

ACCELERATING OPTICAL FLOW AND STEREO DISPARITY ESTIMATION USING THE NVIDIA A100 OFA ENGINE

Eric Viscito

AGENDA

Optical Flow and Stereo Disparity Definition and Applications

What is Optical Flow? What is Stereo Disparity? How are they used in computer vision applications?

OFA Engine - Motivation and Principles of Operation

Why did we build OFA? What can it do? How does it work?

Quality and Performance Metrics

How do we measure quality, and how does OFA do? What throughput can OFA achieve?

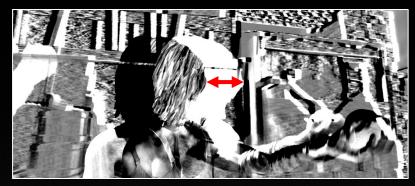
Programming Flexibility How can OFA be tailored to specific applications?

OPTICAL FLOW AND STEREO DISPARITY DEFINITION AND APPLICATIONS

STEREO DISPARITY

Depth from two parallel calibrated cameras

Left view



Disparity at one point

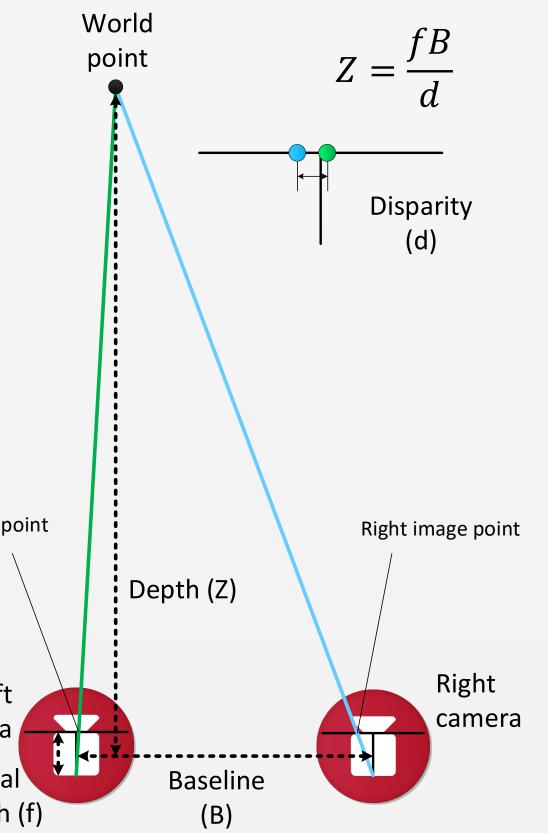
Right view

Dense disparity map

- Factors affecting stereo resolving power
 - Baseline and focal length
 - Camera field of view (30°, 60°, etc.) [lower is better]
 - Sensor resolution [larger better] and pixel size [smaller better]

Left image point

Left camera Focal length (f)



OPTICAL FLOW

Movement on image plane between two views from a single camera

Animated GIF

VIRTUAL REALITY

Facebook 3D-360 video project

https://www.facebook.com/Engineering/videos/10154013275372200/

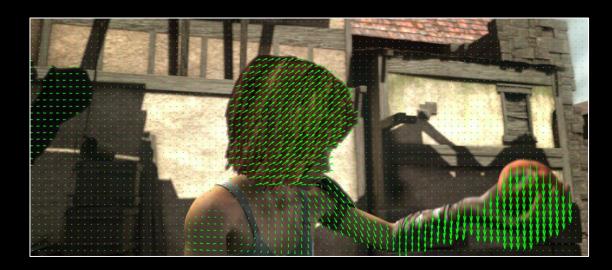
Code available: https://github.com/facebook/Surround360

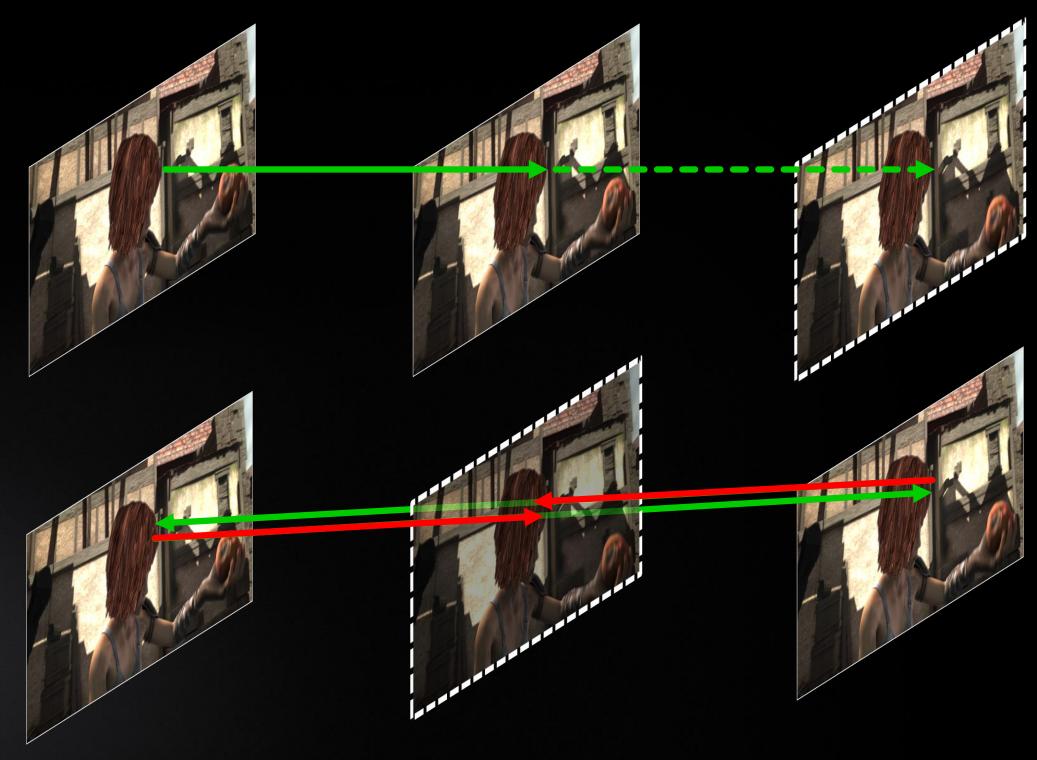
IMPROVE GAMING EXPERIENCE

Frame rate upsampling Interpolation vs Extrapolation

Oculus ASW uses flow-based extrapolation to maintain frame rate in hard-to-render scenes

Interpolation to increase frame rate is better when end-to-end delay is not as important





VIDEO UNDERSTANDING OPTICAL FLOW IN VIDEO ACTION RECOGNITION

Two-stream CNN for Video Action Recognition

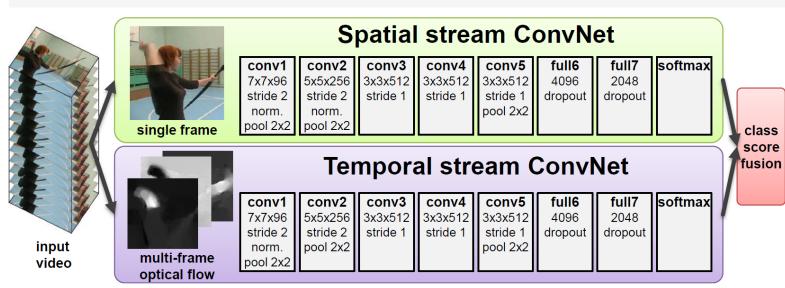


Figure 1: Two-stream architecture for video classification.

"Our experiments on two challenging datasets (UCF-101 and HMDB-51) show that the two recognition streams (image and optical flow) are complementary..."

Table 1: Individual ConvNets accuracy on UCF-101 (split 1).

(a) Spatial ConvNet.				
Training setting	Dropout ratio			
	0.5	0.9		
From scratch	42.5%	52.3%		
Pre-trained + fine-tuning	70.8%	72.8%		
Pre-trained + last layer	72.7%	59.9%		

Table 3: Two-stream ConvNet accuracy on UCF-101 (split 1).

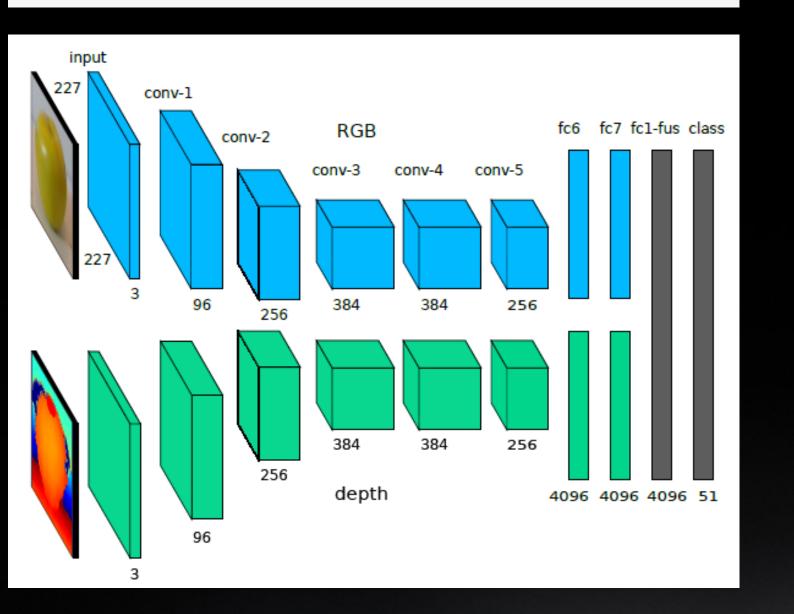
Spatial ConvNet	Temporal ConvNet	Fusion Method	Accuracy
Pre-trained + last layer	bi-directional	averaging	85.6%
Pre-trained + last layer	uni-directional	averaging	85.9%
Pre-trained + last layer	uni-directional, multi-task	averaging	86.2%
Pre-trained + last layer	uni-directional, multi-task	SVM	87.0%

From "Two-Stream Convolutional Networks for Action Recognition in Videos", Simonyan and Zisserman, 2014

NVIDIA CONFIDENTIALa. DO NOT DISTRIBUTE.

STEREO DISPARITY IN OBJECT RECOGNITION

Two-stream CNN for RGB-D object recognition



Recognition accuracy improvement

TABLE I: Comparisons of our fusion network with other approaches reported for the RGB-D dataset. Results are recognition accuracy in percent. Our multi-modal CNN outperforms all the previous approaches.

Method Nonlinear SVM [HKDES [4] Kernel Desc. [14 CKM Desc. [3] CNN-RNN [22 Upgraded HMP CaRFs [1] CNN Features [2 Ours, Fus-CNN (H

Ours, Fus-CNN (H Ours, Fus-CNN (

From "Multimodal Deep Learning for Robust RGB-D Object Recognition", Eitel et al, 2015

	RGB	Depth	RGB-D
[15]	74.5 ± 3.1	64.7 ± 2.2	83.9 ± 3.5
	76.1 ± 2.2	75.7 ± 2.6	84.1 ± 2.2
4]	77.7 ± 1.9	78.8 ± 2.7	86.2 ± 2.1
3]	N/A	N/A	86.4 ± 2.3
2]	80.8 ± 4.2	78.9 ± 3.8	86.8 ± 3.3
[5]	82.4 ± 3.1	81.2 ± 2.3	87.5 ± 2.9
	N/A	N/A	88.1 ± 2.4
20]	83.1 ± 2.0	N/A	89.4 ± 1.3
HHA)	84.1 ± 2.7	83.0 ± 2.7	91.0 ± 1.9
(jet)	$84.1~\pm~2.7$	83.8 ± 2.7	91.3 ± 1.4

NVIDIA CONFIDENTIALa. DO NOT DISTRIBUTE.

AUTOMOTIVE USAGE Driver Assistance and Autonomous Driving

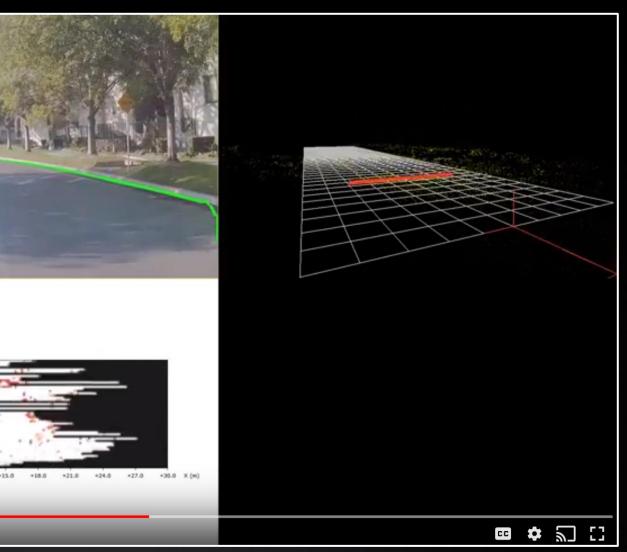
- ADAS task examples
 - Automatic emergency braking
 - Lane keep assistance
 - Hazard alert
- Autonomous task examples
 - Free space / driving lane detection
 - Obstacle detection and identification
 - Mapping and localization
 - Path planning / driving policy

AUTOMOTIVE USAGE EXAMPLES

Road profile analysis

Potholes, bumps, hazardous objects, etc.

Bump detection



ROBOTICS APPLICATIONS Agricultural concept

Credit: StereoLabs (https://www.stereolabs.com/solutions/robotics/)

Capture 3D scene with depth from stereo or structure-from-motion from mono camera

Analyze semantics using deep learning

Applications are many

Inspection

Targeted pest control

Trimming

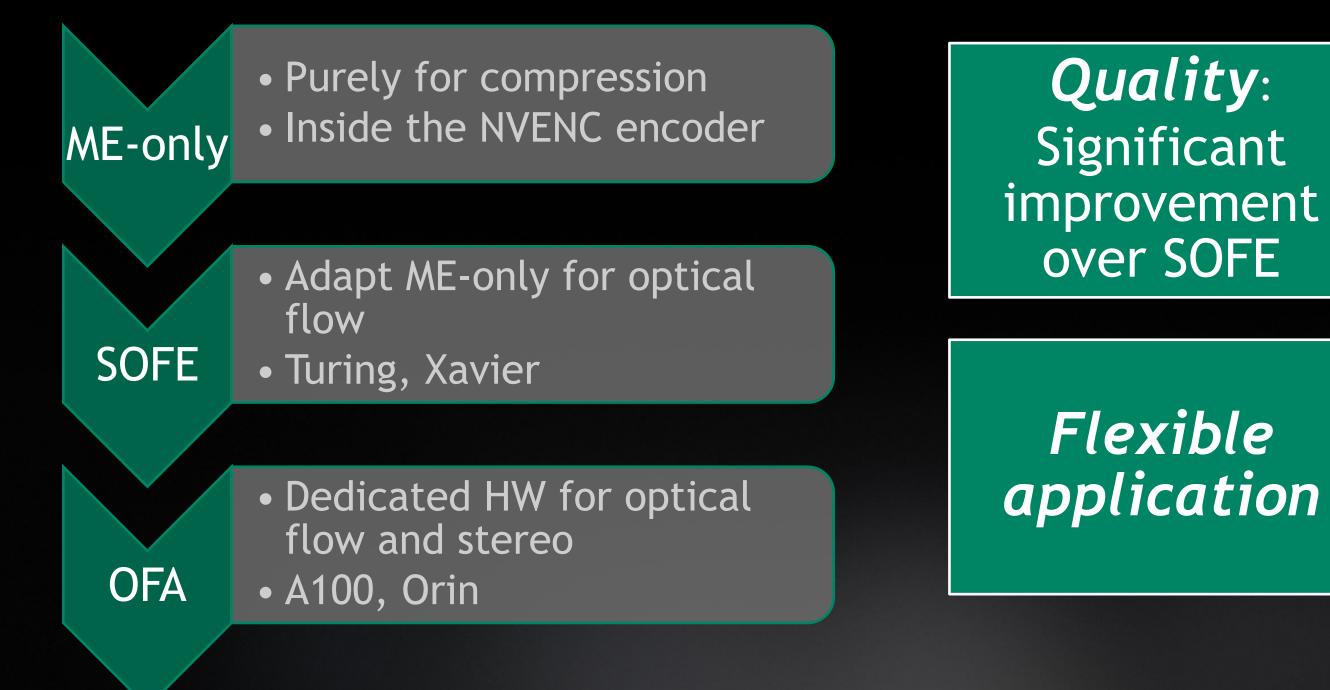
Harvesting

NVIDIA CONFIDENTIALa. DO NOT DISTRIBUTE.

OFA ENGINE -MOTIVATION AND PRINCIPLES OF OPERATION

OFA = OPTICAL FLOW ACCELERATOR

Evolution of Nvidia Optical Flow / Stereo Hardware



MOTIVATION FOR OFA ENGINE

Performance: Match SOFE

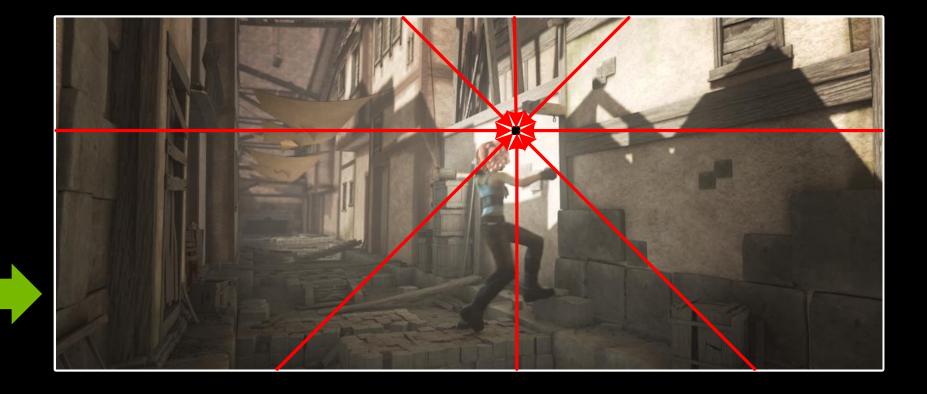
Support: Both Tegra and **GPU**

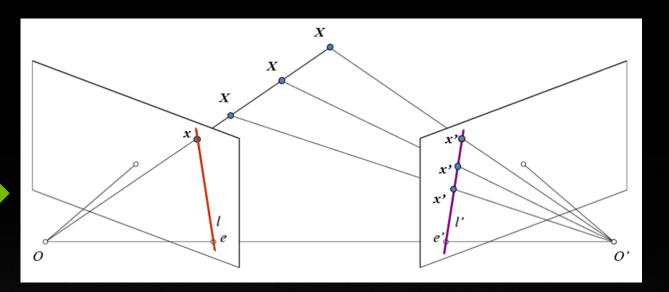
BASIS OF OFA ENGINE

Real-time motion / depth smoothing (SGM)

Rigid static world & inter-camera geometry (Epipolar)

Optical flow w/o geometry and camera data (Pyramidal SGM)





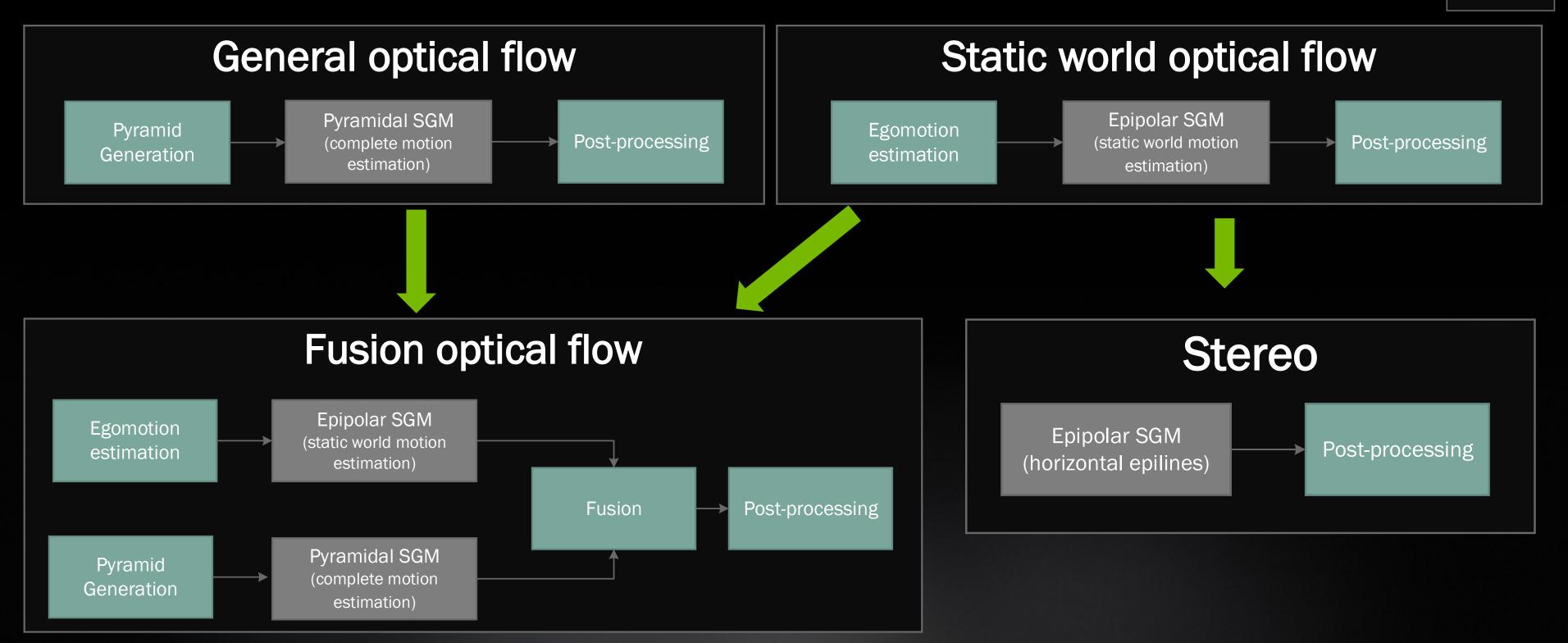
Optical flow (Level L) Lowpass filtering and sub-sampling Optical flow (Level L-1) Lowpass filtering and sub-sampling Optical flow (Level 0) Gaussian pyramid of image I_{t+1}

Gaussian pyramid of image I_t

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

NVIDIA

MODES OF OPERATION

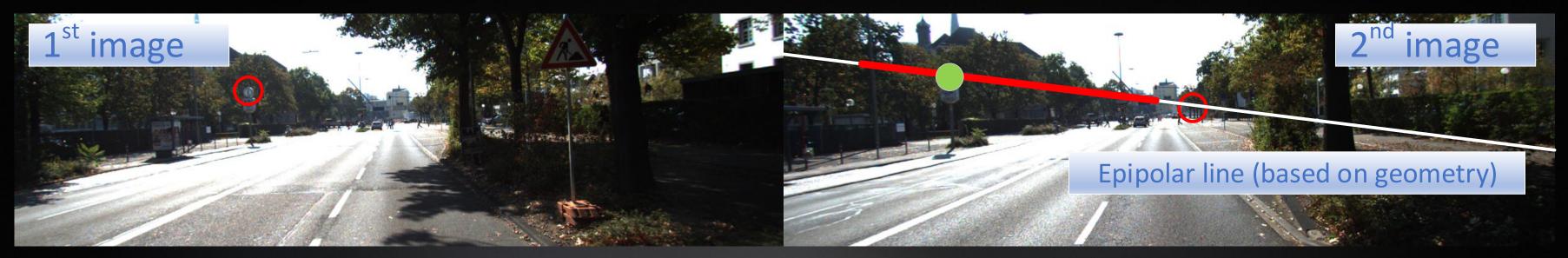


EPIPOLAR SGM FOR OPTICAL FLOW Extending SGM to Optical Flow - Slide 1

Stereo case: matches appear along the same horizontal line

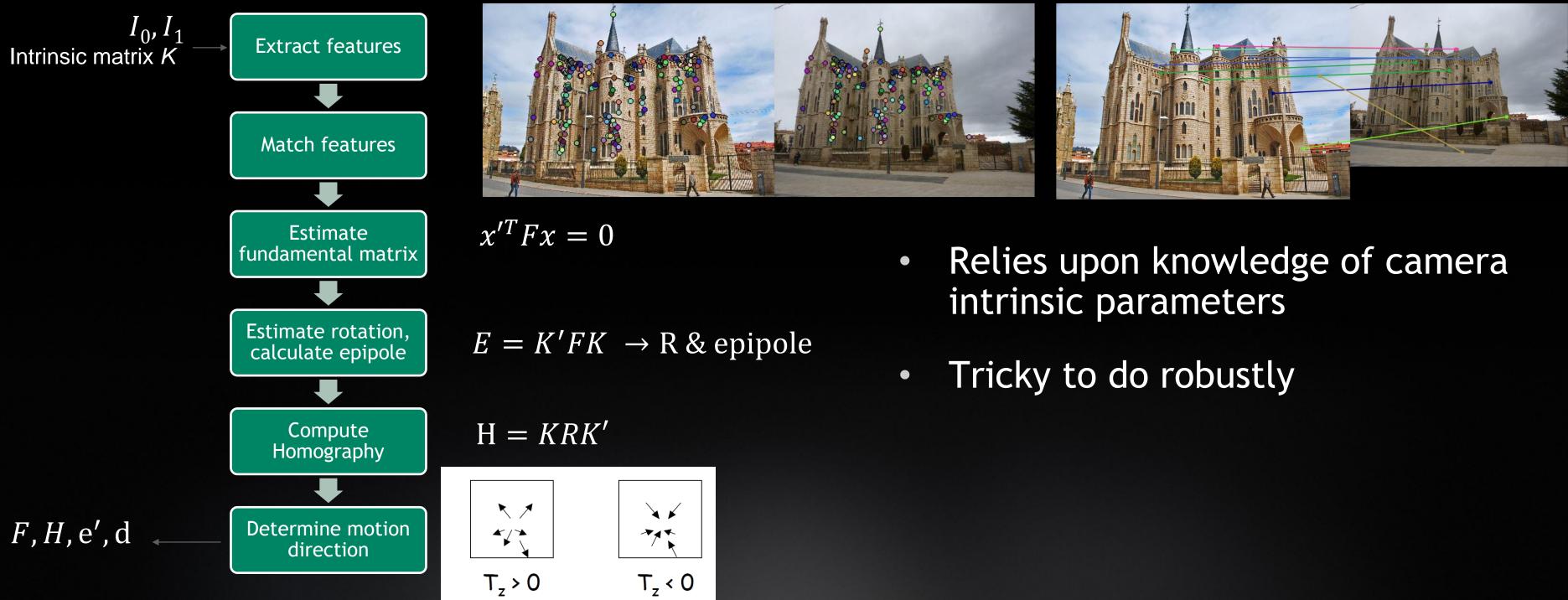


General two-camera case: matches appear along the epipolar line



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE

EPIPOLAR GEOMETRY CALCULATION Extending SGM to Optical Flow - Slide 1



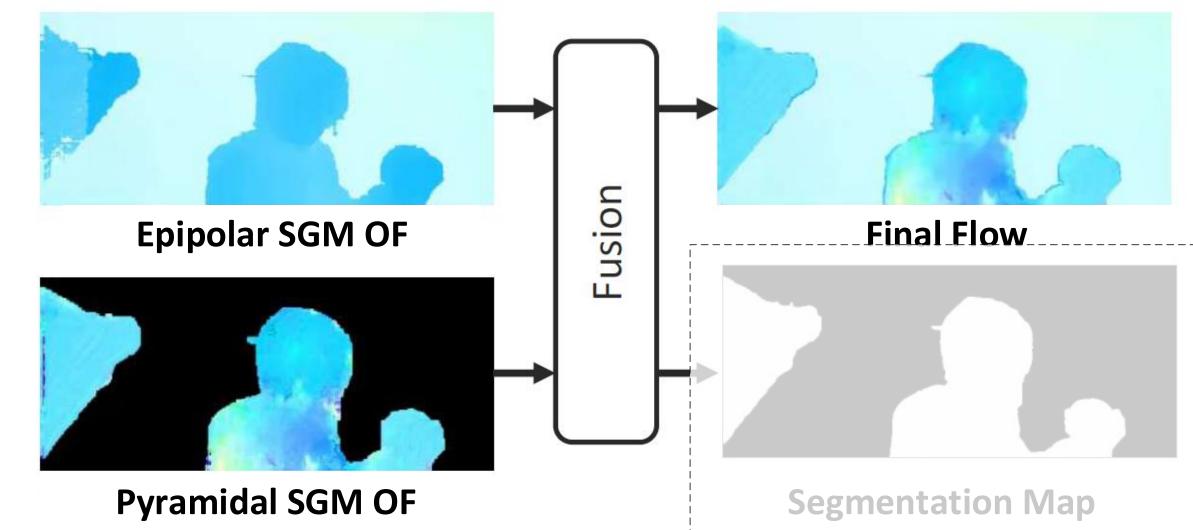
Multiple View Geometry, Hartley and Zisserman

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

FUSION MODE

Step 1: Run OFA with epipolar & pyramidal SGM mode sequentially

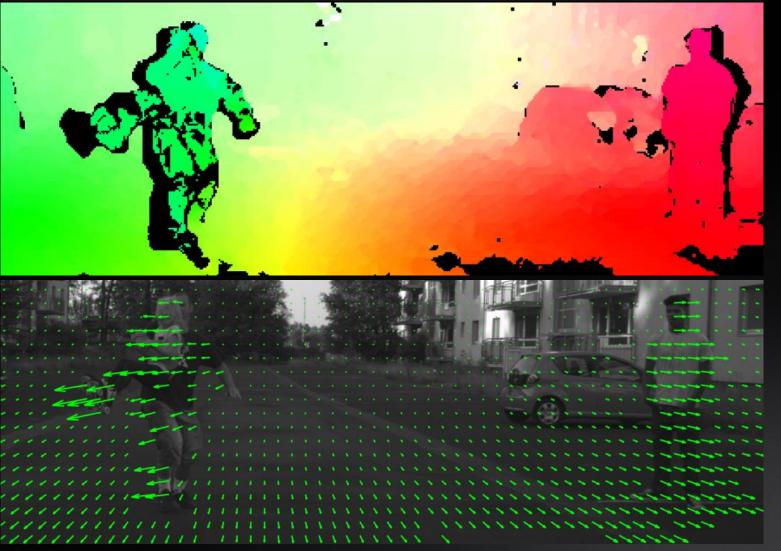
Step 2: Fuse the two generated flow maps, using the corresponding cost maps or other data



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

QUALITY AND PERFORMANCE

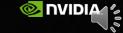
OPTICAL FLOW VISUALIZATION



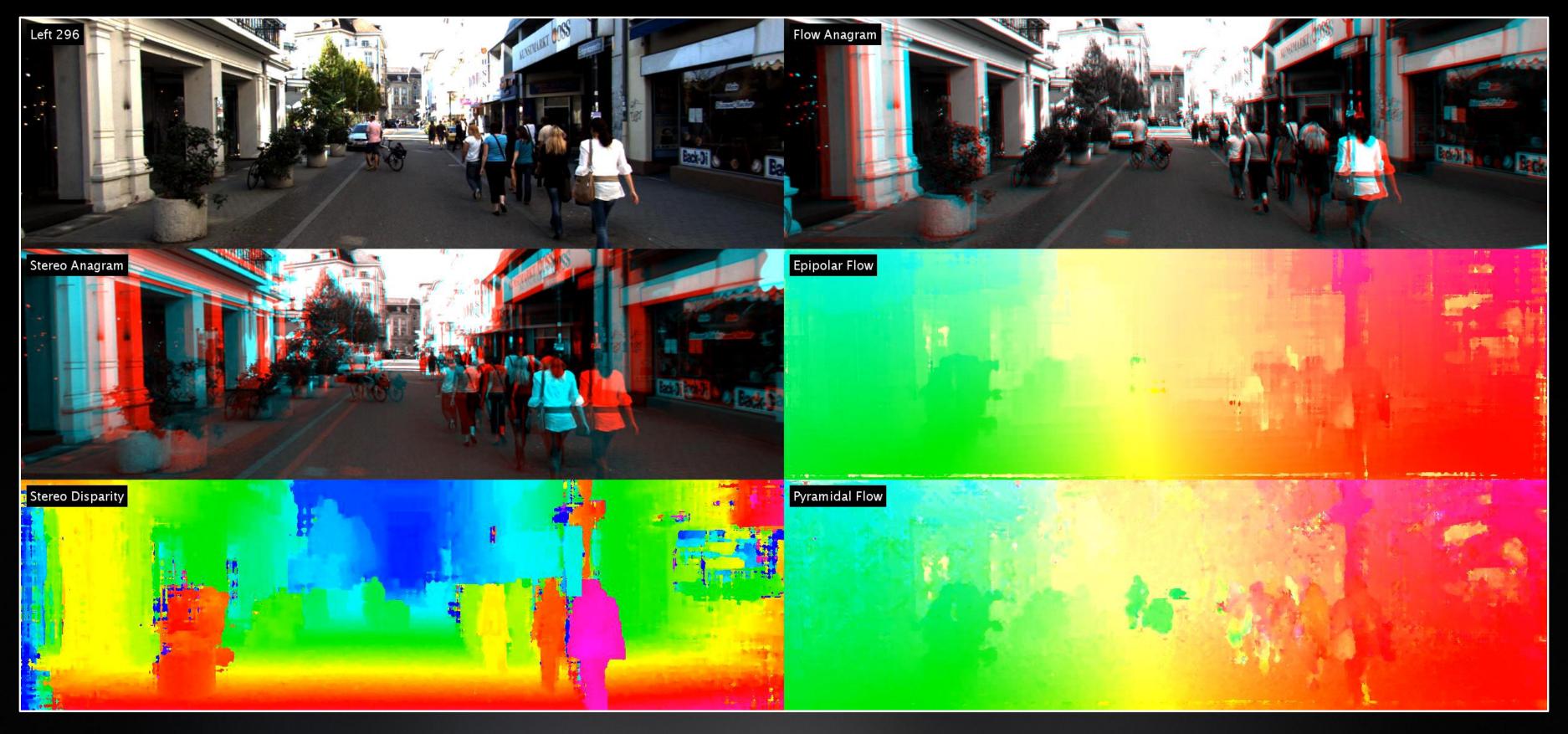
- Color Map
- Arrow map
 - that point
 - density

hue indicates direction of flow saturation indicates the flow magnitude Good for assessing smoothness and boundaries at full density

Each arrow represents the flow vector at Good for assessing accuracy, but at lower



EXAMPLE FROM URBAN DRIVING SCENARIO (COLORIZED)



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE. 24

EXAMPLE FROM KITTI 2015 BENCHMARK (ARROWS)

SOFE optical flow

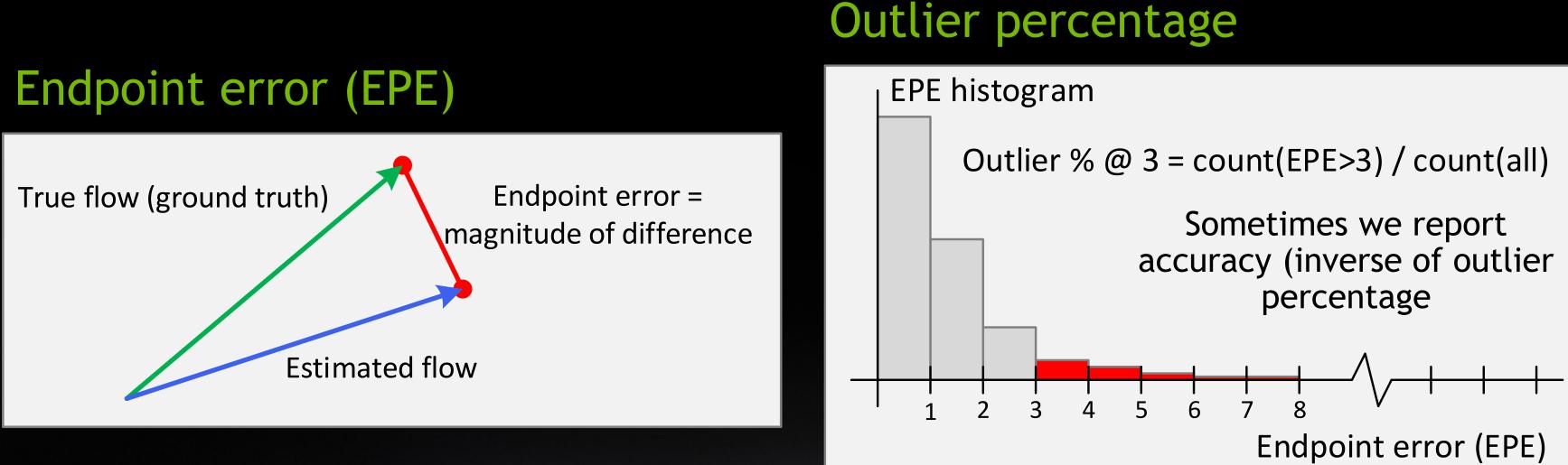
OFA optical flow

The KITTI Vision Benchmark Suite

A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago

home setup stereo flow sceneflow

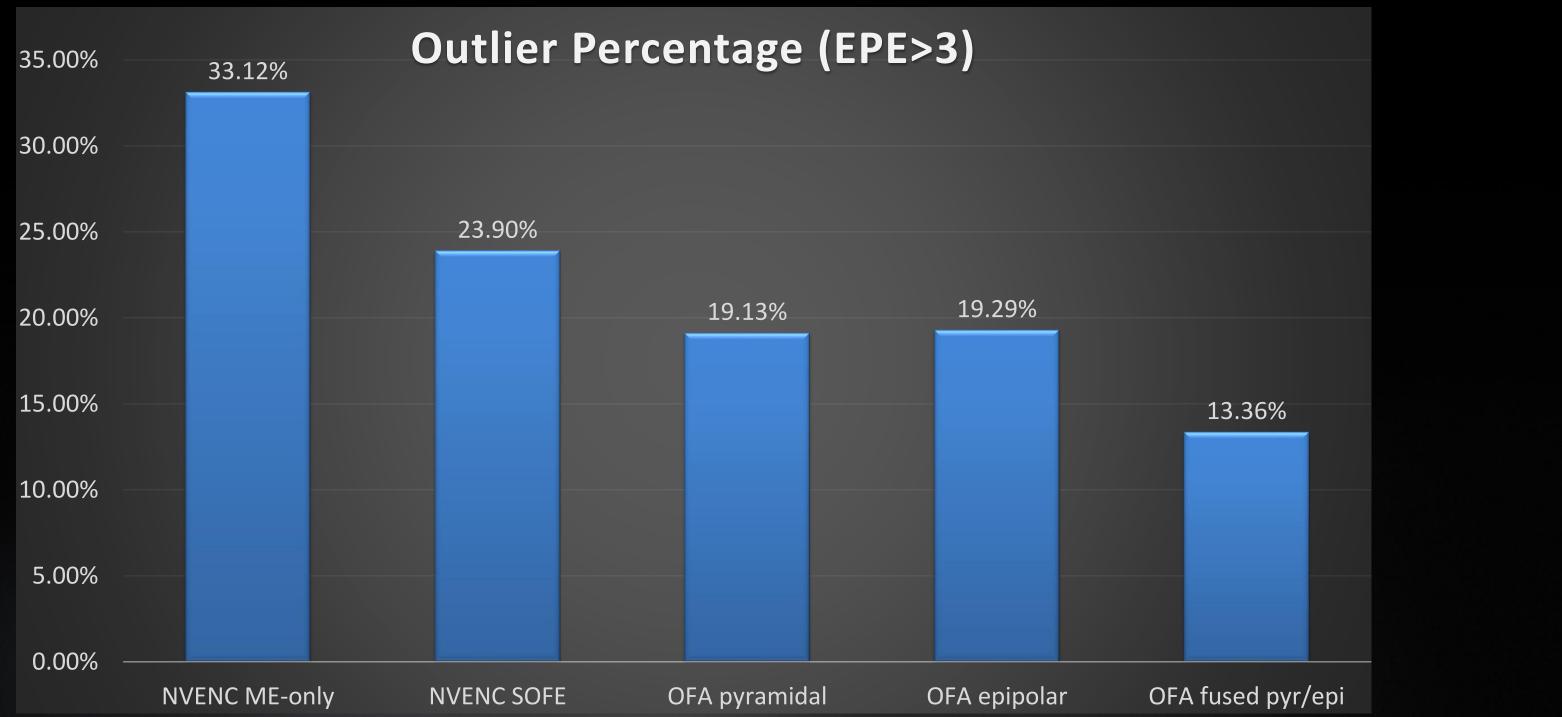
OPTICAL FLOW QUALITY METRIC DEFINITIONS



We use the same metrics for stereo disparity, although the arrows are always horizontal.

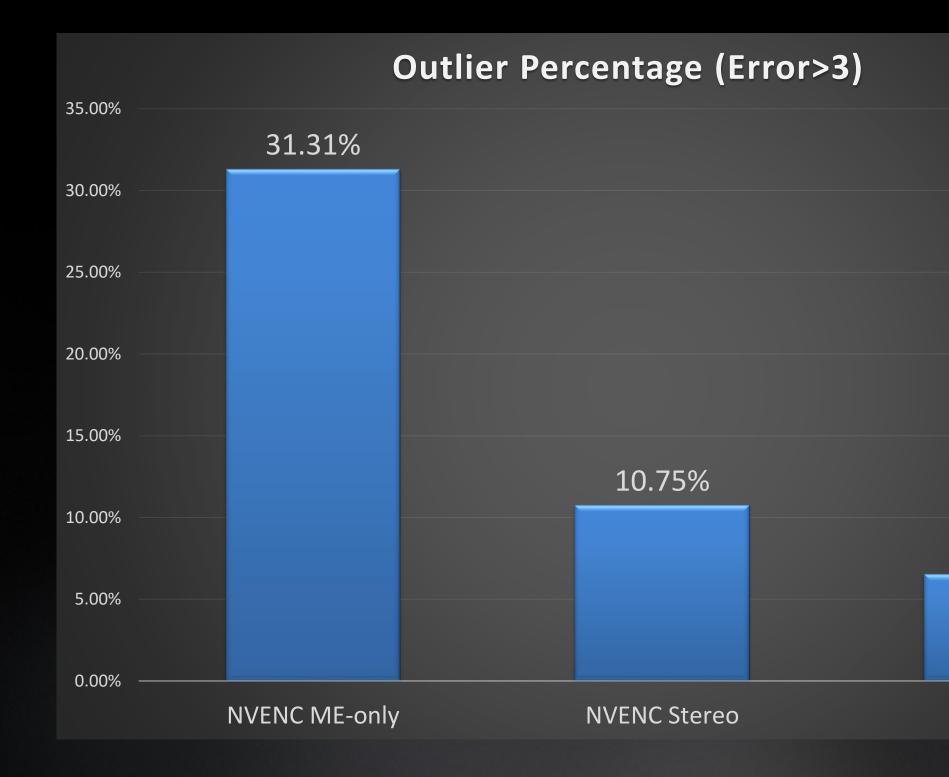
NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

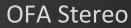
OPTICAL FLOW QUALITY SCORES - HW EVALUATION KITTI 2015, Optical flow



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

STEREO QUALITY SCORES - HW EVALUATION KITTI 2015 Stereo



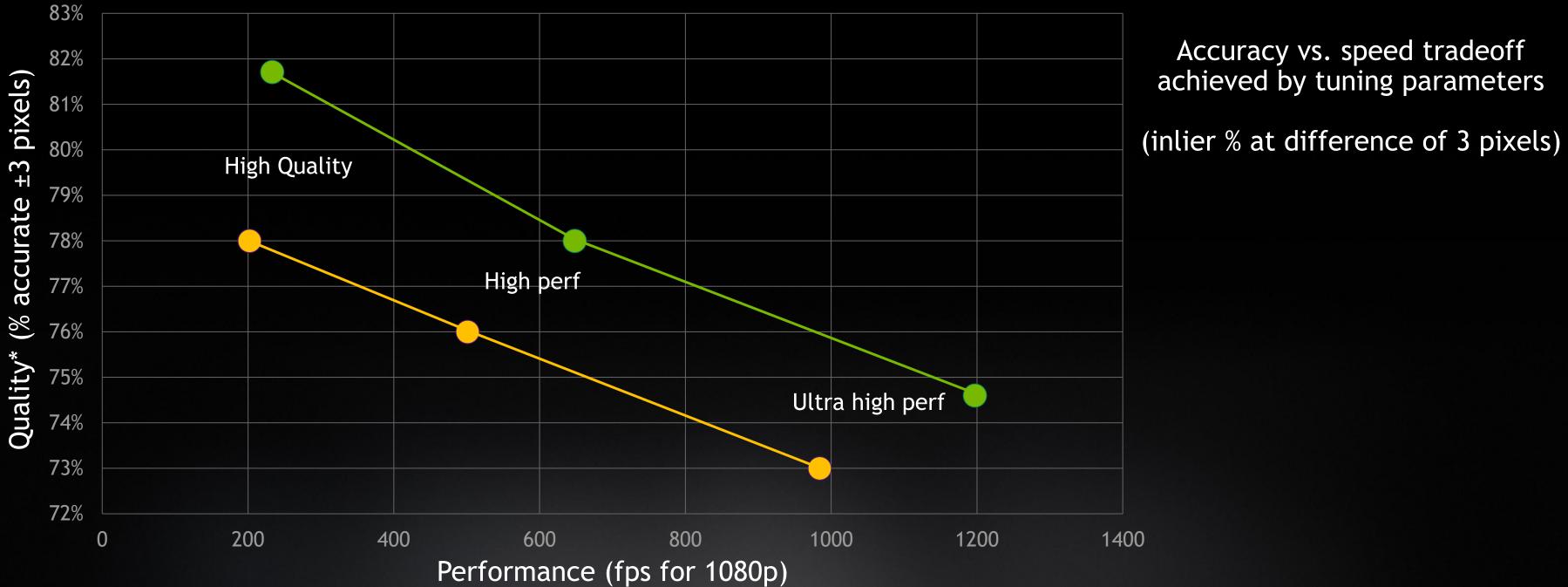


NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

OPTICAL FLOW SDK 2.0

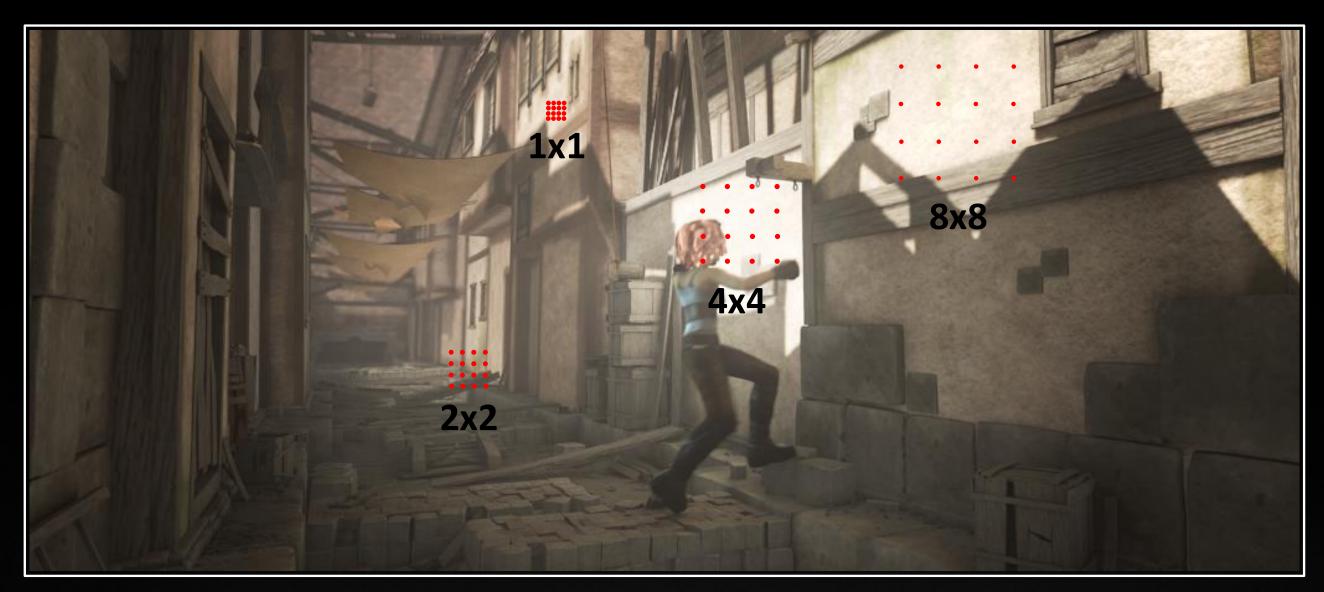
Quality vs Performance

A100/Turing



PROGRAMMING FLEXIBILITY

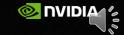
OUTPUT DENSITY



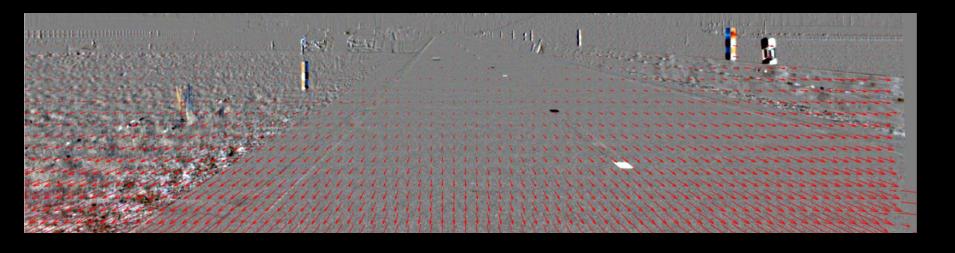
Select density based on application

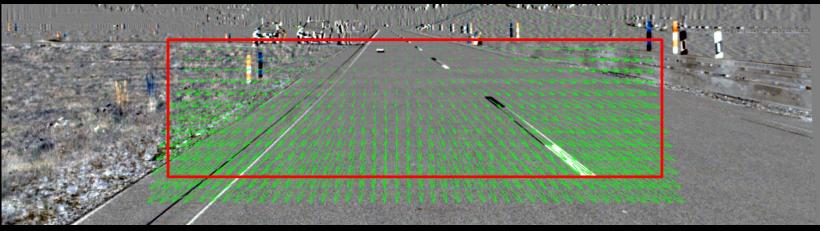
Trade off smaller details for speed

Use higher density with smaller ROIs



REGION OF INTEREST





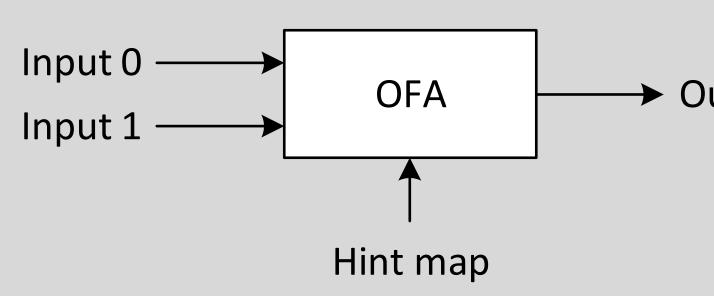
Identify object or area of interest

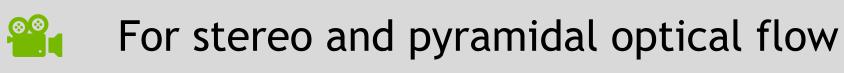
Define ROI with extended bounds $\pm N$ pixels

OFA only processes that area

Increase speed by focusing the engine

USING HINT MAPS



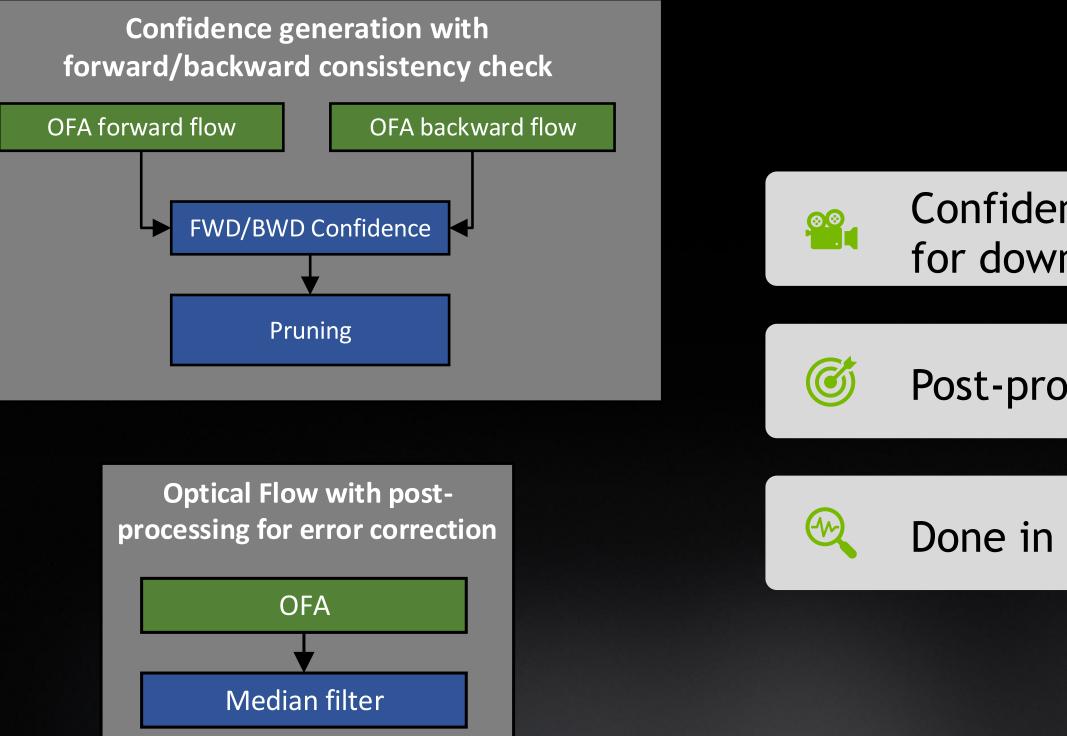


Hint map guides search area

Can come from any source

➤ Output flow

PROCESSING PIPELINES FOR CONFIDENCE MAPS AND POST-PROCESSING

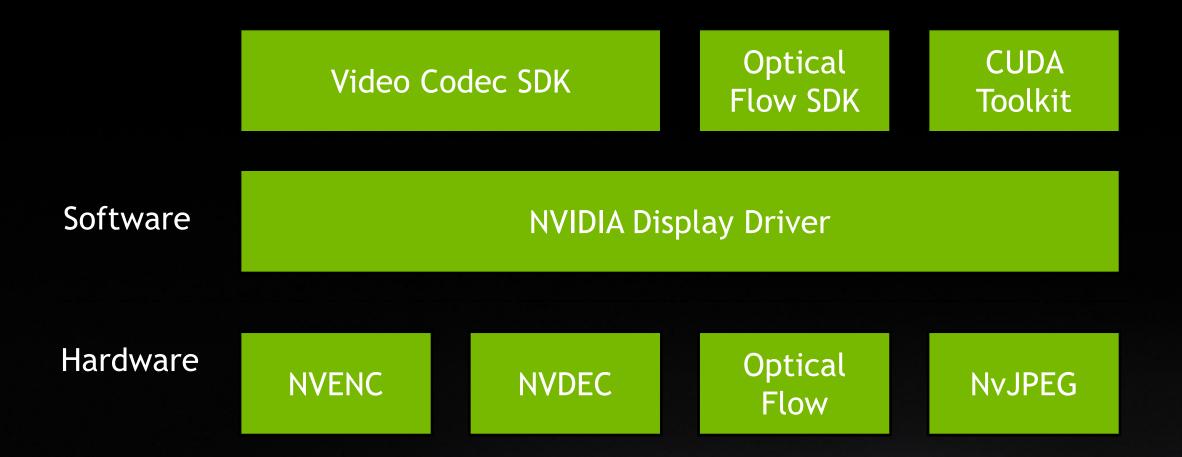


Confidence maps are often required for downstream processing

Post-processing can remove outliers

Done in SW, flexible

SOFTWARE



For more details, see: S21337: NVIDIA Video Technologies: Video Codec and Optical Flow SDK

- All binaries in NVIDIA driver
- SDKs
 - APIs
 - Reusable samples
 - Documentation
- Binary backward compatibility
- Linux & Windows
- CUDA & DirectX APIs

