memory

Global Memory

Basic Program Structure

Host program

Platform Layer
Create memory objects associated to contexts

Compile and create kernel program objects

Issue commands to command-queue

Synchronization of commands

Clean up OpenCL resources

© NVIDIA Corporation 2009

Compute Kernel (runs on device)

RuntimeQuery compute devices

Create contexts

OpenCL
Language

C code with some restrictions and extensions

OpenCL Memory Objects

Buffer objects
1D collection of objects (like C arrays)

Scalar & Vector types, and user-defined Structures

Buffer objects are accessed via pointers in the compute kernel

Image objects

© NVIDIA Corporation 2009

2D or 3D texture, frame-buffer, or images

Must be addressed through built-in functions

Sampler objects
Describe how to sample an image in the kernel

Addressing modes

Filtering modes

OpenCL Language Highlights

Function qualifiers

“__kernel” qualifier declares a function as a kernel

Address space qualifiers

__global, __local, __constant, __private

Work-item functions

get_work_dim()

© NVIDIA Corporation 2009

get_work_dim()

get_global_id(), get_local_id(), get_group_id(), get_local_size()

Image functions

Images must be accessed through built-in functions

Reads/writes performed through sampler objects from host or defined in
source

Synchronization functions

Barriers - All Work Items within a Work Group must execute the barrier
function before any Work Item in the Work Group can continue

oclVectorAdd code walkthrough

Element-by-element addition of two floating point vectors
c[i] = a[i] + b[i] (where i ranges from 0 to a large #, e.g. 11444777)

Equivalent C loop

int iNumElements = 11444777;

// a, b and c are allocated/initalized float arrays of length iNumElements

© NVIDIA Corporation 2009

// a, b and c are allocated/initalized float arrays of length iNumElements

for (int i = 0; i < iNumElements; i++)

{

c[i] = a[i] + b[i];

}

Review oclVectorAdd sample from NVIDIA OpenCL SDK
For brevity/clarity, error handling, console output and host comparision code

is removed here

oclVectorAdd Execution Sequence

Set Up

Set work sizes for kernel execution

Allocate and init host data buffers

Create context for GPU device

Query compute devices (in the context)

Create command queue (in the context)

Create buffers on the GPU device (in the context)

Create and build a program (in the context)

Create kernel

© NVIDIA Corporation 2009

Create kernel

Set kernel arguments

Core sequence

Copy (write) data from host to GPU

Launch kernel in command-queue

Copy (read) data from GPU to host… block

Clean up

// OpenCL Kernel Function for element by element vector addition

// ***

__kernel void VectorAdd (__global float* a, __global float* b, __global float* c,

__global int iNumElements)

{

// get index into global data array

Kernel Code

Source code for the computation kernel, stored in text file

(read from file and compiled at run time, e.g. during app. init)

© NVIDIA Corporation 2009

// get index into global data array

int iGID = get_global_id(0);

// bound check (equivalent to the limit on a 'for' loop for standard/serial C code

if (iGID >= iNumElements)

{

return;

}

// add the vector elements

c[iGID] = a[iGID] + b[iGID];

}

// OpenCL Vars

cl_context cxGPUContext; // OpenCL context

cl_command_queue cqCommandQue; // OpenCL command queue

cl_device_id* cdDevices; // OpenCL device list

cl_program cpProgram; // OpenCL program

cl_kernel ckKernel; // OpenCL kernel

cl_mem cmDevSrcA; // OpenCL device source buffer A

cl_mem cmDevSrcB; // OpenCL device source buffer B

Host code: Declarations

© NVIDIA Corporation 2009

cl_mem cmDevSrcB; // OpenCL device source buffer B

cl_mem cmDevDst; // OpenCL device destination buffer

size_t szGlobalWorkSize; // 1D var for Total # of work items

size_t szLocalWorkSize; // 1D var for # of work items in the work group

size_t szParmDataBytes; // Byte size of context information

size_t szKernelLength; // Byte size of kernel code

char* cPathAndName = NULL; // var for full paths to data, src, etc.

char* cSourceCL = NULL; // Buffer to hold source for compilation

int iNumElements = 11444777; // Length of float arrays to process

// set Local work size dimensions

szLocalWorkSize = 256;

// set Global work size dimensions

// (rounded up to the nearest multiple of LocalWorkSize using C++ helper function)

szGlobalWorkSize = shrRoundUp ((int) szLocalWorkSize, iNumElements);

// Allocate host arrays

Host code: Setup

© NVIDIA Corporation 2009

// Allocate host arrays

srcA = (void *) malloc (sizeof (cl_float) * szGlobalWorkSize);

srcB = (void *) malloc (sizeof (cl_float) * szGlobalWorkSize);

dst = (void *) malloc (sizeof (cl_float) * szGlobalWorkSize);

// Init host arrays using C++ helper functions

shrFillArray ((float*) srcA, iNumElements);

shrFillArray ((float*) srcB, iNumElements);

// Create the OpenCL context on a GPU device

cxGPUContext = clCreateContextFromType (0, CL_DEVICE_TYPE_GPU,

NULL, NULL, NULL);

// Get the list of GPU devices associated with context

clGetContextInfo (cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &szParmDataBytes);

Host code: Context, Device & Queue

© NVIDIA Corporation 2009

clGetContextInfo (cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &szParmDataBytes);

cdDevices = (cl_device_id*) malloc (szParmDataBytes);

clGetContextInfo (cxGPUContext, CL_CONTEXT_DEVICES, szParmDataBytes,

cdDevices, NULL);

// Create a command-queue

cqCommandQue = clCreateCommandQueue (cxGPUContext, cdDevices[0], 0, NULL);

// allocate the first source buffer memory object

cmDevSrcA = clCreateBuffer (cxGPUContext, CL_MEM_READ_ONLY,

sizeof(cl_float) * iNumElements, NULL, NULL);

// allocate the second source buffer memory object

cmDevSrcB = clCreateBuffer (cxGPUContext, CL_MEM_READ_ONLY,

Host code: Create Memory Objects

© NVIDIA Corporation 2009

cmDevSrcB = clCreateBuffer (cxGPUContext, CL_MEM_READ_ONLY,

sizeof(cl_float) * iNumElements, NULL, NULL);

// allocate the destination buffer memory object

cmDevDst = clCreateBuffer (cxGPUContext, CL_MEM_WRITE_ONLY,

sizeof(cl_float) * iNumElements, NULL, NULL);

// Read the OpenCL kernel in from source file using helper C++ functions

cPathAndName = shrFindFilePath(cSourceFile, argv[0]);

cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);

// Create the program

cpProgram = clCreateProgramWithSource (cxGPUContext, 1, (const char **)&cSourceCL,

&szKernelLength, NULL);

// Build the program

Host code: Program & Kernel

© NVIDIA Corporation 2009

// Build the program

clBuildProgram (cpProgram, 0, NULL, NULL, NULL, NULL);

// Create the kernel

ckKernel = clCreateKernel (cpProgram, "VectorAdd", NULL);

// Set the Argument values

clSetKernelArg (ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);

clSetKernelArg (ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);

clSetKernelArg (ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);

clSetKernelArg (ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);

// Copy input data to GPU, compute, copy results back

// Runs asynchronous to host, up until blocking read at end

// Write data from host to GPU

clEnqueueWriteBuffer (cqCommandQue, cmDevSrcA, CL_FALSE, 0,

sizeof(cl_float) * szGlobalWorkSize, srcA, 0, NULL, NULL);

clEnqueueWriteBuffer (cqCommandQue, cmDevSrcB, CL_FALSE, 0,

Host code: Core Sequence

© NVIDIA Corporation 2009

sizeof(cl_float) * szGlobalWorkSize, srcB, 0, NULL, NULL);

// Launch kernel

clEnqueueNDRangeKernel (cqCommandQue, ckKernel, 1, NULL, &szGlobalWorkSize,

&szLocalWorkSize, 0, NULL, NULL);

// Blocking read of results from GPU to Host

clEnqueueReadBuffer (cqCommandQue, cmDevDst, CL_TRUE, 0,

sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);

// Cleanup allocated objects

clReleaseKernel (ckKernel);

clReleaseProgram (cpProgram);

clReleaseCommandQueue (cqCommandQue);

clReleaseContext (cxGPUContext);

clReleaseMemObject (cmDevSrcA);

clReleaseMemObject (cmDevSrcB);

Cleanup

© NVIDIA Corporation 2009

clReleaseMemObject (cmDevDst);

free (cdDevices);

free (cPathAndName);

free (cSourceCL);

// Free host memory

free(srcA);

free(srcB);

free (dst);

Console Output

© NVIDIA Corporation 2009

What Next ?

Begin hands-on development with the NVIDIA OpenCL
SDK

Read OpenCL Specification and the extensive materials

© NVIDIA Corporation 2009

Read OpenCL Specification and the extensive materials
provided with the OpenCL SDK

Read and contribute to OpenCL forums at Kronos and
NVIDIA

OpenCL Information and Resources

NVIDIA OpenCL Web Page

http://www.nvidia.com/object/cuda_opencl.html

NVIDIA OpenCL Forum

http://forums.nvidia.com/index.php?showforum=134

NVIDIA Registered Developer Extranet Site

© NVIDIA Corporation 2009

NVIDIA Registered Developer Extranet Site

https://nvdeveloper.nvidia.com/login.asp

http://developer.nvidia.com/page/registered_developer_program.html

Khronos (current specification)

http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf

Khronos OpenCL Forum

http://www.khronos.org/message_boards/viewforum.php?f=28

