
The Practical Reality of
Heterogeneous Super

Computing

Rob Farber

Visiting scientist at the NVIDIA CUDA Research
Center at the Irish Center for High-End

Computing (ICHEC)

Outline of the talk

• CUDA is now a language for all application
development just like C/C++ and Java!

• Strategies for embracing heterogeneous
computing

– Opportunities enabled by CUDA x86

– Practical ideas for balancing CPU & GPU

– Practical tips on running CUDA Kernels on CPU
cores

The growth of CUDA

• First introduced in February 2007

– Now taught at 442 institutions world-wide

Performance is the reason for GPUs

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

R
e

p
o

rt
e

d
 s

p
e

e
d

u
p

Ranked from highest to lowest speedup

Top 100 NVIDIA CUDA application showcase speedups as of
May, 9, 2011

(Min 100, Max 2600, Median 1350)

http://developer.nvidia.com/cuda-action-research-apps

http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps
http://developer.nvidia.com/cuda-action-research-apps

Why x86? (Why ARM?) (Why …?)

• Market accessibility:

– Over ¼ BILLION CUDA-enabled GPUs sold (300M)

– Small compared to the number of x86 systems.

• ARM is the power behind many super phones

– What a market segment! (cellphones, tablets, …)

Core2Duo

Performance
is on a Log

scale

A 3 Watt Kal-El
is 5x a Tegra 2

One a year
roadmap

“CUDA is for GPUs “

6

“One source tree to hold them all and on the GPU
accelerate them!” (A parody of J.R.R. Tolkien)

 and CPUs!

A convergence of concepts
(CPU 2-6 cores/GPU hundreds of cores)

thread

Thread block

Thread Grid

Software abstraction

SM

GPU

GPU hardware

core

Vector

SSE

Multicore

CPU

CUDA is no longer just for GPUs

CUDA
source

OpenCL

X86_64
CPU

NVIDIA
GPU

AMD GPU

MCUDA
(CUDA to C
translation)

C

PGI deviceQuery on a Xeon e5560
CUDA Device Query (Runtime API) version (CUDART static linking)

There is 1 device supporting CUDA

Device 0: "DEVICE EMULATION MODE"

 CUDA Driver Version: 99.99

 CUDA Runtime Version: 99.99

 CUDA Capability Major revision number: 9998

 CUDA Capability Minor revision number: 9998

 Total amount of global memory: 128000000 bytes

 Number of multiprocessors: 1

 Number of cores: 0

 Total amount of constant memory: 1021585952 bytes

 Total amount of shared memory per block: 1021586048 bytes

 Total number of registers available per block: 1021585904

 Warp size: 1

 Maximum number of threads per block: 1021585920

 Maximum sizes of each dimension of a block: 32767 x 2 x 0

 Maximum sizes of each dimension of a grid: 1021586032 x 32767 x 1021586048

 Maximum memory pitch: 4206313 bytes

 Texture alignment: 1021585952 bytes

 Clock rate: 0.00 GHz

 Concurrent copy and execution: Yes

 Run time limit on kernels: Yes

 Integrated: No

 Support host page-locked memory mapping: Yes

 Compute mode: Unknown

 Concurrent kernel execution: Yes

 Device has ECC support enabled: Yes

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 99.99, CUDA Runtime Version =

99.99, NumDevs = 1, Device = DEVICE EMULATION MODE

PASSED

Press <Enter> to Quit...

PGI running
arrayReversal_multiblock_fast.cu

from Part 3 of my DDJ tutorials

$ pgCC arrayReversal_multiblock_fast.cu
$./a.out
Correct!

It just compiles and runs:

• Boring from a presentation point of view.

PGI to ship a unified binary in
2012

Developer Customer

Unified
binary

Ocelot runs CUDA binaries

• Must install Ocelot

• Offers a lot more than
just x86

– Profiling/hot-
spotting

• Not a turn-key system!

Thrust: CUDA made simple

• Most of the actual code from an example that
scales to 500 GPUs and delivers 341-times
speedup over a single-core (32-bit) Xeon CPU

13

…

FcnOfInterest objFcn(input);

energy = thrust::transform_reduce(

 thrust::counting_iterator<int>(0),

 thrust::counting_iterator<int>(nExamples),

 objFcn,

 0.0f,

 thrust::plus<Real>());
0

50

100

150

200

250

300

350

400

450

0 200 400 600S
p

e
e
d

u
p

 r
e
la

ti
v
e
 t

o
 o

n
e
 G

P
U

Number of GPUs

TACC Longhorn GPU Scaling
(max and min over 5 runs) Maximum

Minimum

Fastest
observed

Slowest
observed

Functors can run on both the host and
device

__device__ __host__
 Real operator()(unsigned int tid)
 {
 const register Real* in = &examples[tid * exLen];
 register int index=0;
 register Real h1 = p[index++];
 register Real o = p[index++];

 h1 += in[0] * p[index++];
 h1 += in[1] * p[index++];
 h1 = G(h1);

 o += in[0] * p[index++];
 o += in[1] * p[index++];
 o += h1 * p[index++];

 // calculate the square of the diffs
 o -= in[nInput];
 return o * o;
 }

14

Thrust can use an OpenMP
backend

Device seconds

GPU 0.222

4 OpenMP threads 2.090

2 OpenMP threads 4.168

1 OpenMP thread 8.333

nvcc -O2 -o monte_carlo monte_carlo.cu -Xcompiler -fopenmp \

 -DTHRUST_DEVICE_BACKEND=THRUST_DEVICE_BACKEND_OMP \

 -lcudart -lgomp

• Timing reported on the Thrust website show that the performance is
acceptable

• Be aware that Thrust is not optimized to produce the best x86 runtimes

Strategies for embracing
heterogeneous computing.

– Opportunities enabled by CUDA x86

– Practical ideas for balancing CPU & GPU

– Practical tips on running CUDA Kernels on CPU
cores

The one CUDA source tree rationale
(aside from saving development $)

• Fast: A compiler can perform optimizations that a PTX-
based system like Ocelot will miss

– Please prove me wrong!

• Transparent: Both NVIDIA and PGI state that even
CUDA applications utilizing proprietary features of the
GPU texture units will exhibit identical behavior on both
x86 and GPU hardware

– Please don’t prove me wrong!

• Convenient: ship one binary to customers for GPU and
x86

Reasons for CUDA for all apps

1. Not much of a change for many
applications and organizations

a. CUDA is based on standard C and C++

b. Both of these languages have a solid history of
application development spanning decades

2. Makes applications faster

a. CUDA gives the programmer the ability to better
exploit parallelism

b. Exploit the SIMD parallelism in the AVX or SSE
instruction in each x86 core

3. Helps to avoid parallel bugs:

a. The CUDA execution model precludes common
parallel programming errors including race
conditions and deadlock

• Programmer still has to update shared memory
correctly

4. A growing tool ecosystem

a. cuda-gdb/Parallel Nsight can debug massively
parallel apps with large # of concurrent
operations

b. NVIDIA: Parallel Nsight, computefprof

c. Others: TAU/PAPI profiler, Ocelot

Reasons for CUDA for all apps

5. Scalability of the model:

a. 100k threads = no big deal, (1M threads = …), (…)

b. Save future software development dollars and allow
fast penetration into new markets and technology
platforms

6. GPU acceleration comes for free

a. Opens the door for order of magnitude application
acceleration

b. Expands market reach to the ¼ billion CUDA-enabled
GPUs that have been sold worldwide

c. Future-proofs applications

Reasons for CUDA for all apps

Reasons for CUDA for all apps

7. There are many CUDA developers

a. This developer base is rapidly expanding

b. CUDA is currently taught at over 454 universities
and colleges worldwide -> also rapidly expanding

• ICHEC is in the final stages of becoming a CUDA
Teaching Center

Strategies for embracing
heterogeneous computing

– Opportunities enabled by CUDA x86

– Practical ideas for balancing CPU & GPUs

– Practical tips on running CUDA Kernels on CPU
cores

Three rules for fast GPU codes
1. Get the data on the GPU (and keep it

there!)
• PCIe x16 v2.0 bus: 8 GiB/s in a single direction
• Compute 2.0/2.1 GPUs: 140-200 GiB/s

2. Give the GPU enough work to do
• Assume 10 ms latency and 1 TF device
• Can waste (10-6 * 1012) = 1M operations

3. Reuse and locate data to avoid global
memory bandwidth bottlenecks

• 1012 flop hardware delivers 1010 flop when global
memory limited

• Can cause a 100x slowdown!

Corollary: Avoid malloc/free!
23

Data movement still happens on x86
PGI bandwidthTest on a Xeon e5560

Running on...

 Device 0: DEVICE EMULATION MODE

 Quick Mode

 Host to Device Bandwidth, 1 Device(s), Paged memory

 Transfer Size (Bytes) Bandwidth(MB/s)

 33554432 4152.5

 Device to Host Bandwidth, 1 Device(s), Paged memory

 Transfer Size (Bytes) Bandwidth(MB/s)

 33554432 4257.0

 Device to Device Bandwidth, 1 Device(s)

 Transfer Size (Bytes) Bandwidth(MB/s)

 33554432 8459.2

[bandwidthTest] - Test results:

PASSED

Happens with straight compilation of CUDA codes

• PGI allows x86 programs to just do a pointer assignment

• An important example: electronic-structure
calculations and materials modeling at the nanoscale

• SCF* calculation on plane wave (64-bit calculations)

• Main bottlenecks

– 3D FFT (-> CUFFT)

– Linear Algebra

• Matrix Matrix Multiplication (-> CUBLAS)

• Eigenvalues and Eigenvectors (work in-progress)

• First GPU-enabled beta released on May 2011
* Plane-Wave Gaussian Self-Consistent Field Method

Heterogeneous apps with CUDA libraries
Ivan Girotto and Filippo Spiga ICHEC

A good start: 8-times speedup over serial

(1 Core)
(6 Cores)

(6 Cores) (1 Core)

(6 Cores)
* Shorter bar means less walltime

http://www.quantum-espresso.org/

112 atom
simulation

Ivan Girotto and Filippo Spiga ICHEC

http://www.quantum-espresso.org/
http://www.quantum-espresso.org/
http://www.quantum-espresso.org/

Existing work Dgemm for Linpack HPL
E. Phillips, et.al.: http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf

http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf

Watch out for PCIe configuration!
(and benchmarkman’s ship!)

Two GPU CUFFT run (some benchmarks use
 individual PCIe buses)

Dell Precision 7500

HP z800

Dell Precision 7500

Current leader: CPU+GPU 435 GF/s

CPU
Phillips & Fatica.: http://www.nvidia.com/content/GTC-

2010/pdfs/2057_GTC2010.pdf

http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf

The phiGEMM library from ICHEC

• A library that you use like CUBLAS

– Transparently manages the thunking operations

– Supports Sgemm(), Dgemm(), and Zgemm()

– Asynchronous data transfer (via PINNED Memory)

– MultiGPU management through single process (CUDA
4.0)

• Evolving: Possible improvements via multi-stream out-of-order
execution (see http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf)

• Written by Girotto and Spiga. Freely downloadable from
http://qe-forge.org/projects/phigemm/

http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2057_GTC2010.pdf
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/

phiGEMM matches 1 GPU performance

CPU

G
F

L
O

P
S

M = N = K (DP Size

2 x Intel

Xeon X5680

3.33GHz

+

NVIDIA Tesla C2050

http://qe-forge.org/projects/phigemm/

0

50

100

150

200

250

300

350

400

450

500

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

MKL THUNKINK CUBLAS CUBLAS (PEAK) phiGEMM MKL + CUBLAS (PEAK)

H2D = ~ 5.5GB/s

D2H = ~ 6.0GB/s

MKL + CUBLAS
theoretical peak

phiGEMM

Thunking CUBLAS

MKL

System

provided

by

THUNKING

CUBLAS

http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://www.e4company.com/

phiGEMM dual GPU/single bus
CPU

M = N = K (DP Size)

G
F

L
O

P
S

http://qe-forge.org/projects/phigemm/

0

100

200

300

400

500

600

700

800

900

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

MKL THUNKINK CUBLAS CUBLAS (PEAK) phiGEMM MKL + CUBLAS (PEAK)

H2D = ~ 2.8GB/s

D2H = ~ 3.2GB/s

2 x Intel

Xeon X5680

3.33GHz

+

2 NVIDIA Tesla

C2050

MKL + CUBLAS
Peak

phiGEMM

MKL

Thunking CUBLAS
1 GPU

THUNKING

CUBLAS

System

provided

by

http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://www.e4company.com/

phiGEMM dual GPU/dual bus
CPU

G
F

L
O

P
S

M = N = K (DP Size)

http://qe-forge.org/projects/phigemm/

0

100

200

300

400

500

600

700

800

900

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

MKL THUNKINK CUBLAS CUBLAS (PEAK) phiGEMM MKL + CUBLAS (PEAK)

2 x Intel

Xeon X5680

3.33GHz

+

2 NVIDIA Tesla

C2050

GPU0 H2D = ~ 4.8GB/s

 D2H = ~ 5.0GB/s

GPU1 H2D = ~ 4.3GB/s

 D2H = ~ 4.8GB/s

MKL + CUBLAS
Peak phiGEMM

MKL

Thunking CUBLAS

Faster
here

THUNKING

CUBLAS

System

provided

by

http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://www.e4company.com/

Performance is dependent on problem size

• phiGEMM can run GEMM on matrices that do not fit
on a single GPU

• Recursive call to phiGEMM with smaller sub-matrix

x = B A C

A1 C1

C1 A1

B1

C1

C1

B1

STEP 1 STEP 2 STEP 3 STEP 4 GPU

CPU CPU & GPU

BIG phiGEMM multi GPU/single bus
CPU http://qe-forge.org/projects/phigemm/

0

100

200

300

400

500

600

700

800

900

1000

1GPU 2GPUs 4GPUs

CUBLAS MKL

G
F

L
O

P
S

2 x Intel

Xeon X5670

2.93GHz

+

4 NVIDIA Tesla

C2050

M = K = N = 25000 (DP) = 15GBytes

x 1.9 x 2.9

277

522

809

System

provided

by

GPU

CPU

http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/

BIG phiGEMM multi GPU/dual bus

CPU http://qe-forge.org/projects/phigemm/
G

F
L
O

P
S

 2 x Intel

Xeon X5670

2.93GHz

+

4 NVIDIA Tesla

C2050

0

100

200

300

400

500

600

700

800

900

1000

1100

1GPU 2GPUs 4GPUs

CUBLAS MKL

x 2.0 x 3.4

277

551

942

(2 GPUs x 1 PCI Bus!!)

M = K = N = 25000 (DP) = 15GBytes

GPU

CPU

System

provided

by

http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/
http://qe-forge.org/projects/phigemm/

*Gemm operations are compute
intensive

BLAS

level

Data Work Work

per

Datum

1 O(N) O(N) O(1)

2 O(N2) O(N2) O(1)

3 O(N2) O(N3) O(N)

*Gemm is a Level 3 BLAS operation: Work per
datum transferred is high O(N)

Let’s look at a problem that is more
dependent on data transfers: 3D FFTs

Performance 3DFFT on multi-GPU

0

2

4

6

8

10

12

1GPU 2GPUs (1Bus) 4GPUs (1Bus)

 643 x 4096(Times) 1283 x 512(Times) 5123 x 32(Times)

W
A

L
L

 T
IM

E
 (

s
e
c
o

n
d

s
)

~
 1

.8

~
 2

.4

~
 1

.8

~
 2

.4
 ~

 1
.8

~
 2

.4

Performance 3DFFT on multi-GPU
Single 3DFFT on GPU Vs FFTW3 (fftw_plan_many_dft)

0

50

100

150

200

250

1GPU 2GPUs (1Bus) 4GPUs (1Bus) 1CPU

W
A

L
L

 T
IM

E
 (

s
e
c
o

n
d

s
)

 643 x 4096(Times) 1283 x 512(Times) 5123 x 32(Times)

Lessons learned

• Watch out for shortcuts with the PCIe bus!

• Thunking can deliver high performance

• Libraries like phiGEMM can make
multiGPU/hybrid application development
transparent and compatible with libraries like
CUBLAS

• I envision a multi/hybrid “smart pointer” to
create a non-thunking interface
– Rule 1: Get the data on the GPU and keep it there

ICHEC contribution to MAGMA

• Like MAGMA, phiGEMM aims “to design linear
algebra algorithms and frameworks for hybrid
manycore and GPUs systems that can enable
applications to fully exploit the power that each
of the hybrid components offers.”

– Quote from the MAGMA website
(http://icl.cs.utk.edu/magma/)

• phiGEMM is under consideration for inclusion in
the MAGMA library

http://icl.cs.utk.edu/magma/

Really Exciting! Hybrid Codes

• MAGMA (Matrix Algebra on GPU and Multicore
Architectures)
– “A dense linear algebra library similar to LAPACK but for

heterogeneous/hybrid architectures, starting with current
"Multicore+GPU" systems.” http://icl.cs.utk.edu/magma/

• The MAGMA team has made the conclusion that dense

linear algebra methods are now a better fit on
GPU architectures instead of traditional multicore
architectures
– (Nath, Stanimire, & Dongarra, 2010)

• MAGMA BLAS libraries up to 838 Gflop/s

– 33% occupancy and 2 thread blocks per SM (Volkov,
2010)

42

http://icl.cs.utk.edu/magma/

Strategies for embracing
heterogeneous computing.

– Opportunities enabled by CUDA x86

– Practical ideas for balancing CPU & GPU

– Practical tips on running CUDA Kernels on CPU
cores

Do I foresee this as an

important topic in the

future?

Items of note (slide 1)

• The size of a warp will be different from the
expected 32 threads per warp for a GPU.

– For x86 computing a warp might be the size of the
SIMD units on the x86 core (either four or eight) or
one thread per warp when SIMD execution is not
utilized

• Synchronization is different: The compiler will
remove explicit synchronization of the thread processors
when it can determine that it is safe to split loops where
the synchronization calls occur

Items of note (slide 2)

• Still have explicit movement of data between host
and device memory and global to shared memory

– The PGI compiler allows pointer swapping on x86
systems.

– Perhaps a wrapper around cudaMemcpy()?

• Watch out for PCIe configuration!

– Especially for benchmarks that hide poor
configurations

Find a mapping that reuses data energy = objFunc(p1, p2 , … pn)

46

Examples

0, N-1

Examples

N, 2N-1

Examples

2N, 3N-1

Examples

3N, 4N-1

Step 2

Calculate

partials

Step 3

Sum partials

to get energy

Step1

Broadcast

parameters

Optimization Method

(Powell, Conjugate Gradient, Other)

p1,p2, … pn

GPU 1

p1,p2, … pn

GPU 2

p1,p2, … pn

GPU 3

p1,p2, … pn

GPU 4

Speedup over a quad core

OS Machine Opt method Precision

Ave obj

func time

% func

time

Speedup

over

quad-

core

Speedup

over

single-

core

Linux NVIDIA C2070 Nelder-Mead 32 0.00532 100.0 85 341

Win7 NVIDIA C2070 Nelder-Mead 32 0.00566 100.0 81 323

Linux NVIDIA GTX280 Nelder-Mead 32 0.01109 99.2 41 163

Linux NVIDIA C2070 Nelder-Mead 64 0.01364 100.0 40 158

Win7 NVIDIA C2070 Nelder-Mead 64 0.01612 100.0 22 87

Linux NVIDIA C2070

Levenberg-

Marquardt 32 0.04313 2.7 10 38

Linux NVIDIA C2070

Levenberg-

Marquardt 64 0.08480 4.4 6 23

Linux Intel e5630

Levenberg-

Marquardt 32 0.41512 21.1

Linux Intel e5630

Levenberg-

Marquardt 64 0.49745 20.8

Linux Intel e5630 Nelder-Mead 32 0.45312 100.0

Linux Intel e5630 Nelder-Mead 64 0.53872 100.0

47

#pragma omp parallel for reduction(+ : sum)
 for(int i=0; i < nExamples; ++i) {
 Real d = getError(i);
 sum += d;
 }

The CUDA execution model

• Loose coupling between SM translates to strong
scaling (even on CPU cores) – very good news!

• On x86 :beware SMP scaling limits caused by
cache coherency (AMD Barcelona example on TACC Ranger)

16way Performance vs Datasize

0

1

2

3

4

5

6

7

8

9

0 200000 400000 600000 800000 1000000 1200000

Number of 80 Byte Examples

G
F

/s

#pragma omp parallel for reduction(+ : sum)
 for(int i=0; i < nExamples; ++i) {
 Real d = getError(i);
 sum += d;
 }

Likely cause: some AMD
cache coherency messages

take two hops

Task parallelism

• Asynchronous kernel launches will become more
important (task vs. data parallelism)

– x86 great for task parallelism

• Interesting to see how prevalent use will affect
CUDA

– Reduction to a single value does not naturally fit
in the CUDA model as it requires:

• Atomic operations (scalability issues!)

• Separate kernels (rule 2: startup overhead)

• Transfer to the host for the final step

Map irregular data structures to
the CPU

Size Op nTests Time
Slowdown relative to

sequential performance

0.01M Sequential 1000 3.37E-06

0.01M Sorted 1000 3.44E-06 1.0

0.01M Random 1000 7.46E-06 2.2

0.1M Sequential 1000 1.39E-05

0.1M Sorted 1000 1.42E-05 1.0

0.1M Random 1000 6.94E-05 5.0

1M Sequential 1000 0.000107

1M Sorted 1000 0.000106 1.0

1M Random 1000 0.000972 9.1

10M Sequential 1000 0.001077

10M Sorted 1000 0.00105 1.0

10M Random 1000 0.011418 10.6

100M Sequential 1000 0.011553

100M Sorted 1000 0.013233 1.1

100M Random 1000 0.132465 11.5

A gather operation
for(int i=0; i < n; i++)
 a[i] = b[index[i]]

The GPU L2 cache cannot
help with large data

GPU Computing Gems is an excellent resource

There is certainly much, much
more

Thank you!

CUDA Application Design and Development is
now available for preorder

http://www.amazon.com/CUDA-
Application-Design-Development-
Farber/dp/0123884268

http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268
http://www.amazon.com/CUDA-Application-Design-Development-Farber/dp/0123884268

Acknowledgements

Supported by Science Foundation
Ireland under grant 08/HEC/I1450
and by HEA’s PRTLI-C4.

