
 

Technical Brief  

Mipmapping Normal Maps  
 

 

 

 



 

 

TB-01256-001_v01  i 
04/20/04  

Table of Contents 

Mipmapping Normal Maps By Michael Toksvig ........................................................................ 1 

Abstract........................................................................................................................... 1 

Estimating Normal Variation .............................................................................................. 1 

Eliminating Aliasing of Specular Highlights .......................................................................... 2 

Implementation................................................................................................................ 4 

Free Gloss Maps ............................................................................................................... 6 

Anti-aliasing Specular Highlights from Interpolated Normals ................................................. 6 

Environment Maps............................................................................................................ 6 

References....................................................................................................................... 7 

 

 

 

 



 

 

TB-00xxx-001_v01  1 
4/26/2004  

Mipmapping Normal Maps 
by Michael Toksvig 

Abstract 
The result of averaging or interpolating unit normals is less than unit length unless all 
normals within the footprint happen to be identical. Most algorithms simply 
renormalize, but this paper explores how the shortening can be used as a measure of 
normal variation to eliminate the common problem of strobing/sparkling noise due 
to aliasing of specular highlights. 

 

 

Figure 1.   With aliasing (left) and without (right) 
A very inexpensive implementation that simply substitutes a power function with a 
2D texture lookup is presented. Other applications of the technique, such as free 
gloss mapping, are also discussed. 

Estimating Normal Variation 
Clearly the shortened normal does not encapsulate all information about how 
normals vary within the footprint. 

An average normal with length      could indicate a highly anisotropic distribution 
with two groups of normals, each 30 degrees from the average, in opposite 
directions. Or the distribution could be completely isotropic with normals arranged 
in a cone 

A good middle ground is to assume a Gaussian distribution of the angular deviation, 
α  with a standard deviation of    . Figure 1 shows the length of the average normal 
as a function of the standard deviation: 
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Figure 2.       as Function of Standard Deviation, (Red), and 
Approximation (Green) 

It can be seen that a Gaussian distribution will never produce a very short average 
normal, whereas in practice, arbitrarily short average normals may be observed in 
extreme cases. We therefore use the following approximation (order      Taylor 
approximation of reciprocal) with more desirable asymptotic behavior (green in 
Figure 2): 
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So given a normal that has been shortened by averaging across a normal-map 
footprint, we can readily estimate the standard deviation,   , of the contributing 
normals using the above formula 

Eliminating Aliasing of Specular 
Highlights 

One way to exploit this information is to eliminate the aliasing of specular highlights 
on bump-mapped surfaces, which is often quite objectionable. This problem has been 
addressed using less affordable techniques, e.g. in [Fournier 92] and [Shilling 97]. 

Traditionally, specular highlights are calculated using the renormalized average 
normal, e.g. like so like so for Blinn-Phong1:  
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whereH is the half-angle vector, and  s  is the shininess exponent [Blinn 77]. 

                                                      

1 The technique is trivially applicable to Phong and other lighting models as well 
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Ideally, however, you would want to sum the power function for each normal,      , in 
the normal-map footprint, like so: 

( )∑ ⋅
footprint

s
i HN

  (3) 
Since the power function does not combine linearly, the approximation in (2) 
deteriorates as the variation among the normals increases 

A better approximation can be obtained by combining the bell curve from the 
shininess exponent, s , with the bell curve from the Gaussian distribution of normals. 

Convolving the two functions directly would expand the support to encompass the 
entire sphere (and is quite an unsightly expression). Instead we approximate the 
combined functions with a new power function. 

The shininess exponent, 's , for the combined bell curves is derived by 
approximating both curves with Gaussian distributions on a plane. 

To approximate the power function with a Gaussian, we use: 

                        and therefore                                       , where   (4) 

 As can be seen from the radial plot in Figure 3, this approximation is pretty good, 
especially as   grows:  
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Figure 3. Radial Plot of Cosine (red) and Gaussian (green) for 
1=s  (wide) and 40=s  (narrow lobe) 

It is well known that convolving two Gaussians on a plane with standard deviations 
σ  and       will yield another Gaussian with a larger standard deviation     that can be 
derived from                          . Using (4) twice, we have: 
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  (5) 
For convenience, we introduce a “Toksvig factor”,    , the factor by which the 
original shininess exponent, s , is to be scaled down: 
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To preserve energy, the intensity of the widened highlight needs to be scaled down, 
too, so using: 
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we find the following expression for the specular component: 
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which is just the Blinn-Phong expression with a lower exponent and a scale factor. 

If the length of the average normal,       is low (the normals vary a lot), the Toksvig 
factor,     , will be close to 0. This makes the specular highlight wider and fainter 
making the surface appear more dull. Conversely, if        is close to 1 (the normals 
within the footprint are pretty much in agreement),     is close to 1 and the surface is 
unchanged. 

Implementation 
In hardware, traditional specular exponentiation is often accomplished using a table 
lookup in a 1D texture (one table per exponent). 

In pseudo code, this looks roughly like: 
Look up   in normal-map 
Renormalize:    
Compute   
Look up result in 1D table using   

To eliminate aliasing, replace with this code: 
Look up   in normal-map 
Compute  
Compute   
Look up result in 2D table using      and   

The 2D table texture contains the expression from (8) expressed in terms of 
and           : 
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Note that the row corresponding to                 is identical to the 1D table texture, and 
that the row corresponding to                 is constant        . 

Also note that          can never be greater than            , so 1/3 of the texture will 
never be accessed 

Finally note that the intensity of the highlight is sensitive to the error in the length of 
the average normal. Figure 4 shows the relative intensity of the highlight as a 
function of the length of the average normal.  
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Figure 4. Relative Intensity of Highlight for  
s = 1 (red) and s = 40 (blue) 

The derivative of the relative intensity with respect to       , i.e. the sensitivity to error 
in        is: 
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For           , this expression becomes        , which suggests that high specular 
exponents require high precision normal maps. 

Alternatively, the effect can be phased out as         approaches 1 where the signal-to-
noise ratio goes down. This, too, can be encoded in the 2D table texture. For 
example, if the normals are represented using 8-bit signed components, the error in 
        is                       , and the error in the relative intensity is therefore 0.0068 times 
the expression in (10).  In the areas where this error exceeds some threshold, the 
expression in (9) is replaced with: 
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where antialiased is the expression in (9) and aliased is the traditional formula 

Free Gloss Maps 
One thing to notice is that varying the shininess exponent across a surface comes for 
free when applying this technique: Simply putting shorter-than-unit normals in one 
area of the base normal-map will make that area appear duller. Using (6), it can be 
seen that a shininess of s , which must be smaller than the maximum shininess,     is 
achieved when the normal in the base normal-map is scaled by: 
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Anti-aliasing Specular Highlights 
from Interpolated Normals 

A variation of exploiting the shortening effect can also be applied to interpolated (i.e. 
not normal-mapped) normals, which show related aliasing artifacts. This technique 
involves creating a cube-map similar to a renormalization cube-map (each direction 
maps to a unit normal in that direction), but mipmapped without renormalization. 
Looking the interpolated normal up in this cube-map will produce a normal that has 
been shortened according to the rate of change in the original normal. This 
shortened normal is used in the same way as      above to make highlights wider and 
fainter when the normal varies greatly. 

 

Environment Maps 
Another variation can be applied when using environment maps (as suggested by 
Cass Everitt). When a ray is reflected in a normal mapped surface, the standard 
deviation of the normals within the footprint will be propagated to the reflection, 
thereby blurring the reflected image. This effect can be modeled by computing lod 
for the environment map as a function of           . 
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