

MIDIA

Optimizing CUDA – Part II

Outline

- Execution Configuration Optimizations
- Instruction Optimizations
- Multi-GPU
- Graphics Interoperability

Occupancy

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy
- Occupancy = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently
- Limited by resource usage:
 - Registers
 - Shared memory

Blocks per Grid Heuristics

- # of blocks > # of multiprocessors
 - So all multiprocessors have at least one block to execute
- # of blocks / # of multiprocessors > 2
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren't waiting at a __syncthreads() keep the hardware busy
 - Subject to resource availability registers, shared memory
- # of blocks > 100 to scale to future devices
 - Blocks executed in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations

Register Dependency

- Read-after-write register dependency
 - Instruction's result can be read ~24 cycles later
 - Scenarios: CUDA: PTX:

$$x = y + 5;$$
 $z = x + 3;$

- To completely hide the latency:
 - Run at least 192 threads (6 warps) per multiprocessor
 - At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)
 - Threads do not have to belong to the same thread block

Register Pressure

- Hide latency by using more threads per multiprocessor
- Limiting Factors:
 - Number of registers per kernel
 - 8K/16K per multiprocessor, partitioned among concurrent threads
 - Amount of shared memory
 - 16KB per multiprocessor, partitioned among concurrent threadblocks
- Compile with -ptxas-options=-v flag
- Use -maxrregcount=N flag to NVCC
 - N = desired maximum registers / kernel
 - At some point "spilling" into local memory may occur
 - Reduces performance local memory is slow

Occupancy Calculator

Optimizing threads per block

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
 - Facilitates coalescing
- Want to run as many warps as possible per multiprocessor (hide latency)
- Multiprocessor can run up to 8 blocks at a time
- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation, so experiment!

Occupancy != Performance

Increasing occupancy does not necessarily increase performance

BUT ...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)

Parameterize Your Application

- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
 - # of multiprocessors
 - Memory bandwidth
 - Shared memory size
 - Register file size
 - Max. threads per block
- You can even make apps self-tuning (like FFTW and ATLAS)
 - "Experiment" mode discovers and saves optimal configuration

Outline

- Execution Configuration Optimizations
- Instruction Optimizations
- Multi-GPU
- Graphics Interoperability

CUDA Instruction Performance

- Instruction cycles (per warp) = sum of
 - Operand read cycles
 - Instruction execution cycles
 - Result update cycles
- Therefore instruction throughput depends on
 - Nominal instruction throughput
 - Memory latency
 - Memory bandwidth
- "Cycle" refers to the multiprocessor clock rate
 - 1.3 GHz on the Tesla C1060, for example

Maximizing Instruction Throughput

- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Minimize accesses to global memory
 - Maximize coalescing of global memory accesses
- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads

Arithmetic Instruction Throughput

- int and float add, shift, min, max and float mul, mad:4 cycles per warp
 - int multiply (*) is by default 32-bit
 - requires multiple cycles / warp
 - Use __mul24()/__umul24() intrinsics for 4-cycle 24-bit int multiply
- Integer divide and modulo are more expensive
 - Compiler will convert literal power-of-2 divides to shifts
 - But we have seen it miss some cases
 - Be explicit in cases where compiler can't tell that divisor is a power of 2!
 - Useful trick: foo%n==foo&(n-1) if n is a power of 2

Runtime Math Library

- There are two types of runtime math operations in single precision
 - funcf(): direct mapping to hardware ISA
 - Fast but lower accuracy (see prog. guide for details)
 - Examples: __sinf(x), __expf(x), __powf(x,y)
 - funcf(): compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: sinf(x), expf(x), powf(x,y)
- The -use_fast_math compiler option forces every funcf() to compile to ___funcf()

GPU results may not match CPU

- Many variables: hardware, compiler, optimization settings
- CPU operations aren't strictly limited to 0.5 ulp
 - Sequences of operations can be more accurate due to 80bit extended precision ALUs
- Floating-point arithmetic is not associative!

FP Math is Not Associative!

- In symbolic math, (x+y)+z == x+(y+z)
- This is not necessarily true for floating-point addition
 - Try $x = 10^{30}$, $y = -10^{30}$ and z = 1 in the above equation
- When you parallelize computations, you potentially change the order of operations
- Parallel results may not exactly match sequential results
 - This is not specific to GPU or CUDA inherent part of parallel execution

Control Flow Instructions

- Main performance concern with branching is divergence
 - Threads within a single warp take different paths
 - Different execution paths must be serialized
- Avoid divergence when branch condition is a function of thread ID
 - Example with divergence:
 - if (threadIdx.x > 2) { }
 - Branch granularity < warp size</p>
 - Example without divergence:
 - if (threadIdx.x / WARP_SIZE > 2) { }
 - Branch granularity is a whole multiple of warp size

Outline

- Execution Configuration Optimizations
- Instruction Optimizations
- Multi-GPU
- Graphics Interoperability

Why Multi-GPU Programming?

- Many systems contain multiple GPUs:
 - Servers (Tesla/Quadro servers and desksides)
 - Desktops (2- and 3-way SLI desktops, GX2 boards)
 - Laptops (hybrid SLI)
- Additional processing power
 - Increasing processing throughput
- Additional memory
 - Some problems do not fit within a single GPU memory

Multi-GPU Memory

- GPUs do not share global memory
 - One GPU cannot access another GPUs memory directly
- Inter-GPU communication
 - Application code is responsible for moving data between GPUs
 - Data travels across the PCle bus
 - Even when GPUs are connected to the same PCle switch

CPU-GPU Context

- A CPU-GPU context must be established before calls are issued to the GPU
- CUDA resources are allocated per context
- A context is established by the first CUDA call that changes state
 - cudaMalloc, cudaMemcpy, cudaFree, kernel launch, ...
- A context is destroyed by one of:
 - Explicit cudaThreadExit() call
 - Host thread terminating

Run-Time API Device Management:

- A host thread can maintain one context at a time
 - GPU is part of the context and cannot be changed once a context is established
 - Need as many host threads as GPUs
 - Note that multiple host threads can establish contexts with the same GPU
 - Driver handles time-sharing and resource partitioning
- GPUs have consecutive integer IDs, starting with 0
- Device management calls:
 - cudaGetDeviceCount(int *num_devices)
 - cudaSetDevice(int device_id)
 - cudaGetDevice(int *current_device_id)
 - cudaThreadExit()

Choosing a Device

- Properties for a given device can be queried
 - No context is necessary or is created
 - cudaGetDeviceProperties(cudaDeviceProp *properties, int device_id)
 - This is useful when a system contains different GPUs
- Explicit device set:
 - Select the device for the context by calling cudaSetDevice() with the chosen device ID
 - Must be called prior to context creation
 - Fails if a context has already been established
 - One can force context creation with cudaFree(0)
- Default behavior:
 - Device 0 is chosen when no explicit cudaSetDevice is called
 - Note this will cause multiple contexts with the same GPU
 - Except when driver is in the exclusive mode (details later)

Ensuring One Context Per GPU

- Two ways to achieve:
 - Application-control
 - Driver-control
- Application-control:
 - Host threads negotiate which GPUs to use
 - For example, OpenMP threads set device based on OpenMPI thread ID
 - Pitfall: different applications are not aware of each other's GPU usage
 - Call cudaSetDevice() with the chosen device ID

Driver-control (Exclusive Mode)

- To use exclusive mode:
 - Administrator sets the GPU to exclusive mode using SMI
 - SMI (System Management Tool) is provided with Linux drivers
 - Application: do not explicitly set the GPU in the application
- Behavior:
 - Driver will implicitly set a GPU with no contexts
 - Implicit context creation will fail if all GPUs have contexts
 - The first state-changing CUDA call will fail and return an error
- Device mode can be checked by querying its properties

Inter-GPU Communication

- Application is responsible for moving data between GPUs:
 - Copy data from GPU to host thread A
 - Copy data from host thread A to host thread B
 - Use any CPU library (MPI, ...)
 - Copy data from host thread B to its GPU
- Use asynchronous memcopies to overlap kernel execution with data copies
- Lightweight host threads (OpenMP, pthreads) can reduce host-side copies by sharing pinned memory
 - Allocate with cudaHostAlloc(...)

Example: Multi-GPU 3DFD

- 3DFD Discretization of the Seismic Wave Equation
 - 8th order in space, 2nd order in time, regular grid
- Fixed x and y dimensions, varying z
- Data is partitioned among GPUs along z
 - Computation increases with z, communication (per node) stays constant
 - A GPU has to exchange 4 xy-planes (ghost nodes) with each of its neighbors
- Cluster:
 - 2 GPUs per node
 - Infiniband SDR network

2-GPU Performance

- Linear scaling is achieved when computation time exceeds communication time
 - Single GPU performance is ~3.0 Gpoints/s
- OpenMP case requires no copies on the host side (shared pinned memory)
 - Communication time includes only PCle transactions
- MPI version uses MPI_Sendrecv, which invokes copies on the host side
 - Communication time includes PCIe transactions and host memcopies

3 or more cluster nodes

- Times are per cluster node
- At least one cluster node needs two MPI communications, one with each of the neighbors

Performance Example: 3DFD

- Single GPU performance is ~3,000 MPoints/s
- Note that 8x scaling is sustained at z > 1,300
 - Exactly where computation exceeds communication

Outline

- Execution Configuration Optimizations
- Instruction Optimizations
- Multi-GPU
- Graphics Interoperability

OpenGL Interoperability

- OpenGL buffer objects can be mapped into the CUDA address space and then used as global memory
 - Vertex buffer objects
 - Pixel buffer objects
- Direct3D vertex and pixel objects can also be mapped
- Data can be accessed like any other global data in the device code
- Image data can be displayed from pixel buffer objects using glDrawPixels / glTexImage2D
 - Requires copy in video memory, but still fast

OpenGL Interop Steps

- Register a buffer object with CUDA
 - cudaGLRegisterBufferObject(GLuint buffObj);
 - OpenGL can use a registered buffer only as a source
 - Unregister the buffer prior to rendering to it by OpenGL
- Map the buffer object to CUDA memory
 - cudaGLMapBufferObject(void **devPtr, GLuint buffObj);
 - Returns an address in global memory
 - Buffer must registered prior to mapping
- Launch a CUDA kernel to process the buffer
- Unmap the buffer object prior to use by OpenGL
 - cudaGLUnmapBufferObject(GLuint buffObj);
- Unregister the buffer object
 - cudaGLUnregisterBufferObject(GLuint buffObj);
 - Optional: needed if the buffer is a render target
- Use the buffer object in OpenGL code

Interop Scenario: Dynamic CUDA-generated texture

- Register the texture PBO with CUDA
- For each frame:
 - Map the buffer
 - Generate the texture in a CUDA kernel
 - Unmap the buffer
 - Update the texture
 - Render the textured object

```
unsigned char *p_d=0;
cudaGLMapBufferObject((void**)&p_d, pbo);
prepTexture<<<height, width>>> (p_d, time);
cudaGLUnmapBufferObject(pbo);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
glBindTexture(GL_TEXTURE_2D, texID);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 256, 256,
GL_BGRA, GL_UNSIGNED_BYTE, 0);
```

Interop Scenario: Frame Post-processing by CUDA

- For each frame:
 - Render to PBO with OpenGL
 - Register the PBO with CUDA
 - Map the buffer
 - Process the buffer with a CUDA kernel
 - Unmap the buffer
 - Unregister the PBO from CUDA

```
unsigned char *p_d=0;
cudaGLRegisterBufferObject(pbo);
cudaGLMapBufferObject((void**)&p_d, pbo);
postProcess<<<blooks,threads>>>(p_d);
cudaGLUnmapBufferObject(pbo);
cudaGLUnregisterBufferObject(pbo);
```