

January 2007

Variance Shadow
Mapping

Kevin Myers
kmyers@nvidia.com

January 2007 ii

Document Change History

Version Date Responsible Reason for Change
 Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract
Variance shadow maps (VSM) replace the standard shadow map query with an
analysis of the distribution of depth values. VSM employs variance and
Chebyshev’s inequality to determine the amount of shadowing over an arbitrary
filter kernel. Since it works with the distribution and not individual occlusion
queries the shadow maps themselves can be pre-filtered. This is novel, and allows
for very fast soft shadowing with very large filter kernels.

January 2007 2

Motivation
DX10-class hardware is perfect for VSM. Without fp32 filtering the algorithm must
be done at fp16 precision which is not enough as the computation is numerically
very unstable. In addition multisample anti-aliasing (MSAA) can be used to improve
the quality of the shadow map by turning it on when rendering the shadow map.

How Does It Work?
Shadow maps work by first rendering depth from the point of view of the light to a
texture. This texture now contains the closest fragments to the light. We can then
query this shadow map when rendering our scene to determine if the fragment we’re
shading is occluded by a fragment in the shadow map. Percentage-closer filtering
(PCF) achieves soft shadows by filtering an arbitrary number of these queries.

The problem with PCF is that there’s no good way to pre-filter the depth values, or
arbitrarily filter the shadow map with something like anisotropic filtering or mip-
mapping. If you did, the depth value you arrive at is not a true occluder but the
average of several possible occluders, which can produce artifacts.

Summary of the Algorithm
A detailed explanation of the algorithm can be found in the original Variance
Shadow Map paper by William Donnelly and Andrew Lauritzen at
http://www.punkuser.net/vsm/ .

In summary, the authors of VSM made the observation that what we’re actually
trying to do with PCF is obtain a bound on the percentage of pixels over the PCF
filter region whose depth is greater than a single depth value, the value of the pixel
we’re shading. In other words we’re comparing a single value to a particular
distribution of values (the region we’re sampling), and we want to know what
percentage of those values are greater than the single value. We don’t care about
individual samples, just the percentage of the distribution. To that end Chebyshev's
inequality gives us this bound given the average (or expected value and
variance of the distribution.

January 2007 3

The average is easy to get from a standard shadow map. We can filter in the shader,
use mip-mapping or a separable blur. Variance is also fairly trivial. Variance can
be computed given the average value the average squared value .

As we said before we can easily get the average value, to get the average squared we
just need to change our shadow map to be a two component texture and render
squared depth into the second channel. We can still filter arbitrarily before lighting
our scene, then compute average and variance with a single texture lookup.

VSM Shader

Here is the VSM shader from DrawScene.fx:
float2 VSM_FILTER(float2 moments, float fragDepth)
{

 float2 lit = (float2)0.0f;
 float E_x2 = moments.y;
 float Ex_2 = moments.x * moments.x;
 float variance = E_x2 - Ex_2;
 float mD = moments.x - fragDepth;
 float mD_2 = mD * mD;
 float p = variance / (variance + mD_2);
 lit.x = max(p, fragDepth <= moments.x);

 …
 return lit; //lit.x == VSM calculation

}

First of all note the final max. If the current fragment’s depth is smaller than or
equal to the average depth, then and equation 1 does not apply. Figure 2
illustrates p or the result from Chebyshev’s equation if we do not assume the bound

 . Notice how the blue area corresponds directly to the area of transition
from light to dark in the shadowed scene. To get a feel for why this works, think
about what causes variance to change. Variance increases whenever the distribution
contains a wider range of values. Sharp changes in depth, such as a silhouette edge
will produce higher values for variance. This is clearly shown in Figure 3. The areas
of increased variance show up at the silhouette edges. Looking back at our equation
these areas will drive the equation towards 1. On either side of the silhouettes
variance quickly goes down allowing the equation to be influenced by the other
variable .

January 2007 4

If we look at figure 4 we can see visualized in green. Notice how the
opposite happens. As we approach the silhouette edge quickly
decreases as the filtered depth values converge towards the fragment’s depth value.

Figure 1 Shadow

Figure 2 Chebyshev (unbounded)

January 2007 5

Figure 3 Variance

Figure 4

January 2007 6

Implementation Details
• VarianceShadowMapping.cpp: The primary source file. This is where

all resources are created and where the main render loops occur. There is a
blur class SeparableBlurEffectAndBuffer that manages the
separable blur shader and an extra render target to accomplish the blur.

• VarianceShadowMap.h: This file contains a class called
VarianceShadowMap which contains an MSAA render target and Z
buffer to render the shadow map, as well as an aliased buffer which the
MSAA target is resolved to. It also manages the shader that generates the
VSM.

• GenerateVSM.fx: This is the shader that constructs the shadow map.

• Blur.fx: This is the separable blur shader.

• DrawScene.fx: This is our scene shader.

• VarianceShadowMapping.fxh: A shader header file that all shaders
pull in. We construct a poll from this file.

• D3D10Quad.h: Header file for a quad helper class:

• D3D10Quad.cpp: Contains a quad helper class. This creates an index
buffer and a vertex buffer that form a quad tessellated to a desired level.

• EffectWithOneTechnique.h: Effect utility code.

Running the Sample
The sample has two sliders to control both the separable filter and the pixel shader
filter. Playing with these two sliders quickly shows the performance benefit of being
able to pre-filter the shadow map.

There are also two check boxes to help visualize the math. One shows variance in
red the other shows mD_2 in green from our shader above. The section VSM
Shader explains how to interpret these visualizations.

Performance
VSM really shines when a separable blur is used, which is something novel in
shadow map filtering. Here are the results from using a 1024x1024 VSM running
the sample at a resolution of 1024x768 on a GeForce 8800 GTX.

January 2007 7

Filter size Separable box filter FPS PCF

7x7 ~173 ~128

15x15 ~130 ~48

49x49 ~60 ~6

Integration
VSM is fairly trivial to implement in an application that is already using shadow
maps. The shadow map needs to be changed to an R32G32F texture to store depth
and depth2. When writing out depth one does not need to use projected depth, a
better metric is linear distance from the light. Finally your lighting shader needs to
handle the VSM math.

VSM does suffer from light bleeding when there is high depth complexity and high
variance in depth values. The original paper goes through a proof that VSM
computes exactly the correct result when assuming a planar occluder and a planar
receiver. When this is not the case, sharp changes in variance will cause the
equation to return a false positive, lit when it should not be.

Precision also has to be managed. Even with fp32 precision is an issue because we
need to compute squared depth values. The problems can be seen by playing with
the light distance slider. As the distance increases the depth values for our occluders
get larger, and our squared depth values quickly start to suffer from precision issues.
Moving the light scale slider changes what the depth values are scaled by helping
mitigate the problem. In practice this can be managed in most scenes by keeping
tight bounds on the light’s viewing volume.

One benefit of VSM is that since it deals with a distribution of z values and not a
simple depth test, biasing issues are no longer a problem. We do not need a z-offset
to avoid precision issues.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA

January 2007 8

Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

