
Scaling PyData with 
Dask & RAPIDS
Center for Machine Learning



2

Introduction

● Senior Software Engineer in Development Tools & 
Accelerators at the Center For Machine Learning

● Currently working on distributed and accelerated data 
science with Dask + Rapids

● Built and maintained a model logging library similar in 
function to MLFlow

● Dipping my toes into open source development

● Pursuing M.S. Computer Science at Georgia Tech

● B.S. Computer Engineering at Penn State

Kyle Nicholson



3

Introduction
What are we going to cover today?

The challenges and potential to distribute and accelerate financial and credit data 
analysis to build machine learning models, and how to align an organization behind 
powerful open source tools to optimize value generation across a large enterprise.

Themes

Leveraging GPUs for 
accelerated data science

Identifying the symptoms 
of lacking scalability  

Utilizing OSS to deliver 
value faster 

Contributing to better your 
business & the community



Confidential
4

A day in the life…
Data Science at Capital One



5

Data

On an enterprise journey to deliver highly accurate business insights by 
consuming, processing, and analyzing vast amounts of data faster 

Lots of Data Drive for Faster Analysis Need Distribution & Acceleration

Very large data sets in a wide 
variety of formats

Data governance and federated 
access

Highly regulated environment to 
protect customer data

Large data science community to 
produce business insights

Enterprise initiatives to optimize 
data analysis

C4ML stood up to bolster 
enterprise ML capabilities

Need for simple, repeatable ways 
to stand-up large infrastructure

Huge interest in leveraging GPUs 
to accelerate compute

Many efforts to build custom 
solutions across the institution

This data landscape has created a large Data Science community at Capital One



6

Data Science

Large community of Data Scientists at Capital One with a wide variety of 
use cases, experience, skill sets, and programmatic preferences

Needed a more flexible yet robust way to scale Python computational libraries

Programming Language Prevalence

A majority of data scientists utilize 
Python to get their jobs done

A smaller subset of the community uses 
Java and Scala

These languages often accompanied by 
Spark in GitHub repos

Scaling Python at Capital One

Mostly by rewriting Python code to scale 
with Apache Spark

Vertical scaling with very large memory 
and multi-core instances

Custom solutions to scale Python for 
specific use cases



Confidential
7

Challenges



8

OSS Contribution Process
Dask & RAPIDS Contribution ProcessEnterprise Contribution Process

● Developer training on enterprise best practices 
for making contributions

● PRs reviewed internally by the enterprise 
leadership, Legal and Cyber Security

● Approved PRs published on public GitHub

● Iterations reviewed internally

● Trusted contributor status given at the 
repository level after a few PRs merged

● Developer training on enterprise best practices 
and C4ML governance policy

● PRs reviewed by C4ML following the 
governance policy developed with OS team

● Approved PRs published on public GitHub

● Iterations reviewed internally

● Trusted contributor status given at the 
organization level

● Legal and the OS team audit periodically



9

Cloud Deployment Challenges

● Restricted AWS Environment
○ We can only use whitelisted services

● No access to publicly hosted package repositories
○ Our internal package repositories only mirror common repositories
○ Can take upwards of 6 months for repositories to get mirrored
○ We must find other ways of installing key software
○ This is getting better, we are trying to improve the process

We operate in a restricted cloud environment. 



10

Dask Use Case - Deep Dive



11

Machine Learning Pipeline

Airflow-orchestrated model training pipeline with a downsampled data set 
on a very large compute instance

XGBoost Model Stats

40GB training data set

~2.5 hour training time per ensemble

~2.5 weeks pipeline training

>>> import pandas as pd

>>> df = pd.read_csv(“training.csv”)

>>> df = preprocess_data(df)

>>> model = xgb.train(df, ...)

sample feature
engineeringto_csv read_csv to_csv read_csv merge to_csv read_csv train to_csv read_csv score



12

Initial Scaling with Dask
feature

engineeringto_csv read_csv to_csv read_csv merge to_csv read_csv train to_csv read_csv scoresample

Utilized Dask dataframe to parallelize the sampling portion of the pipeline 

Pipeline Stats w/ DaskOriginal Pipeline Stats

● Dataset merging is a compute-intensive 
problem and primed for distributed 
computing

● 300+ serialized joins in the data 
generation script

● 7 days to process ~1 TB dataset 

80 Dask workers

680 GB of distributed memory

15 hour processing time

91% decrease in run time



13

Further Scaling with Dask

More Dask dataframes and dask-ml to parallelize feature selection and 
model tuning on highly utilized portions of the pipeline.

Pipeline Stats

● Code used by many teams to build models
● Created shared Dask infrastructure
● Horizontal scaling and infrastructure agnostic
● Improved performance by parallel parameter 

searches
● Training on larger than memory datasets

to_csv read_csv to_csv read_csv to_csv read_csv to_csv read_csv scoresample feature
engineering merge train



14

Scaling with RAPIDS

Use Dask and RAPIDS to scale XGB training
on single-node, multi-GPU clusters

Pipeline Stats

40GB training data set / 4% of total

100x speed up of training time for this dataset 
and model

~97% reduction in training cost for this 
dataset and model

sample feature
engineeringto_csv read_csv to_csv read_csv merge to_csv read_csv to_csv read_csv scoretrain



15

Scaling with RAPIDS

Use XGB training code as a real-world benchmark to test
on multi-node, multi-GPU clusters

sample feature
engineeringto_csv read_csv to_csv read_csv merge to_csv read_csv to_csv read_csv scoretrain

dataset # nodes node type # GPUs training size test size time training cost

40 GB 1 x1.32xlarge 0 13 GB 6 GB 2 - 3 hrs $26.68 - $40.01

Initial benchmark



16

to_csv read_csv to_csv read_csv to_csv read_csvto_csv read_csv

Scaling with RAPIDS
sample feature

engineering merge train score

Use XGB training code as a real-world benchmark to test
on multi-node, multi-GPU clusters

dataset # nodes node type # GPUs training size test size time training cost

40 GB 1 x1.32xlarge 0 13 GB 6 GB 2 - 3 hrs $26.68 - $40.01

40 GB 1 p3dn.24xlarge 8 13 GB 6 GB 2m 1s $1.02

40 GB 1 p3.16xlarge 8 13 GB 6 GB 2m 23s $0.82



17

to_csv read_csv to_csv read_csv to_csv read_csvto_csv read_csv

Scaling with RAPIDS
sample feature

engineering merge train score

Use XGB training code as a real-world benchmark to test
on multi-node, multi-GPU clusters

dataset # nodes node type # GPUs training size test size time training cost

40 GB 1 x1.32xlarge 0 13 GB 6 GB 2 - 3 hrs $26.68 - $40.01

40 GB 1 p3dn.24xlarge 8 13 GB 6 GB 2m 1s $1.02

40 GB 1 p3.16xlarge 8 13 GB 6 GB 2m 23s $0.82

1.15 TB 12** p3dn.24xlarge 96 288 GB 127 GB 52m 21s $326.85



18

to_csv read_csv to_csv read_csv to_csv read_csvto_csv read_csv

Scaling with RAPIDS
sample feature

engineering merge train score

Use XGB training code as a real-world benchmark to test
on multi-node, multi-GPU clusters

dataset # nodes node type # GPUs training size test size time training cost

40 GB 1 x1.32xlarge 0 13 GB 6 GB 2 - 3 hrs $26.68 - $40.01

40 GB 1 p3dn.24xlarge 8 13 GB 6 GB 2m 1s $1.02

40 GB 1 p3.16xlarge 8 13 GB 6 GB 2m 23s $0.82

1.15 TB 12** p3dn.24xlarge 96 288 GB 127 GB 52m 21s $326.85

1.15 TB 2** p3dn.24xlarge 16 288 GB 127 GB 22m 47s $54.47



19

Experiments with RAPIDS
sample feature

engineeringto_csv read_csv to_csv read_csv merge to_csv read_csv to_csv read_csv scoretrain

Data Scaling

● 500,000 to 30,000,000 rows and 493 feature 
columns (4GB to 240GB)

● Train time scales linearly with data size on a 
single instance as expected

Exploring the performance of scaling the amount of data on a single 
p3dn.24xlarge Instance

A graph demonstrating how train time is affected by data size on a 
single instance with multiple GPUs



20

Experiments with RAPIDS
sample feature

engineeringto_csv read_csv to_csv read_csv merge to_csv read_csv to_csv read_csv scoretrain

GPU Scaling

● 112GB of data, close to 90% of the maximum amount of 
data that 4 32GB GPUs can hold

● Two tests:
○ Single Instance, test 4 and 8 GPUs
○ Multi Instance, test from 4 to 16 GPUs at an 

interval of 4 GPUs
● ~42% increase in training time with 4 GPUs on a single 

instance vs 4 GPUs split across two Instances
● ~84% increase in training time with 8 GPUs on a single 

instance vs 8 GPUs split across two Instances

Exploring the performance of scaling the number of GPUs with 
regards to a static data size

A graph comparing the effect of the number of GPUs on training time using 
112 GB of data.



21

Optimal State



22

Optimal Pipelines
sample feature

engineering merge train score

S3 S3

Dask DataFrame / Array
(Pandas/CuDF or Numpy/CuPy)

Async Checkpoints

Library / Package (i.e. Jupyter Notebook)
Hosted Service (i.e. Operational REST API)

Pipeline / Workflow
(based on sklearn API)

df df df df



Confidential
23

Adopting the sklearn API

>>> import pandas as pd
>>> df = pd.read_csv(“training.csv”)
>>> X = df.drop(target, axis=1)
>>> y = df[[target]]

>>> from package.model_selection import CustomCV

>>> import xgboost as xgb

>>> clf = xgb.XGBClassifier()

>>> ccv = CustomCV(clf)

>>> ccv.fit(X, y,

...  early_stopping_rounds=4,

...  eval_metric=["auc", "logloss"]

...  )

>>> import dask.dataframe as dd
>>> df = dd.read_csv(“training.csv”)
>>> X = df.drop(target, axis=1)
>>> y = df[[target]]

>>> from package.model_selection import CustomCV

>>> import xgboost.dask as dxgb

>>> clf = dxgb.XGBClassifier()

>>> ccv = CustomCV(clf)

>>> ccv.fit(X, y,

...  early_stopping_rounds=4,

...  eval_metric=["auc", "logloss"]

...  )

>>> import dask_cudf as cdd
>>> df = cdd.read_csv(“training.csv”)
>>> X = df.drop(target, axis=1)
>>> y = df[[target]]

>>> from package.model_selection import CustomCV

>>> import xgboost as xgb

>>> params = {‘n_gpus’: 1}

>>> clf = xgb.XGBClassifier(**params)

>>> ccv = CustomCV(clf)

>>> ccv.fit(X, y,

...  early_stopping_rounds=4,

...  eval_metric=["auc", "logloss"]

...  )

Single Core Dask RAPIDS

Scale by changing a few lines of code



Confidential
24


