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Chapter 1. Introduction 

Artificial Intelligence (AI) has been compared to the industrial revolution. It is infiltrating every 
aspect of modern life, including education, commerce, finance, manufacturing, social 
platforms and healthcare. The availability of data, along with new advanced algorithms and fast 
computing, has paved the way for the creation of new AI models. In healthcare, data is 
increasing at an exponential rate, with omnipresent sensors, wearables, mobile applications 
and the digitization of health care records, including medical imaging records such as 
radiology and pathology data. This is promising for the development of all kinds of AI models, 
providing the data is easily accessible in a central location to train these models. In certain 
domains, and certainly in medicine, the centralization of data is difficult if not impossible at 
times, due to constraints such as privacy, regulation, competition, and budget. Distributed 
learning is one way to mitigate the challenge of having sufficient data to train AI models, and 
Federated Learning (FL) may provide a solution for building robust AI models from diverse data 
across institutions, patient types and countries [1]. 
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Chapter 2. Challenges 

Federated Learning is not without its challenges.  From the creation of a federation to work 
together in a study, through standardization of data and compatibility of IT systems, many vital 
aspects need to be considered when using Federated Learning. Here are a few of the 
challenges to be expected using this approach to AI model training. 

2.1 Creating a Federation 
For the above-described federated approach to work, you need to have several client-sites 
willing to participate in this Federated Learning training. The client-sites need to agree on the 
objective of the Federated Learning and the choice of administrator for the Federated Learning 
server. Intellectual property (IP) rights, as well as the usage criteria for the resultant Federated 
Learning model, need to be determined before commencing the Federated Learning training. 
Creation of such a federation is challenging, and it requires the cooperation of many teams, 
including ethics teams, Institutional Review Boards (IRBs), legal teams, contract teams, 
Information Technology teams and others. The more client-sites there are, and the more 
geographically distributed they are, with different local practices and regulatory requirements, 
the more difficult this becomes. Hence, we suggest budgeting ample time to figure all these 
pieces out, and to set agreements in place before the commencement of Federated Learning 
training.   

2.2 Model Selection 
Another challenge to Federated Learning training is the selection of an appropriate model. You 
might want to start with a pre-trained model from a specific institution, or to train a neural 
network from scratch. A pre-trained model allows a user to get started faster in the 
development of a robust model, especially if many of the client-sites have a limited number of 
cases. This allows them to take advantage of transfer learning and allows their local models to 
converge despite their small dataset. However, this creates more challenging IP conversations 
and legal arrangements. It is also important to decide up front on the model to be trained to 
ensure that client-sites have access to the kind of data needed to train this model. 
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2.3 Standardization of Data  
Once a model is selected for training, and it is established that all sites have access to the kind 
of training data required, it is important to check the quality of this data. While imaging data 
might be easier to standardize using standards such as DICOM, you still need to make sure, for 
instance, that images are in the right orientation and scaled appropriately amongst other 
considerations. For other data, such as data from the Electronic Medical Record (EMR), you 
need to make sure that the data collected corresponds to the requisite data fields. You also 
need to make sure it is reported in the same units and formats. Scripts for preprocessing the 
data are often needed to ensure the quality of the data. It is useful to share pre-agreed upon 
summary statistics of the raw and preprocessed data between participating client-sites to 
detect outliers and preprocessing errors before commencing training. However, data privacy 
needs to be considered when sharing these statistics.  

2.4 Compatibility with Information 
Technology Systems 

The successful implementation of Federated Learning is highly dependent on different client-
sites being able to communicate effectively with the server. This requires specific protocols 
and approvals to handle fire walls and communication needs, which are likely to be different at 
different sites. Security issues are bound to arise, and they are again client-site dependent. 
These issues need to be resolved in advance to allow for unhindered Federated Learning 
training.  
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Chapter 3. NVIDIA Federated Learning 
Overview  

The space of Federated Learning and its applications for healthcare are quickly emerging. 
NVIDIA is building an enterprise-grade, secure, manageable Federated Learning platform for 
developers and researchers to build and extend upon.  

Figure 1.  Federated Learning Application Framework 

 
The core engine driving this platform is the NVIDIA Federated Learning Application Runtime 
Environment (NVFlare), an extensible Federated Learning framework (Figure 1). You can bring 
existing machine learning tasks into a federated setting easily, allowing researchers to 
experiment with different Federated Learning strategies. Learn More  

Clara Train is the healthcare specific application framework that integrates NVFlare and 
provides domain specific implementations of Trainer and Validator components.  

https://pypi.org/project/nvflare/
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Figure 2.  Clara™ Federated Learning 

 

In this white paper, we focus on a specific way to do distributed training using the FL approach 

available through ClaraTM Federated Learning (Figure 2). This Federated Learning approach 

utilizes a hub-and-spoke communication model consisting of a Federated Learning server as 

the hub and client-sites as spokes. The Federated Learning server hosts the initial model and 

then sends its weights to each of the client-sites. The client-sites train the model on their own 

data at their location, and at the conclusion of this local training, they send back the updated 

model weights to the Federated Learning Server. The Federated Learning server waits for a 

certain number of the models to finish local training, and to receive the updated weights from 

these client-sites, before it aggregates these weights. The newly aggregated weights are then 

sent back to each of the clients to be used in a new round of local training. These steps are 

repeated for a predetermined number of rounds. The resultant Federated Learning model is 

then automatically validated at each of the client-sites to assess it for generalizability.   
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Chapter 4. Federated Learning in 
Practice  

4.1 Client-Site Approvals 
In addition to the challenges cited above in creating a federation, client-site specific challenges 
also need to be addressed. The challenges are twofold: (1) obtaining permission to participate 
in Federated Learning, and (2) permission to do local training. This requires approval from the 
IRB at each institution that governs data access and usage. The fact that data does not leave 
the client-site makes such approvals easier to obtain, but they are nevertheless required at 
most institutions and might take a considerable amount of time to obtain.   

4.2 Infrastructure Deployment 
A reference implementation of Federated Learning using NVFlare is included in the Clara Train 
SDK, based on the NVIDIA Pytorch Docker container.  This container leverages CUDA 11.2, 
which requires the NVIDIA R460 driver and a GPU with CUDA compute capability 6.0 or higher 
for GPU-accelerated deployments. This corresponds to GPUs in the Pascal, Volta, Turing, and 
NVIDIA Ampere GPU architecture families.  The container-based deployment allows flexibility 
in the underlying hardware and software, which can be easily accommodated by on-premises 
or cloud-based compute resources, or a mix of thereof. 

A Federated Learning study is comprised of a central server and any number of training 
clients, each of which may require a different set of compute resources based on the role.  The 
central server does not necessarily require a GPU, and its compute requirements may be met 
with a modest set of resources that depend on the size of the federation.  For example, a 
federated learning proof of concept study with only a few clients may be served with a minimal 
configuration, whereas a more realistic study on the order of ten clients would require a server 
with higher specifications (Figure 3).  
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Table 1. Compute Requirements 

System Resources Proof of concept - few clients Production study – O(10) clients 
CPU 8 core 32 core 

System Memory 16GB 64GB 

Storage 250GB 1TB 

Ultimately, the server configuration is dependent on the specifics of the Federated Learning 
study and not solely on the number of participants.  Considerations include the complexity of 
the model and size of model weights, which drive both storage and network utilization, the 
number of experiments in the study, which impact storage, and the use of security measures, 
such as differential privacy and homomorphic encryption (see Privacy and Security section), 
which increase compute and memory consumption. 

Client system requirements are similarly determined by the specifics of the Federated 
Learning study, where the size of the local dataset and security measures will drive the 
number of GPUs and requirements for the CPU, memory, and disk space.  The federated 
clients perform the bulk of the work in a Federated Learning study and should be equipped 
accordingly, for example with an NVIDIA Tesla GPU such as the A100 designed for high 
performance AI training workloads.  The number of GPUs required depends on the size of the 
local dataset and the number of epochs per training round. For example, a client with a 2x 
larger dataset would require 2x the number of GPUs in order to complete training in parallel 
with other clients. 

4.2.1 Deployment Options: On Premises or Cloud-
Based 

The NVIDIA EGX Enterprise Platform and NVIDIA Certified Systems are optimized for peak 
performance on accelerated applications such as AI training and offer streamlined deployment 
of the system and software required for these demanding workloads.  This allows for simplified 
on-premises deployment of systems designed for compatibility with GPU-optimized software 
from the NVIDIA® NGC™ catalog such as federated learning with Clara Train. 

A baseline client can be configured using an NVIDIA Certified server platform from any OEM.  
An example client configuration would include the following: 

• Two 8-core server-class CPUs 

• 192 GB DDR4 memory (6x 16GB RDIMMs per CPU) 

• Two 1.92TB Enterprise NVMe read-intensive SSD 

• NVIDIA Ampere A100 PCIe 250W 40GB GPU(s) 

https://www.nvidia.com/en-us/data-center/products/egx/
https://www.nvidia.com/en-us/data-center/products/certified-systems/
https://ngc.nvidia.com/catalog
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• Mellanox ConnectX-5 Dual Port 10/25GbE NIC  

• Mellanox ConnectX-6 DX Dual Port 100GbE NIC 

• Dual hot-plug power supply 

All major cloud service providers (CSP) offer access to instances with NVIDIA Tesla GPUs and 
virtual machine images pre-configured for compatibility with NVIDIA NGC and GPU accelerated 
applications. The flexibility of CSP instance types allows easy prototyping as well as production 
Federated Learning studies.  For a small test or proof of concept, the FL server could use a 
minimal configuration with 8 vCPU, 32GB memory, 100GB attached storage, and a Gbit 
network.  For a production study with tens of FL clients, a more capable server instance would 
be required.  In this case, an instance with 32 vCPU, 128GB memory, 500GB attached disk, and 
10Gbps network bandwidth would be more appropriate. 

The variety of single- and multi-GPU instance types available in the cloud also allows flexibility 
in specifying resources for federated clients, with GPU count and accompanying hardware 
configuration dependent on the client datasets and training requirements.  An instance with a 
single V100 or A100 GPU may be appropriate for a small test client, whereas multi-GPU 
instances may be used for production clients with larger datasets. 

4.2.2 Network Considerations 
Clara Train Federated Learning implements a client-server communication model in which all 
participants use signed certificates to establish identity and secure SSL communication 
between clients and the server.  All certificates are signed by the server’s self-signed SSL 
Certificate Authority (CA) and embed the unique client or server identity in each certificate.  
When using the Federated Learning provisioning tool as described below, these certificates are 
generated and signed automatically for each participant and packaged in encrypted archives 
that are distributed to the participants. 

All communication to the Federated Learning server occurs over unprivileged ports, by default 
8002 (Federated Learning training clients) and 8003 (Federated Learning admin clients).  In all 
cases communication is initiated by the client systems, simplifying the firewall configuration 
required for clients and the server.  On the client side, the only requirement is that response 
traffic from the server is allowed through the firewall; it is not necessary to open any ports on 
the client.  The server requires the Federated Learning (8002) and admin (8003) ports to be 
opened to inbound traffic.  You can use a server firewall such as iptables or CSP security 
groups to restrict access to these ports to only the known IP addresses of the FL and admin 
clients. 

When provisioning a server on a CSP, care must be taken in configuring the CSP network 
security.  The SSL handshake required to establish secure communication between client and 
server requires that the TLS requests terminate at the client and server endpoints.  The use of 
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an Application (L7) Load Balancer is not compatible with this handshake as the TLS requests 
are terminated at the ALB level.  It is possible to use a Network (L4) Load Balancer if it is 
configured to forward all SSL traffic to the server endpoint.  Note that load balancing between 
multiple Federated Learning servers is currently not supported, making such a configuration 
unnecessary. 

To initialize communication in a Federated Learning study, the client submits a request to 
participate to the server.  The server validates the client certificate and, if valid, authorizes the 
client and responds with a unique token used to identify the client contributions through the 
Federated Learning study.  The certificates generated during provisioning and used to 
establish this secure communication embed the server’s fully qualified domain name or 
hostname. This makes it necessary that the client resolve the server at this hostname. In the 
case that the server is not resolvable via DNS, it is necessary to map the server’s IP to the 
hostname used in provisioning with an entry in the client’s /etc/hosts file. 

Once secure communication has been established between clients and server, the remaining 
network consideration is the bandwidth required to distribute the global model and aggregate 
client contributions during the rounds of Federated Learning training.  This requirement is a 
function of the number of client participants as well as the complexity of the model and thus 
size of model weights.  Generally, it is expected that clients have on the order of gigabit 
network bandwidth.  The server bandwidth is driven by the number of clients.  For a small test 
with few clients, gigabit server bandwidth may suffice.  For a larger study with tens of clients, 
the server should be provisioned with 10Gbit or greater network bandwidth.  When hosting the 
server on a CSP, choose an instance tier with guaranteed network bandwidth.  

4.3 Operation and Execution 
To better understand the Operation and Execution cycle of a Federated Learning workflow 
requires understanding some Federated Learning-specific terminology.  We’ll cover general 
high-level Federated Learning terminology and the roles that are typically required when 
setting up a Federated Learning study.  We’ll then provide an overview of Federated Learning 
Security, PSO (Provision, Start, and Operate), and Administration. 

4.3.1 Clara Train Federated Learning Terminology 
First, we’ll walk through some of the more general terminologies that are used for various 
aspects of a Federated Learning setup.  These terms help establish a base level of 
understanding required for all users involved in the study. 

Study 

A Federated Learning Study is a project with preset goals and participants who will be 
involved in the training.  Defining a Study is one of the essential pieces of a Federated 
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Learning workflow, as it helps guide the overall end goal and helps set the 
collaboration effort between institutions. 

E.g., Training the EXAM model 

Organization 

An Organization is a hospital, consortium, university, or other group involved in the 
Federated Learning study.  Each organization will have its computing resources and 
data that will be used while participating in the study. 

Site 

A specific Site or location that will be participating in the study.  A Site can vary 
depending on how the organization is structured but typically indicates the location 
where the compute and resource data are hosted. 

Provisioning Tool 

The Provisioning tool is provided by Clara Train Federated Learning and generates the 
setup configuration for the study.  These configurations define study roles, 
organizations, sites, number of clients, and homomorphic encryption settings. These 
configuration files are distributed to each of the participants in the study. 

Federated Learning Server 

A server responsible for the client coordination, based on federation rules and model 
aggregation settings, established by the provisioning setup.  This server will contain the 
global model that is trained throughout the study. 

Federated Learning Client 

A server running at a client site, performing model training with its local datasets, and 
collaborating with the Federated Learning Server for federated study. 

Admin Client 

An application running on a user’s machine that allows the user to perform Federated 
Learning system operations with a command-line interface or API.  This user is the only 
role with full control over experiments performed during the study and will be the one 
to start and stop training (see the following sections). 

4.3.2 Roles in the Federal Learning Study 
Next, we’ll discuss the various roles that are involved in a Federated Learning Study.  We’re 
defining these roles as independent people in the study, but depending on the organization, a 
single person may fill more than one role depending on the organization and study. 

Lead IT 

The Lead IT person is responsible for running the provisioning tool and coordinating 
with IT personnel from all the study sites to ensure the infrastructure is correctly 
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provisioned.  They are also responsible for setting up and managing the Federated 
Learning Server. 

Site IT 

The Site IT person is responsible for the management of the Site of their client 
organization. They will work with the Lead IT to gather the provisioned configuration 
files and make sure the site is ready to participate in the study (i.e. the local compute 
and data resources are available). 

Lead Researcher 

The Lead Researcher is the person who works with Site Researchers to ensure the 
success of the study.  They are involved in determining specific criteria and 
requirements involving the data and model that may need to be coordinated before 
starting the study. 

Site Researcher 

The Site Researcher is the person who works with the Lead Researcher to make sure 
the client site data is properly prepared for the study. 

4.3.3 Scope of Security in Federated Learning 
The security of a Federated Learning study depends on two different infrastructures: the Clara 
Train Federated Learning Framework and the on-site IT security infrastructure. The total 
security of a study is the combination of the security measures implemented in this application 
and the security measures of the site IT infrastructure.  Below we’ll touch on a few aspects of 
security, but by no means is this a comprehensive list; ensure you’re following all industry-
standard security practices. 

Since Federated Learning requires a framework for provisioning, coordination, and training, 
this means the framework itself should implement a specific set of security measures to make 
sure that the study is secure. The Clara Train Federated Learning system implements security 
measures in the following areas: 

Identity Security 

The authentication and authorization of the communicating entities, including role-
based authorization and site-specific security configurations. 

Communication Security 

The confidentiality of data communication messages using secure and encrypted 
communication methods. 

Model Protection 

Model weight protection to counter against reverse-engineering training data 
characteristic from model weights, including homomorphic encryption. 

Data Privacy 
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The Federated Learning system inherently gives data privacy as only the participating 
sites exchange “knowledge” in the form of model weight updates but not their 
underlying data that generated this knowledge. Of course, the appropriate model 
protection needs to be applied in order to protect against the above-mentioned risks. 

The site IT security infrastructure must handle all other security concerns. These include, but 
are not limited to the following: 

Physical security 

Ensuring that physical access to buildings, systems, and server rooms is limited to only 
essential personnel. 

Firewall policies 

Defining and limiting access to network traffic, ports, and IP addresses based on 
specific applications and content types. 

Data protection policies 

Ensuring that all regional policies for data storage, retention, cleaning, distributions, 
and access are followed. 

4.3.4 Provision, Start, Operate (PSO)  
After defining a study, establishing roles, and ensuring the security of your infrastructure, 
you’re now ready to get started with your Federated Learning study. The following is a high-
level guide to deploying your first Federated Learning study following the Provision, Start, and 
Operate (PSO) steps. 

Provision 

In this step, the Lead IT person generates the packages for the server, client, and 
admin identities, which are protected with passwords.  They will then coordinate with 
each Site IT person to ensure the package is transferred securely. 

Start 

Each Site IT person will set up their Site infrastructure by installing their packages, 
starting the relevant services, and mapping the data location. They will make sure to 
use the provisioning file given to them by the Lead IT person for the current Federated 
Learning study. 

Operate 

The Lead Researcher or Admin operates the Federated Learning Study.  They will 
deploy the initial MMAR, verify that all the clients are available and ready to start 
training and start, abort, and shut down training. 
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Figure 3.  High-Level Steps of a Federated Learning Study 

 
Figure 3 depicts the high-level steps of a Federated Learning Study. 

1. Lead IT configures the config.yaml file and runs the provisioning tool, which will 
generate ZIP packages for each client.  These packages contain everything a Federated 
Learning client needs to get started in the Study, including how to start their Docker 
container, SSL certificates, and other various configurations required to start and 
complete the Federated Learning experiment. 

2. Each Site IT person starts the docker, and the Federated Learning client will use the 
provided Provisioning Startup Kit. 

3. The Lead IT person starts the Federated Learning server using the instructions on how 
to start the Docker container and use the generated Provisioning Startup Kit. 

4. Last, the Admin can either use the Docker container or pip install the admin tool, which 
will connect to the Federated Learning Server and allows them to start the Federated 
Learning experimentation. In some cases, there may be multiple Admin’s that can 
control a Federated Learning experiment. 

4.3.5 Role-Based Authorization Framework for 
Admin Clients 

Clara Federated Learning implements a role-based authorization framework that determines 
what a user can or cannot do based on the user’s assigned roles and organization rules. To 
better understand the Federated Learning Authorization policy, we’ll define a few terms used 
when defining the authorization policy for the Federated Learning Study. 
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Rights 

Rights are the permissions for a user to be able to perform specific actions.   

For example, a user is given the right to train_all, which would allow them to initiate 
training for all organizations in a group. 

Rules 

A rule is a policy that gives the Federated Learning study organizer the ability to provide 
greater or fewer restrictions on the customizations allowed by an organization. 

For example, allowing an organization to include custom code or data lists. 

Roles 

A user can usually be categorized into several types of roles that share the same 
authorization setting.  By creating specific roles, you can easily assign a user to one or 
more of these roles. 

For example, some common users are Lead Researcher, Site Researcher, Site IT, and 
Lead IT. 

Groups 

There may also be many organizations in a study, but, similar to user roles, you can 
easily share a specific set of authorization settings by assigning them to a group. 

For example, General Access, Strict Access, or Relaxed Access. 

By using a combination of the above authorization options, the Lead IT and Lead Researcher 
can implement either a flexible and open ruleset or restrictive and narrow ruleset depending 
on the security requirements for a study and the participating Organizations. The combination 
of these authorization options could be used, for example, to give the Lead Researcher the 
ability to operate and monitor all participants in a study, while granting Site Researchers and IT 
the ability to monitor only the clients within their organization or Group. 
 

4.3.6 Admin Controls of a Federated Learning 
Study  

An Administrator for a Federated Learning Study plays a crucial role as they’re the only person 
who has complete control over the Federated Learning experiments.  After the Lead and Site IT 
have established the server and client setup, the Lead Researcher will run the Federated 
Learning experiment using the Command-Line interface through the admin client.  The 
following are commands available to the admin: 

Check System Operating Status 

Allows viewing user permissions, server and client status, environment information, 
hardware information, and more. 
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View System Logs 

Ability to view system logs to understand what’s happening on the clients and server.  
Useful for debugging any issues. 

Verify Role Based Authorization Policy 

Ability to verify the role and associated rights of admin clients. 

Deploy MMARs 

Once an experiment MMAR has been created and staged in the transfer folder, the 
admin can distribute the folder to the server and clients and set a run number. 

Start and Stop Training 

After the experiment has been set up, the admin can start and stop training as needed. 

Shutdown or Restart the Server or Clients 

If there are issues during the experiment, the admin may need to restart a client or 
server.  They can also shut down the client and server once all the experiments are 
done. 

The admin can start the Federated Learning experiment once the Federated Learning server is 
running and at least one client has joined. 

Figure 4.  Typical Workflow of a Lead Researcher When Running a Federated 
Learning Experiment 

 
Figure 4 shows the typical workflow of a Lead Researcher when running a Federated Learning 
experiment: 
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1. Start the admin tool and log in 

2. Check server and client status 

3. Set the run number 

4. Transfer MMAR to Server Staging 

5. Upload MMAR to server and clients 

6. Start training 

7. Get Logs 

8. Get Metrics (when using cross-site validation) 

9. Shutdown the server and clients 

Once training is complete, you have the option of running cross-site validation. Previously, you 
needed to move either the data or the selected model to each site and run validation manually. 
With the cross-site validation feature, it is done automatically for you. 

The cross-validation feature is another area where Clara Train Federated Learning shines 
since the true power of Federated Learning is to develop more robust and generalizable 
models, which can be analyzed in the off-diagonal values of the cross-site validation result.  

Each Site has the opportunity to enable or disable cross-validation through the configuration 
files. If a Site has cross-validation enabled, their model will generate validation metrics 
between all other participating Sites. The Lead Researcher can parse the cross-site validation 
results to show the models’ performance on each participating Site as shown in Figure 5. 

Figure 5.  Example of a Cross-Site Validation Results [16]  

 
For more details on how to run your own Federated Learning project using Clara Train and 
NVFlare, please consult these Jupyter Notebooks and the NVFlare and Clara Train SDK 
documentation.   

 

https://github.com/NVIDIA/clara-train-examples/tree/master/PyTorch/NoteBooks/FL
https://pypi.org/project/nvflare/
https://docs.nvidia.com/clara/clara-train-sdk/federated-learning/federated_learning.html
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4.4 Privacy and Security  
 

In addition to the operational and physical security aspect of Federated Learning, there are 
additional concerns with Data Privacy and Model Protection.  

Model inversion attacks aim to recover or reconstruct the training data from the model 
parameters. Although DNNs have a much larger amount of parameters and are usually 
trained with a large amount of data, it has been shown that methods exist to reconstruct 
portions of the training data (if not all) with relatively high quality and reliability, purely from a 
trained model [2] or from model gradients [3], [4]. With more info on the model (e.g., the 
gradient, loss, etc), more training data could be reconstructed with possibly higher quality. 
This results in a high risk of privacy leakage during model sharing in both regular and FL 
algorithm development. Differential privacy is one of the widely used algorithms to reduce 
such risk. It is shown to have minimum impacts on model accuracy during FL training. 
Meanwhile, the research community has been actively working on both model inversion and 
defense algorithms.  

4.4.1 Data Privacy and Model Protection  
 

To mitigate the risk of recovering the training data from the trained model, which is also 
commonly known as reverse engineering or model inversion, we provide a configurable client-
side privacy control based on the differential-privacy (DP) technique. During training, each 
client could have their own privacy policy and could be updated by the admin client during 
training.  

The DP protection consists of two major components: selective parameter update and sparse 
vector technique (SVT): 

• For selective parameter update, the client only sends a partial of the model 
weights/updates, instead of the whole, to limit the amount of information shared. This 
is achieved by (1) only uploading the fraction of the model weights/updates whose 
absolute values are greater than a predefined threshold or percentile of the absolute 
update values and (2) further replacing the model weights by clipping the value to a 
fixed range.  

• The sparse vector technique operates on a random fraction of the weights/updates x by 
first adding random noise to its absolute value abs(x)+Lap(s); then the clipped noisy 
values clip(x+Lap(s), γ) are shared if the thresholding condition is satisfied. Here abs(x) 
represents an absolute value, Lap(x) denotes a random variable sampled from the 
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Laplace distribution, γ is a predefined threshold, and clip(x, γ) denotes clipping of x to 
be in the range of [-γ, γ].  

For details, please refer to [5]. The experimental results show that there is a tradeoff between 
model performance and privacy-preservation. 

4.4.2 Homomorphic Encryption 
 

NVIDIA Clara Train 4.0 adds homomorphic encryption (HE) tools for Federated Learning (FL). 
HE enables you to compute data while the data is still encrypted. 

In Clara Train 3.1, all clients used certified SSL channels to communicate their local model 
updates with the server. The SSL certificates are needed to establish trusted communication 
channels and are provided through a third party that runs the provisioning tool and securely 
distributes them to the hospitals. This secures communication to the server, but the server 
can still see the raw model (unencrypted) updates to do aggregation. 

With Clara Train 4.0, the communication channels are still established using SSL certificates 
and the provisioning tool. However, each client also optionally receives additional keys to 
homomorphically encrypt their model updates before sending them to the server. The server 
doesn’t own a key and only sees the encrypted model updates. 

With HE, the server can aggregate these encrypted weights and then send the updated model 
back to the client. The clients can decrypt the model weights because they have the keys and 
can then continue with the next round of training 

HE ensures that each client’s changes to the global model stays hidden by preventing the 
server from reverse-engineering the submitted weights and discovering any training data. This 
added security comes at a computational cost on the server. However, it can play an important 
role in securing patient data at each hospital while still benefiting from Federated Learning 
with other institutions. 

A benchmarking of HE in Clara Train and notebook of how to use it can be found at 
https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption. 

HE can reduce model inversion or data leakage risks if there is a malicious or compromised 
server. However, your final models might still contain or memorize privacy-relevant 
information. That’s where differential privacy methods can be a useful addition to HE. Clara 
Train SDK implements the sparse vector technique (SVT) and partial model sharing that can 
help preserve privacy. For more information, see [5]. Keep in mind that there is a tradeoff 
between model performance and privacy protection.  

 

 
  

https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption
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Chapter 5. Future Directions 

5.1 Addressing Heterogeneity of Data 
Distribution and Heterogeneity of 
Client Environment 

Important challenges in Federated Learning remain [6], like how to efficiently train models in 
the non-I.I.D. setting that is bound to arise in real-world Federated Learning studies where 
acquisition settings and data populations vary among clients. The performance of the 
Federated Learning models should be comparable or very close to the performance of models 
training on large, centralized datasets but without breaching privacy of the individual 
participants in the Federated Learning study. Likely, all machine learning tasks could be 
adapted to a federated setting so that Federated Learning is not only restricted to the 
supervised learning scenario. These settings could include un-, self-, and semi-supervised 
learning, meta-learning, and even few- and zero-shot learning, in single and multi-task 
scenarios. 

At the same time, communication protocols or advanced Federated Learning topologies and 
workflows should be explored to tackle issues with unstable internet connections or unreliable 
clients. Asynchronous updates might improve performance and reduce idle times of clients 
when waiting for the next global model update. 

5.2 Federated Datasets: Regulatory 
Approval, Need for a Standard for 
Federated Learning 

To scale up the application of Federated Learning in practice, standardization efforts will be 
needed [7]. Potentially, this will allow different parties to collaborate even if they use different 
software ecosystems to implement their particular Federated Learning servers or clients. One 
could even envision the use of Federated Learning technology for supporting distributed 
dataset queries and federated data analytics in general [8]. 
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Software tools to create federated datasets, manage Federated Learning studies, and provide 
the traceability of individual contributions, will be necessary in the future to streamline the 
preparation, execution, and regulatory approval of AI model development, in particular in the 
healthcare sector [1]. 

5.3 Confidential Computing  
Privacy-preservation protocols like differential privacy [5] still need further study to ensure 
that they do not impact the model performance while preventing data leakage through 
gradient and model inversion techniques [3], [4], but also prevent adversarial or backdooring 
attacks [9].  

Homomorphic encryption (HE) as described above can already counteract some of the issues 
described above by making the server-side aggregation more secure but comes with 
significant computational overheads. Secure computation schemes such as secure multi-
party computation and secret sharing [10], [11] could be alternatives or be combined with HE 
approaches. Further traceability and security could be achieved with blockchain technology 
[12] and decentralized Federated Learning (“swarm learning”) approaches where no single 
server might be the only place for attack [13]. The training on the client side itself could also 
be made more secure by performing all training operations in encrypted space [14] or using a 
trusted execution environment (TEE) [15]. This would allow protecting one’s model IP from 
untrusted clients. 

Despite increased security measures, the resulting models could still memorize training data 
and hence leak private information after they are trained using Federated Learning. Hence, 
cryptographic schemes most likely must be combined with differential privacy and other 
privacy-preserving methods guarantee most confidentiality.  
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Chapter 6. Case Studies  

NVIDIA has worked with several institutions to test and validate the utility of federated 
learning. To date, we have had five real life implementations in healthcare, pushing the 
envelope for training robust, generalizable AI models. These initiatives, ADOPS (ACR DASA 
OSU Partners HealthCare Stanford), FAIRVIEW, SUN Initiative (SUNY UCLA NIH) Prostate 
Model, Nagoya University & National Taiwan University Pancreas Model, and 
EXAM (EMR CXR AI Model) Oxygen Requirement Model following COVID are described below.   

 

6.1 ADOPS Breast Mammography AI 
Model  

Early detection through mammography is critical when it comes to reducing breast cancer 
deaths, but breast density can make it harder to detect the disease. The American College of 
Radiology (ACR), Diagnosticos da America (DASA), Ohio State University (OSU), Partners 
HealthCare (PHS), and Stanford University collaborated to improve a breast density 
classification AI model using NVIDIA Clara Federated Learning.  
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The team used a 2D mammography classification model provided by PHS, which was trained 
using NVIDIA Clara Train on NVIDIA GPUs. The model was then retrained using Clara 
Federated Learning at PHS, as well as the client-sites, without any data being transferred. The 
result: each institution obtained a better performing model that had overall superior predictive 
power on their own local dataset. In doing so, Federated Learning enabled improved breast 
density classification from mammograms, which could lead to better breast cancer risk 
assessment [16]. 

6.2 University of Minnesota and Fairview 
X-Ray COVID AI Model 

A Federated Learning study led by University of Minnesota and Fairview MHealth in 
collaboration with NVIDIA using NVIDIA Clara Train and NVFlare was used to improve real-
world AI models for COVID-19 diagnosis based on chest X-rays.  This study leverages a three-
phase pipeline composed of U-Net lung segmentation, a conditional Generative Adversarial 
Network (cGAN) for outlier detection, and a DenseNet121 COVID-19 Classification model.  The 
lung segmentation and outlier detection are used in preprocessing the chest X-ray datasets 
which then feed the COVID-19 classification model.  This classification model was trained with 
a federation of Federated Learning server and Federated Learning clients at University of 
Minnesota and Fairview (Minnesota, USA), with additional participant clients at Indiana 
University (Indiana, USA) and Emory University (Georgia, USA) using a mix of cloud 
(AWS/Azure) and local servers.  The aggregate multi-institutional dataset consists of 
approximately 80,000 labeled images with a 30/70% positive/negative COVID classification.  
Initial results show an improvement in performance of the global model of 5% AUROC and 8% 
AUPRC on the UMN local dataset as compared to the UMN local model.  

6.3 SUN Initiative Prostate Cancer AI 
Model 

Prostate cancer is a common cancer of the prostate gland in men. It has a high prevalence 
rate, and is the second-leading cause of cancer deaths for men in the U.S.  

 Accurate segmentation of the prostate gland is useful for developing AI models to help in 
detection of Prostate cancer. In this initiative, we tested the hypothesis that Federated 
Learning can be used to train a segmentation model comparable to one trained from a pooled 
data (PD) set.  We proceeded to train two models for prostate segmentation using the 
ProstateX Challenge Dataset. One model was trained on a pooled data set, and the other one 
in a Federated Learning manner using ClaraTM Federated Learning with the dataset divided 
amongst three client sites. 
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Our results showed equivalent performance from both the experimental Federated Learning 
and benchmark PD models, showing the feasibility of training an AI model in a Federated 
Learning approach [17]. 

6.4 CT Pancreas Segmentation AI Model 
NVIDIA worked with National Taiwan University, Taiwan, and Nagoya University, Japan, to 
utilize federated learning to build models for the automated segmentation of the pancreas and 
pancreatic tumors in abdominal CT [18]. A 3D segmentation model based on neural 
architecture search developed by NVIDIA’s Applied Research team [19] was collaboratively 
trained using ClaraTM Federated Learning. The global Federated Learning model achieved a 
segmentation performance of 82.3% Dice score on healthy pancreatic patients on 
average.  Read more in the paper:  

 https://arxiv.org/abs/2009.13148  

  

6.5 EXAM AI Model for Predicting Oxygen 
Requirements in COVID Patients 

As evidenced by the COVID-19 pandemic, efficient allocation of scarce medical resources is 
crucial.  

These resources include staffing, hospitals beds and ventilators. Triaging patients to the right 
level of care can make the most use of these resources allowing, a hospital to treat a larger 
number of patients efficiently and effectively. As patients present to the Emergency 
Department (ED), it is helpful to know which patients will need a higher level of care in the 
near future, despite perhaps presenting with minimal symptoms.  

Researchers at NVIDIA and Massachusetts General Brigham Hospital have used NVIDIA 
ClaraTM Federated Learning to train a previously developed AI model that determines whether 
a person showing up in the emergency room with COVID-19 symptoms will need supplemental 
oxygen hours or even days after an initial exam. 

Rather than needing to pool patient chest X-rays and other confidential information into a 
single location, each client-site used a secure, in-house server for its data. A separate server, 
hosted on AWS, held the global deep neural network, and each client-site got a copy of the 
model to train on its own dataset. 

Training was completed in two weeks, resulting in a global model with .94 Area Under the 
Curve (AUC), resulting in excellent prediction for the level of oxygen required by incoming 
patients. The federated learning model is accessible as part of NVIDIA Clara TM on NGC. You 
can read more about  

https://arxiv.org/abs/2009.13148
https://ngc.nvidia.com/catalog/collections/nvidia:claratrainframework
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this initiative in this blog: Triaging COVID-19 Patients: 20 Hospitals in 20 Days Build AI Model 
that Predicts Oxygen Needs. 

A preprint of the journal paper describing the study and outcomes can be found at [20]. 

 

 
  

https://blogs.nvidia.com/blog/2020/10/05/federated-learning-covid-oxygen-needs/
https://blogs.nvidia.com/blog/2020/10/05/federated-learning-covid-oxygen-needs/
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