

February 2007
WP-03017-001_v01

White Paper

Clipmaps

GeForce 8800 Whitepaper

ii WP-03017-001_v01
 February 15, 2007

Document Change History

Version Date Responsible Reason for Change
 February 15, 2007 EM, TS Initial release

Go to sdkfeedback@nvidia.com to provide feedback on Clipmap.

WP-03017-001_v01 1
February 15, 2007

Clipmaps

Abstract
Clipmaps are a feature first implemented on SGI workstations that allow mapping
extremely high resolution textures to terrains. The original SGI implementation
required highly specialized, custom hardware. The advanced features of the
NVIDIA® GeForce® 8800 now permit the same algorithm using consumer
hardware.

Although current APIs and the GeForce 8800 directly support textures with
dimensions up to 8192, this size may be considered insufficient when we talk about
wide landscapes, say, in flight simulators. The idea of using a single texture for the
whole landscape can be very promising due to the fact that we can not only design
the whole landscape texture at once, but also parameterize it simply. Big textures
have "big" advantages compared to traditional methods of using several textures
with blending. This comes from the fact that they can be as complex as you wish.
Ones a designer has created a whole map it can be used as is.

Clipmaps take advantage of the fact that, due to perspective projection, only
relatively small regions within the texture mipmap pyramid are being accessed every
frame. Thus we have to manage these “hot” regions and update them in video
memory as the viewer moves around. A DX10 solution is to store such regions in a
texture array. Being able to index into it from the pixel shader allows for a
straightforward implementation of the clipmap algorithm in DX10.

Evgeny Makarov
NVIDIA Corporation

GeForce 8800 Whitepaper

2 WP-03017-001_v01
 February 15, 2007

How Clipmap Works
Clipmap can be defined as a partial representation of a mipmap pyramid which holds all
information needed for texturing at every single frame. How do you determine which data
from a source texture can potentially be used? The answer lies in a mipmap sample
selection strategy. The best case while texturing is one that allows you to use 1:1
mappings of texels to pixel area. That is how you can define clip size for mipmap
levels based on the current screen resolution. The lowest levels of the mipmap
pyramid will always fit in video memory and can be used statically. All other mip
levels form the clipmap stack which is dynamically updated to store actual data at
every frame (see Figure 1). The contents of a stack in most common cases can be
defined by its size and the viewer’s position.

Figure 1. Clipmap Representation

The basic idea is to store the clipmap stack in a 2D texture array. Texture arrays are
a new feature of DX10. The remaining part of the mipmap pyramid is implemented
as a conventional 2D texture with mips. You can perform a dynamic stack update
using copy/update sub resource methods. It is totally clear that sometimes it would
not be possible to hold all the data needed in system memory. Therefore you are
going to need an additional mechanism to stream all necessary data efficiently from
disk.

The blue mip levels represent the data mapped
to the entire world. The green areas are the
dynamically loaded sub-areas

Clipmaps

WP-03017-001_v01 3
February 15, 2007

Data Representation
A clipmap stack is stored in a 2D texture array. This array forms a dynamic part of
clipmap and should contain actual data for every mip level for each frame. Since
there are separate layers for each original mip level, you should create a texture
without mips. The remaining part of the image can be stored as a conventional 2D
texture.

Using the DX10 API, create these resources as follows (note that for a clipmap
stack texture, you should specify the number of layers using the ArraySize
element):
D3D10_TEXTURE2D_DESC texDesc;

ZeroMemory(&texDesc, sizeof(texDesc));
texDesc.ArraySize = 1;
texDesc.Usage = D3D10_USAGE_DEFAULT;
texDesc.BindFlags = D3D10_BIND_SHADER_RESOURCE;
texDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
texDesc.Width = g_PyramidTextureWidth;
texDesc.Height = g_PyramidTextureHeight;
texDesc.MipLevels = g_SourceImageMipsNum - g_StackDepth;
texDesc.SampleDesc.Count = 1;

pd3dDevice->CreateTexture2D(&texDesc, NULL, &g_pPyramidTexture);

texDesc.ArraySize = g_StackDepth;
texDesc.Width = g_ClipmapStackSize;
texDesc.Height = g_ClipmapStackSize;
texDesc.MipLevels = 1;

pd3dDevice->CreateTexture2D(&texDesc, NULL, &g_pStackTexture);

GeForce 8800 Whitepaper

4 WP-03017-001_v01
 February 15, 2007

Updating Strategy
As you move around, you need to update the content of the stack based on a new
clip center position. In most cases you should replace relatively small portions of
data in each layer of a clipmap stack. To avoid big data replacement within a stack,
use a special technique known as toroidal addressing: Toroidal addressing is new data at
the top of the image is loaded at the bottom, and data on the right is loaded at the
left. This approach does not need any changes for overlapped regions, which is a big
plus in this case.

Figure 2. Two Update Steps for a Single Layer in a Stack

In most applications, this process can be even simpler because you can separately
update the horizontal and vertical part resulting in simple rectangular regions instead
of L-shaped ones.

Clipmaps

WP-03017-001_v01 5
February 15, 2007

Clipmap Texture Addressing
All the work is done in the pixel shader. First you need to determine a mip level to
fetch from. For this use the ddx and ddy instructions to find the quad size in a
screen space.

float2 dx = ddx(input.texCoord * textureSize.x);
float2 dy = ddy(input.texCoord * textureSize.y);

float d = max(sqrt(dot(dx.x, dx.x) + dot(dx.y, dx.y)) ,
sqrt(dot(dy.x, dy.x) + dot(dy.y, dy.y)));

Now you can easily calculate a suitable mip level as follows.
float mipLevel = log2(d);

Calculate the mipLevel as a float and use the fractional part to perform trilinear
filtering.

Clipmap texture addressing is rather simple; the only thing you need to do is to scale
the input texture coordinates based on the mip level. Calculate a scale factor by
dividing the source image size by the clipmap stack size.
float2 clipTexCoord = (input.texCoord) / pow(2, iMipLevel);
clipTexCoord.x *= scaleFactor.x + 0.5f;
clipTexCoord.y *= scaleFactor.y + 0.5f;
float4 color = StackTexture.Sample(stackSampler,
float3(clipTexCoord, iMipLevel));

For the stack sampler, specify the address mode as wrap to implement toroidal
addressing.

Table 1. Storage Efficiency*

Texture sizes 40962 81922 163842
Full mipmap 85.3 341.3 5461.3

1024 clipmap 13.3(16%) 17.3(5%) 25.3(<1%)

2048 clipmap 37.3(44%) 53.3(16%) 85.3(1.6%)

4096 clipmap 85.3(100%) 149.3(44%) 213.3(3.9%)

*Memory costs for 32-bit texels storage

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and GeForce are trademarks or registered trademarks of NVIDIA
Corporation in the United States and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

